Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.03 - Montaż, uruchamianie i konserwacja urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 17 grudnia 2025 12:32
  • Data zakończenia: 17 grudnia 2025 12:46

Egzamin zdany!

Wynik: 28/40 punktów (70,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Do którego gniazda należy podłączyć czarny przewód pomiarowy, a do którego czerwony, aby wykonać pomiar przy wybranym zakresie?

Ilustracja do pytania
A. 1 - czarny i 3 - czerwony.
B. 1 - czarny i 2 - czerwony.
C. 3 - czarny i 1 - czerwony.
D. 3 - czarny i 2 - czerwony.
Ta odpowiedź jest poprawna, ponieważ gniazdo numer 3, oznaczone jako COM (common), jest standardowym gniazdem dla czarnego przewodu pomiarowego. To gniazdo jest używane we wszystkich pomiarach jako punkt odniesienia dla napięć i prądów. Z kolei gniazdo numer 2, oznaczone symbolem VΩmA, jest dedykowane dla czerwonego przewodu pomiarowego, co sprawia, że idealnie nadaje się do pomiarów napięcia, oporności oraz prądu. Korzystając z tych gniazd, można wykonywać prawidłowe pomiary, zapewniając jednocześnie bezpieczeństwo i dokładność. W praktyce, znajomość tych oznaczeń jest kluczowa, zwłaszcza w kontekście pomiarów elektrycznych, gdzie nieprawidłowe podłączenie przewodów może prowadzić do uszkodzenia sprzętu. Dobrą praktyką jest zawsze upewnienie się, że przewody są podłączone do odpowiednich gniazd przed rozpoczęciem pomiarów. Takie podejście zgodne jest z normami bezpieczeństwa oraz standardami pracy w laboratoriach i na stanowiskach badawczych.

Pytanie 2

Do montażu zaworu przedstawionego na rysunku należy zastosować klucz

Ilustracja do pytania
A. oczkowy.
B. płaski.
C. imbusowy.
D. nasadowy.
Udzielając odpowiedzi, która nie wskazuje na klucz płaski, można popełnić kilka typowych błędów myślowych, które warto wyjaśnić. Klucz nasadowy, mimo że jest wszechstronny i popularny w wielu zastosowaniach, nie jest właściwym narzędziem do montażu zaworów z sześciokątnymi nakrętkami. Chociaż może pasować do nakrętki, jego konstrukcja nie pozwala na pełne i równomierne przeniesienie momentu obrotowego, co zwiększa ryzyko poślizgu i uszkodzenia samej nakrętki. Z kolei klucz oczkowy, mimo iż jest bardziej precyzyjny pod względem dopasowania, również nie daje takiego chwytu jak klucz płaski, co może prowadzić do trudności w dokręcaniu. Klucz płaski jest zaprojektowany z myślą o zapewnieniu maksymalnej powierzchni kontaktu, co minimalizuje ryzyko uszkodzenia. Klucz imbusowy, przeznaczony do elementów z otworami na klucze imbusowe, jest całkowicie niewłaściwy w kontekście montażu zaworów z sześciokątnymi nakrętkami. Użycie niewłaściwego narzędzia może prowadzić do uszkodzenia nakrętki, a w konsekwencji – do problemów z hermetycznością systemu czy wręcz jego awarii. W praktyce, stosowanie odpowiednich narzędzi jest kluczowe dla zapewnienia długoterminowej niezawodności instalacji oraz bezpieczeństwa operacji związanych z ich obsługą.

Pytanie 3

Kiedy w układzie hydraulicznym, w którym nie ma elementów dławiących, w normalnych warunkach roboczych występuje wolna reakcja oraz znaczne opory przepływu, należy zastąpić olej olejem

A. o wyższej gęstości
B. o niższej lepkości
C. tworzącym emulsję z wodą
D. odpornym na proces starzenia
Odpowiedź o mniejszej lepkości jest prawidłowa, ponieważ lepkość oleju znacząco wpływa na opory przepływu w układzie hydraulicznym. Olej o niższej lepkości zmniejsza opory, co pozwala na łatwiejszy przepływ cieczy przez system hydrauliczny. W praktyce, zmiana na olej o mniejszej lepkości może poprawić reakcję układu hydraulicznego, zwiększając jego wydajność i responsywność. W standardach branżowych, takich jak ISO 6743, zaleca się dobór oleju hydraulicznego na podstawie jego lepkości, aby zapewnić optymalne warunki pracy i minimalizować zużycie energii. W przypadku systemów hydraulicznych, w których występują duże opory przepływu, zastosowanie oleju o mniejszej lepkości może przynieść korzyści w postaci zmniejszenia temperatury pracy, co wpływa na dłuższą żywotność komponentów oraz redukcję kosztów eksploatacyjnych. Warto również zauważyć, że należy zawsze dostosowywać lepkość oleju do warunków pracy i specyfikacji producenta, aby uniknąć problemów z działaniem układu hydraulicznego.

Pytanie 4

Elektryczne żelazko wyposażone w termoregulator bimetaliczny stanowi przykład

A. sterowania w układzie otwartym
B. układu regulacji automatycznej
C. układu sterowania programowalnego
D. sterowania sekwencyjnego
Układ sterowania programowalnego, sterowanie sekwencyjne oraz sterowanie w układzie otwartym to koncepcje, które różnią się zasadniczo od regulacji automatycznej. Układ sterowania programowalnego odnosi się do systemów, które działają na podstawie zaprogramowanych instrukcji, co oznacza, że ich działanie jest z góry ustalone i nie zmienia się w odpowiedzi na zmiany w otoczeniu. Przykłady obejmują roboty przemysłowe, które wykonują zaprogramowane zadania, ale nie dostosowują się do zmieniających się warunków. Kolejną błędną koncepcją jest sterowanie sekwencyjne, które polega na realizacji zadań w określonej kolejności, bez możliwości automatycznego dostosowywania parametrów w odpowiedzi na rzeczywiste potrzeby. W kontekście żelazka elektrycznego, takie podejście nie byłoby efektywne, ponieważ wymagałoby manualnej interwencji użytkownika przy każdej zmianie rodzaju tkaniny. Z kolei sterowanie w układzie otwartym nie ma mechanizmu sprzężenia zwrotnego; oznacza to, że urządzenie nie reaguje na rzeczywiste zmiany parametrów, co w przypadku żelazka mogłoby prowadzić do zbyt wysokiej lub zbyt niskiej temperatury, a tym samym do uszkodzenia tkanin. Wszystkie te podejścia są niewłaściwe w kontekście regulacji temperatury, gdzie wymagana jest automatyczna adaptacja do warunków pracy, co jest integralną częścią działania żelazka elektrycznego z termoregulatorem bimetalicznym.

Pytanie 5

Ile napędów jest zastosowanych w manipulatorze, którego schemat przedstawiono na rysunku?

Ilustracja do pytania
A. 3 napędy.
B. 5 napędów.
C. 4 napędy.
D. 6 napędów.
Odpowiedzi 3, 5 oraz 6 napędów są wynikiem nieprawidłowego rozumienia ilości elementów napędowych w manipulatorze. Niektórzy mogą zinterpretować schemat w sposób, który prowadzi do błędnych wniosków, skupiając się na złożoności układu, a nie na jego rzeczywistych komponentach napędowych. Na przykład, odpowiedź 3 napędy może wynikać z pomyłkowego pominięcia jednego z siłowników lub silnika. Takie zapomnienie może być efektem ogólnego zrozumienia struktur mechanicznych, gdzie niektóre elementy wydają się mniej istotne. Z kolei w przypadku odpowiedzi 5 napędów, możliwe, że dochodzi do mylnego dodania innego elementu, który nie jest napędem, np. przekładni. Odpowiedź 6 napędów sugeruje, że użytkownik może mieć na uwadze dodatkowe komponenty, które jednak nie są napędami w sensie mechanicznym. To prowadzi do typowego błędu myślowego, w którym złożoność układu jest mylona z ilością funkcjonalnych napędów. W branży automatyki kluczowe jest dokładne rozumienie poszczególnych elementów oraz ich funkcji w systemie, co pozwala na efektywne projektowanie i implementację rozwiązań, które są zgodne z najlepszymi praktykami inżynierskimi.

