Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik pojazdów samochodowych
  • Kwalifikacja: MOT.05 - Obsługa, diagnozowanie oraz naprawa pojazdów samochodowych
  • Data rozpoczęcia: 7 grudnia 2025 18:11
  • Data zakończenia: 7 grudnia 2025 18:24

Egzamin zdany!

Wynik: 31/40 punktów (77,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Sprzęt do wyważania kół pojazdów jest elementem wyposażenia stacji do

A. kontroli zawieszenia pojazdu
B. analizy systemu hamulcowego pojazdu
C. sprawdzania ustawienia kół oraz osi w pojeździe
D. demontażu i montażu opon
Wyważanie kół to nie jest to samo, co badanie układu hamulcowego. Każde z tych zagadnień wymaga osobnych testów, bo układ hamulcowy ocenia efektywność hamowania i stanu tarcz czy klocków, a wyważanie kół to coś całkiem innego. Zawieszenie z kolei też ma swoje zadania, bo sprawdza się sprężyny i amortyzatory, które wpływają na komfort jazdy, ale nie mają nic wspólnego z wyważaniem kół. Geometria, czyli ustawienia kół, jest ważna, ale także skupia się na kątach kół. Takie pomylenie procesów to typowy błąd, bo każde z tych zagadnień dotyczy innego aspektu techniki i wymaga innego podejścia. Wyważanie kół jest kluczowe, ale nie można mylić go z innymi czynnościami w diagnostyce samochodowej.

Pytanie 2

Wał napędowy stanowi komponent

A. przenoszący moment obrotowy ze skrzyni biegów na przekładnię główną
B. przenoszący moment obrotowy bezpośrednio z przekładni głównej na koła napędowe
C. różnicujący prędkości obrotowe kół jezdnych w zakrętach oraz na nierównych nawierzchniach
D. wyrównujący prędkości pomiędzy poszczególnymi kołami
Pojęcie wału napędowego jest często mylone z innymi elementami układu przeniesienia napędu, co prowadzi do nieporozumień. Odpowiedzi sugerujące, że wał napędowy różnicuje prędkości obrotowe kół jezdnych lub wyrównuje prędkości pomiędzy poszczególnymi kołami, dotyczą raczej funkcji przekładni różnicowej, która jest odpowiedzialna za umożliwienie różnym kołom obracanie się z różnymi prędkościami, co jest szczególnie istotne podczas pokonywania zakrętów. Kolejna nieprawidłowa koncepcja sugeruje, że wał napędowy przenosi moment obrotowy bezpośrednio z przekładni głównej na koła napędowe, co jest błędne, ponieważ wał napędowy łączy skrzynię biegów z przekładnią główną, a nie z kołami. Moment obrotowy jest przenoszony na koła przez inne komponenty, takie jak wałek napędowy i przekładnia różnicowa. Często myślenie o wałach napędowych w kontekście ich funkcji jako elementów sterujących prędkościami prowadzi do dezorientacji w zakresie rozumienia złożonej struktury układu napędowego. Wał napędowy jest jedynie elementem przenoszącym moc, a nie regulującym prędkości obrotowe, co należy mieć na uwadze przy nauce o systemach napędowych.

Pytanie 3

Jak przeprowadza się pomiar gęstości elektrolitu?

A. przy użyciu areometru
B. za pomocą analizatora
C. z wykorzystaniem amperomierza
D. z użyciem aerografu
Pomiar gęstości elektrolitu wykonuje się areometrem, który jest prostym i skutecznym narzędziem stosowanym w laboratoriach oraz w zastosowaniach przemysłowych. Areometr działa na zasadzie wyporu, co oznacza, że jego pomiar opiera się na zasadzie Archimedesa. Przy pomiarze gęstości elektrolitu, areometr zanurza się w cieczy, a jego wynik odczytuje się na skali umieszczonej na jego korpusie. W praktyce, dokładność pomiarów gęstości elektrolitu jest istotna, szczególnie w przypadku akumulatorów kwasowo-ołowiowych, gdzie gęstość elektrolitu informuje o stanie naładowania akumulatora. Standardy branżowe, takie jak ISO 2871, zalecają stosowanie areometrów do tego typu pomiarów, gdyż zapewniają one powtarzalność i dokładność wyników. Warto również zwrócić uwagę na to, że gęstość elektrolitu jest parametrem krytycznym w ocenie jego właściwości elektrochemicznych, co ma kluczowe znaczenie dla efektywności i długowieczności systemów zasilania.

Pytanie 4

Podczas pokonywania zakrętu przez pojazd, stabilizator w układzie zawieszenia zapobiega

A. przesunięciu geometrycznemu osi drogi.
B. przemieszczaniu się bocznemu kół.
C. blokowaniu kół.
D. utracie przyczepności kół wewnętrznych.
Odpowiedzi, które wskazujesz, demonstrują typowe nieporozumienia dotyczące działania układów zawieszenia w kontekście pokonywania zakrętów. Pierwsza z nich, dotycząca odchylenia geometrycznego osi toru jazdy, myli pojęcie stabilizacji z geometrią zawieszenia. Stabilizatory nie wpływają bezpośrednio na geometrię toru jazdy, lecz na równowagę pojazdu podczas manewrów. Utrata przyczepności kół wewnętrznych, którą stabilizator ma na celu zminimalizować, jest wynikiem sił odśrodkowych, a nie geometrycznych odchyleń. Kolejna odpowiedź dotycząca przesunięcia bocznego kół również jest nieprecyzyjna. Stabilizatory nie blokują kół ani nie uniemożliwiają ich ruchu; ich rolą jest ograniczenie przechyłów nadwozia, co z kolei stabilizuje położenie kół na drodze. Blokowanie kół jest zjawiskiem, które występuje w sytuacjach awaryjnych, takich jak hamowanie na śliskiej nawierzchni, a nie w kontekście normalnej jazdy w zakręcie. Błędy te wynikają z mylnego przekonania, że stabilizacja oznacza całkowite unieruchomienie kół lub zmiany ich geometrii, co jest niezgodne z zasadami działania nowoczesnych układów zawieszenia, które są projektowane zgodnie z normami bezpieczeństwa i wydajności, takimi jak ISO 26262.

Pytanie 5

Aby przeprowadzić weryfikację wałka rozrządu, należy użyć

A. manometru
B. średnicówki
C. czujnika zegarowego
D. płyty traserskiej
Czujnik zegarowy jest kluczowym narzędziem w weryfikacji wałka rozrządu, ponieważ pozwala na precyzyjne pomiary i sprawdzenie ustawień wałka w zakresie tolerancji producenta. Dzięki swojej konstrukcji umożliwia on dokładne wskazanie wszelkich odchyleń od normy, co jest szczególnie istotne w kontekście precyzyjnego działania silnika. Używając czujnika zegarowego, mechanik może z łatwością monitorować ruch wałka i oceniać, czy jego położenie jest zgodne z wymaganiami technicznymi. Przykładowo, w silnikach o wysokich obrotach, precyzyjne ustawienie rozrządu jest kluczowe dla osiągnięcia optymalnej mocy i efektywności paliwowej. Ponadto, stosowanie czujnika zegarowego jest zgodne z zasadami dobrej praktyki inżynieryjnej, co zapewnia nie tylko zgodność z normami, ale również bezpieczeństwo i niezawodność pracy silnika. Warto również zwrócić uwagę, że czujniki zegarowe są często używane w połączeniu z innymi narzędziami pomiarowymi, co zwiększa dokładność i możliwości diagnostyczne. W przypadku wątpliwości dotyczących precyzji pomiarów, czujnik zegarowy staje się niezastąpionym narzędziem w warsztacie.

