Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.06 - Eksploatacja i programowanie urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 14 listopada 2025 13:04
  • Data zakończenia: 14 listopada 2025 14:04

Egzamin niezdany

Wynik: 5/40 punktów (12,5%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Podczas pracy z siłownikiem hydraulicznym dostrzeżono drobne zadrapania na tłoczysku. Jak należy zlikwidować te rysy?

A. spawanie
B. polerowanie
C. lutowanie
D. chromowanie
Polerowanie jest najodpowiedniejszą metodą usuwania niewielkich rys na tłoczysku siłownika hydraulicznego. W procesie polerowania następuje delikatne usunięcie wierzchniej warstwy materiału, co pozwala na przywrócenie gładkości powierzchni bez naruszania jej właściwości mechanicznych. Praktyka ta jest zgodna z ogólnymi zasadami utrzymania sprzętu hydraulicznego, które podkreślają znaczenie dbania o integralność elementów narażonych na wysokie ciśnienie. Polerowanie można wykonać przy użyciu różnych narzędzi, takich jak szlifierki czy tarcze polerskie, co umożliwia precyzyjne dopasowanie do specyfiki rys. Dobrą praktyką jest także ocena stanu tłoczyska przed podjęciem działań, aby upewnić się, że proces polerowania będzie wystarczający do usunięcia uszkodzeń. Warto pamiętać, że regularne przeglądy i konserwacja elementów siłowników hydraulicznych mogą znacząco wydłużyć ich żywotność.

Pytanie 2

Jakie niekorzystne zmiany w właściwościach cieczy hydraulicznych można zidentyfikować bezpośrednio w miejscu eksploatacji układu?

A. Zawartość cząsteczek metali i wartość kwasowa
B. Starzenie termiczne oraz obecność powietrza
C. Obecność wody oraz lepkość cieczy
D. Zawartość osadów i wartość zasadowa
Wybór odpowiedzi dotyczącej obecności wody i lepkości cieczy hydraulicznych na pierwszy rzut oka może wydawać się sensowny, jednak jest to podejście, które nie uwzględnia praktycznych aspektów oceny stanu cieczy w miejscu pracy. Obecność wody w cieczy hydraulicznej jest zaledwie jednym z wielu czynników wpływających na jej właściwości, a wykrycie wody wymaga specjalnych testów, które często nie są możliwe do przeprowadzenia w warunkach roboczych. W przypadku lepkości, choć może być ona mierzona przy pomocy przenośnych przyrządów, nie zawsze daje pełny obraz stanu cieczy, zwłaszcza gdy nie uwzględnia się wpływu temperatury i czasu eksploatacji. Zawartość osadów i liczba zasadowa są również parametrami, które zazwyczaj wymagają bardziej zaawansowanych analiz laboratoryjnych i nie mogą być oceniane w prosty sposób w miejscu pracy. Problem staje się jeszcze bardziej złożony, gdy rozważymy, że zmiany te nie zawsze są widoczne gołym okiem i mogą wymagać skomplikowanych procedur badawczych. Z kolei zrozumienie starzenia termicznego i obecności powietrza dostarcza użytkownikom cennych informacji o stanie cieczy, co pozwala na szybszą interwencję i uniknięcie potencjalnych awarii. Dlatego ważne jest, aby skoncentrować się na tych aspektach, które są bezpośrednio obserwowalne i mają kluczowe znaczenie dla bezpieczeństwa i efektywności systemów hydraulicznych.

Pytanie 3

W urządzeniu mechatronicznym zastosowano pasek zębaty jako mechanizm przenoszenia napędu. W trakcie regularnej inspekcji tego paska należy przede wszystkim ocenić stopień jego zużycia oraz

A. bicie osiowe
B. naprężenie
C. temperaturę
D. smarowanie
Wybór odpowiedzi dotyczącej temperatury, smarowania czy bicia osiowego na pierwszy rzut oka może się wydawać uzasadniony, jednak nie mają one bezpośredniego wpływu na podstawową funkcję paska zębatego w procesie przenoszenia napędu. Przykładowo, sprawdzanie temperatury może być istotne w kontekście ogólnego stanu urządzenia, ale nie jest kluczowym parametrem w kontekście efektywności działania paska zębatego. Wysoka temperatura może prowadzić do degradacji materiałów, jednak nie powinno się na niej koncentrować podczas bezpośredniej kontroli paska. Smarowanie jest bardziej związane z elementami ruchomymi, takimi jak łożyska, a nie z samym paskiem zębatym, który nie wymaga smarowania, ponieważ jego działanie opiera się na mechanicznym zazębieniu zębatek. Bicie osiowe, choć ważne w kontekście precyzyjnych i skomplikowanych systemów mechanicznych, również nie jest kluczowym parametrem w zarządzaniu paskiem zębatym, który powinien być kontrolowany w kontekście jego naprężenia. Zrozumienie, które parametry są priorytetowe w kontekście pracy paska zębatego, jest kluczowe dla jego efektywnej konserwacji i minimalizowania ryzyka nieprawidłowości w działaniu systemu przeniesienia napędu.

Pytanie 4

W zakres czynności konserwacyjnych dla zespołu hydraulicznego, realizowanych raz w roku, nie wchodzi

A. sprawdzenie wartości rezystancji uziemienia
B. wymiana płynu hydraulicznego
C. kontrola szczelności zespołu oraz przewodów
D. czyszczenie filtra
Wybór odpowiedzi dotyczącej wymiany płynu hydraulicznego, sprawdzenia szczelności zespołu i przewodów, czy czyszczenia filtra, może być błędny, jeśli uznamy, że wszystkie te czynności są częścią chaotycznego procesu konserwacyjnego. W rzeczywistości, każda z tych czynności ma swoje miejsce w harmonogramie konserwacji hydrauliki, ponieważ przyczyniają się do optymalnego działania systemu. Wymiana płynu hydraulicznego jest kluczowa, gdyż nieodpowiedni płyn może prowadzić do uszkodzenia pompy czy siłowników. Kontrola szczelności jest istotna z punktu widzenia bezpieczeństwa oraz efektywności energetycznej systemu, ponieważ nieszczelności mogą powodować straty płynów i obniżać wydajność. Z kolei czyszczenie filtra ma na celu eliminację zanieczyszczeń, które mogą wpływać na ciśnienie systemu oraz funkcjonowanie całego układu hydraulicznego. Niezrozumienie różnicy między tymi czynnościami a rutynowym sprawdzeniem wartości rezystancji uziemienia może prowadzić do niewłaściwego zarządzania konserwacją. Warto pamiętać, że wszystkie te działania powinny być wykonywane zgodnie z zaleceniami producentów oraz normami, takimi jak PN-EN 982, które zapewniają odpowiednie procedury konserwacyjne. Brak takiego rozróżnienia może prowadzić do poważnych konsekwencji, w tym do awarii systemu hydraulicznego w wyniku niedopatrzenia w zakresie jego konserwacji.

Pytanie 5

Jakie urządzenie pneumatyczne ma następujące cechy: napięcie 230 V, moc 1,1 kW, ciśnienie 8 bar, wydajność ssawna 200 l/min, wydajność wyjściowa 115 l/min, pojemność zbiornika 24 l, liczba cylindrów 1, prędkość obrotowa 2850 obr/min?

A. Sprężarka tłokowa
B. Silnik tłokowy
C. Zbiornik ciśnieniowy
D. Siłownik obrotowy
Sprężarka tłokowa wyróżnia się parametrami, które zostały podane w pytaniu. Napięcie 230 V i moc 1,1 kW są typowe dla sprężarek, które często są zasilane z sieci jednofazowej, co czyni je łatwymi do zastosowania w różnych środowiskach, od warsztatów po małe zakłady przemysłowe. Ciśnienie robocze 8 bar jest standardowe dla sprężarek tłokowych, które są szeroko wykorzystywane do zasilania narzędzi pneumatycznych, takich jak wkrętarki czy młoty udarowe. Wydajność ssawna 200 l/min oraz wydajność wyjściowa 115 l/min wskazują na efektywność pracy sprężarki, co jest kluczowe w zastosowaniach wymagających ciągłego dostarczania sprężonego powietrza. Dodatkowo, pojemność zbiornika 24 l pozwala na akumulację sprężonego powietrza, co poprawia stabilność ciśnienia w systemie. Prędkość obrotowa 2850 obr/min jest standardowa dla sprężarek tłokowych, co podkreśla ich wydajność i zdolność do szybkiego generowania ciśnienia. Sprężarki tłokowe są na ogół preferowane w zastosowaniach, gdzie wymagana jest duża moc i wydajność, co czyni je niezastąpionymi w wielu branżach."

Pytanie 6

Jakiego komponentu należy użyć w opracowywanym systemie hydraulicznym, aby zapewnić niezmienną prędkość wysuwu tłoczyska siłownika w przypadku zmiennego obciążenia?