Pytanie 6

Do czego służy narzędzie przedstawione na rysunku?

Ilustracja do pytania
A. Usuwania izolacji z przewodów elektrycznych.
B. Cięcia przewodów pneumatycznych.
C. Łączenia przewodów hydraulicznych.
D. Gięcia przewodów elektrycznych.
Narzędzie przedstawione na rysunku to nożyk do przewodów z tworzyw sztucznych, które są powszechnie wykorzystywane w instalacjach pneumatycznych. Jego konstrukcja umożliwia precyzyjne cięcie różnych typów przewodów pneumatycznych, co jest niezwykle istotne w branży automatyki i pneumatyki. Przewody te często stosowane są w systemach transportu sprężonego powietrza, gdzie ich integralność i odpowiednie dopasowanie mają kluczowe znaczenie dla sprawności całego układu. Dzięki zastosowaniu tego narzędzia, możliwe jest uzyskanie gładkich krawędzi bez uszkodzenia struktury materiału, co minimalizuje ryzyko przecieków i awarii. Warto zwrócić uwagę, że zgodnie z najlepszymi praktykami w branży, cięcie przewodów powinno być przeprowadzane w sposób zabezpieczający przed odkształceniem ich końców, co zapewnia prawidłowe działanie systemów pneumatycznych. Dobrej jakości nożyk do przewodów jest niezbędnym wyposażeniem każdego technika zajmującego się instalacjami pneumatycznymi.

Pytanie 7

Zespół tokarki pociągowej zwany konikiem, jest przedstawiony na rysunku

Ilustracja do pytania
A. C.
B. D.
C. B.
D. A.
Odpowiedź D jest prawidłowa, ponieważ konik tokarski to kluczowy element tokarki pociągowej, który odgrywa istotną rolę w procesie obróbki skrawaniem. Jego podstawowym zadaniem jest podpieranie obrabianego przedmiotu, co ma na celu zwiększenie stabilności i dokładności obróbki. W praktyce, konik jest szczególnie ważny podczas pracy z długimi elementami, które mogą mieć tendencję do wyginania się pod wpływem sił skrawania. Użycie konika pozwala na utrzymanie odpowiedniej pozycji obrabianego przedmiotu, co redukuje ryzyko błędów i poprawia jakość wykończenia. W kontekście standardów przemysłowych, zastosowanie konika zgodnie z zaleceniami producenta gwarantuje bezpieczeństwo pracy oraz efektywność produkcji. Warto również zauważyć, że konik tokarski może być regulowany, co umożliwia dostosowanie go do różnych długości i średnic obrabianych elementów, co jest niezbędne w elastycznej produkcji.

Pytanie 8

Ciecze hydrauliczne o podwyższonej odporności na ogień, wykorzystywane w miejscach narażonych na wybuch, to ciecze oznaczone symbolami

A. HFA, HFC, HFD
B. HPG, HTG, HT
C. HV, HLP, HLPD
D. HLP, HFA, HTG
Wybór innych odpowiedzi wiąże się z błędnym zrozumieniem klasyfikacji cieczy hydraulicznych oraz ich właściwości. Odpowiedzi HLP oraz HTG odnoszą się do cieczy, które nie mają właściwości trudnopalnych. HLP to oleje hydrauliczne, które mogą być palne i nie są przeznaczone do stosowania w środowiskach o podwyższonym ryzyku pożarowym. Również HTG to oleje typu 'thermo-glycol', które są wykorzystywane do systemów grzewczych, a nie jako cieczy hydraulicznych w warunkach zagrożenia eksplozją. Odpowiedzi takie jak HPG i HT mogą być mylone z cieczami trudnopalnymi, jednak nie odpowiadają standardom wymaganym dla aplikacji, gdzie bezpieczeństwo jest priorytetem. Często błędem myślowym jest przekonanie, że wszystkie oleje mogą być stosowane w każdym warunku, co prowadzi do niebezpiecznych sytuacji w miejscach, gdzie występuje potencjalne ryzyko zapłonu. W celu zapewnienia bezpieczeństwa, kluczowe jest, aby użytkownicy posiadali wiedzę na temat odpowiednich standardów oraz certyfikacji cieczy hydraulicznych, takich jak ISO 12922, które definiują wymagania dotyczące ich palności oraz zastosowania w specyficznych warunkach operacyjnych.

Pytanie 9

Którą funkcję logiczną realizują przedstawione na rysunku zawory?

Ilustracja do pytania
A. NOR
B. OR
C. NAND
D. AND
Odpowiedź wskazująca na funkcję AND jest poprawna, ponieważ w przedstawionym układzie zaworów pneumatycznych ich szeregowe połączenie oznacza, że tylko w przypadku otwarcia obu zaworów możliwy jest przepływ powietrza. Taki mechanizm odpowiada logice AND, która w kontekście cyfrowym daje sygnał na wyjściu tylko wtedy, gdy wszystkie jej wejścia mają wartość logiczną 1. W praktyce, zawory tego typu są szeroko stosowane w automatyce przemysłowej, na przykład w systemach, gdzie bezpieczeństwo operacji wymaga, aby wszystkie warunki były spełnione przed uruchomieniem maszyny. Warto również wspomnieć, że zgodnie z normami ISO i IEC, projektowanie układów pneumatycznych z użyciem funkcji AND przyczynia się do zwiększenia niezawodności i bezpieczeństwa systemów. Użycie takich zaworów w aplikacjach, gdzie wymagane jest jednoczesne działanie kilku elementów, jest najlepszą praktyką, która minimalizuje ryzyko awarii.

Pytanie 10

Woltomierz, podłączony do prądniczki tachometrycznej o stałej 10 V/1000 obr/min, pokazuje napięcie 7,5 V. Jaką prędkość obrotową mierzymy?

A. 750 obr/min
B. 7 obr/min
C. 7500 obr/min
D. 75 obr/min
Odpowiedź 750 obr/min jest poprawna, ponieważ woltomierz wskazuje napięcie 7,5 V, a prądniczka tachometryczna ma stałą 10 V przypadającą na 1000 obr/min. Aby obliczyć prędkość obrotową, stosujemy proporcję: jeśli 10 V odpowiada 1000 obr/min, to 7,5 V odpowiada x obr/min. Wykonując obliczenia, otrzymujemy: x = (7,5 V * 1000 obr/min) / 10 V = 750 obr/min. Praktyczne zastosowanie takiej analizy można znaleźć w automatyce i inżynierii, gdzie prędkości obrotowe silników są kluczowe dla precyzyjnego sterowania procesami. W branży motoryzacyjnej, na przykład, prędkości obrotowe silników są monitorowane za pomocą tachometrów, które mogą być oparte na prądnicach tachometrycznych. Zrozumienie tych zasad jest istotne zarówno dla projektantów, jak i techników, aby zapewnić efektywność i bezpieczeństwo systemów napędowych.

Pytanie 11

Do jakiego rodzaju pracy przystosowany jest silnik indukcyjny, którego tabliczkę znamionową przedstawiono na rysunku?