Pytanie 6

Trudności w włączeniu jednego z biegów w synchronizowanej skrzyni biegów zazwyczaj są spowodowane uszkodzeniem

A. koła zębatego tego biegu
B. łożyskowania synchronizatora tego biegu
C. synchronizatora tego biegu
D. łożyskowania koła zębatego tego biegu na wałku
Synchronizator biegu w skrzyni biegów pełni kluczową rolę w procesie zmiany przełożeń, umożliwiając płynne włączanie biegów. Jego zadaniem jest dostosowanie prędkości obrotowej wałka skrzyni biegów do prędkości obrotowej koła zębatego, co eliminuje ryzyko zgrzytu podczas włączania biegu. Uszkodzenie synchronizatora, na przykład poprzez zużycie materiału ciernego lub zatarcie, prowadzi do trudności w przełączaniu biegów. Przykładem praktycznym może być sytuacja, w której kierowca próbuje włączyć drugi bieg, a skrzynia blokuje się lub wydaje nieprzyjemne dźwięki. W takim przypadku konieczna jest diagnostyka i ewentualna wymiana synchronizatora. Zgodnie z dobrymi praktykami branżowymi, regularne przeglądy i konserwacja elementów skrzyni biegów, w tym synchronizatorów, są kluczowe dla zapewnienia ich długotrwałej wydajności. Warto zwrócić uwagę na odpowiednią eksploatację pojazdu, co również wpływa na trwałość tych elementów.

Pytanie 7

Diagnostyka systemu hamulcowego na stanowisku rolkowym nie umożliwia

A. wykrycia owalizacji bębnów hamulcowych
B. wykrycia deformacji oraz bicia tarcz hamulcowych
C. oceny stopnia zużycia elementów ciernych
D. ustalenia różnic sił hamowania na wszystkich kołach pojazdu
Wybór odpowiedzi dotyczącej oceny stopnia zużycia elementów ciernych jako poprawnej jest uzasadniony z punktu widzenia diagnostyki układu hamulcowego. Stanowisko rolkowe, używane do testowania hamulców, pozwala na analizę siły hamowania w warunkach dynamicznych, jednakże nie dostarcza informacji o stopniu zużycia klocków czy szczęk hamulcowych. Zużycie tych elementów jest oceniane na podstawie grubości materiału ciernego, a nie na podstawie testów na rolkach. W praktyce, monitoring zużycia elementów ciernych powinien odbywać się podczas regularnych przeglądów technicznych, gdzie możliwa jest wizualna inspekcja oraz pomiar grubości klocków. Standardy takie jak ECE R90 w Europie wymagają, by części zamienne były identyczne pod względem jakości i wydajności z oryginalnymi elementami. Dlatego wiedza o zużyciu elementów ciernych jest kluczowa dla zapewnienia bezpieczeństwa pojazdu oraz efektywności układu hamulcowego.

Pytanie 8

Częścią systemu chłodzenia nie jest

A. czujnik temperatury
B. przekładnia ślimakowa
C. termostat
D. pompa wody
Przekładnia ślimakowa nie jest elementem układu chłodzenia, ponieważ jej główną funkcją jest przekazywanie momentu obrotowego i zmiana kierunku obrotów w mechanizmach napędowych, a nie chłodzenie silników czy innych elementów maszyny. W układzie chłodzenia kluczowe są komponenty takie jak pompa wody, która cyrkuluje płyn chłodzący, czujnik temperatury, który monitoruje temperaturę płynu, oraz termostat, który reguluje przepływ płynu chłodzącego w zależności od temperatury silnika. Przekładnie ślimakowe znajdują zastosowanie w różnych dziedzinach, ale nie w układach chłodzenia, co podkreśla ich specyfikę i zastosowanie w przekładniach mechanicznych. W praktyce, zastosowanie przekładni ślimakowej może być widoczne w napędach elektrycznych lub w mechanizmach, gdzie istotne jest uzyskanie dużego przełożenia przy małych wymiarach konstrukcyjnych.

Pytanie 9

Urządzenie przedstawione na ilustracji nie służy do pomiaru

Ilustracja do pytania
A. kąta wyprzedzenia sworznia zwrotnicy.
B. ciśnienia w ogumieniu kół.
C. pochylenia koła.
D. kąta pochylenia sworznia zwrotnicy.
Wybór odpowiedzi związanych z pomiarem ciśnienia w ogumieniu kół zdradza pewne nieporozumienie dotyczące funkcji urządzenia przedstawionego na ilustracji. Urządzenia do geometrii kół są zaprojektowane do precyzyjnego pomiaru różnych kątów ustawienia kół, a nie do oceny ciśnienia w oponach. Pomiary te są kluczowe, ponieważ niewłaściwe ustawienia kół mogą prowadzić do nieprawidłowego zużycia opon, obniżonej stabilności pojazdu oraz zmniejszenia efektywności paliwowej. W świecie motoryzacji, pomiar ciśnienia w oponach odbywa się za pomocą manometrów, które są zupełnie innym typem narzędzi, zaprojektowanych do monitorowania ciśnienia w czasie rzeczywistym. Typowe błędy myślowe, które prowadzą do wyboru błędnych odpowiedzi, mogą wynikać z mylnego założenia, że wszystkie urządzenia do pomiaru w kontekście motoryzacyjnym są uniwersalne i mogą służyć do wielu różnych zadań. Kluczowe jest zrozumienie specyfiki używanych narzędzi oraz ich zastosowania w profesjonalnej diagnostyce, co jest zgodne z dobrymi praktykami w branży. Odpowiednie przeszkolenie oraz znajomość standardów, takich jak normy branżowe dotyczące geometrii kół, są niezbędne do efektywnego wykorzystania technologii w diagnostyce pojazdów.

Pytanie 10

Podczas realizacji wymiany łożysk kół przednich, dla zapewnienia bezpieczeństwa pracy oraz właściwej pozycji mechanika, powinno się

A. podnieść pojazd za pomocą podnośnika kolumnowego
B. uniesić oś przednią za pomocą podnośnika hydraulicznego
C. ustawić oś przednią na klinach
D. uniesić oś przednią przy użyciu podnośnika śrubowego
Podniesienie pojazdu podnośnikiem kolumnowym jest najbezpieczniejszą i najbardziej stabilną metodą, gdyż pozwala na równomierne rozłożenie ciężaru pojazdu oraz zapewnia dostęp do wszystkich elementów zawieszenia. Podnośniki kolumnowe są zaprojektowane z myślą o pracy z pojazdami o różnych konstrukcjach, co czyni je odpowiednim wyborem dla profesjonalnych warsztatów. Dzięki stabilnej konstrukcji, mechanik może swobodnie pracować nad wymianą łożysk kół przednich, nie martwiąc się o możliwe przewrócenie się pojazdu. Przykładowo, w przypadku większych pojazdów dostawczych, zastosowanie podnośnika kolumnowego pozwala na swobodne operowanie narzędziami oraz dostęp do wszystkich niezbędnych elementów. Warto też podkreślić, że zgodnie z normami BHP, prace związane z wymianą elementów zawieszenia powinny odbywać się na stabilnym podłożu, co dodatkowo podkreśla znaczenie użycia odpowiedniego podnośnika, który spełnia te wymagania.