A. Zawór dławiąco-zwrotny
B. Regulator natężenia przepływu
C. Zawór zwrotny sterowany
D. Zawór redukcyjny
Wybór zaworu redukcyjnego, dławiąco-zwrotnego czy zwrotnego sterowanego w celu uzyskania stałej prędkości wysuwu tłoczyska siłownika w układzie hydraulicznym jest niewłaściwy, ponieważ te elementy nie są zaprojektowane do regulacji przepływu w kontekście zmieniającego się obciążenia. Zawór redukcyjny ma na celu utrzymanie stałego ciśnienia w określonym obszarze układu, co może być przydatne w niektórych zastosowaniach, jednak nie zapewnia on kontrolowanej prędkości ruchu tłoczyska w zmiennych warunkach. Zawór dławiąco-zwrotny, z kolei, ogranicza przepływ, ale nie reguluje go w sposób automatyczny, co oznacza, że w przypadku wzrostu oporu, prędkość tłoczyska zmniejszy się, co nie jest pożądane w wielu zastosowaniach. Zawór zwrotny sterowany zatrzymuje przepływ w jednym kierunku, co również nie adresuje potrzeby utrzymania stałej prędkości w obliczu zmiennych obciążeń. Te błędne podejścia mogą wynikać z niepełnego zrozumienia, jak różne elementy hydrauliczne wpływają na parametry pracy siłowników. Kluczowe jest zrozumienie, że dobrą praktyką w hydraulice jest stosowanie komponentów, które są odpowiednio zaprojektowane do regulacji przepływu, co zapewnia zarówno efektywność, jak i bezpieczeństwo operacyjne.

Pytanie 7

Podczas montażu napędów hydraulicznych należy przestrzegać określonych norm technicznych. Która z wymienionych zasad jest nieprawidłowa?

A. Wszystkie uszczelnienia powinny być bardzo starannie złożone
B. Przed finalnym zamontowaniem wszystkie komponenty urządzeń hydraulicznych muszą być dokładnie oczyszczone
C. Podczas montażu konieczne jest zapewnienie czystości, aby do instalowanego systemu nie dostały się zanieczyszczenia
D. Uszczelki oraz podkładki gumowe powinny być oczyszczone za pomocą rozpuszczalnika i wysuszone na świeżym powietrzu
Wiesz, używanie rozpuszczalnika do czyszczenia uszczelek gumowych w hydraulice to może być spory błąd. Te uszczelki są zaprojektowane do współpracy z konkretnymi płynami roboczymi, a różne chemikalia mogą je uszkodzić. Rozpuszczalniki potrafią sprawić, że te materiały się powiększają lub kurczą, co może prowadzić do nieszczelności. W branży hydraulicznej ważne jest, żeby przed montażem czyścić te elementy tylko mechanicznie, na przykład przetrzeć je szmatką. Każdy producent powinien mieć swoje wskazówki dotyczące czyszczenia i dbania o uszczelki, których warto przestrzegać, bo ignorowanie ich może prowadzić do sporych problemów i kosztownych awarii. Dlatego lepiej stosować się do najlepszych praktyk, żeby całość działała jak należy.

Pytanie 8

Początkowo operator frezarki powinien

A. sprawdzić kondycję techniczną łożysk silnika i w razie potrzeby je nasmarować
B. kilkakrotnie szybko uruchomić i wyłączyć frezarkę w celu sprawdzenia prawidłowego działania silnika
C. wyczyścić łożyska silnika, styki przekaźników oraz styczników w systemie sterowania
D. ocenić stan frezu oraz jego mocowanie
Odpowiedzi, które wybiera się w celu przygotowania frezarki do pracy, często koncentrują się na aspektach konserwacyjnych, takich jak oczyszczanie elementów silnika, sprawdzanie łożysk czy styczników. Jednak te czynności, choć ważne, nie są kluczowe na etapie bezpośredniego przygotowania maszyny do cięcia. Oczyszczanie łożysk silnika oraz styków przekaźników i styczników w układzie sterowania to procesy, które powinny być realizowane w ramach regularnej konserwacji, a nie przed każdą produkcją. Ignorowanie stanu frezu i jego mocowania w dążeniu do poprawności technicznej może prowadzić do niebezpieczeństw, takich jak złamanie narzędzia lub uszkodzenie samej maszyny. Dodatkowo, sprawdzanie stanu technicznego łożysk silnika oraz ich smarowanie wymaga wiedzy na temat specyfiki i rodzaju używanego smaru, co nie jest wymagane na etapie bezpośredniego uruchamiania maszyny do obróbki. Ponadto, szybkie włączenie i wyłączenie maszyny nie jest skuteczną metodą weryfikacji jej stanu technicznego, ponieważ nie pozwala na dokładną ocenę funkcjonowania narzędzia skrawającego i jego zamocowania, co jest kluczowe dla efektywności obróbczej. Dlatego kluczowe jest, by przed rozpoczęciem pracy dokładnie ocenić stan frezu i jego mocowania, co umożliwia uniknięcie wielu niebezpieczeństw oraz zapewnia wysoka jakość wykonywanych operacji.

Pytanie 9

Szczelność systemu pneumatycznego weryfikuje się poprzez pomiar

A. ilości powietrza potrzebnego do utrzymania stałego poziomu ciśnienia
B. zmiany maksymalnej prędkości siłownika
C. zmiany maksymalnej siły wytwarzanej przez siłownik
D. spadku ciśnienia w systemie w ustalonym czasie
Wybór odpowiedzi związanej z ilością powietrza zużywanego na utrzymanie ciśnienia może być mylny, gdyż nie odnosi się bezpośrednio do pomiaru szczelności układu pneumatycznego. Chociaż zużycie powietrza może wskazywać na ogólną efektywność systemu, nie jest to miara nieszczelności. W praktyce, nawet w obecności nieszczelności, układ może nadal utrzymywać ciśnienie, jeśli kompresor działa wystarczająco wydajnie, a to prowadzi do błędnych wniosków na temat stanu układu. Podobnie, spadek maksymalnej siły generowanej przez siłownik nie jest bezpośrednim wskaźnikiem szczelności, ponieważ może być wynikiem różnych czynników, takich jak obciążenie czy zmiany w parametrach roboczych siłownika. Z kolei spadek maksymalnej prędkości siłownika również nie wskazuje na nieszczelność, lecz może być efektem zbyt małego ciśnienia zasilania lub zbyt długiego cyklu pracy. Kluczowe jest zrozumienie, że właściwym podejściem do oceny szczelności układu pneumatycznego jest monitorowanie i analiza zmian ciśnienia w czasie, a nie opieranie się na pośrednich wskaźnikach, które mogą prowadzić do nieprawidłowych wniosków. Dlatego, przy ocenie stanu technicznego układu, należy stosować odpowiednie metody i narzędzia diagnostyczne zgodne z normami branżowymi, które zapewniają dokładność i wiarygodność pomiarów.

Pytanie 10

Jaką czynność powinno się wykonać jako pierwszą, gdy automatycznie sterowana brama przesuwna nie zatrzymuje się w pozycji otwartej?

A. Skontrolować stan czujnika krańcowego
B. Zweryfikować zasilanie silnika
C. Sprawdzić poziom naładowania baterii w pilocie zdalnego sterowania
D. Przekazać sterownik do serwisu
Wybór innych opcji jako pierwszego kroku w diagnostyce problemów z bramą przesuwną może prowadzić do nieefektywnego rozwiązywania problemów. Sprawdzanie zasilania silnika, choć ważne, powinno być przeprowadzone po upewnieniu się, że czujnik krańcowy działa poprawnie. Jeśli brama nie zatrzymuje się, a problem leży w czujniku, to sprawdzenie zasilania nie rozwiąże podstawowego problemu, a może jedynie wprowadzić w błąd. Podobnie, sprawdzanie stanu baterii w pilocie, może być przydatne, ale nie ma bezpośredniego wpływu na funkcjonowanie samego mechanizmu bramy w momencie, gdy czujnik krańcowy nie sygnalizuje pozycji bramy. Oddanie sterownika do naprawy bez wcześniejszej diagnozy czujnika również nie jest zalecane, ponieważ może prowadzić do niepotrzebnych kosztów i opóźnień w przywróceniu funkcjonalności bramy. W praktyce, najczęstszym błędem jest pomijanie podstawowych elementów systemu, takich jak czujniki krańcowe, które są kluczowe dla bezpieczeństwa i prawidłowego działania urządzeń automatycznych. Dlatego fundamentalnym krokiem w wszelkich pracach serwisowych powinno być zawsze zaczynanie od analizy stanu czujników, a nie innych elementów systemu.

Pytanie 11

Zanieczyszczony element filtra oleju doprowadził do znacznego obniżenia efektywności układu smarowania. Co należy w takim przypadku zrobić?