Ilustracja do pytania
A. Okresowej przerywanej.
B. Dorywczej.
C. Ciągłej.
D. Okresowej przerywanej z rozruchem.
Silnik indukcyjny oznaczony jako 'Praca S1' na tabliczce znamionowej jest przystosowany do pracy ciągłej, co oznacza, że może on funkcjonować przez dłuższy czas w stałych warunkach. Praca ciągła jest standardem w wielu zastosowaniach przemysłowych, gdzie silniki są wykorzystywane w maszynach produkcyjnych, wentylatorach, pompach oraz innym sprzęcie, który wymaga nieprzerwanego działania. Zastosowanie takiego silnika w sytuacjach, gdzie obciążenie jest stabilne, pozwala na efektywne wykorzystanie energii oraz minimalizację zużycia energii elektrycznej. W praktyce, silniki klasy S1 są projektowane z myślą o optymalizacji wydajności i trwałości, a ich wskaźniki, takie jak moment obrotowy i moc, są dostosowane do specyficznych potrzeb aplikacji. Dodatkowo, takie silniki muszą spełniać normy dotyczące wydajności energetycznej, co ma kluczowe znaczenie w kontekście zrównoważonego rozwoju i minimalizacji wpływu na środowisko.

Pytanie 12

Jaką wielkość fizyczną definiuje się jako ilość ładunku elektrycznego przepływającego przez przekrój poprzeczny przewodnika w jednostce czasu?

A. Rezystancja przewodnika
B. Natężenie prądu elektrycznego
C. Indukcyjność przewodnika
D. Gęstość prądu elektrycznego
Natężenie prądu elektrycznego definiuje ilość ładunku elektrycznego, który przepływa przez dany przekrój poprzeczny przewodnika w jednostce czasu. Jest to kluczowa wielkość w elektryczności, oznaczana najczęściej literą 'I', a jej jednostką w układzie SI jest amper (A). Natężenie prądu elektrycznego ma ogromne znaczenie w praktycznych zastosowaniach inżynieryjnych, na przykład w projektowaniu obwodów elektrycznych, gdzie precyzyjne określenie natężenia prądu jest kluczowe dla zapewnienia bezpieczeństwa i efektywności działania urządzeń. Warto pamiętać, że prąd elektryczny może być zarówno stały (DC), jak i zmienny (AC), a jego pomiar jest istotny w kontekście analizy przepływu energii w systemach zasilania. W standardach branżowych, takich jak IEC 60038, określone zostały różne parametry dotyczące prądu, co przyczynia się do jednolitości w projektowaniu instalacji elektrycznych. Zrozumienie natężenia prądu elektrycznego oraz jego właściwości pozwala na bezpieczne i efektywne użytkowanie wszelkich urządzeń elektrycznych.

Pytanie 13

Jaką metodę łączenia materiałów powinno się wybrać do skrzyżowania elementów ze stali nierdzewnej i mosiądzu?

A. Zgrzewanie
B. Lutowanie miękkie
C. Lutowanie twarde
D. Sklejanie
Lutowanie miękkie, zgrzewanie oraz sklejanie to techniki, które nie są odpowiednie do łączenia stali nierdzewnej z mosiądzem, z powodów technicznych i materiałowych. Lutowanie miękkie, które wykorzystuje temperatury poniżej 450 °C, nie zapewnia wystarczającej wytrzymałości dla takich połączeń, ponieważ materiały te wymagają znacznie wyższych temperatur, aby osiągnąć odpowiednią integralność strukturalną. Zgrzewanie, z kolei, polega na połączeniu materiałów poprzez ich miejscowe stopienie przy użyciu ciepła generowanego w miejscu złącza, co może być trudne do zrealizowania w przypadku stali nierdzewnej i mosiądzu, ze względu na różnice w ich przewodnictwie cieplnym oraz topnieniu. Technika ta również nie daje możliwości wypełnienia szczelin, co jest kluczowe przy łączeniu tych dwóch materiałów. Sklejanie, chociaż może być użyteczne w niektórych zastosowaniach, nie jest odpowiednie dla połączeń wymagających dużej wytrzymałości, jak w przypadku stali nierdzewnej i mosiądzu. Kleje nie zawsze są w stanie wytrzymać warunki pracy, takie jak zmiany temperatury, wilgotność czy obciążenia mechaniczne. Dlatego dla prawidłowego łączenia stali nierdzewnej i mosiądzu należy stosować lutowanie twarde, co zapewnia nie tylko odpowiednią wytrzymałość, ale również trwałość połączenia.

Pytanie 14

Podsystem mechatroniczny prasy hydraulicznej został wyposażony w terminal HMI. To urządzenie nie pozwala jedynie

A. na załączanie i wyłączanie pracy prasy
B. na pomiar parametrów procesowych prasy
C. na wizualizację przebiegu pracy prasy
D. na odczyt wartości zmierzonych parametrów
Każda z błędnych odpowiedzi pokazuje różne nieporozumienia, jeśli chodzi o rolę HMI w systemie mechatronicznym prasy hydraulicznej. Odczytywanie zmierzonych parametrów, włączanie i wyłączanie prasy oraz wizualizacja pracy to funkcje, które są ważne dla interfejsów HMI. Problemem jest to, że mylimy HMI z urządzeniem pomiarowym. Tak naprawdę HMI jest jak pośrednik, który pokazuje dane z innych czujników, jak te od ciśnienia czy temperatury. Typowo myśli się, że interfejs użytkownika może sam mierzyć procesy, co jest dużym błędem. Takie myślenie może prowadzić do nieporozumień w danych i złego zarządzania procesem produkcyjnym. W rzeczywistości, pomiar parametrów wymaga użycia specjalnych urządzeń pomiarowych, które integruje się z systemem HMI, by pokazać wyniki w przejrzysty sposób. Dobrą praktyką jest regularne kalibrowanie czujników i upewnienie się, że odczyty są dobrze widoczne na interfejsie HMI, żeby wspierać operatorów w podejmowaniu decyzji.

Pytanie 15

Jakie z wymienionych elementów powinny być stosowane, aby uniknąć wycieków płynów?

A. Podkładki
B. Płytki
C. Zawleczki
D. Uszczelki
Uszczelki są kluczowym elementem w wielu zastosowaniach, które mają na celu zapobieganie wyciekaniu płynów. Działają one na zasadzie wypełnienia przestrzeni między dwoma lub więcej elementami, co eliminuje możliwość przedostawania się cieczy. W praktyce uszczelki są stosowane w połączeniach rur, zbiornikach, pompach oraz silnikach, gdzie ich rola jest nieoceniona. Na przykład, w silnikach spalinowych uszczelki głowicy są niezbędne, aby zapobiec wyciekowi oleju oraz płynu chłodzącego, co mogłoby prowadzić do poważnych uszkodzeń. W branży produkcyjnej i przemysłowej stosuje się różne materiały do produkcji uszczelek, takie jak guma, silikon, teflon czy materiały kompozytowe, które są dostosowane do specyficznych warunków pracy. Zgodność z normami ISO oraz innymi standardami branżowymi zapewnia, że uszczelki spełniają wymagania dotyczące szczelności i odporności na różne czynniki chemiczne i termiczne. Zastosowanie uszczelek zgodnie z najlepszymi praktykami znacząco wpływa na trwałość i efektywność systemów, w których są stosowane.