Pytanie 11

Zgięty wahacz w pojeździe należy

A. wyprostować w wysokiej temperaturze
B. wyprostować w niskiej temperaturze
C. wzmocnić dodatkowym elementem
D. wymienić na nowy
Wymiana zgiętego wahacza na nowy jest zdecydowanie najlepszym rozwiązaniem w przypadku uszkodzenia tego kluczowego elementu zawieszenia pojazdu. Wahacz odpowiada za stabilność oraz komfort jazdy, a jego deformacja może prowadzić do poważnych problemów z geometrą zawieszenia, co wpływa na bezpieczeństwo pojazdu. W praktyce, wahacze wykonane są z materiałów takich jak stal lub aluminium, które po zgięciu mogą stracić swoje właściwości mechaniczne. Nawet jeśli wahacz wydaje się być wyprostowany, w jego strukturze mogą pozostać mikropęknięcia, które z czasem mogą prowadzić do dalszych uszkodzeń. Wymiana wahacza na nowy zapewnia pełną niezawodność oraz zgodność z normami producenta, co jest kluczowe dla prawidłowego funkcjonowania układu zawieszenia. Dodatkowo, nowe wahacze są projektowane z uwzględnieniem najnowszych standardów i technologii, co może przyczynić się do poprawy osiągów pojazdu oraz jego trwałości. W sytuacji wystąpienia zgięcia wahacza zawsze należy zwrócić uwagę na jego wymianę, a nie na naprawę, aby zachować maksymalne bezpieczeństwo i komfort jazdy.

Pytanie 12

Jaką precyzję pomiarową uzyskuje mikrometr, w którym zastosowano bęben z 50 podziałkami, a skok współpracującej śruby mikrometrycznej wynosi 0,5 mm?

A. 0,01 mm
B. 0,05 mm
C. 0,1 mm
D. 0,5 mm
Mikrometr z bębnem pomiarowym wyposażonym w 50 nacięć oraz śrubą mikro metryczną o skoku 0,5 mm charakteryzuje się dokładnością pomiarową wynoszącą 0,01 mm. Oblicza się to, dzieląc skok śruby przez liczbę nacięć na bębnie pomiarowym. W tym przypadku: 0,5 mm / 50 = 0,01 mm. Tego rodzaju narzędzie pomiarowe jest powszechnie używane w precyzyjnych pomiarach, gdzie wymagana jest wysoka dokładność, na przykład w obróbce metali czy inżynierii mechanicznej. Mikrometry służą do pomiaru grubości, średnicy oraz wymiarów detali, co jest kluczowe dla zapewnienia zgodności z normami jakości. W praktyce, precyzyjny pomiar o takiej dokładności pozwala na wyeliminowanie błędów w procesach produkcyjnych, co przekłada się na lepszą jakość wyrobów i mniejsze straty materiałowe. Warto również wspomnieć, że mikrometry są często kalibrowane zgodnie z normami, aby zapewnić ich niezawodność i precyzję w długim okresie użytkowania.

Pytanie 13

Ile czasu zajmie całkowite odpowietrzenie hamulców w samochodzie osobowym wyposażonym w hydrauliczny układ hamulcowy, jeżeli czas potrzebny na odpowietrzenie każdego koła wynosi 15 minut?

A. 2,0 godz
B. 1,0 godz
C. 0,5 godz
D. 1,5 godz
Odpowiedź 1,0 godz. jest prawidłowa, ponieważ całkowity czas odpowietrzenia hamulców w samochodzie osobowym z hydraulicznym układem hamulcowym obliczamy, mnożąc czas pracy na jedno koło przez liczbę kół. W standardowych samochodach osobowych mamy cztery koła, a czas odpowietrzenia dla każdego z nich wynosi 15 minut. Stąd całkowity czas odpowietrzenia wynosi 15 minut x 4 = 60 minut, co przekłada się na 1,0 godz. W praktyce, procedura odpowietrzania hamulców jest kluczowa dla zapewnienia ich prawidłowego działania, eliminacji powietrza z układu oraz utrzymania odpowiedniego ciśnienia hydraulicznego. Wiele warsztatów stosuje technikę odpowietrzania w oparciu o standardy, takie jak SAE J1401, które określają procedury i narzędzia potrzebne do prawidłowego przeprowadzenia tej operacji. Zrozumienie tego procesu jest niezbędne dla mechaników oraz właścicieli pojazdów, aby zapewnić bezpieczeństwo i efektywność układu hamulcowego.

Pytanie 14

Podczas przeglądu technicznego samochodu stwierdzono potrzebę wymiany oleju silnikowego oraz klocków hamulcowych w kwocie 120,00 zł za komplet. Koszt 4 l oleju z filtrem olejowym wyniósł 160,00 zł, a wartość robocizny to 320,00 zł. Całkowity koszt usługi po uwzględnieniu 10% rabatu wyniósł

A. 480,00 zł
B. 600,00 zł
C. 540,00 zł
D. 560,00 zł
Aby obliczyć łączny koszt usługi po uwzględnieniu zniżki, należy zsumować wszystkie koszty związane z wymianą oleju oraz klocków hamulcowych. Koszt wymiany klocków hamulcowych wynosi 120,00 zł, a koszt oleju silnikowego i filtra to 160,00 zł. Koszt robocizny wynosi 320,00 zł. Łączny koszt usługi przed zniżką wynosi 120,00 zł + 160,00 zł + 320,00 zł = 600,00 zł. Następnie należy obliczyć 10% zniżkę, co daje 60,00 zł. Po odjęciu zniżki od pierwotnego kosztu, otrzymujemy 600,00 zł - 60,00 zł = 540,00 zł. Przykład ten ilustruje ważność znajomości procedur przeglądów okresowych oraz umiejętności kalkulacji kosztów, co jest kluczowe w profesjonalnym zarządzaniu pojazdami. W praktyce, wiele warsztatów stosuje podobne podejście do kalkulacji kosztów usług, aby zapewnić transparentność i zrozumiałość dla klienta, co jest zgodne z dobrymi praktykami w branży motoryzacyjnej.

Pytanie 15

Podczas naprawy systemu hamulcowego, mechanik zaobserwował, że jedna z okładzin na klocku hamulcowym jest uszkodzona. Jaką decyzję powinien podjąć mechanik w tej sytuacji?

A. wszystkich klocków na danej osi samochodu
B. uszkodzonego klocka hamulcowego na nowy
C. klocka hamulcowego na nowy o tej samej grubości okładziny
D. klocków hamulcowych na konkretnym kole pojazdu
Wybór wymiany wszystkich klocków hamulcowych na danej osi pojazdu jest zgodny z zaleceniami producentów oraz z najlepszymi praktykami w branży motoryzacyjnej. Klocki hamulcowe są elementem, który zużywa się równomiernie pod wpływem sił działających na nie podczas hamowania. W przypadku, gdy jeden z klocków na osi wykazuje oznaki uszkodzenia, takiego jak wykruszenie okładziny, może to sugerować, że pozostałe klocki na tej samej osi również zbliżają się do końca swojej żywotności. Działania takie jak wymiana tylko jednego klocka mogą prowadzić do niejednolitego działania układu hamulcowego, co zwiększa ryzyko wystąpienia poślizgu lub nieskutecznego hamowania. Dodatkowo, wymiana wszystkich klocków na tej samej osi zapewnia lepszą równowagę i stabilność podczas hamowania, co jest kluczowe dla bezpieczeństwa jazdy. W praktyce, mechanicy powinni zawsze dążyć do wymiany klocków w parze na danej osi, aby utrzymać optymalną funkcjonalność układu hamulcowego oraz wydłużyć ich żywotność. Takie podejście jest również zgodne z zaleceniami wielu standardów branżowych, takich jak normy ISO dotyczące bezpieczeństwa pojazdów.