A. przedmuchać wkład filtra przy użyciu sprężonego powietrza
B. wymienić wkład lub filtr
C. wyczyścić wkład filtra za pomocą wody destylowanej
D. usunąć zanieczyszczenia z wkładu filtra za pomocą szczotki drucianej
Próba przemywania wkładu filtra wodą destylowaną lub oczyszczania go szczotką drucianą jest podejściem, które nie tylko jest nieefektywne, ale również może prowadzić do dalszych problemów. Filtr oleju działa na zasadzie zatrzymywania zanieczyszczeń i cząstek w oleju silnikowym, a jego struktura nie jest przystosowana do wielokrotnego użycia. Używanie wody destylowanej może nie usunąć wszystkich zanieczyszczeń, a dodatkowo może wprowadzić wilgoć do systemu olejowego, co jest szkodliwe dla silnika. Czynność polegająca na czyszczeniu filtra szczotką drucianą może uszkodzić jego strukturę, co może doprowadzić do przedostawania się cząstek zanieczyszczeń do obiegu olejowego. Oprócz tego, przedmuchiwanie wkładu filtra sprężonym powietrzem może jedynie przesunąć zanieczyszczenia, ale nie usuwa ich w sposób skuteczny, co może prowadzić do dalszych problemów z przepływem oleju. W związku z tym, nieprzestrzeganie zasad dotyczących wymiany filtrów może skutkować nieodwracalnymi uszkodzeniami silnika, co podkreśla wagę stosowania się do standardów i dobrych praktyk w zakresie konserwacji pojazdów.

Pytanie 12

Obserwując zarejestrowany przebieg wartości regulowanej w systemie regulacji dwustanowej, dostrzeżono zbyt silne oscylacje wokół wartości docelowej. W celu zredukowania amplitudy tych oscylacji, należy w regulatorze cyfrowym

A. zmniejszyć szerokość histerezy
B. zmniejszyć wartość sygnału ustawiającego
C. zwiększyć amplitudę sygnału kontrolującego
D. powiększyć szerokość histerezy
Zwiększenie amplitudy sygnału regulującego nie jest skuteczną metodą na redukcję oscylacji w układzie regulacji dwustanowej. W rzeczywistości, podniesienie amplitudy sygnału prowadzi do jeszcze większych odchyleń od wartości zadanej, co z kolei potęguje oscylacje i wprowadza dodatkowe problemy w stabilności systemu. W sytuacjach, gdy amplituda sygnału regulującego jest zbyt wysoka, system może stać się niestabilny, co skutkuje chaotycznym zachowaniem. Zwiększenie szerokości histerezy również nie prowadzi do pożądanej stabilizacji; wręcz przeciwnie, może pogłębić problem. Szerokość histerezy ma kluczowy wpływ na dynamikę układu – im szersza histereza, tym większe odchylenia, co prowadzi do dłuższych czasów reakcji i większych oscylacji. Zmniejszenie wartości sygnału zadającego także nie jest rozwiązaniem, ponieważ może to prowadzić do niedostatecznej reakcji regulatora na zmiany w systemie. Skuteczne zarządzanie oscylacjami wymaga zrozumienia i precyzyjnego dostosowania parametrów regulatora, a nie jedynie zwiększania lub zmniejszania wartości sygnałów. Warto pamiętać, że kluczowym celem regulacji jest utrzymanie stabilności i precyzji, a niewłaściwe działania mogą prowadzić do przeciwnych efektów niż zamierzone.

Pytanie 13

Obniżenie błędu statycznego, skrócenie czasu reakcji, pogorszenie jakości regulacji przy niższych częstotliwościach, wzmocnienie szumów przetwornika pomiarowego są cechami działania jakiego rodzaju regulatora?

A. P
B. PD
C. PID
D. I
Wybór innej opcji zamiast regulatora PD może wynikać z kilku błędnych założeń. Regulator P (proporcjonalny) ma ograniczoną zdolność do minimalizowania błędów statycznych. Choć potrafi wprowadzać korekty w odpowiedzi na błąd, nie uwzględnia jego dynamiki, co może prowadzić do opóźnień w osiągnięciu celu regulacji. Regulator PID (proporcjonalno-całkująco-derywacyjny), mimo że może wydawać się lepszym wyborem, nie jest zawsze optymalny w kontekście skracania czasu reakcji. Obejmuje on element całkujący, który, chociaż zmniejsza błąd statyczny, wprowadza dodatkową złożoność i opóźnienia w systemie, co może być problematyczne w aplikacjach wymagających szybkiej reakcji. Regulator I (całkujący) z kolei przeznaczony jest do eliminacji błędu statycznego, ale nie radzi sobie z dynamicznymi zmianami, co również wpływa negatywnie na czas reakcji. Zrozumienie tych różnic jest kluczowe, aby uniknąć nieefektywnego doboru regulatora do konkretnego zastosowania. Dobrą praktyką w automatyce jest stosowanie analizy odpowiedzi systemu na różne rodzaje regulatorów, co pozwala na optymalizację procesu regulacji i dostosowanie go do specyficznych wymagań aplikacji.

Pytanie 14

Silniki komutatorowe jako urządzenia napędowe w urządzeniach mechatronicznych nie powinny być stosowane w

A. pomieszczeniach zagrożonych wybuchem
B. zadaszonej hali produkcyjnej
C. pomieszczeniach o niskiej temperaturze
D. pomieszczeniach klimatyzowanych
Niewłaściwy wybór odpowiedzi może wynikać z niepełnego zrozumienia zasad działania silników komutatorowych oraz specyfiki środowisk roboczych. Zadaszone hale produkcyjne oraz pomieszczenia klimatyzowane są miejscami, w których silniki te mogą być używane w sposób bezpieczny, ponieważ nie stwarzają one warunków sprzyjających wybuchowi. Zastosowanie silników komutatorowych w takich konfiguracjach jest powszechną praktyką, szczególnie tam, gdzie nie ma ryzyka wystąpienia substancji łatwopalnych. Ponadto, w pomieszczeniach o niskiej temperaturze, silniki komutatorowe również mogą być stosowane, choć należy pamiętać o ich możliwościach pracy w niskotemperaturowych warunkach oraz o ewentualnych ograniczeniach związanych z ich wydajnością. Wybór nieodpowiednich lokalizacji dla tych urządzeń często wynika z błędnych założeń dotyczących ich działania i bezpieczeństwa, co może prowadzić do poważnych konsekwencji. Dlatego kluczowe jest, aby osoby odpowiedzialne za dobór napędów mechatronicznych miały pełną wiedzę na temat ich zastosowania oraz możliwych zagrożeń, aby podejmować świadome decyzje. Przykłady dobrej praktyki wskazują na znaczenie analizy ryzyk oraz przestrzegania norm branżowych, takich jak np. ISO 13849, które regulują bezpieczeństwo maszyn i urządzeń w kontekście ich użytkowania w różnych warunkach.

Pytanie 15

Na schematach systemów pneumatycznych, siłowniki powinny mieć oznaczenie składające się z cyfry oraz litery

A. A
B. Z
C. V
D. P
Odpowiedzi, które wskazują na oznaczenia inne niż "A", mogą wynikać z nieporozumienia dotyczącego standardów oznaczania elementów w układach pneumatycznych. Oznaczenia takie jak "P.", "V. czy "Z." nie są zgodne z obowiązującymi normami, co prowadzi do błędnej identyfikacji siłowników. Często zdarza się, że osoby pracujące z schematami technicznymi mylą się w interpretacji symboli. Należy pamiętać, że każdy element układu pneumatycznego powinien być oznaczony w sposób, który pozwala na łatwe zrozumienie jego funkcji i właściwości. Użycie nieprawidłowych oznaczeń może prowadzić do nieporozumień podczas projektowania, co z kolei może skutkować poważnymi konsekwencjami w działających systemach. Proces nauki i przyswajania wiedzy na temat symboliki i oznaczeń w dokumentacji technicznej powinien być traktowany jako kluczowy element edukacji w dziedzinie inżynierii. Znajomość norm i zasadniczych zasad oznaczania elementów w schematach pneumatycznych pozwala na uniknięcie typowych błędów, takich jak mylenie funkcji i zastosowań poszczególnych komponentów. Dlatego ważne jest, aby każdy specjalista w tej dziedzinie dokładał wszelkich starań w celu zrozumienia i stosowania właściwych standardów, co przyczynia się do poprawy bezpieczeństwa i efektywności pracy systemów pneumatycznych.

Pytanie 16

Jakie działanie podejmowane w trakcie konserwacji napędu elektrycznego jest sprzeczne z zasadami obsługi urządzeń?