Pytanie 16

Do montażu pneumatycznego zaworu rozdzielającego za pomocą wkrętu przedstawionego na rysunku należy użyć wkrętaka typu

Ilustracja do pytania
A. Pozidriv.
B. Philips.
C. Tri-Wing.
D. Torx.
Odpowiedź "Tri-Wing" to strzał w dziesiątkę! Gniazdo wkrętu na zdjęciu super pasuje do wkrętaka Tri-Wing. Te wkręty mają trzy skrzydła, co daje lepsze dopasowanie i kontrolę podczas wkręcania. To bardzo ważne, zwłaszcza w aplikacjach pneumatycznych, gdzie wszystko musi być precyzyjnie zamocowane, żeby działało jak należy. Używanie wkrętaka Tri-Wing do montażu pneumatycznego zaworu rozdzielającego to dobry wybór, bo pozwala na skuteczne przenoszenie momentu obrotowego, a przy tym nie ryzykuje się uszkodzenia gniazda. Wkrętaki Tri-Wing często można spotkać w elektronice i w różnych konstrukcjach mechanicznych, gdzie precyzja to podstawa. Warto zawsze dobierać odpowiednie narzędzie do danego wkrętu, bo to zgodne z najlepszymi praktykami inżynieryjnymi, a wpływa to na wydajność pracy i bezpieczeństwo.

Pytanie 17

Do czego służy klucz dynamometryczny?

A. do dokręcania śrub z określonym momentem obrotowym
B. do odkręcania zardzewiałych śrub
C. do ułatwienia odkręcania i dokręcania śrub
D. do dokręcania śrub w trudno dostępnych miejscach
Klucz dynamometryczny jest niezbędnym narzędziem w sytuacjach, gdzie precyzyjne dokręcanie śrub jest kluczowe dla bezpieczeństwa i funkcjonalności konstrukcji. Umożliwia on osiągnięcie określonego momentu siły, co jest istotne w wielu zastosowaniach, takich jak montaż elementów w silnikach, układach zawieszenia czy też w budowie maszyn. Dobrze dobrany moment dokręcania wpływa na złącza śrubowe, zapobiegając ich poluzowaniu lub uszkodzeniu. W praktyce, na przykład w branży motoryzacyjnej, wiele specyfikacji producentów wyraźnie określa wymagany moment dokręcania dla poszczególnych śrub. Użycie klucza dynamometrycznego zgodnie z tymi specyfikacjami jest kluczowe dla zapewnienia długowieczności i niezawodności elementów, a także uniknięcia niebezpiecznych awarii. Stosowanie klucza dynamometrycznego jest zatem zgodne z dobrymi praktykami i standardami branżowymi, które kładą nacisk na bezpieczeństwo i jakość wykonania.

Pytanie 18

Który typ łożyska należy zastosować w zespole mechanicznym wiedząc, że średnica gniazda wynosi 35 mm, jego wysokość wynosi 11 mm, natomiast średnica zewnętrzna wału wynosi 10 mm?

TYPWymiary
dDB
7200 B10309
7300 B103511
7202 B153511
7302 B154213
7203 B174012
7207 B357217
7307 B358021
Ilustracja do pytania
A. 7200 B
B. 7300 B
C. 7307 B
D. 7202 B
Odpowiedź 7300 B jest prawidłowa, ponieważ łożyska tego typu idealnie pasują do podanych wymiarów. Średnica wewnętrzna łożyska 7300 B wynosi 10 mm, co dokładnie odpowiada średnicy zewnętrznej wału, a średnica zewnętrzna łożyska wynosi 35 mm, co pasuje do średnicy gniazda. Dodatkowo, wysokość łożyska wynosi 11 mm, co również odpowiada wysokości gniazda. W praktyce, poprawny dobór łożyska ma kluczowe znaczenie dla wydajności i trwałości zespołów mechanicznych. Niewłaściwe dopasowanie może prowadzić do zwiększonego tarcia, szybszego zużycia i ostatecznie awarii maszyn. W branży inżynieryjnej istotne jest stosowanie standardów, takich jak ISO czy DIN, które definiują parametry techniczne łożysk. Wybór łożyska 7300 B umożliwia prawidłowe funkcjonowanie mechanizmów rotacyjnych, co jest kluczowe w wielu zastosowaniach, od silników elektrycznych po maszyny przemysłowe.

Pytanie 19

Która pompa hydrauliczna zbudowana jest z elementów przedstawionych na rysunku?

Ilustracja do pytania
A. Śrubowa.
B. Zębata.
C. Tłokowa promieniowa.
D. Tłokowa osiowa.
Pompa śrubowa, którą zidentyfikowałeś, wyróżnia się konstrukcją opartą na dwóch śrubach, które obracają się w przeciwnych kierunkach. Taka konstrukcja pozwala na efektywne przemieszczanie cieczy w zamkniętej przestrzeni, co czyni ją idealnym rozwiązaniem w aplikacjach wymagających wysokiej wydajności i stabilności. Pompy śrubowe są często wykorzystywane w przemyśle naftowym oraz chemicznym, gdzie transportuje się substancje o dużej lepkości. Dzięki swojej konstrukcji, pompy te charakteryzują się niskimi pulsacjami i możliwością pracy przy dużych obciążeniach. W praktyce, stosuje się je również w systemach nawadniania oraz w instalacjach HVAC, gdzie ich niezawodność i trwałość są kluczowe. Posiadając wiedzę na temat budowy i funkcji pomp śrubowych, można lepiej dobierać odpowiednie urządzenia do specyficznych potrzeb przemysłowych, co jest zgodne z najlepszymi praktykami inżynieryjnymi.

Pytanie 20

Jakie czynności są charakterystyczne dla utrzymania układów pneumatycznych?

A. Usuwanie kondensatu wodnego
B. Codzienna wymiana oleju w smarownicy
C. Okresowe wyłączanie sprężarki
D. Codzienna wymiana filtra powietrza
Codzienna wymiana oleju w smarownicy, okresowe wyłączanie sprężarki oraz codzienna wymiana filtra powietrza to działania, które mogą być istotne w utrzymaniu systemów pneumatycznych, jednak nie są one typowe dla konserwacji układów pneumatycznych jako całości. Wymiana oleju w smarownicy jest ważna dla zachowania odpowiedniego smarowania elementów mechanicznych, ale nie jest kluczowym działaniem związanym bezpośrednio z układami pneumatycznymi, które operują głównie na sprężonym powietrzu. Podobnie, okresowe wyłączanie sprężarki może być praktyką w celu konserwacji, ale nie należy do rutynowych działań konserwacyjnych układów pneumatycznych. Filtr powietrza ma z kolei na celu usuwanie zanieczyszczeń, ale jego codzienna wymiana nie jest wymagana, chyba że jest on szczególnie narażony na zanieczyszczenia. W rzeczywistości, w wielu systemach stosuje się strategie konserwacji oparte na harmonogramach, które są dostosowane do warunków pracy, a nie na codziennych wymianach. Typowe błędy myślowe polegają na przeoczeniu kluczowego aspektu, jakim jest usuwanie kondensatu, które jest bardziej krytyczne dla stabilności i efektywności całego systemu.

Pytanie 21

Które narzędzie przeznaczone jest do cięcia niezbrojonych przewodów pneumatycznych z tworzyw sztucznych?

