Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 9 grudnia 2025 10:53
  • Data zakończenia: 9 grudnia 2025 11:13

Egzamin zdany!

Wynik: 25/40 punktów (62,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Aby zrealizować połączenie przewodów z żyłami jednodrutowymi przy użyciu złączki WAGO, co powinno się zastosować?

A. nóż monterski
B. cęgi do zdejmowania izolacji oraz zaciskarkę końcówek
C. cęgi do zdejmowania izolacji oraz wkrętak
D. prasę hydrauliczną
Użycie noża monterskiego do wykonywania połączeń przewodów z żyłami jednodrutowymi za pomocą złączek typu WAGO jest kluczowe, ponieważ nóż ten pozwala na precyzyjne i bezpieczne usunięcie izolacji z końców przewodów. Właściwe zdobędziecie wiedzę na temat długości odizolowanego przewodu, co jest istotne w kontekście połączeń, aby uzyskać pewne i trwałe połączenie. Złącza WAGO są popularne w branży elektrycznej ze względu na łatwość zastosowania oraz dobry kontakt elektryczny, jednak ich skuteczność w dużej mierze zależy od poprawnego przygotowania przewodów. Używając noża monterskiego, należy zachować ostrożność, aby nie uszkodzić samego przewodu, co mogłoby prowadzić do problemów z przewodnictwem prądu. Przykładem praktycznego zastosowania może być montaż instalacji elektrycznych w budynkach mieszkalnych, gdzie złącza WAGO można wykorzystać do łączenia kabli w rozdzielniach. Zgodnie z normami branżowymi, zaleca się również regularne sprawdzanie jakości połączeń, co przyczynia się do zwiększenia bezpieczeństwa i niezawodności instalacji.

Pytanie 2

Jak nazywa się element stosowany w instalacjach mieszkaniowych przedstawiony na rysunku?

Ilustracja do pytania
A. Przekaźnik priorytetowy.
B. Regulator temperatury.
C. Regulator oświetlenia.
D. Przekaźnik bistabilny.
Przekaźnik bistabilny, przedstawiony na rysunku, to element stosowany w instalacjach automatyki i sterowania, który zmienia swój stan na przeciwny po przyłożeniu napięcia i utrzymuje ten stan nawet po zaniku zasilania. Oznaczenie "BIS-403" potwierdza, że jest to rzeczywiście przekaźnik bistabilny. Przekaźniki bistabilne są powszechnie wykorzystywane w systemach oświetleniowych, gdzie można je stosować do sterowania światłem w pomieszczeniach. Dzięki ich właściwościom, mogą być używane do zdalnego włączania i wyłączania urządzeń, co zwiększa efektywność energetyczną i komfort użytkowania. W standardach automatyki budynkowej, takich jak KNX czy LON, przekaźniki bistabilne odgrywają kluczową rolę w inteligentnych systemach zarządzania budynkiem, a ich zastosowanie pozwala na eliminację zbędnych przełączników oraz ułatwienie integracji z innymi elementami systemu.

Pytanie 3

Jaką rolę odgrywa wyzwalacz elektromagnetyczny w wyłączniku nadprądowym?

A. Zatrzymuje łuk elektryczny
B. Rozpoznaje zwarcia
C. Rozpoznaje przeciążenia
D. Napina sprężynę napędu
Wykrywanie przeciążenia przez wyzwalacz elektromagnetyczny w wyłączniku nadprądowym to często mylony temat. Chociaż wyzwalacz elektromagnetyczny jest kluczowym elementem w systemach zabezpieczeń, jego główną funkcją nie jest identyfikacja przeciążenia, lecz detekcja zwarć, które następują przy znacznie większych prądach. Przeciążenie oznacza, że prąd roboczy jest wyższy od nominalnego, ale wciąż niższy od wartości, która spowodowałaby bezpośrednie uszkodzenie obwodu. W takich sytuacjach wyzwalacze termiczne, a nie elektromagnetyczne, są odpowiedzialne za monitorowanie długotrwałego wzrostu temperatury, co związane jest z przeciążeniem. Z kolei gasi łuk elektryczny i naciąga sprężynę napędu to funkcje, które również nie są charakterystyczne dla wyzwalacza elektromagnetycznego. Gasi łuk elektryczny w wyłącznikach nadprądowych jest realizowane zazwyczaj przez specjalne mechanizmy, takie jak komory gaszenia, które mają na celu zminimalizowanie ryzyka powstania łuku podczas rozłączenia obwodu. Naciąganie sprężyny napędu dotyczy mechanizmów działania wyłączników, ale nie jest jednym z zadań wyzwalacza elektromagnetycznego. Stąd wynika, że pomylenie funkcji różnych komponentów wyłącznika nadprądowego może prowadzić do niewłaściwego zrozumienia ich roli w systemach elektrycznych.