Pytanie 16

Jaką funkcję pełni amortyzator w układzie zawieszenia pojazdu?

A. powiększania ugięcia elementów sprężystych zawieszenia
B. podnoszenia sztywności zawieszenia
C. tłumienia drgań elementów zawieszenia
D. ograniczania ugięcia elementów sprężystych zawieszenia
Amortyzatory w zawieszeniu to naprawdę ważny element, który zapewnia komfort i stabilność podczas jazdy. Ich głównym zadaniem jest tłumienie drgań, co oznacza, że jak jedziemy po nierównościach, to one pomagają wchłonąć te wstrząsy. Dzięki temu mniej drgań trafia do nadwozia, co sprawia, że podróż jest przyjemniejsza. Często wyczytałem, że dobrze jest regularnie sprawdzać i wymieniać amortyzatory, żeby działały na optymalnym poziomie. Co ciekawe, jeśli dobierzesz odpowiednie amortyzatory, to może to naprawdę poprawić właściwości jezdne twojego auta, co jest kluczowe w sportowych maszynach, gdzie liczy się precyzja prowadzenia. Warto też pamiętać, że amortyzatory muszą spełniać normy bezpieczeństwa, żeby były niezawodne i trwałe na dłużej.

Pytanie 17

Jakie narzędzie wykorzystuje się do weryfikacji współosiowości czopów wałka rozrządu?

A. liniału sinusoidalnego
B. sprawdzianu tłokowego
C. czujnika zegarowego z podstawą
D. suwmiarki z wyświetlaczem elektronicznym
Czujnik zegarowy z podstawką jest narzędziem pomiarowym, które doskonale sprawdza się w ocenie współosiowości czopów wałka rozrządu. Jego zasada działania opiera się na pomiarze niewielkich odchyleń, co pozwala na dokładne stwierdzenie, czy czopy są osadzone prawidłowo w stosunku do osi obrotu. Użycie czujnika zegarowego umożliwia nie tylko wykrycie błędów w osadzeniu, ale również umożliwia ich precyzyjne korygowanie. Na przykład w silnikach spalinowych, gdzie precyzyjne ustawienie wałka rozrządu jest kluczowe dla prawidłowego działania silnika, czujnik zegarowy pozwala na identyfikację ewentualnych nieprawidłowości, co jest zgodne z najlepszymi praktykami w zakresie montażu i kontroli jakości. Dodatkowo, czujnik zegarowy jest często stosowany do sprawdzania innych elementów mechanicznych, co czyni go narzędziem uniwersalnym w warsztatach samochodowych i przemysłowych, gdzie precyzja ma kluczowe znaczenie.

Pytanie 18

Czas wymiany dwóch sworzni zwrotnic w pojeździe osobowym wynosi 2 godziny. Jakie będą koszty wymiany sworzni oraz ustawienia zbieżności przy założeniu, że:
- cena jednego sworznia to 60 zł brutto,
- stawka za roboczogodzinę wynosi 80 zł brutto,
- opłata za pomiar i ustawienie zbieżności wynosi 100 zł brutto?

A. 380 zł
B. 320 zł
C. 240 zł
D. 300 zł
Aby obliczyć całkowity koszt wymiany dwóch sworzni zwrotnic oraz regulacji zbieżności, należy uwzględnić wszystkie elementy kosztowe. Koszt sworzni wynosi 60 zł za sztukę, a ponieważ wymieniamy dwa, suma wynosi 120 zł (60 zł x 2). Następnie, czas pracy mechanika na wymianę sworzni wynosi 2 godziny. Przy stawce 80 zł za roboczogodzinę, koszt robocizny wynosi 160 zł (80 zł x 2). Ostatnim elementem jest koszt regulacji zbieżności, który wynosi 100 zł. Zatem całkowity koszt wynosi: 120 zł (sworznie) + 160 zł (robocizna) + 100 zł (regulacja) = 380 zł. W praktyce, poprawna regulacja zbieżności jest kluczowa dla prawidłowego zachowania się pojazdu na drodze, co przekłada się na bezpieczeństwo jazdy oraz komfort użytkowania. Warto zawsze korzystać z usług doświadczonych mechaników, którzy stosują się do standardów branżowych, aby zapewnić wysoką jakość wykonania usług.

Pytanie 19

Hybrydowy napęd to wykorzystanie w pojeździe jednostki napędowej

A. z zapłonem iskrowym
B. wysokoprężnej
C. spalinowej z elektryczną
D. elektrycznej
Napęd hybrydowy w pojazdach oznacza zastosowanie zarówno silnika spalinowego, jak i elektrycznego w celu optymalizacji efektywności energetycznej oraz zmniejszenia emisji spalin. W praktyce oznacza to, że pojazdy hybrydowe mogą korzystać z mocy silnika spalinowego podczas jazdy na autostradzie, gdzie wymagana jest większa moc, natomiast w warunkach miejskich, gdzie prędkości są niższe, silnik elektryczny może działać samodzielnie. Taki system przyczynia się do znacznego obniżenia zużycia paliwa i redukcji emisji CO2, co jest zgodne z globalnymi standardami w zakresie ochrony środowiska. Przykłady zastosowania obejmują popularne modele samochodów takie jak Toyota Prius czy Honda Insight, które udowodniły, że hybrydowe napędy są nie tylko technologicznie zaawansowane, ale również ekonomicznie opłacalne dla użytkowników. Standardy dotyczące emisji spalin, takie jak Euro 6, kładą nacisk na rozwój technologii hybrydowych, co potwierdza ich rosnące znaczenie w branży motoryzacyjnej.

Pytanie 20

W trakcie diagnozowania pojazdu na linii testowej przeprowadza się pomiar geometrii przedniego zawieszenia w formie

A. zbieżności całkowitej kół
B. kąta nachylenia koła
C. kąta wyprzedzenia sworznia zwrotnicy
D. kąta nachylenia osi zwrotnicy
Pomiar zbieżności całkowitej kół jest kluczowym elementem diagnostyki geometrii zawieszenia pojazdu. Oznacza on kąt, pod jakim przednie koła ustawione są względem siebie, gdy pojazd porusza się na prostym odcinku drogi. Właściwe ustawienie zbieżności ma fundamentalne znaczenie dla bezpieczeństwa jazdy oraz wydajności pojazdu. Ich niewłaściwe wartości mogą prowadzić do nierównomiernego zużycia opon, a także negatywnie wpływać na prowadzenie i stabilność auta. Na przykład, zbyt dużą zbieżność może powodować szybsze zużycie opon na wewnętrznych krawędziach, co w konsekwencji prowadzi do kosztownych wymian. Praktyka diagnostyczna wymaga regularnego sprawdzania geometrii zawieszenia, zwłaszcza po kolizjach czy wymianach części układu zawieszenia. W branży standardem stały się narzędzia optyczne i laserowe, które umożliwiają precyzyjne pomiary zbieżności, a przez to skuteczne dostosowywanie ustawień zawieszenia do specyfikacji producenta, co jest kluczowe dla zapewnienia optymalnych właściwości jezdnych i komfortu użytkownika.