Ilustracja do pytania
A. A.
B. B.
C. C.
D. D.
Narzędzie oznaczone literą A, czyli nożyce do cięcia rur, zostało zaprojektowane specjalnie do precyzyjnego cięcia niezbrojonych przewodów pneumatycznych wykonanych z tworzyw sztucznych. Dzięki swojej konstrukcji, nożyce te zapewniają czyste i równe cięcia, co jest kluczowe w aplikacjach pneumatycznych, gdzie szczelność połączeń ma kluczowe znaczenie dla efektywności systemu. Użycie odpowiednich narzędzi do cięcia zapobiega uszkodzeniom materiału oraz minimalizuje ryzyko powstawania nieszczelności. W praktyce, zastosowanie nożyc do cięcia rur w instalacjach pneumatycznych jest powszechne w przemyśle, gdzie konieczne jest precyzyjne i szybkie przygotowanie przewodów do montażu, co jest zgodne z normami ISO 4414 dotyczącymi bezpieczeństwa w systemach pneumatycznych. Warto podkreślić, że stosowanie nożyc dedykowanych do tych materiałów jest najlepszą praktyką, która prowadzi do zwiększenia efektywności oraz bezpieczeństwa operacji.

Pytanie 22

Który z przedstawionych symboli graficznych oznacza tranzystor MOSFET ze wzbogaconym kanałem typu n?

Ilustracja do pytania
A. Symbol 1.
B. Symbol 2.
C. Symbol 4.
D. Symbol 3.
Symbol 3 rzeczywiście przedstawia tranzystor MOSFET ze wzbogaconym kanałem typu n. Tego rodzaju tranzystory są niezwykle istotne w nowoczesnych układach elektronicznych, ponieważ charakteryzują się niskim poziomem szumów oraz wysoką szybkością przełączania. W zastosowaniach praktycznych, tranzystory MOSFET typu n są często wykorzystywane w układach zasilania, takich jak przetwornice DC-DC, a także w obwodach wzmacniaczy. W kontekście standardów, projektanci układów elektronicznych powinni zwracać uwagę na normy IEEE dotyczące symboli schematycznych, aby zapewnić zgodność i zrozumiałość w dokumentacji technicznej. Dzięki zastosowaniu tranzystorów MOSFET ze wzbogaconym kanałem, możliwe jest osiągnięcie wyższej efektywności energetycznej w systemach, co jest kluczowe w kontekście rosnących wymagań dotyczących oszczędności energii i redukcji emisji. Znajomość takich symboli graficznych jest niezbędna w pracy inżyniera elektronika, aby prawidłowo interpretować schematy oraz projektować złożone układy elektroniczne z uwzględnieniem nowoczesnych technologii.

Pytanie 23

Aby zredukować prędkość ruchu tłoczyska w pneumatycznym siłowniku dwustronnego działania, jakie urządzenie należy zastosować?

A. przełącznik obiegu
B. zawór dławiąco zwrotny
C. zawór podwójnego sygnału
D. zawór szybkiego spustu
Zawór dławiąco-zwrotny jest kluczowym elementem stosowanym w systemach pneumatycznych do regulacji prędkości ruchu tłoczyska siłownika dwustronnego działania. Działa na zasadzie ograniczenia przepływu powietrza, co pozwala na płynne i kontrolowane ruchy. Dzięki tej funkcji, procesy związane z załadunkiem, rozładunkiem oraz innymi operacjami mechanicznymi stają się bardziej precyzyjne i bezpieczne. W praktyce, zawory te są szeroko stosowane w automatyzacji przemysłowej, gdzie wymagania dotyczące powtarzalności i niezawodności są kluczowe. Na przykład, w maszynach pakujących, zawór dławiąco-zwrotny może spowolnić ruch tłoczyska, co zmniejsza ryzyko uszkodzenia produktów. Standardy, takie jak ISO 4414 dotyczące systemów pneumatycznych, zalecają stosowanie takich rozwiązań, aby zapewnić optymalne warunki pracy. Używanie odpowiednich zaworów przyczynia się również do zmniejszenia zużycia energii oraz wydłużenia żywotności systemów pneumatycznych.

Pytanie 24

W urządzeniu zmierzchowym fotorezystor pełni rolę

A. przełącznika instalacyjnego systemu
B. wskaźnika działania systemu
C. czujnika poziomu światła
D. ochrony prądowej systemu
Fotorezystor, jako element wyłącznika zmierzchowego, pełni kluczową rolę czujnika natężenia oświetlenia, co oznacza, że jego zadaniem jest monitorowanie poziomu jasności otoczenia. Działa na zasadzie zmiany oporu elektrycznego w zależności od natężenia światła padającego na jego powierzchnię. W sytuacjach, gdy natężenie światła spada poniżej określonego progu, fotorezystor przekazuje sygnał do układu sterującego, co powoduje włączenie odpowiednich urządzeń, takich jak lampy zewnętrzne. Zastosowanie fotorezystorów w wyłącznikach zmierzchowych jest powszechne w systemach automatyzacji, co przyczynia się do oszczędności energii oraz poprawy komfortu użytkowania. Przykłady zastosowań obejmują oświetlenie uliczne, które automatycznie włącza się po zachodzie słońca oraz oświetlenie ogrodów, które działa na zasadzie detekcji zmierzchu. W branży elektrycznej standardy, takie jak IEC 61000, podkreślają znaczenie stosowania odpowiednich elementów detekcyjnych w instalacjach elektrycznych, co potwierdza rolę fotorezystora jako efektywnego czujnika natężenia oświetlenia.

Pytanie 25

W trakcie pracy z urządzeniem hydraulicznym pracownik poślizgnął się na plamie oleju i doznał zwichnięcia kostki. Jakie czynności należy podjąć, aby udzielić pierwszej pomocy poszkodowanemu?

A. Zabandażować kostkę i przewieźć pacjenta do lekarza
B. Przyłożyć zimny okład na zwichnięty staw i unieruchomić go
C. Nastawić staw i zabandażować kostkę
D. Podać leki przeciwbólowe
Podawanie leków przeciwbólowych przy urazach, jak zwichnięcia, może na pierwszy rzut oka wydawać się sensowne, ale to nie jest najlepsza decyzja na początek. Leki mogą tylko zamaskować ból, co sprawi, że źle ocenimy stan kontuzji i ryzykujemy, że sytuacja się pogorszy. Pamiętaj też, że niektórzy mogą mieć alergie lub inne problemy ze stosowaniem konkretnych leków, a to dodatkowe ryzyko. A jeśli najpierw nie schłodzisz stawu, a dopiero potem go zabandażujesz, to może się okazać, że obrzęk się zatrzyma i leczenie będzie mało skuteczne. Jeśli użyjesz bandaża bez unieruchomienia stawu, to problem może się tylko pogłębić i dodatkowo uszkodzić otaczające tkanki. Próbować nastawiać staw samemu to nie jest dobry pomysł, bo tak można narobić jeszcze większych kłopotów. Tego typu działania mogą prowadzić do poważnych problemów zdrowotnych. Lepiej skupić się na odpowiedniej pierwszej pomocy, czyli schłodzeniu, unieruchomieniu i wezwaniu specjalisty, niż na nieprzemyślanym łykaniu leków czy chaotycznym nastawianiu stawów.

Pytanie 26

Cechy medium energii pneumatycznej, jakim jest sprężone powietrze, eliminują ryzyko powstania zagrożenia takiego jak

A. odłamki rozrywanych maszyn
B. przenoszenie wibracji na pracownika
C. nadmierny hałas generowany przez pracujące urządzenia
D. iskra prowadząca do pożaru lub wybuchu
Sprężone powietrze jako nośnik energii ma szereg właściwości, które sprawiają, że nie powoduje zagrożeń związanych z iskrą mogącą wywołać pożar lub wybuch. Główna cecha sprężonego powietrza polega na tym, że jest to gaz, który nie stwarza ryzyka zapłonu w normalnych warunkach użytkowania. W porównaniu do innych mediów energetycznych, takich jak gazy palne, sprężone powietrze jest bezpieczniejsze, ponieważ nie ma ryzyka powstania iskry w wyniku jego transportu czy użycia. Przykładowo, w przemyśle, gdzie sprężone powietrze jest powszechnie wykorzystywane do zasilania narzędzi pneumatycznych, nie ma obaw o zapłon, co czyni je idealnym rozwiązaniem w strefach zagrożonych wybuchem. Dodatkowo, według norm ISO 8573, które definiują jakość sprężonego powietrza, należy dążyć do minimalizacji zanieczyszczeń, co również wpływa na bezpieczeństwo. W praktyce, sprężone powietrze jest używane w systemach automatyki, pneumatycznych napędach cylindrów oraz w systemach transportu materiałów, gdzie bezpieczeństwo pracy jest kluczowe.