A. Obserwacja działania wentylatorów poprzez słuchanie wydawanego przez nie hałasu.
B. Usunięcie kurzu i wyczyszczenie radiatorów z brudu za pomocą szmatki.
C. Weryfikacja połączeń elektrycznych przy użyciu omomierza
D. Oczyszczenie zabrudzonych styków łączników za pomocą pilnika.
Odpowiedź "Oczyszczenie pilnikiem zabrudzonych styków łączników" jest prawidłowa, ponieważ stosowanie pilnika do czyszczenia styków może prowadzić do ich mechanicznego uszkodzenia. Styk elektryczny jest elementem, który powinien zapewniać doskonały kontakt przewodzący, a jego powierzchnia musi być gładka i wolna od zarysowań. Użycie pilnika może spowodować mikrouszkodzenia, które zmniejszą przewodność elektryczną i zwiększą oporność, co w konsekwencji może prowadzić do przegrzewania się i awarii całego napędu elektrycznego. Zalecane metody czyszczenia styków to użycie specjalnych środków chemicznych i narzędzi, takich jak szczoteczki czy ściereczki, które są przeznaczone do czyszczenia elementów elektrycznych. Standardy branżowe, takie jak IEC 60364, podkreślają znaczenie zachowania integralności styków elektrycznych, co jest kluczowe dla bezpiecznej i efektywnej pracy urządzeń elektrycznych.

Pytanie 17

Jaką metodę pomiaru zastosowano w celu zmierzenia temperatury pracy urządzenia mechatronicznego, przy użyciu elementu pomiarowego Pt100?

A. Bezkontaktową pirometryczną
B. Bezkontaktową termowizyjną
C. Kontaktową rezystancyjną
D. Kontaktową termoelektryczną
Wybór nieprawidłowej metody pomiaru może prowadzić do wielu błędów w interpretacji danych dotyczących temperatury. Odpowiedzi związane z metodami termoelektrycznymi, takie jak kontaktowa termoelektryczna i bezkontaktowa termoelektryczna, opierają się na zasadzie wykorzystania zjawiska Seebecka, które polega na generowaniu napięcia w wyniku różnicy temperatur między dwoma różnymi metalami. W przypadku urządzeń mechatronicznych, które wymagają stałego monitorowania temperatury, ta metoda może być mniej precyzyjna, zwłaszcza gdy źródło ciepła jest niestabilne. Metody bezkontaktowe, jak termowizyjna czy pirometryczna, są przydatne w sytuacjach, gdzie nie można zastosować czujników kontaktowych, jednak w kontekście pomiaru temperatury urządzeń mechatronicznych mogą prowadzić do błędnych wyników z powodu odbicia ciepła, promieniowania oraz otoczenia, w którym wykonywany jest pomiar. W kontekście standardów przemysłowych, pomiar kontaktowy zapewnia wyższą dokładność i mniejsze ryzyko błędów, co czyni go bardziej odpowiednim w zastosowaniach wymagających precyzyjnego monitorowania temperatury. Dlatego ważne jest, aby zrozumieć różnice między tymi metodami i odpowiednio dobierać je do specyfikacji danego zadania pomiarowego.

Pytanie 18

Jak zwiększenie częstotliwości napięcia zasilającego podawanego z falownika wpłynie na działanie silnika trójfazowego?

A. Maksymalny moment napędowy silnika ulegnie zmniejszeniu
B. Obroty silnika wzrosną
C. Obroty silnika się zmniejszą
D. Moment obciążenia silnika się zwiększy
Wzrost częstotliwości zasilania silnika trójfazowego nie prowadzi do zwiększenia momentu obciążenia ani do zmniejszenia maksymalnego momentu napędowego. Moment obciążenia silnika jest związany z jego zastosowaniem oraz z rodzajem napędzanego obciążenia, a nie z częstotliwością zasilania. Często można spotkać mylne przekonanie, że zmniejszenie obrotów silnika automatycznie prowadzi do wzrostu momentu, co jest błędnym rozumowaniem. W rzeczywistości, zmniejszenie obrotów silnika w wyniku obniżenia częstotliwości może powodować, że silnik nie będzie w stanie dostarczyć wymaganego momentu obrotowego, co może prowadzić do przeciążenia silnika i jego uszkodzenia. Należy również zauważyć, że przy zmniejszeniu częstotliwości pracy silnika, jego wydajność spada, a straty mocy wzrastają. W kontekście zastosowań przemysłowych, nieprzemyślane zmiany częstotliwości mogą prowadzić do nieoptymalnych warunków pracy, co w efekcie negatywnie wpłynie na cały proces technologiczny. Właściwa regulacja obrotów silnika trójfazowego powinna być przeprowadzana z uwzględnieniem jego charakterystyki oraz wymagań danego zastosowania, co jest zgodne z zasadami projektowania systemów napędowych oraz dobrymi praktykami inżynieryjnymi.

Pytanie 19

Na wyświetlaczu panelu operatorskiego falownika wyświetla się kod błędu F005. Określ na podstawie tabeli z instrukcji serwisowej co może być przyczyną sygnalizowania wystąpienia błędu.

Kod błęduOpis uszkodzeniaCzynności naprawcze
F001PrzepięcieSprawdź czy wielkość napięcia zasilania jest właściwe dla znamion falownika i sterowanego silnika.
Zwiększyć czas opadania częstotliwości (nastawa P003).
Sprawdź czy moc hamowania mieści się w dopuszczalnych granicach.
F002PrzetężenieSprawdź czy moc falownika jest odpowiednia do zastosowanego silnika.
Sprawdź czy długość kabli zasilających silnika nie jest zbyt duża.
Sprawdź czy nie nastąpiło przebicie izolacji uzwojeń silnika lub przewodów kabli zasilających.
Sprawdź czy wartości nastaw P081 - P086 są zgodne z wartościami danych znamionowych silnika.
Sprawdź czy wartość nastawy P089 jest zgodna z wielkością rzeczywistej rezystancji uzwojeń stojana silnika.
Zwiększ czas narastania częstotliwości wyjściowej P002.
Zmniejsz wielkości forsowania częstotliwości (wartość nastaw P078 i P079).
Sprawdź czy wał silnika nie jest zablokowany lub przeciążony.
F003PrzeciążenieSprawdź czy silnik nie jest przeciążony.
Zwiększ częstotliwość maksymalną (wartość nastawy P013) w przypadku gdy używany jest silnik o dużym poślizgu znamionowym.
F005Przegrzanie falownika
(zadziałanie wewnętrznego termistora PTC)
Sprawdź czy temperatura otoczenia przekształtnika nie jest zbyt wysoka.
Sprawdź czy wloty i wyloty powietrza chłodzącego obudowy falownika nie są przysłonięte przez elementy sąsiadujące.
Sprawdź czy wentylator chłodzący funkcjonuje prawidłowo.
F008Przekroczenie okresu oczekiwania na sygnał z łącza szeregowegoSprawdź poprawność łącza szeregowego.
Sprawdź prawidłowość ustawienia parametrów komunikacji łącza szeregowego (wartości nastaw P091 - P093).
A. Za duża moc silnika.
B. Za małe obciążenie na wale silnika.
C. Za mała częstotliwość.
D. Za duża temperatura otoczenia.
Odpowiedzi sugerujące, że przyczyny błędu F005 mogą wynikać z za dużej mocy silnika, za małej częstotliwości czy za małego obciążenia na wale silnika, są błędne i opierają się na typowych nieporozumieniach dotyczących funkcjonowania falowników. Zwiększenie mocy silnika w kontekście pojawienia się błędu F005 nie prowadzi do przegrzania falownika, o ile pozostałe parametry są odpowiednio dostosowane. W rzeczywistości falownik jest zaprojektowany do pracy z określonym zakresem mocy, a ewentualne przeciążenie silnika może skutkować innymi rodzajami błędów, ale nie F005. Odpowiedzi dotyczące częstotliwości również nie są właściwe, ponieważ zmniejszenie częstotliwości pracy silnika nie powoduje przegrzewania falownika – może wręcz ograniczać jego wydajność. Podobnie, za małe obciążenie na wale silnika nie jest przyczyną przegrzania; falownik może w takich warunkach działać efektywnie, o ile nie występują inne problemy z chłodzeniem. Kluczowe jest, aby zrozumieć, że zarówno przegrzanie, jak i inne kody błędów falowników są ściśle związane z warunkami otoczenia oraz odpowiednim zarządzaniem parametrami pracy urządzenia, co jest zgodne z dobrą praktyką w branży. Właściwe monitorowanie i analiza przyczyn kodów błędów są niezbędne dla zapewnienia niezawodności systemów automatyki przemysłowej.

Pytanie 20

Jak powinna przebiegać poprawna kolejność instalacji systemu sprężonego powietrza z wykorzystaniem przewodów poliamidowych?