Pytanie 21

Specyfikacja techniczna elementu wchodzącego w skład instalacji elektrycznej informuje, że rezystancja uzwojenia pierwotnego wynosi 3 Ohm, natomiast uzwojenia wtórnego 70 Ohm. Co to za element?

A. Cewka zapłonowa
B. Czujnik temperatury
C. Czujnik ciśnienia paliwa
D. Świeca zapłonowa
Cewka zapłonowa to kluczowy element układu zapłonowego w silnikach spalinowych, odpowiedzialny za generowanie wysokiego napięcia potrzebnego do zapłonu mieszanki paliwowo-powietrznej w cylindrze. Wskazane wartości rezystancji uzwojeń pierwotnego (3 Ohm) i wtórnego (70 Ohm) są zgodne z typowymi parametrami cewek zapłonowych. W uzwojeniu pierwotnym przepływa prąd, który generuje pole magnetyczne, a w uzwojeniu wtórnym to pole powoduje indukcję elektryczną, wytwarzając wysokie napięcie. Cewki zapłonowe są projektowane zgodnie z normami branżowymi, aby zapewnić optymalną wydajność i niezawodność, co jest kluczowe w kontekście efektywności pracy silnika. Praktyczne zastosowanie cewki zapłonowej obejmuje nie tylko silniki spalinowe w pojazdach, ale również inne aplikacje, takie jak generatory prądu czy systemy grzewcze. Właściwe zrozumienie działania tego elementu jest niezbędne dla każdego technika zajmującego się diagnostyką i naprawą układów zapłonowych, a także dla inżynierów projektujących systemy elektryczne w motoryzacji.

Pytanie 22

W przypadku zwichnięcia kończyny dolnej, jaką należy podjąć pierwszą pomoc przedlekarską?

A. nałożeniu jałowego opatrunku.
B. aplikacji zimnego okładu.
C. ustawieniu kończyny.
D. sprawdzeniu tętna oraz oddechu.
Podejście do zwichnięcia kończyny dolnej powinno być oparte na wiedzy o zasadach udzielania pierwszej pomocy. Wskazanie na nastawienie kończyny jest nieodpowiednie, ponieważ takie działania powinny być przeprowadzane jedynie przez wykwalifikowany personel medyczny. Próbując samodzielnie nastawić zwichnięcie, można spowodować dalsze uszkodzenia tkanek, stawów lub nerwów, co może prowadzić do poważniejszych konsekwencji zdrowotnych. Kontrolowanie tętna i oddechu, chociaż istotne w ogólnym kontekście pierwszej pomocy, nie jest bezpośrednio związane z urazem kończyny dolnej. Tego typu działania są kluczowe w przypadku zagrożenia życia, ale w przypadku zwichnięcia są mniej istotne niż natychmiastowe chłodzenie urazu. Wykonywanie jałowego opatrunku także nie jest pierwszym krokiem w tych okolicznościach, ponieważ najpierw należy zająć się bólem i obrzękiem, a dopiero później, jeśli występują rany otwarte, można nałożyć opatrunek. Warto zrozumieć, że pierwsza pomoc ma na celu złagodzenie objawów i zapobieganie dalszym urazom, a nie samodzielne leczenie kontuzji. Właściwe podejście do udzielania pomocy w przypadku zwichnięcia jest kluczowe dla uniknięcia długotrwałych problemów zdrowotnych.

Pytanie 23

Na szczelność przestrzeni roboczej cylindrów nie oddziałuje

A. szczelność przylegania zaworów
B. szczelność układu wylotowego
C. luz tłok-pierścienie-cylinder
D. szczelność połączenia bloku cylindra z głowicą
Szczelność układu wylotowego rzeczywiście nie ma wpływu na szczelność przestrzeni roboczej cylindrów. Układ wylotowy odpowiada za odprowadzanie spalin z silnika, a jego szczelność dotyczy jedynie utrzymania ciśnienia i kontroli emisji. Z punktu widzenia pracy silnika, szczelność cylindrów jest bezpośrednio związana z zjawiskami zachodzącymi wewnątrz samego cylindra, takimi jak luz tłok-pierścienie-cylinder czy szczelność zaworów. Dobre praktyki w zakresie konserwacji silnika wymagają regularnego sprawdzania stanu pierścieni tłokowych, co pozwala na utrzymanie odpowiedniego ciśnienia sprężania. Przykładem zastosowania tej wiedzy jest wymiana uszkodzonych pierścieni tłokowych w silniku, co znacznie poprawia jego osiągi i efektywność paliwową. W sytuacji, gdy układ wylotowy jest nieszczelny, może to prowadzić do zwiększenia emisji spalin, ale nie wpłynie to bezpośrednio na ciśnienie robocze w cylindrze.

Pytanie 24

Ile kresek znajduje się na noniuszu suwmiarki, która ma dokładność 0,05 mm?

A. 50 kresek
B. 40 kresek
C. 10 kresek
D. 20 kresek
Odpowiedź 20 kresek jest prawidłowa, ponieważ suwmiarka mikrometryczna z dokładnością 0,05 mm zazwyczaj ma noniusz podzielony na 20 kresek. Każda kreska na noniuszu odpowiada 0,05 mm, co sprawia, że cała skala noniusza pokrywa zakres 1 mm. Dzięki temu, suwmiarka pozwala na precyzyjne pomiary z dokładnością do 0,05 mm, co jest niezwykle przydatne w różnych zastosowaniach inżynieryjnych, mechanicznych i precyzyjnych. Na przykład w przemyśle motoryzacyjnym, gdzie dokładność pomiarów jest kluczowa dla zapewnienia jakości komponentów, użycie suwmiarki o takiej dokładności pozwala na kontrolę wymiarów elementów z bardzo małymi tolerancjami. Dobrą praktyką jest regularne kalibrowanie narzędzi pomiarowych oraz znajomość technik pomiarowych, aby uniknąć błędów i uzyskać wiarygodne wyniki pomiarów. Warto również zwrócić uwagę na to, że im większa liczba kresek na noniuszu, tym większa dokładność pomiaru, co jest kluczowe w precyzyjnej obróbce materiałów.

Pytanie 25

W systemie smarowania silnika najczęściej wykorzystuje się pompy

A. tłoczkowe
B. zębate
C. nurnikowe
D. membranowe
Pompy zębate są najczęściej stosowanym typem pomp w układach smarowania silników, ponieważ zapewniają one stabilne ciśnienie i wysoką wydajność. Działają na zasadzie przesuwania oleju między zębami kół zębatych, co pozwala na efektywne pobieranie i tłoczenie smaru w obrębie silnika. Ich konstrukcja jest stosunkowo prosta, co wpływa na niskie koszty produkcji oraz łatwość w serwisowaniu. W praktyce, pompy zębate są powszechnie używane w silnikach spalinowych oraz w hydraulice, gdzie wymagane jest dostarczanie oleju pod odpowiednim ciśnieniem. Ponadto, ich działanie jest mało wrażliwe na zmiany lepkości oleju, co czyni je bardziej uniwersalnymi. W standardach branżowych, takich jak ISO 6743, podkreśla się znaczenie efektywnego smarowania, co czyni pompy zębate kluczowym elementem zapewniającym długowieczność i sprawność silników. Dobre praktyki w inżynierii mechanicznej zalecają regularne kontrole i konserwację pomp zębatych, aby uniknąć awarii i zapewnić optymalną wydajność silnika.