Pytanie 27

Element oznaczony symbolem BC 107 to tranzystor?

A. krzemowy w.cz.
B. krzemowy m.cz.
C. germanowy mocy
D. germanowy impulsowy
Odpowiedzi takie jak 'germanowy impulsowy', 'krzemowy w.cz.' oraz 'germanowy mocy' są błędne, ponieważ mylą podstawowe właściwości tranzystora BC 107 oraz jego zastosowanie. Tranzystory germanowe, używane w przeszłości, mają swoje ograniczenia, takie jak wyższy poziom szumów i mniejsze napięcie przebicia w porównaniu do tranzystorów krzemowych. Germanowe tranzystory impulsowe były popularne w układach o wysokiej częstotliwości, ale nie są odpowiednie do niskonapięciowych aplikacji. Tranzystory krzemowe w.cz. są przeznaczone do pracy w obwodach wysokoczęstotliwościowych i mają inne parametry niż te, które charakteryzują BC 107. Natomiast germanowe tranzystory mocy, choć mogą obsługiwać wyższe prądy, również nie pasują do charakterystyki BC 107. Typowe błędy myślowe to pomylenie właściwości materiałów półprzewodnikowych oraz niewłaściwe przypisanie zastosowań do tranzystorów. Użytkownicy powinni być świadomi, że wybór tranzystora powinien być oparty na specyfikacji technicznej oraz parametrach aplikacji, a nie na ogólnych założeniach dotyczących materiałów półprzewodnikowych.

Pytanie 28

Transoptor wykorzystuje się do

A. konwersji impulsów elektrycznych na promieniowanie świetlne
B. sygnalizowania transmisji
C. galwanicznego połączenia obwodów
D. galwanicznej izolacji obwodów
Transoptor, znany również jako optoizolator, jest urządzeniem elektronicznym, które służy do galwanicznej izolacji obwodów elektrycznych. Jego głównym zadaniem jest zapewnienie nieprzerwanego, ale izolowanego połączenia pomiędzy dwoma obwodami, co pozwala na przesyłanie sygnałów elektrycznych bez bezpośredniego połączenia między nimi. Przykładem zastosowania transoptora jest integracja urządzeń pracujących przy różnych poziomach napięcia, takich jak mikroprocesory i elementy wykonawcze, co chroni wrażliwe układy przed wysokim napięciem. Transoptory są powszechnie stosowane w automatyce przemysłowej, telekomunikacji oraz systemach pomiarowych, gdzie izolacja jest kluczowa dla bezpieczeństwa i niezawodności. Dzięki nim możliwe jest także zminimalizowanie zakłóceń elektromagnetycznych, co jest zgodne z najlepszymi praktykami inżynieryjnymi w projektowaniu systemów elektronicznych.

Pytanie 29

Moc wyjściowa zasilacza przedstawionego na ilustracji wynosi

Ilustracja do pytania
A. 12 W
B. 120 W
C. 24 W
D. 240 W
Moc wyjściowa zasilacza wynosząca 120 W została obliczona na podstawie danych znajdujących się na etykiecie, która wskazuje, że zasilacz dostarcza 12V DC przy maksymalnym prądzie 10A. Zgodnie z prawem Ohma i wzorem na moc elektryczną (P = V * I), gdzie P to moc (w watach), V to napięcie (w woltach), a I to natężenie prądu (w amperach), obliczamy moc jako 12V * 10A = 120W. Jest to kluczowa umiejętność w inżynierii elektrycznej, gdyż znajomość mocy zasilaczy jest niezbędna do zapewnienia odpowiedniego zasilania dla urządzeń elektronicznych. Na przykład, przy projektowaniu systemów zasilania dla komponentów komputerowych, ważne jest, aby zasilacz dostarczał wystarczającą moc, by uniknąć problemów z wydajnością i stabilnością systemu. Dobrą praktyką jest również uwzględnienie marginesu bezpieczeństwa, co jest istotne w kontekście długoterminowej niezawodności urządzenia. Z tego powodu, znajomość mocy wyjściowej zasilacza oraz umiejętność jej obliczania są niezbędne w pracy każdego inżyniera.

Pytanie 30

Podaj kolejność działań prowadzących do demontażu siłownika dwustronnego działania z układu pneumatycznego, który jest sterowany elektrozaworem 5/2 oraz posiada dwa czujniki kontaktronowe zamontowane na cylindrze.

A. Wyłączenie zasilania, zdjęcie czujników z cylindra, odkręcenie siłownika od podstawy, odłączenie przewodów pneumatycznych, wyłączenie zasilania sprężonym powietrzem
B. Wyłączenie zasilania, odkręcenie siłownika od podstawy, odłączenie zasilania sprężonym powietrzem, odłączenie przewodów pneumatycznych od siłownika
C. Wyłączenie zasilania oraz odłączenie sprężonego powietrza, odłączenie przewodów pneumatycznych od siłownika, odłączenie przewodów czujników od układu sterującego, odkręcenie siłownika od podstawy
D. Wyłączenie zasilania sprężonym powietrzem, zdjęcie czujników, odłączenie przewodów pneumatycznych od siłownika, wyłączenie zasilania
Poprawna odpowiedź zakłada, że przed przystąpieniem do demontażu jakiegokolwiek elementu układu pneumatycznego należy przede wszystkim zapewnić bezpieczeństwo operacji. Wyłączenie napięcia oraz zasilania sprężonym powietrzem jest niezbędnym krokiem, który zapobiega przypadkowemu uruchomieniu systemu w trakcie pracy. Następnie, odłączenie przewodów pneumatycznych od siłownika pozwala na bezpieczne zdemontowanie elementu, eliminując ryzyko wycieków powietrza, które mogłyby prowadzić do niebezpiecznych sytuacji. Odłączenie przewodów czujników od układu sterowania jest również kluczowe, gdyż pozwala na uniknięcie uszkodzenia czujników oraz zapewnia, że nie będą one przeszkadzały w procesie demontażu. Na końcu, odkręcenie siłownika od podstawy może być przeprowadzone bez obaw o bezpieczeństwo, ponieważ wszystkie niebezpieczne źródła energii zostały wcześniej wyeliminowane. Takie podejście jest zgodne z zaleceniami dotyczącymi bezpieczeństwa pracy z systemami pneumatycznymi i elektrycznymi, co jest kluczowe w utrzymaniu dobrych praktyk branżowych.