A. Gratowanie krawędzi, pomiar długości odcinka przewodu, cięcie przewodu, montaż złączki
B. Pomiar długości odcinka przewodu, cięcie przewodu, gratowanie krawędzi, montaż złączki
C. Cięcie przewodu, gratowanie krawędzi, montaż złączki, pomiar długości odcinka przewodu
D. Cięcie przewodu, gratowanie krawędzi, pomiar długości odcinka przewodu, montaż złączki
Niepoprawne odpowiedzi wskazują na brak zrozumienia podstawowych zasad przygotowania i montażu instalacji sprężonego powietrza. W przypadku, gdy cięcie przewodu następuje przed wymierzeniem jego długości, dochodzi do ryzyka, że materiał będzie niewłaściwy, co prowadzi do nieefektywności i kosztownych błędów. Nieprawidłowe podejście do gratowania krawędzi przed cięciem również może skończyć się uszkodzeniem przewodu. Gratowanie powinno odbywać się po cięciu, aby pozbyć się wszelkich zadziorków, które mogą wpłynąć na szczelność połączenia. Kolejność działań jest kluczowa nie tylko ze względu na wydajność pracy, ale również na bezpieczeństwo całej instalacji. Pominięcie wymiarowania przed cięciem i gratowaniem może skutkować poważnymi konsekwencjami, takimi jak awarie systemu sprężonego powietrza, które mogą prowadzić do przestojów w pracy lub wypadków. W branży inżynieryjnej i montażowej, przestrzeganie ustalonych standardów i procedur jest niezbędne do zapewnienia bezpieczeństwa oraz efektywności działania instalacji.

Pytanie 21

Jaka będzie różnica w warunkach pracy urządzenia mechatronicznego, jeżeli zamiast sensorów w obudowie IP 44 zastosowane będą sensory o takich samych parametrach, lecz w obudowie IP 54?

Stopnie ochrony IP zgodnie z normą PN-EN 60529
OznaczenieOchrona przed wnikaniem do urządzeniaOznaczenieOchrona przed wodą
IP 0Xbrak ochronyIP X0brak ochrony
IP 1Xobcych ciał stałych o średnicy > 50 mmIP X1kapiącą
IP 2Xobcych ciał stałych o średnicy > 12,5 mmIP X2kapiącą – odchylenie obudowy urządzenia do 15°
IP 3Xobcych ciał stałych o średnicy > 2,5 mmIP X3opryskiwaną pod kątem odchylonym max. 60° od pionowego
IP 4Xobcych ciał stałych o średnicy > 1 mmIP X4rozpryskiwaną ze wszystkich kierunków
IP 5Xpyłu w zakresie nieszkodliwym dla urządzeniaIP X5laną strumieniem
IP 6Xpyłu w pełnym zakresieIP X6laną mocnym strumieniem
----IP X7przy zanurzeniu krótkotrwałym
A. Lepsza ochrona przed pyłem.
B. Gorsza ochrona przed wodą rozpryskiwaną.
C. Lepsza ochrona przed wodą rozpryskiwaną.
D. Gorsza ochrona przed pyłem.
Wybór odpowiedzi, która sugeruje gorszą ochronę przed pyłem, może wynikać z nieporozumienia dotyczącego klasyfikacji obudów w systemie IP. Obudowy te są oceniane zgodnie z normą PN-EN 60529, która precyzuje, jakie warunki ochrony oferują różne klasy. Odpowiedzi, które wskazują na gorszą ochronę przed wodą lub pyłem, nie odzwierciedlają rzeczywistych właściwości tych klas. IP 44 zapewnia ochronę przed ciałami stałymi większymi niż 1 mm oraz przed wodą, lecz nie oferuje pełnej ochrony przed pyłem, co jest istotnym aspektem w kontekście pracy w trudnych warunkach. W przypadku IP 54, pierwsza cyfra '5' oznacza, że obudowa jest pyłoszczelna, co oznacza, że nie ma znaczącego dostępu pyłu do wnętrza urządzenia, czyniąc je bardziej niezawodnym w miejscach, gdzie pył może być problemem. Przekonanie, że obudowa IP 54 nie poprawia ochrony przed pyłem, jest typowym błędem myślowym, który może wynikać z braku zrozumienia różnic między klasami IP. Takie nieprawidłowe wnioski mogą prowadzić do wyborów technologicznych, które nie zapewnią odpowiedniego poziomu ochrony dla urządzeń mechatronicznych, co w konsekwencji może wpłynąć na ich wydajność i trwałość.

Pytanie 22

Którą funkcję logiczną realizuje program napisany w języku listy instrukcji?

LD (%I0.1
ANDN%I0.2
)
OR (%I0.2
ANDN%I0.1
)
ST%Q0.1
A. NAND
B. NOR
C. OR
D. XOR
Niepoprawne odpowiedzi, takie jak NAND, NOR czy OR, reprezentują inne funkcje logiczne, które mają zupełnie odmienne zastosowania i wyniki. Funkcja NAND zwraca prawdę, gdy co najmniej jedna z wejściowych zmiennych jest fałszywa, co czyni ją podstawą wielu układów cyfrowych i może prowadzić do błędnych wniosków, jeśli zastosujemy ją w sytuacjach wymagających ekskluzywnego wykluczenia. Z kolei NOR zwraca prawdę tylko wtedy, gdy wszystkie wejścia są fałszywe. Ta funkcja logiczna jest często stosowana w projektach wymagających negacji, ale nie ma zastosowania w scenariuszu, w którym potrzebujemy stanu prawdy dla jednego z dwóch stanów. Funkcja OR jest bardziej podstawowa, ponieważ aktywuje wyjście, gdy przynajmniej jedno z wejść jest prawdziwe, co również różni się od działania XOR. Te różnice w logice mogą prowadzić do znaczących błędów w programowaniu oraz w projektowaniu układów cyfrowych. Użytkownicy często mylą te funkcje, nie rozumiejąc ich specyficznych właściwości, co w rezultacie prowadzi do nieprawidłowych analiz i błędów w implementacji. W związku z tym, ważne jest, aby dokładnie rozumieć różnice między tymi funkcjami, aby móc świadomie je stosować w praktyce.

Pytanie 23

Projektowana maszyna manipulacyjna posiada kinematykę typu PPP (TTT). Każdy z jej członów ma zakres ruchu wynoszący 1 m. Oznacza to, że efektor manipulacyjny będzie zdolny do realizacji operacji technologicznych w przestrzeni o wymiarach

A. 1 m × 2 m × 1 m
B. 2 m × 1 m × 1 m
C. 1 m × 1 m × 2 m
D. 1 m × 1 m × 1 m
Analiza odpowiedzi pokazuje, że niepoprawne opcje opierają się na błędnym zrozumieniu struktury kinematycznej maszyny manipulacyjnej typu PPP (TTT). Wybór odpowiedzi, które sugerują większe wymiary operacyjne, jak 1 m × 2 m × 1 m czy 2 m × 1 m × 1 m, wynika z nieadekwatnego rozumienia zasięgu ruchu poszczególnych członów. Każdy człon manipulatora PPP (TTT) ma określony zasięg, w tym przypadku 1 m, co oznacza, że manipulator nie może przekroczyć tej odległości w żadnym kierunku. Wybrane odpowiedzi nie biorą pod uwagę ograniczeń wynikających z kinematyki manipulatora, co prowadzi do mylnych wniosków o możliwości pracy w większej przestrzeni. Dodatkowo, pojawiające się pomysły dotyczące zasięgu 1 m × 1 m × 2 m są niezgodne z zasadami projektowania robotów, które jasno określają, że efektywność pracy wymaga ścisłego przestrzegania zasięgów ruchu. W przypadku projektowania manipulatorów istotne jest również uwzględnienie kształtu robota oraz jego zdolności do pracy w zróżnicowanych środowiskach. Właściwe zrozumienie tych zasad jest kluczowe dla każdego inżyniera zajmującego się automatyką i robotyką, ponieważ implikuje to właściwe planowanie operacji oraz efektywność w realizacji zadań produkcyjnych.

Pytanie 24

Jakiej czynności nie wykonuje się podczas odbioru maszyny po przeprowadzeniu przeglądu technicznego?

A. Określenia zakresu następnego przeglądu technicznego
B. Weryfikacji działania maszyny bez obciążenia
C. Sprawdzenia kondycji oraz poprawności działania urządzeń zabezpieczających
D. Przeprowadzenia testowego uruchomienia maszyny pod obciążeniem znamionowym
Analizując pozostałe odpowiedzi, można zauważyć, że wszystkie one dotyczą kluczowych aspektów odbioru obrabiarki po przeglądzie technicznym, ale nie są one czynnościami które można pominąć. Testowe uruchomienie obrabiarki pod obciążeniem znamionowym ma fundamentalne znaczenie dla sprawdzenia prawidłowego funkcjonowania maszyny w warunkach zbliżonych do rzeczywistych. Przeprowadzenie takiego testu pozwala zidentyfikować ewentualne problemy związane z wydajnością oraz stabilnością urządzenia, co jest kluczowe dla zapewnienia jego efektywności. Sprawdzanie działania obrabiarki bez obciążenia także nie powinno być lekceważone, gdyż umożliwia wykrycie podstawowych usterek i nieprawidłowości w działaniu systemów sterujących. Ponadto, weryfikacja stanu oraz prawidłowości działania urządzeń zabezpieczających jest niezbędna do zapewnienia bezpieczeństwa operatorów i otoczenia. Zaniedbanie któregokolwiek z tych kroków może prowadzić do poważnych konsekwencji, takich jak awarie, wypadki przy pracy, czy znaczne straty finansowe związane z przestojami produkcyjnymi. Dlatego ważne jest, aby każdy proces odbioru obrabiarek po przeglądzie był dokładnie zaplanowany i realizowany zgodnie z ustalonymi standardami oraz najlepszymi praktykami branżowymi.