Pytanie 26

Omomierz można zastosować do weryfikacji czujnika

A. Halla
B. położenia przepustnicy
C. zegara
D. manometrycznego
Zegarowy, czujnik Halla oraz manometryczny to różne rodzaje czujników, które pełnią inne funkcje i nie są odpowiednie do pomiaru położenia przepustnicy. Czujnik zegarowy służy do pomiaru czasu lub częstotliwości zdarzeń, co jest zupełnie inną dziedziną niż monitorowanie położenia elementów silnika. Z kolei czujnik Halla jest wykorzystywany do detekcji pól magnetycznych i ma zastosowanie np. w systemach zapłonowych lub do pomiaru prędkości obrotowej, natomiast nie nadaje się do bezpośredniego pomiaru kątów otwarcia przepustnicy. Czujnik manometryczny, z drugiej strony, jest stosowany do pomiaru ciśnienia gazów lub cieczy, a więc również nie jest właściwym narzędziem do oceny położenia przepustnicy. Wybór odpowiedniego czujnika jest kluczowy dla uzyskania rzetelnych danych, a mylenie ich funkcji może prowadzić do błędnych wniosków diagnostycznych. Często występującym błędem jest zakładanie, że każdy czujnik może być użyty zamiennie, co jest niezgodne z zasadami inżynierii i diagnostyki pojazdów. Dlatego ważne jest, aby mieć świadomość specyfiki każdego czujnika oraz jego zastosowania w kontekście układów elektronicznych pojazdu.

Pytanie 27

Ryzyko wystąpienia aquaplaningu w pojeździe zwiększa się wraz z

A. podwyższeniem ciśnienia w oponach
B. zmniejszeniem szerokości opony
C. zmniejszeniem powierzchni przekroju wzoru bieżnika
D. obniżeniem ciśnienia w oponach
Niestety, inne odpowiedzi nie trzymają się faktów o tym, jak działają opony w deszczu. Zmniejszenie bieżnika może wprawdzie wpływać na odprowadzanie wody, ale to nie jest najważniejszy powód do obaw w kontekście aquaplaningu. Bieżnik musi być dobrze zaprojektowany, by radzić sobie z wodą, a zmniejszenie rzeźby to może obniżyć przyczepność, ale niekoniecznie od razu prowadzi do aquaplaningu. Co do wzrostu ciśnienia w oponach, to jest to trochę mylące. Odpowiednie ciśnienie to podstawa, ale za wysokie ciśnienie może sprawić, że opony będą zbyt twarde i wtedy kontakt z nawierzchnią będzie gorszy, co może skutkować utratą przyczepności. Zmiana szerokości opony to kolejny błąd – węższe opony czasami lepiej radzą sobie z wodą, ale mogą też zwiększać ryzyko aquaplaningu przez mniejszą powierzchnię kontaktu z drogą. Dlatego warto wiedzieć, jak ciśnienie, bieżnik i szerokość opony się ze sobą wiążą, bo to ważne dla bezpieczeństwa. Dobrym pomysłem jest regularnie sprawdzać stan opon i ich ciśnienie, żeby były zgodne z tym, co mówi producent, bo to może pomóc w unikaniu aquaplaningu.

Pytanie 28

Dlaczego ważne jest regularne sprawdzanie poziomu oleju silnikowego?

A. Zapobieganie uszkodzeniom silnika z powodu niedostatecznego smarowania
B. Zwiększenie mocy silnika
C. Poprawa wydajności systemu klimatyzacji
D. Zmniejszenie hałasu pracy silnika
Regularne sprawdzanie poziomu oleju silnikowego jest kluczowe dla prawidłowego funkcjonowania samochodu. Olej pełni funkcję smarowania elementów silnika, co zapobiega ich zużyciu i przegrzewaniu. Gdy poziom oleju jest zbyt niski, elementy silnika mogą nie być odpowiednio smarowane, co prowadzi do zwiększonego tarcia i potencjalnie poważnych uszkodzeń. Może to skutkować kosztownymi naprawami, a w ekstremalnych przypadkach całkowitym zniszczeniem silnika. Regularne sprawdzanie poziomu oleju pozwala także zauważyć ewentualne wycieki czy nadmierne zużycie oleju, które mogą być sygnałem innych problemów mechanicznych. Właściwy poziom oleju wspomaga także efektywne spalanie paliwa, co przekłada się na lepszą ekonomię jazdy. Dbanie o odpowiedni poziom oleju jest uznawane za podstawową dobrą praktykę w zakresie konserwacji samochodów i jest zalecane przez wszystkich producentów pojazdów.

Pytanie 29

Zanim rozpoczniesz badanie poprawności funkcjonowania układu hamulcowego w Stacji Kontroli Pojazdów, co należy zrobić w pierwszej kolejności?

A. sprawdzić zawartość wody w płynie hamulcowym
B. zmierzyć ciśnienie w oponach
C. sprawdzić grubość klocków hamulcowych
D. ocenić działanie serwomechanizmu
Sprawdzanie ciśnienia w oponach to naprawdę ważny krok, zanim zaczniemy badać hamulce w samochodzie. Jak opony mają odpowiednie ciśnienie, to pojazd lepiej się zachowuje podczas hamowania, a hamulce działają skuteczniej. Gdy ciśnienie jest za niskie, to można mieć problem z rozkładem sił przy hamowaniu, a to zwiększa ryzyko poślizgu czy wydłużenia drogi hamowania. Producent pojazdu podaje normy dotyczące ciśnienia, więc dobrze jest je mieć na uwadze. Regularne sprawdzanie ciśnienia to po prostu część dbania o auto. Przed testowaniem hamulców mechanik koniecznie powinien upewnić się, że ciśnienie w oponach jest w normie. Można to znaleźć w dokumentacji, albo na naklejce przy drzwiach kierowcy. W końcu odpowiednie ciśnienie w oponach to nie tylko kwestia bezpieczeństwa, ale też komfortu jazdy i mniejszego zużycia paliwa.

Pytanie 30

Metalizację natryskową wykorzystuje się w procesie regeneracji

A. reaktora katalitycznego
B. tarcz hamulcowych
C. rury wydechowej
D. wału korbowego
Wybór odpowiedzi dotyczących regeneracji rury wydechowej, tarcz hamulcowych lub reaktora katalitycznego wskazuje na nieporozumienie dotyczące zastosowania metalizacji natryskowej. Rura wydechowa to element silnika, który głównie podlega korozji chemicznej i termicznej, a jej regeneracja zazwyczaj polega na wymianie lub spawaniu, a nie na nanoszeniu powłok metalowych. Tarcz hamulcowych, z kolei, wymagają doskonałej jakości materiałów przystosowanych do wysokich temperatur i dużych obciążeń, co sprawia, że ich regeneracja najczęściej opiera się na szlifowaniu lub wymianie na nowe. Reaktor katalityczny to zaawansowane urządzenie stosowane w procesach chemicznych, w którym kluczowe są właściwości katalizatorów, a nie metalizacji natryskowej. Odpowiedzi te nie uwzględniają specyfiki materiałów i ich zachowań w różnych warunkach eksploatacyjnych, co może prowadzić do błędnych wniosków. Typowym błędem jest mylenie regeneracji z wymianą, co skutkuje podejmowaniem niewłaściwych decyzji w kontekście naprawy i konserwacji. Metalizacja natryskowa to technika, która sprawdza się głównie w przypadkach, gdzie konieczne jest odbudowanie zużytych powierzchni, jak ma to miejsce w przypadku wałów korbowych, a nie w zastosowaniach, które wymagają szczególnych właściwości mechanicznych i chemicznych, jak w przypadku pozostałych wymienionych elementów.