Pytanie 4

Jakie urządzenie, oprócz lutownicy, jest kluczowe podczas naprawy przeciętego przewodu LY poprzez połączenie lutowane?

A. Nóż monterski
B. Szczypce boczne
C. Zagniatarka
D. Płaskoszczypce
Obcinaczki boczne, zagniatarka oraz płaskoszczypce to narzędzia, które mają swoje specyficzne zastosowania, ale nie są wystarczające do naprawy przeciętego przewodu poprzez lutowanie. Obcinaczki boczne służą głównie do cięcia przewodów, co jest przydatne w przypadku eliminowania uszkodzonych odcinków, jednak nie pomagają w przygotowaniu końców przewodów do lutowania. Przy lutowaniu konieczne jest, aby końcówki były gładkie i odpowiednio odizolowane, co wymaga użycia innego narzędzia. Z kolei zagniatarka jest narzędziem przeznaczonym do łączenia przewodów poprzez zaciśnięcie końcówek, co nie ma zastosowania w przypadku naprawy poprzez lutowanie. Płaskoszczypce mogą być użyte do trzymania lub formowania przewodów, ale nie są one wystarczające do ich właściwego przygotowania do lutowania. Typowym błędem myślowym jest założenie, że narzędzia wielofunkcyjne mogą zastąpić specjalistyczne narzędzia, takie jak nóż monterski. Każde narzędzie ma swoje ściśle określone zastosowanie i dla uzyskania optymalnych efektów w naprawach elektrycznych kluczowe jest korzystanie z odpowiedniego zestawu narzędzi. W branży, standardy bezpieczeństwa i jakości pracy wymagają, aby korzystać z narzędzi, które są przeznaczone do konkretnych zadań, a nie improwizować z narzędziami, które nie spełniają tej funkcji.

Pytanie 5

Który z urządzeń elektrycznych, zainstalowany w obwodzie systemu zasilania elektrycznego kuchenki trójfazowej, jest w stanie zidentyfikować przerwę w ciągłości przewodów jednej z faz?

A. Stycznik elektromagnetyczny
B. Odgromnik
C. Przekaźnik priorytetowy
D. Czujnik zaniku fazy
Czujnik zaniku fazy to urządzenie, którego głównym zadaniem jest monitorowanie i wykrywanie ewentualnych przerw w zasilaniu w poszczególnych fazach obwodu elektrycznego. W kontekście kuchenek trójfazowych, które wymagają stabilnego zasilania z trzech faz, czujnik ten odgrywa kluczową rolę w zapewnieniu bezpieczeństwa oraz sprawnego funkcjonowania urządzenia. Gdy zachodzi przerwa w jednej z faz, czujnik natychmiast wykrywa ten stan i może zainicjować odpowiednie działania, takie jak odłączenie urządzenia od zasilania, co zapobiega jego uszkodzeniu. Przykładowo, w kuchniach przemysłowych, gdzie kuchenki trójfazowe są wykorzystywane na dużą skalę, zastosowanie czujników zaniku fazy jest standardem, co wpływa na zwiększenie niezawodności i bezpieczeństwa operacji. Zgodnie z normami branżowymi, takie jak PN-EN 61439, zaleca się stosowanie czujników do monitorowania ciągłości zasilania w instalacjach elektrycznych, co w praktyce przekłada się na wyższą efektywność i minimalizację ryzyka awarii.