Pytanie 25

Która z podanych czynności związanych z eksploatacją napędu elektrycznego jest sprzeczna z zasadami obsługi tych urządzeń?

A. Weryfikacja połączeń elektrycznych za pomocą omomierza
B. Odkurzanie i czyszczenie żeberek radiatorów z zanieczyszczeń szmatką
C. Kontrola pracy wentylatorów poprzez nasłuchiwanie ich działania
D. Oczyszczenie brudnych styków łączników pilnikiem
Podejmowanie działań związanych z eksploatacją napędów elektrycznych wymaga szczególnej staranności oraz przestrzegania zasad bezpieczeństwa. Odkurzenie i wyczyszczenie żeberek radiatorów z brudu szmatką, choć jest czynnością zalecaną, nie jest w pełni wystarczające, gdyż nie eliminuje wszystkich zanieczyszczeń, które mogą wpływać na efektywność chłodzenia. Niewystarczające czyszczenie może prowadzić do przegrzewania się urządzenia, co z czasem negatywnie wpłynie na jego funkcjonowanie. Z kolei sprawdzenie pracy wentylatorów poprzez nasłuchiwanie ich pracy może być mylące; właściwym podejściem powinno być użycie narzędzi pomiarowych do oceny ich wydajności. Nasłuchiwanie nie dostarcza rzetelnych informacji na temat ich rzeczywistej pracy, a jedynie sygnalizuje ewentualne nieprawidłowości, co może prowadzić do błędnych konkluzji o stanie urządzenia. Sprawdzanie połączeń elektrycznych omomierzem jest właściwą techniką w celu oceny stanu połączeń, jednak kluczowe jest także zwrócenie uwagi na kable oraz ich izolację, co często bywa pomijane. Ostatecznie, zrozumienie zasad działania i eksploatacji napędów elektrycznych jest kluczowe, aby uniknąć typowych błędów myślowych, takich jak poleganie wyłącznie na zmysłach przy ocenie stanu technicznego urządzeń.

Pytanie 26

Do precyzyjnego pomiaru natężenia prądu elektrycznego w układach mechatronicznych zaleca się wykorzystanie amperomierza o

A. rezystancji wewnętrznej równej rezystancji odbiornika
B. dowolnej wartości rezystancji wewnętrznej, ponieważ nie wpływa ona na uzyskany wynik
C. jak najmniejszej rezystancji wewnętrznej
D. jak największej rezystancji wewnętrznej
Użycie amperomierza z jak najmniejszą rezystancją wewnętrzną jest kluczowe dla uzyskania dokładnych pomiarów natężenia prądu elektrycznego w układach mechatronicznych. Amperomierz, będąc elementem pomiarowym, powinien mieć minimalny wpływ na obwód, w którym jest włączony. Im mniejsza rezystancja wewnętrzna, tym mniej energii z obwodu odbierze amperomierz, co przekłada się na dokładniejsze odczyty. W praktyce, jeśli użyjemy amperomierza o dużej rezystancji, może to prowadzić do znacznego spadku natężenia prądu w obwodzie, co skutkuje błędnym pomiarem. Przykładem zastosowania wysokiej jakości amperomierzy o niskiej rezystancji wewnętrznej są aplikacje w elektronice, w których precyzyjne pomiary prądu są niezbędne do właściwego funkcjonowania urządzeń. Standardy branżowe, takie jak IEC 61010, podkreślają znaczenie używania urządzeń pomiarowych, które minimalizują wpływ na badany obwód.

Pytanie 27

Podaj operatora, który jest stosowany w języku IL i musi być uwzględniony w programie sterującym, aby zrealizować wywołanie bloku funkcyjnego FUN_1?

A. CAL FUN_1
B. RET FUN_1
C. JMP FUN_1
D. LD FUN_1
Użycie operatorów JMP, LD i RET w kontekście wywoływania bloków funkcyjnych w języku IL może prowadzić do niedokładności w programowaniu oraz błędnych wniosków. Operator JMP służy do wykonywania skoków do określonych etykiet w programie, co oznacza, że nie jest przeznaczony do aktywacji bloku funkcyjnego, ale raczej do zmiany kolejności wykonywania instrukcji. W przypadku programowania PLC, poleganie na operatorach skoku może wprowadzić chaos w logice programowej, co utrudnia zrozumienie i debugowanie kodu. Z kolei operator LD jest używany do ładowania wartości do akumulatora, co jest krokiem niezbędnym w operacjach arytmetycznych czy logicznych, ale nie pozwala na wywołanie bloku funkcyjnego. Użycie LD zamiast CAL może prowadzić do sytuacji, w której inżynierowie mogą sądzić, że wczytali odpowiednie dane, nie realizując jednak funkcjonalności bloku funkcyjnego. Operator RET kończy działanie bloku lub procedury, co w kontekście wywołania bloku funkcyjnego jest absolutnie nieadekwatne. Używanie RET w tym miejscu może prowadzić do frustracji, gdyż zamyka ono możliwości dalszego przetwarzania. Zrozumienie funkcji każdego z tych operatorów oraz ich właściwego zastosowania jest kluczowe dla efektywnego programowania w środowisku automatyki, dlatego zaleca się stosowanie operatora CAL dla wywołań bloków funkcyjnych.

Pytanie 28

Długotrwałe użytkowanie układu hydraulicznego z czynnikiem roboczym o innej lepkości niż ta wskazana w dokumentacji techniczno-ruchowej może prowadzić do

A. intensywnych drgań układu
B. zwiększenia tempa działania układu
C. uszkodzenia pompy hydraulicznej
D. spadku ciśnienia czynnika roboczego
Długotrwała eksploatacja układu hydraulicznego z czynnikiem roboczym o innej lepkości niż zalecana w dokumentacji techniczno-ruchowej może prowadzić do uszkodzenia pompy hydraulicznej. Pompy hydrauliczne są projektowane do pracy z określoną lepkością oleju, co wpływa na ich wydajność oraz żywotność. Zmiana lepkości czynnika roboczego może skutkować nieprawidłowym smarowaniem i przegrzewaniem się pompy, co w konsekwencji prowadzi do jej uszkodzenia. Przykładem zastosowania tej wiedzy jest regularne monitorowanie lepkości oleju oraz jego wymiana zgodnie z zaleceniami producenta. W praktyce, stosowanie oleju o nieodpowiedniej lepkości może skutkować zwiększonym zużyciem elementów układu hydraulicznego, co nie tylko wpływa na efektywność działania, ale również na bezpieczeństwo całego systemu. Standardy, takie jak ISO 6743, dostarczają szczegółowych wytycznych dotyczących właściwego doboru olejów hydraulicznych, co jest kluczowe dla zapewnienia długotrwałej i niezawodnej pracy układów hydraulicznych.

Pytanie 29

Jakie substancje należy zgromadzić, zanim przystąpimy do czyszczenia łożysk tocznych oraz ich ponownego nasmarowania?

A. Ciepłą wodę z detergentem oraz ten sam typ smaru, który był wcześniej użyty
B. Destylowaną wodę oraz dowolny smar do łożysk tocznych
C. Ciepłą wodę z detergentem oraz dowolny smar do łożysk tocznych
D. Benzynę oraz ten sam rodzaj smaru, jaki został użyty wcześniej
Nieprawidłowe podejście, które zakłada użycie wody destylowanej oraz dowolnego smaru do łożysk tocznych, wynika z nieporozumienia dotyczącego procesu czyszczenia. Woda, nawet destylowana, jest niedopuszczalna w kontekście czyszczenia łożysk tocznych, ponieważ może prowadzić do korozji oraz tworzenia rdzy w miejscach, gdzie woda wnika do wnętrza łożyska. Woda z detergentem również nie jest odpowiednia, gdyż może uszkodzić smar i wpłynąć negatywnie na właściwości łożysk. Użycie nieokreślonego smaru może dodatkowo prowadzić do sytuacji, w której nowy smar jest niekompatybilny z pozostałościami wcześniejszego smaru, co może skutkować zjawiskiem małej przyczepności i obniżeniem skuteczności smarowania. Odpowiedni smar to kluczowy element w procesie eksploatacji łożysk – jego dobór powinien być zgodny z zaleceniami producenta, aby zapewnić optymalne warunki pracy. Analizując te aspekty, staje się jasne, że wybór odpowiednich materiałów nie tylko wpływa na wydajność, ale również na bezpieczeństwo urządzeń mechanicznych, w których łożyska są stosowane.