Pytanie 31

Podczas uzupełniania oleju w automatycznej skrzyni biegów, należy użyć oleju oznaczonego symbolem

A. ŁT4
B. API
C. SAE
D. ATF
Odpowiedź ATF (Automatic Transmission Fluid) jest poprawna, ponieważ jest to specyficzny typ oleju stosowanego w automatycznych skrzyniach biegów. Oleje ATF są zaprojektowane, aby spełniać rygorystyczne wymagania dotyczące pracy układów hydraulicznych, smarowania oraz chłodzenia, co jest kluczowe dla prawidłowego funkcjonowania automatycznej przekładni. Właściwości fizykochemiczne oleju ATF, takie jak lepkość, stabilność termiczna oraz odporność na utlenianie, są dostosowane do warunków pracy, jakie panują w skrzyniach automatycznych. Przykładem zastosowania oleju ATF może być jego użycie w samochodach osobowych, gdzie producenci zalecają stosowanie określonych specyfikacji, takich jak Dexron lub Mercon, w zależności od modelu pojazdu. Właściwy dobór oleju ATF wpływa na wydajność skrzyni biegów, a także na jej żywotność, co czyni go kluczowym elementem w serwisowaniu i konserwacji pojazdów.

Pytanie 32

Rozmontowanie pełnej kolumny McPhersona na pojedyncze części przeprowadza się przy użyciu

A. prasy hydraulicznej
B. specjalnie uformowanej dźwigni
C. ręcznej prasy
D. ściągacza do sprężyn
Ściągacz do sprężyn jest narzędziem niezbędnym do demontażu kolumny McPhersona, ponieważ umożliwia on bezpieczne i skuteczne usunięcie sprężyny zawieszenia, która jest elementem pod dużym ciśnieniem. W trakcie demontażu ważne jest, aby sprężynę odpowiednio ściągnąć, aby zminimalizować ryzyko uszkodzenia innych komponentów oraz zapewnić bezpieczeństwo osoby wykonującej tę operację. Ściągacze do sprężyn są dostępne w różnych wersjach, w tym ręcznych oraz hydraulicznych, co pozwala na dostosowanie narzędzia do konkretnych warunków pracy. Zastosowanie ściągacza do sprężyn jest zgodne z najlepszymi praktykami w branży motoryzacyjnej, które podkreślają znaczenie używania odpowiednich narzędzi do przeprowadzania prac serwisowych. Warto zauważyć, że niewłaściwe lub nieodpowiednie narzędzia mogą prowadzić do uszkodzenia kolumny McPhersona, co zwiększa koszty naprawy oraz czas przestoju pojazdu.

Pytanie 33

Aby nawiązać łączność pomiędzy samochodem a komputerem diagnostycznym, konieczne jest, aby pojazd był wyposażony w gniazdo

A. EDB
B. ADB
C. EOBD
D. EGR
Odpowiedź EOBD (European On-Board Diagnostics) jest poprawna, ponieważ standard ten definiuje systemy diagnostyczne stosowane w pojazdach. EOBD umożliwia komunikację między pojazdem a komputerem diagnostycznym, co pozwala na monitorowanie stanu technicznego silnika oraz innych istotnych układów. Dzięki gniazdu EOBD, mechanicy mogą odczytywać kody błędów, analizować dane w czasie rzeczywistym oraz przeprowadzać diagnostykę układów emisji spalin. W praktyce, EOBD jest standardem obowiązującym w większości nowoczesnych pojazdów sprzedanych w Europie od 2001 roku (dla samochodów osobowych) oraz od 2004 roku (dla samochodów ciężarowych). Umożliwia to nie tylko szybką identyfikację problemów, ale również przyczynia się do przestrzegania norm emisji, co ma kluczowe znaczenie w kontekście ochrony środowiska. Prawidłowe korzystanie z gniazda EOBD jest więc istotne zarówno dla diagnostyki, jak i dla spełniania wymogów prawnych związanych z emisją spalin.

Pytanie 34

Podczas pracy z elektryczną szlifierką ręczną konieczne jest noszenie

A. okularów ochronnych
B. fartucha ochronnego
C. obuwia roboczego
D. rękawic ochronnych
Użycie okularów ochronnych podczas pracy ze szlifierką ręczną z napędem elektrycznym jest kluczowe dla zapewnienia bezpieczeństwa oczu. Prace szlifierskie generują wiele niebezpiecznych odpadów, takich jak pył, iskry oraz drobne cząstki materiału, które mogą łatwo trafić do oczu pracownika. Okulary ochronne są zaprojektowane tak, aby skutecznie chronić przed tymi zagrożeniami. Przykłady zastosowania obejmują zarówno prace w przemyśle, jak i w warsztatach hobbystycznych, gdzie użytkownicy często nie zdają sobie sprawy z ryzyka spowodowanego niewłaściwym zabezpieczeniem oczu. Zgodnie z normą PN-EN 166:2002, która dotyczy środków ochrony indywidualnej oczu, okulary muszą być odpowiednio oznaczone i dopasowane do warunków pracy. Warto zwrócić uwagę na to, aby wybierać modele z odpowiednimi filtrami, które chronią przed promieniowaniem UV, gdyż długotrwałe narażenie na takie promieniowanie może prowadzić do poważnych uszkodzeń wzroku. Bezpieczeństwo powinno być zawsze priorytetem, dlatego noszenie okularów ochronnych jest nie tylko dobrym nawykiem, ale i obowiązkiem.

Pytanie 35

Urządzenia warsztatowe nie obejmują

A. prasy
B. miernika
C. podnośnika hydraulicznego
D. kanału najazdowego
Kanał najazdowy to struktura umożliwiająca wjazd pojazdu na poziom warsztatu, nie jest jednak urządzeniem warsztatowym w sensie stricte. W kontekście standardów branżowych, urządzenia warsztatowe to narzędzia lub maszyny, które służą do wykonania określonych zadań, takich jak naprawa, konserwacja czy montaż. Przykładem takiego urządzenia jest podnośnik hydrauliczny, który pozwala na uniesienie pojazdu w celu przeprowadzenia inspekcji lub naprawy podwozia. Miernik z kolei służy do precyzyjnego pomiaru parametrów technicznych, co również jest kluczowym aspektem w pracach warsztatowych. Prasy, stosowane do formowania lub łączenia materiałów, również zaliczają się do tej grupy, ponieważ umożliwiają realizację specyficznych procesów technologicznych. W praktyce kanał najazdowy współdziała z wymienionymi urządzeniami, ale nie pełni ich funkcji, co czyni go nieklasyfikującym się jako urządzenie warsztatowe.