Pytanie 31

Środek gaśniczy, który może być zastosowany do likwidacji wszystkich kategorii pożarów i nie powoduje znacznych, nieodwracalnych uszkodzeń, na przykład w przypadku gaszenia sprzętu komputerowego, to

A. dwutlenek węgla
B. woda
C. proszek gaśniczy
D. piana gaśnicza
Wybór środków gaśniczych jest niezwykle istotny w kontekście ochrony przeciwpożarowej i powiązanych z nią zagrożeń. W przypadku użycia wody, chociaż jest to popularny środek gaśniczy do zwalczania pożarów grupy A, czyli materiałów stałych, może być skrajnie nieodpowiedni w przypadku pożarów zagrażających sprzętowi elektronicznemu. Woda może spowodować zwarcia, a w konsekwencji jeszcze większe straty. Piana gaśnicza, która jest skuteczna w gaszeniu cieczy palnych, może również nie być odpowiednia do ochrony sprzętu komputerowego ze względu na ryzyko uszkodzenia elementów elektronicznych. Ponadto piana nie jest zalecana do gaszenia pożarów grupy C, ponieważ nie ma zdolności do odcięcia źródła tlenu w przypadku gazów palnych. Z kolei dwutlenek węgla, chociaż skuteczny w gaszeniu pożarów grupy B i C, nie jest uniwersalnym środkiem, ponieważ może nie zadziałać w przypadku pożarów materiałów stałych. Wybór niewłaściwego środka gaśniczego może prowadzić do poważnych konsekwencji, dlatego kluczowa jest znajomość klasyfikacji pożarów oraz właściwego doboru środków gaśniczych do konkretnej sytuacji. W praktyce, zrozumienie różnic pomiędzy tymi środkami pomaga w podjęciu świadomej decyzji podczas akcji gaśniczej oraz minimalizuje ryzyko wystąpienia dodatkowych strat.

Pytanie 32

Aby usunąć stycznik zamontowany na szynie, należy wykonać działania w poniższej kolejności:

A. odłączyć napięcie, zwolnić zatrzask i zdjąć stycznik z szyny, odkręcić przewody
B. odkręcić przewody, zwolnić zatrzask i zdjąć stycznik z szyny, odłączyć napięcie
C. zwolnić zatrzask i zdjąć stycznik z szyny, odłączyć napięcie, odkręcić przewody
D. odłączyć napięcie, odkręcić przewody, zwolnić zatrzask i zdjąć stycznik z szyny
Odpowiedź odłącz napięcie, odkręć przewody, zwolnij zatrzask i zdejmij stycznik z szyny jest prawidłowa, ponieważ przestrzega podstawowych zasad bezpieczeństwa oraz dobrych praktyk w zakresie pracy z urządzeniami elektrycznymi. Przede wszystkim, odłączenie napięcia jest kluczowym krokiem, który ma na celu zabezpieczenie operatora przed porażeniem elektrycznym. Gdy napięcie jest odłączone, można bezpiecznie manipulować urządzeniami. Następnie, odkręcenie przewodów powinno nastąpić przed zwolnieniem zatrzasku, aby uniknąć nieprzewidzianych sytuacji, takich jak przypadkowe zwarcie podczas demontażu. Po odłączeniu przewodów możliwe jest bezpieczne zwolnienie zatrzasku i zdjęcie stycznika z szyny. Taki sposób postępowania jest zgodny z normami BHP oraz zaleceniami producentów urządzeń, co zapewnia skuteczne i bezpieczne wykonanie demontażu. Przykłady zastosowania tej procedury można znaleźć w praktyce w obiektach przemysłowych, gdzie regularnie przeprowadza się konserwację i serwisowanie osprzętu elektrycznego.

Pytanie 33

Na rysunku przedstawiono przekładnię o zębach

Ilustracja do pytania
A. daszkowych.
B. łukowych.
C. prostych.
D. śrubowych.
Odpowiedź "łukowych" jest prawidłowa, ponieważ zęby łukowe charakteryzują się zakrzywionym kształtem, co zapewnia ich lepszą współpracę i przenoszenie obciążeń. Przekładnie zębate z zębami łukowymi są szeroko stosowane w przemyśle, zwłaszcza w aplikacjach wymagających cichej i precyzyjnej pracy, takich jak w przekładniach samochodowych, gdzie redukcja hałasu i drgań jest kluczowa dla komfortu użytkowania. W porównaniu do zębów prostych, zęby łukowe oferują znacznie lepsze właściwości eksploatacyjne, w tym zwiększoną trwałość oraz mniejsze zużycie. W praktyce, takie przekładnie są stosowane w wielu mechanizmach, od maszyn przemysłowych po urządzenia codziennego użytku, spełniając normy branżowe i dobre praktyki inżynieryjne, które zalecają stosowanie zębów łukowych w sytuacjach, gdzie liczy się wydajność i niezawodność.

Pytanie 34

Jakie urządzenia służą do pomiaru wartości przyśpieszenia drgań elektrycznego silnika napędowego pompy hydraulicznej, działającego w systemie mechatronicznym?

A. akcelerometry
B. rotametry
C. tensometry
D. galwanometry
Akcelerometry są urządzeniami pomiarowymi, które służą do pomiaru przyspieszeń oraz drgań w różnych systemach mechanicznych, w tym w elektrycznych silnikach napędowych, jak w przypadku pomp hydraulicznych. Ich działanie polega na rejestrowaniu przyspieszeń w różnych osiach, co pozwala na dokładne monitorowanie stanu technicznego urządzenia. Przykładowo, w przemyśle motoryzacyjnym akcelerometry są powszechnie wykorzystywane do analizy drgań pojazdów, co przyczynia się do poprawy komfortu jazdy oraz bezpieczeństwa. W kontekście układów mechatronicznych, akcelerometry mogą być zintegrowane z systemami kontroli, umożliwiając automatyczne dostosowywanie parametrów pracy maszyny w odpowiedzi na zmieniające się warunki. Zgodnie z normami ISO 5349, które dotyczą pomiaru drgań, akcelerometry stanowią standardowy sposób na zapewnienie precyzyjnych pomiarów, co skutkuje efektywniejszym zarządzaniem procesami przemysłowymi oraz minimalizowaniem ryzyka uszkodzeń sprzętu.

Pytanie 35

W systemie mechatronicznym interfejs komunikacyjny ma na celu łączenie

A. programatora z siłownikiem
B. programatora ze sterownikiem
C. silnika z pompą hydrauliczną
D. grupy siłowników z modułem rozszerzającym
Interfejs komunikacyjny w systemie mechatronicznym pełni kluczową rolę w umożliwieniu wymiany informacji pomiędzy różnymi komponentami systemu. W przypadku poprawnej odpowiedzi, czyli połączenia sterownika z programatorem, mamy do czynienia z fundamentalnym aspektem integracji i automatyzacji. Sterownik, jako serce systemu mechatronicznego, interpretuje dane z czujników i generuje sygnały sterujące do różnych elementów wykonawczych, takich jak siłowniki czy pompy. Programator natomiast dostarcza odpowiednie algorytmy i logikę działania, co pozwala na precyzyjne sterowanie procesami. Przykładem zastosowania może być system automatyzacji w zakładzie produkcyjnym, gdzie sterownik komunikuje się z programatorem, aby precyzyjnie kontrolować cykl pracy maszyn. Tego typu komunikacja opiera się na standardach, takich jak CAN, Modbus czy Profibus, które zapewniają niezawodność i skalowalność systemów mechatronicznych. Przy odpowiedniej konfiguracji interfejsu komunikacyjnego możliwe jest również zdalne monitorowanie i diagnostyka, co podnosi efektywność operacyjną.

Pytanie 36

W przedstawionym na schemacie układzie sterowania siłownikiem jednostronnego działania tłoczysko siłownika powinno się wysuwać przy jednoczesnym naciśnięciu obu przycisków. Który zawór należy zamontować w układzie w miejscu oznaczonym symbolem X?