Pytanie 30

Aby zmienić skok gwintu należy zmienić wartość liczbową przy literze adresowej

N100 G00 X55 Z5
N110 T3 S80 M03
N120 G31 X50 Z-30 D-2 F3 Q3
A. D (korektor narzędzia)
B. T (wybór narzędzia)
C. F (prędkość posuwu)
D. Q (promień wodzący)
Odpowiedzi takie jak "Q" (promień wodzący), "D" (korektor narzędzia) oraz "T" (wybór narzędzia) są błędne, ponieważ nie odnoszą się one do zmiany skoku gwintu, a ich zastosowanie w kontekście obrabiarek CNC jest inne. Promień wodzący, oznaczany literą "Q", ma na celu definiowanie promienia narzędzia przy obróbce, a jego zmiana nie wpływa na parametry związane z gwintowaniem. Korektor narzędzia, oznaczany literą "D", jest używany do kompensacji błędów w długości narzędzi skrawających, co oznacza, że nie ma bezpośredniego związku ze skokiem gwintu. Wybór narzędzia, oznaczany literą "T", pozwala na zmiany w używanym narzędziu, co nie wpływa na parametry skoku gwintu. Zmiana skoku gwintu odbywa się za pomocą odpowiednich kodów G, a zrozumienie, które parametry odpowiadają za konkretne aspekty procesu obróbczy, jest kluczowe dla efektywności pracy. Operatorzy muszą dobrze znać funkcje poszczególnych liter adresowych oraz ich zastosowanie, aby uniknąć nieporozumień i błędów w programowaniu obrabiarek CNC. Błąd w przypisaniu liter adresowych lub niewłaściwe zrozumienie ich funkcji może prowadzić do nieprawidłowej obróbki, co w konsekwencji może skutkować nieodwracalnymi błędami w produkcie końcowym.

Pytanie 31

Jaki jest cel użycia oscyloskopu w diagnostyce układów elektronicznych?

A. Obserwacja kształtu sygnałów elektrycznych
B. Zasilanie obwodów niskim napięciem
C. Zwiększenie częstotliwości sygnałów
D. Pomiar rezystancji izolacji

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Oscyloskop to niezwykle przydatne narzędzie w diagnostyce układów elektronicznych, ponieważ pozwala na obserwację kształtu sygnałów elektrycznych. Dzięki temu możemy wizualizować przebiegi czasowe, co jest kluczowe dla zrozumienia, jak sygnały przepływają przez układ. Wyobraź sobie, że masz do czynienia z układem, który nie działa prawidłowo. Dzięki oscyloskopowi możesz zidentyfikować, gdzie dokładnie występuje problem, czy to w postaci zakłóceń, zniekształceń, czy też nietypowych amplitud sygnałów. To narzędzie umożliwia również pomiar parametrów takich jak częstotliwość, amplituda, czas narastania czy opóźnienia sygnału. W praktyce inżynierskiej, umiejętność korzystania z oscyloskopu jest niezbędna, zwłaszcza w dziedzinach takich jak automatyka przemysłowa, elektronika użytkowa czy inżynieria telekomunikacyjna. Moim zdaniem, to jedno z tych narzędzi, które każdy inżynier powinien umieć obsługiwać, ponieważ daje ono wgląd w działanie układów na poziomie, którego nie można osiągnąć za pomocą innych urządzeń pomiarowych.

Pytanie 32

Jaką rolę odgrywa zawór przelewowy w hydraulicznej prasie?

A. Umożliwia regulację wartości siły wytwarzanej przez prasę.
B. Zrzuca olej z siłownika do zbiornika.
C. Chroni przed powrotem oleju z rozdzielacza do pompy.
D. Filtruje zanieczyszczenia z oleju.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Zawór przelewowy odgrywa kluczową rolę w systemach hydraulicznych, w tym prasie hydraulicznej, umożliwiając regulację maksymalnej wartości siły generowanej przez urządzenie. Jego głównym zadaniem jest odprowadzanie nadmiaru ciśnienia, co pozwala uniknąć uszkodzeń komponentów hydraulicznych, a także optymalizować efektywność pracy prasy. Przykładowo, w sytuacji, gdy ciśnienie wzrasta powyżej ustalonego poziomu, zawór przelewowy otwiera się, kierując nadmiar oleju z powrotem do zbiornika, co chroni system przed nadmiernym obciążeniem. Taka regulacja jest niezwykle istotna w kontekście bezpieczeństwa i długowieczności urządzeń hydraulicznych. W praktyce, regulacje zaworu przelewowego powinny być dostosowywane zgodnie z wymaganiami konkretnego procesu, aby zapewnić optymalne parametry pracy. Zastosowanie wysokiej jakości zaworów przelewowych, zgodnych z normami branżowymi, jest kluczowe dla zapewnienia niezawodności i efektywności systemu hydraulicznego.

Pytanie 33

Jaką rolę pełnią enkodery w serwonapędach AC?

A. Chronią serwonapęd przed przeciążeniem
B. Informują o momencie generowanym przez napęd
C. Stanowią element wykonawczy serwonapędu
D. Dostarczają informacji o pozycji i prędkości napędu

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Enkodery w serwonapędach AC pełnią kluczową rolę w monitorowaniu i regulacji ruchu napędu. Ich głównym zadaniem jest dostarczanie informacji o aktualnej pozycji i prędkości, co jest niezbędne do precyzyjnego sterowania. Dzięki enkoderom, systemy automatyki mogą realizować złożone zadania, takie jak kontrola pozycji w aplikacjach robotycznych czy CNC. Przykładowo, w maszynach sterowanych numerycznie, enkodery umożliwiają dokładne pozycjonowanie narzędzi, co ma kluczowe znaczenie dla precyzji obróbczej. Zgodnie z najlepszymi praktykami w branży, stosowanie wysokiej jakości enkoderów pozwala na osiągnięcie lepszej dynamiki systemu oraz zwiększenie efektywności energetycznej. W standardach takich jak ISO 13849, zaleca się użycie enkoderów w kontekście bezpieczeństwa funkcjonalnego, co podkreśla ich znaczenie nie tylko w kontekście wydajności, ale i bezpieczeństwa operacyjnego.

Pytanie 34

Nieszczelności występujące w systemie smarowania lub w obiegu cieczy chłodzącej, zauważone w trakcie pracy urządzenia hydraulicznego, powinny być usunięte podczas

A. planowych napraw bieżących bez rozkładania całej maszyny
B. przeglądu technicznego w trakcie przestoju
C. planowych napraw średnich realizowanych po demontażu całej maszyny
D. ogólnego remontu maszyny

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wybór przeglądu technicznego w czasie przestoju jako momentu na usunięcie nieszczelności w układzie smarowania lub cieczy chłodzącej jest trafny z wielu powodów. Nieszczelności te mogą prowadzić do poważnych problemów operacyjnych, takich jak przegrzewanie się maszyny czy jej uszkodzenie, co w konsekwencji może skutkować wstrzymaniem produkcji. Przegląd techniczny w czasie przestoju to idealny moment na przeprowadzenie dokładnej inspekcji, ponieważ pozwala na zidentyfikowanie i naprawienie problemów bez ryzyka wpływu na wydajność pracy. W ramach przeglądu można również przeprowadzić dodatkowe czynności, takie jak uzupełnienie płynów eksploatacyjnych czy wymiana zużytych elementów. Dobre praktyki branżowe wskazują na konieczność przeprowadzania takich inspekcji w regularnych odstępach czasowych, co podnosi bezpieczeństwo i efektywność pracy urządzeń hydraulicznych. Dlatego odpowiedź na to pytanie potwierdza świadomość znaczenia regularnych przeglądów w kontekście utrzymania ruchu maszyn.

Pytanie 35

Jaki adres, przyznawany przez producenta w sieci, pozostaje stały w trakcie działania urządzenia i jednoznacznie je identyfikuje?

A. TCP
B. OSI
C. MAC
D. IP

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Poprawna odpowiedź to MAC, co oznacza Media Access Control. Adres MAC to unikalny identyfikator przypisywany do interfejsu sieciowego przez producenta, który pozostaje niezmienny przez cały okres użytkowania urządzenia. Dzięki temu adresowi możliwe jest jednoznaczne identyfikowanie urządzeń w sieci lokalnej oraz umożliwienie komunikacji między nimi. Adresy MAC są wykorzystywane w warstwie łącza danych modelu OSI, co czyni je kluczowymi dla działania lokalnych sieci Ethernet. Przykładem zastosowania adresów MAC może być przydzielanie adresów IP w sieci poprzez protokół DHCP, który pozwala na dynamiczne przypisywanie adresów IP na podstawie adresów MAC. W praktyce oznacza to, że router identyfikuje urządzenia w sieci, a następnie przydziela im odpowiednie adresy IP, co jest zgodne z dobrą praktyką w zarządzaniu sieciami.