Pytanie 36

W trakcie okresowych przeglądów technicznych pojazdów analizowany jest stan techniczny

A. komponentów mających znaczenie jedynie dla ekologii
B. komponentów wpływających wyłącznie na bezpieczeństwo
C. wszystkich komponentów pojazdu
D. komponentów wpływających zarówno na bezpieczeństwo, jak i ekologię
Niewłaściwe podejście do oceny stanu technicznego pojazdów ogranicza się jedynie do wybranych aspektów, co w dłuższej perspektywie może prowadzić do poważnych konsekwencji. Odpowiedzi sugerujące, że badania techniczne obejmują tylko zespoły mające wpływ na bezpieczeństwo, lub tylko na ekologię, ignorują złożoność i wzajemne powiązania tych dwóch obszarów. Przykładowo, zaniedbanie aspektów ekologicznych może prowadzić do większych emisji spalin, co ma negatywny wpływ na zdrowie publiczne, a tym samym pośrednio zagraża bezpieczeństwu. Z kolei skupienie się wyłącznie na bezpieczeństwie technicznym bez uwzględnienia norm ekologicznych nie jest zgodne z aktualnymi przepisami i nie spełnia standardów branżowych, takich jak dyrektywy Unii Europejskiej dotyczące ochrony środowiska. W praktyce, bezpieczeństwo i ekologia są ze sobą nierozerwalnie związane, a ich równoczesna ocena jest kluczowa dla prawidłowego funkcjonowania systemu transportowego. Ignorowanie ekologicznych aspektów technicznych pojazdu prowadzi nie tylko do ryzyka dla ludzi, ale również do degradacji środowiska, co jest sprzeczne z zasadami zrównoważonego rozwoju. Dlatego istotne jest, aby podczas badań technicznych uwzględniać zarówno bezpieczeństwo, jak i aspekty ekologiczne, co stanowi fundament odpowiedzialnego użytkowania pojazdów.

Pytanie 37

Wartość luzu zmierzonego w zamku pierścienia tłokowego umieszczonego w cylindrze silnika po naprawie wynosi 0,6 mm. Producent wskazuje, że luz ten powinien mieścić się w zakresie od 0,25 do 0,40 mm. Ustalony wynik wskazuje, że

A. luz jest zbyt mały
B. luz mieści się w podanych zaleceniach
C. luz zamka pierścienia powinien być powiększony
D. luz jest zbyt duży
To, że luz jest za duży, to rzeczywiście dobra ocena. Zmierzony luz 0,6 mm wyraźnie przekracza to, co zaleca producent, który mówi, że powinno być od 0,25 mm do 0,40 mm. Wiesz, że luz w zamku pierścienia tłokowego jest mega ważny dla tego, jak silnik działa? Zbyt duży luz może sprawić, że pierścień się nie osadzi dobrze, co prowadzi do utraty kompresji i do większego zużycia paliwa. No i jeszcze pierścień może się szybciej zużywać. W silnikach spalinowych często korzysta się z różnych metod pomiaru luzu, takich jak feeler gauge, żeby wszystko pasowało idealnie. Różne firmy w branży samochodowej zalecają, żeby regularnie sprawdzać te luzki, żeby silnik działał jak najlepiej i długo. Zbyt duży luz to także wibracje i hałas, co psuje komfort jazdy i może zniszczyć inne elementy silnika. Dlatego przed uruchomieniem silnika trzeba sprawdzić, czy wszystko jest w normie.

Pytanie 38

Podczas instalacji nowej uszczelki pod głowicą, co należy zrobić w pierwszej kolejności?

A. dokręcić śruby głowicy w odpowiedniej sekwencji
B. sprawdzić ustawienie luzów zaworowych
C. dokręcić śruby przy użyciu klucza oczkowego
D. sprawdzić ciśnienie sprężania w cylindrach
Dokręcanie śrub głowicy w odpowiedniej kolejności jest kluczowym krokiem w montażu nowej uszczelki pod głowicą. Proces ten ma na celu zapewnienie równomiernego rozkładu sił na uszczelce, co w konsekwencji zapobiega jej nieszczelności i umożliwia prawidłowe działanie silnika. Dobre praktyki wskazują na zastosowanie sekwencji dokręcania, która zazwyczaj zaczyna się od śrub centralnych i przechodzi w stronę zewnętrznych, co pozwala na stopniowe i kontrolowane napięcie. Właściwe dokręcenie śrub zgodnie z zaleceniami producenta, które często są podane w dokumentacji technicznej lub książkach serwisowych, jest niezbędne dla zachowania integralności silnika. Niewłaściwe dokręcenie może prowadzić do przemieszczenia głowicy, co w efekcie skutkuje uszkodzeniem uszczelki, a nawet całej jednostki napędowej. Dlatego też przed przystąpieniem do dokręcania konieczne jest dokładne zapoznanie się z instrukcjami i użycie odpowiedniego klucza dynamometrycznego, aby stosować właściwy moment obrotowy. Przykładem może być dokręcanie głowicy w silnikach typu DOHC, gdzie precyzyjne napięcie jest kluczowe dla utrzymania właściwego ciśnienia sprężania.

Pytanie 39

Częścią układu hamulcowego nie jest

A. korektor siły hamowania
B. wysprzęglik
C. hamulec ręczny
D. pompa ABS
Wysprzęglik nie jest elementem układu hamulcowego, ponieważ jego główną funkcją jest wspomaganie działania sprzęgła w pojazdach mechanicznych. To urządzenie, znane również jako wysprzęglik hydrauliczny, odpowiada za odłączenie napędu silnika od skrzyni biegów, umożliwiając płynne zmiany biegów. W kontekście układu hamulcowego, do jego głównych elementów należą m.in. pompa ABS, hamulec ręczny oraz korektor siły hamowania, które wspólnie pracują nad bezpieczeństwem i efektywnością hamowania. Wysprzęglik nie wpływa na proces hamowania, lecz na działanie sprzęgła, co jest kluczowe dla prawidłowego funkcjonowania przekładni w pojazdach. Wiedza o tym, jakie komponenty są odpowiedzialne za dane funkcje w pojeździe, jest istotna dla mechaników i inżynierów, gdyż pozwala na skuteczniejszą diagnostykę oraz serwis pojazdów.

Pytanie 40

Jakiej wielkości nie można określić, korzystając z metody pomiaru bezpośredniego?

A. Średnicy tłoka
B. Grubości pierścienia
C. Średnicy sworznia tłokowego
D. Objętości cylindra
Objętości cylindra nie można zmierzyć metodą pomiaru bezpośredniego, ponieważ wymaga ona zastosowania bardziej skomplikowanych technik obliczeniowych. Objętość cylindryczna zależy od jego wymiarów, takich jak średnica i wysokość, ale sama w sobie nie jest wymiarem, który można bezpośrednio zmierzyć. W praktyce pomiar objętości często przeprowadza się za pomocą metod pośrednich, takich jak wypełnienie cylindra cieczą czy gazem, a następnie obliczenie objętości na podstawie zmierzonych wartości. W branży inżynieryjnej i mechanicznej standardem jest stosowanie równań matematycznych, takich jak V = πr²h, gdzie V to objętość, r to promień podstawy, a h to wysokość. Przykłady zastosowań obejmują projektowanie silników spalinowych, gdzie precyzyjne obliczenia objętości cylindrów są kluczowe dla efektywności silnika oraz jego wydajności.