Ilustracja do pytania
A. Dławiąco-zwrotny.
B. Przełącznik obiegu.
C. Podwójnego sygnału.
D. Szybkiego spustu.
Wybór innych typów zaworów, takich jak zawór dławiąco-zwrotny, przełącznik obiegu czy szybki spust, jest nieodpowiedni w kontekście opisanego zadania. Zawór dławiąco-zwrotny reguluje przepływ medium w obie strony, ale nie zapewnia jednoczesnej aktywacji dwóch sygnałów, co jest kluczowe dla poprawnego działania siłownika. Tego rodzaju zawór może wprowadzać niepożądane spowolnienie ruchu siłownika, a jego działanie może być nieprzewidywalne w sytuacjach wymagających precyzyjnego sterowania. Przełącznik obiegu natomiast działa na zasadzie zmiany kierunku przepływu, co nie odpowiada na potrzeby opisanego układu, gdzie oba sygnały muszą być aktywne równocześnie, aby siłownik mógł się wysunąć. Z kolei szybki spust jest przeznaczony do błyskawicznego uwalniania medium z układu, co również nie spełnia wymagań związanych z równoczesnym naciśnięciem przycisków. Typowe błędy myślowe prowadzące do tych nieprawidłowych odpowiedzi obejmują niepełne zrozumienie funkcji poszczególnych zaworów oraz ich zastosowań w konkretnych układach sterowania. Wiedza o właściwych komponentach i ich interakcji jest kluczowa w inżynierii, a błędny dobór elementów może prowadzić do awarii systemów oraz zagrożenia dla bezpieczeństwa operacji.

Pytanie 37

Czynniki takie jak nacisk, długość gięcia, wysięg, przestrzeń między kolumnami, skok, prędkość dojścia, prędkość operacyjna, prędkość powrotu, pojemność zbiornika oleju oraz moc silnika to cechy charakterystyczne dla?

A. szlifierki narzędziowej
B. frezarki uniwersalnej
C. prasy krawędziowej
D. przecinarki plazmowej
Prawidłowa odpowiedź to prasa krawędziowa, która jest maszyną służącą do formowania blachy poprzez jej zginanie. Parametry, takie jak nacisk, długość gięcia czy odległość między kolumnami, są kluczowe dla efektywności i precyzji procesów gięcia blachy. Nacisk określa maksymalną siłę, jaką prasa może zastosować do zgięcia materiału, a długość gięcia wpływa na wielkość elementów, które mogą być formowane. Wysięg to odległość robocza narzędzi w prasie, co ma znaczenie przy obróbce dłuższych detali. Prędkości dojścia, robocza i powrotu są istotne dla optymalizacji cyklu pracy maszyny, co przekłada się na wydajność produkcji. Dodatkowo pojemność zbiornika oleju oraz moc silnika wpływają na wydajność i stabilność pracy prasy. W kontekście standardów branżowych, prasy krawędziowe muszą spełniać normy dotyczące bezpieczeństwa oraz jakości produkcji, takie jak normy ISO. W przemyśle metalowym prasy krawędziowe są często wykorzystywane do produkcji elementów konstrukcyjnych, obudów czy komponentów maszyn. Przykładem mogą być zastosowania w branży motoryzacyjnej, gdzie precyzyjne zgięcie blach jest kluczowe dla jakości finalnego produktu.

Pytanie 38

Zgodnie z normami ochrony przeciwpożarowej, do gaszenia urządzeń elektrycznych pod napięciem przekraczającym 1000 V należy zastosować gaśnicę

A. proszkową oznaczoną ABC
B. pianową oznaczoną AF
C. proszkową oznaczoną ABC/E
D. śniegową oznaczoną BC
Odpowiedź z gaśnicą proszkową ABC/E jest jak najbardziej trafna. Ta klasa gaśnicza jest stworzona do gaszenia pożarów, które mogą się zdarzyć w urządzeniach elektrycznych, gdy napięcie przekracza 1000 V. Gaśnice proszkowe ABC/E zawierają specjalny proszek, który świetnie radzi sobie z pożarami różnych typów – od ciał stałych, przez płyny, aż po gazy. To oznaczenie 'E' mówi nam, że można ich używać przy urządzeniach elektrycznych. Gdy wybuchnie pożar w elektryce, to ważne, żeby nie używać wody ani gaśnic pianowych, bo to może prowadzić do porażenia prądem. Przykładem może być sytuacja, kiedy w biurze zaczyna się palić komputer – wtedy użycie gaśnicy ABC/E pozwala na szybkie i bezpieczne ugaszenie pożaru, bez ryzyka dla ludzi. Przepisy przeciwpożarowe oraz normy, jak PN-EN 2, pokazują, jak ważny jest dobór odpowiedniego sprzętu gaśniczego w miejscach z elektroniką.

Pytanie 39

Którą funkcję pełni element pneumatyczny przedstawiony na rysunku?

Ilustracja do pytania
A. Obniża ciśnienie w zbiorniku.
B. Ustawia kierunek obiegu.
C. Reguluje natężenie przepływu.
D. Ustawia czas opóźnienia.
Element pneumatyczny przedstawiony na rysunku to zawór regulacyjny, który pełni kluczową rolę w zarządzaniu natężeniem przepływu powietrza w systemach pneumatycznych. Zawory te umożliwiają precyzyjne dostosowanie ilości powietrza, które przepływa do siłowników, co bezpośrednio wpływa na szybkość ich ruchu i siłę działania. Przykładem zastosowania zaworów dławiących jest ich wykorzystanie w automatyce przemysłowej, gdzie kontrola prędkości ruchu ramion robotów lub innych mechanizmów wykonawczych jest niezbędna dla płynności operacji produkcyjnych. Przestrzeganie norm i dobrych praktyk w zakresie doboru i konfiguracji zaworów regulacyjnych, takich jak norma ISO 8573 dotycząca jakości sprężonego powietrza, jest kluczowe dla zapewnienia efektywności i niezawodności systemów pneumatycznych. Zawory regulacyjne stanowią zatem fundament dla optymalizacji procesów w wielu gałęziach przemysłu, w tym w automatyzacji, obróbce materiałów czy technologii medycznej.

Pytanie 40

Który z wymienionych elementów zabezpiecza łożysko przed wysunięciem z obudowy w mechanizmie przedstawionym na rysunku?

Ilustracja do pytania
A. Pierścień Segera.
B. Podkładka dystansująca.
C. Zawleczka zabezpieczająca.
D. Nakrętka koronowa.
Wybór elementu zabezpieczającego łożysko wymaga zrozumienia różnych rodzajów zabezpieczeń oraz ich właściwego zastosowania w mechanizmach. Nakrętka koronowa, na przykład, jest używana głównie do mocowania elementów w obrębie osi, ale nie pełni funkcji zabezpieczającej łożysko przed wysunięciem. Jej zastosowanie koncentruje się na łączeniu elementów, co czyni ją niewłaściwym wyborem w kontekście tego konkretnego pytania. Podkładka dystansująca natomiast służy do regulacji luzów w zespole łożyskowym i nie ma właściwości zabezpieczających, co może prowadzić do przemieszczenia się łożyska, a tym samym do uszkodzenia mechanizmu. Zawleczka zabezpieczająca, choć również stosowana w kontekście zabezpieczania elementów, działa na innej zasadzie i nie jest odpowiednia do zastosowania w przypadku łożysk, gdyż nie zapobiega ich wysunięciu w osi obrotu. Takie nieprecyzyjne rozumienie funkcji poszczególnych elementów może prowadzić do błędnych wniosków oraz niewłaściwego montażu, co z kolei przekłada się na obniżenie efektywności i bezpieczeństwa działania maszyn. Właściwe zabezpieczenie łożysk jest kluczowe w każdym mechanizmie, a ignorowanie tej kwestii może skutkować poważnymi awariami oraz zwiększonymi kosztami eksploatacji.