Pytanie 36

Jakiego rodzaju silnik elektryczny powinno się wykorzystać do zasilania taśmociągu, jeśli dostępne jest tylko napięcie 400 V, 50 Hz?

A. Bocznikowy
B. Klatkowy
C. Szeregowy
D. Obcowzbudny

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Klatkowy silnik elektryczny, znany także jako silnik asynchroniczny, jest idealnym rozwiązaniem do napędu taśmociągu przy zasilaniu 400 V, 50 Hz. Jego działanie opiera się na różnicy prędkości między polem magnetycznym a wirnikiem, co pozwala na uzyskanie wysokiej efektywności energetycznej. W praktyce, silniki klatkowe charakteryzują się niskimi kosztami eksploatacji, łatwością wmontowania oraz niskimi wymaganiami konserwacyjnymi. Stosuje się je powszechnie w różnych aplikacjach przemysłowych, takich jak transport materiałów, ponieważ potrafią pracować z dużymi obciążeniami i są odporne na przeciążenia. W przypadku taśmociągów, kluczowe jest, aby silnik zapewniał stałą prędkość obrotową i był w stanie sprostać zmiennym warunkom operacyjnym, co silnik klatkowy realizuje w sposób optymalny, zgodnie z normami IEC 60034 dotyczącymi maszyn elektrycznych. Dodatkowo, ich konstrukcja jest prosta, co minimalizuje ryzyko awarii, co czyni je standardem w branży.

Pytanie 37

Określ, na podstawie wytycznych zamieszczonych w tabeli, jakie czynności konserwacyjne sprężarki tłokowej powinny być wykonywane najczęściej.

CzynnośćCykle
Filtr ssącykontrolowanieco tydzień
czyszczenieco 60 godzin eksploatacji
wymianazależnie od potrzeb (co najmniej raz w roku)
Kontrola stanu olejucodziennie przed uruchomieniem
Wymiana olejupierwsza wymianapo 40 godzinach eksploatacji
kolejne wymianyraz w roku
Spust kondensatuco najmniej raz w tygodniu
Czyszczenie zaworu zwrotnegoco najmniej raz w roku
Pasek klinowykontrola naprężeniaco tydzień
wymianaw przypadku zużycia
A. Kontrola stanu oleju.
B. Wymiana paska klinowego.
C. Kontrola stanu filtra.
D. Spust kondensatu.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Kontrola stanu oleju jest kluczowym elementem konserwacji sprężarki tłokowej, który ma istotny wpływ na jej wydajność oraz trwałość. Właściwy poziom oleju oraz jego jakość zapewniają optymalne smarowanie, co przekłada się na zmniejszenie tarcia i zużycia elementów mechanicznych. Zgodnie z dobrymi praktykami branżowymi, zaleca się dokonywać tej kontroli codziennie przed uruchomieniem sprężarki, co pozwala na wczesne wykrycie ewentualnych problemów, takich jak niskie ciśnienie oleju czy jego zanieczyszczenie. Regularne monitorowanie stanu oleju nie tylko wydłuża żywotność urządzenia, ale także wpływa na efektywność energetyczną sprężarki, co jest szczególnie ważne w kontekście obniżania kosztów eksploatacji. Dobrą praktyką jest również prowadzenie dokumentacji dotyczącej stanu oleju, co ułatwia planowanie dalszych prac konserwacyjnych oraz identyfikację ewentualnych trendów w zużyciu. Warto również pamiętać, że niewłaściwa kontrola oleju może prowadzić do poważnych uszkodzeń silnika, co wiąże się z kosztownymi naprawami oraz przestojami w pracy.

Pytanie 38

Gdzie można znaleźć informacje na temat wymagań oraz częstotliwości realizacji prac konserwacyjnych dla konkretnego urządzenia mechatronicznego?

A. W kartach danych handlowych
B. Na dokumencie gwarancyjnym
C. W instrukcji obsługi
D. Na tabliczce identyfikacyjnej

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Instrukcja obsługi jest kluczowym dokumentem, który zawiera szczegółowe informacje o konserwacji i użytkowaniu urządzeń mechatronicznych. Dzięki niej operatorzy oraz technicy mogą zrozumieć, jakie konkretne czynności konserwacyjne należy przeprowadzać, aby zapewnić optymalną wydajność i bezpieczeństwo urządzenia. Informacje te obejmują zarówno zalecany harmonogram konserwacji, jak i niezbędne procedury, co jest zgodne z najlepszymi praktykami w branży. W praktyce, regularne przeglądy i konserwacja zgodnie z instrukcją mogą znacznie wydłużyć żywotność urządzenia i zminimalizować ryzyko awarii, co jest kluczowe w kontekście produkcji przemysłowej. Przykładem zastosowania może być robot przemysłowy, którego instrukcja obsługi podaje harmonogram czyszczenia i smarowania, co pozwala na utrzymanie jego precyzji i niezawodności w długim okresie eksploatacji. Należy również pamiętać, że nieprzestrzeganie tych wytycznych może prowadzić do utraty gwarancji oraz zwiększonych kosztów napraw. Dlatego zawsze warto na bieżąco zapoznawać się z instrukcją obsługi.

Pytanie 39

Jakie ciśnienie cieczy powinno być w układzie hydraulicznym, aby siłownik o powierzchni czynnej tłoka A = 80 cm2 był w stanie wygenerować siłę F = 150 kN?

A. 1875 barów
B. 1,875 bara
C. 187,5 bara
D. 18,75 bara

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Poprawna odpowiedź to "187,5 bara." Ciśnienie cieczy zasilającej układ hydrauliczny jest kluczowym parametrem, który pozwala na uzyskanie odpowiedniej siły z siłowników hydraulicznych. W tym przypadku, aby obliczyć ciśnienie, wykorzystujemy wzór p=F/A, gdzie F to siła, a A to powierzchnia czynna tłoka. Podstawiając wartości: F=150 kN (czyli 150000 N) oraz A=80 cm² (czyli 0,008 m²), otrzymujemy p=150000 N/0,008 m²=18750000 Pa, co w przeliczeniu na bary daje nam 187,5 bara. Zastosowanie odpowiedniego ciśnienia w układach hydraulicznych jest zgodne z normami branżowymi, które określają wymagania dotyczące bezpieczeństwa i efektywności pracy maszyn. W praktyce, ciśnienie to pozwala na sprawne działanie siłowników w różnych zastosowaniach, takich jak w przemyśle ciężkim, budowlanym czy motoryzacyjnym, gdzie precyzyjne sterowanie ruchem i siłą ma kluczowe znaczenie. Utrzymanie właściwego ciśnienia w układzie nie tylko zwiększa wydajność, ale także minimalizuje ryzyko uszkodzeń i awarii, co jest istotne dla długoterminowej niezawodności systemów hydraulicznych.

Pytanie 40

Która z poniższych usterek urządzenia II klasy ochronności stwarza najwyższe ryzyko porażenia prądem?

A. Uszkodzenie izolacji kabla zasilającego urządzenie
B. Przepalenie uzwojeń silnika umieszczonego w urządzeniu
C. Przepalenie bezpiecznika znajdującego się wewnątrz urządzenia
D. Uszkodzenie przewodu ochronnego PE

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Uszkodzenie izolacji przewodu zasilającego urządzenie II klasy ochronności stanowi poważne zagrożenie porażenia prądem, ponieważ narusza integralność systemu ochrony przed porażeniem elektrycznym. W urządzeniach tej klasy, które nie mają metalowej obudowy uziemionej, kluczową rolę odgrywa izolacja. W przypadku, gdy izolacja ulegnie uszkodzeniu, istnieje ryzyko kontaktu z przewodem pod napięciem, co może prowadzić do poważnych obrażeń lub śmierci. Zgodnie z normą PN-EN 61140, urządzenia klasy II powinny być projektowane z myślą o minimalizacji ryzyka porażenia prądem, co oznacza, że wszelkie uszkodzenia izolacji powinny być niezwłocznie diagnozowane i naprawiane. Praktycznie oznacza to, że regularne przeglądy oraz stosowanie odpowiednich technik konserwacji, takich jak testy izolacji, są kluczowe w zapobieganiu takim sytuacjom. Ponadto, zastosowanie odpowiednich zabezpieczeń, jak wyłączniki różnicowoprądowe, może znacząco zwiększyć bezpieczeństwo użytkowników i zapobiec poważnym wypadkom.