Pytanie 6

Podczas montażu instalacji elektrycznej w pomieszczeniach wilgotnych, należy zastosować gniazda wtykowe o minimalnym stopniu ochrony

A. IP55
B. IP20
C. IP33
D. IP44
Podczas instalacji elektrycznej w pomieszczeniach wilgotnych niezwykle istotne jest zapewnienie odpowiedniego poziomu ochrony przed wilgocią i kurzem, co jest kluczowe dla bezpieczeństwa użytkowników. Stopień ochrony IP44 wskazuje, że urządzenie jest zabezpieczone przed ciałami obcymi większymi niż 1 mm oraz przed wodą bryzgającą z dowolnego kierunku. Dlatego właśnie IP44 jest minimalnym wymogiem w wilgotnych pomieszczeniach, takich jak łazienki czy kuchnie. W praktyce oznacza to, że gniazda i wtyczki muszą być odpowiednio uszczelnione, aby zapobiec wnikaniu wilgoci, co mogłoby prowadzić do zwarcia i awarii systemu elektrycznego. Zastosowanie IP44 to standard branżowy, który zapewnia bezpieczeństwo użytkowników oraz długotrwałe działanie instalacji elektrycznej. Moim zdaniem, znajomość tych norm to absolutna podstawa dla każdego elektryka, który chce wykonywać swoją pracę zgodnie z obowiązującymi przepisami i zapewnić komfort oraz bezpieczeństwo użytkownikom.

Pytanie 7

Jaki najniższy przekrój może mieć przewód ochronny w instalacji oświetleniowej, gdy jest umieszczony w tej samej osłonie co przewody robocze?

A. 1,5 mm2
B. 10 mm2
C. 4 mm2
D. 2,5 mm2
Minimalny przekrój przewodu ochronnego w obwodzie oświetleniowym, ułożonym we wspólnej osłonie z przewodami roboczymi, wynosi 1,5 mm2. Zgodnie z Polskimi Normami, takimi jak PN-IEC 60364, przewody ochronne muszą być odpowiednio wymiarowane, aby zapewnić skuteczną ochronę przed porażeniem elektrycznym. Przewód ochronny, często oznaczany jako PE (Protective Earth), ma za zadanie odprowadzenie prądu zwarciowego do ziemi w przypadku uszkodzenia izolacji innych przewodów. W praktyce oznacza to, że zastosowanie przewodu o odpowiednim przekroju jest kluczowe dla bezpieczeństwa instalacji. W przypadku oświetlenia, które często jest wykorzystywane w różnych warunkach, zachowanie tych norm jest szczególnie istotne. Warto również zwrócić uwagę, że w przypadku dłuższych odcinków przewodów lub większych obciążeń zaleca się użycie przewodów o większym przekroju, co zwiększa ich zdolność do przewodzenia prądu bez ryzyka przegrzania. Właściwe dobranie przekroju przewodu ochronnego to kluczowy element projektowania bezpiecznej instalacji elektrycznej.

Pytanie 8

Podczas przeprowadzania inspekcji instalacji elektrycznej w budynku mieszkalnym nie jest wymagane sprawdzanie

A. nastaw urządzeń zabezpieczających w instalacji
B. wartości rezystancji izolacji przewodów
C. poprawności działania wyłącznika różnicowoprądowego
D. stanu obudów wszystkich elementów instalacji
Wiesz, wartość rezystancji izolacji przewodów mówi nam, jak dobrze te przewody są izolowane. Fajnie, że znasz tę definicję! Ale w praktyce, w trakcie sprawdzania instalacji elektrycznych w mieszkaniach nie ma wymogu, żeby to sprawdzać. Normy, jak PN-IEC 60364, mówią głównie o bezpieczeństwie użytkowników i tym, żeby instalacja działała jak należy. Gdy przeglądasz instalację, skup się na tym, żeby ocenić stan obudów i elementów zabezpieczających. Te rzeczy są na prawdę ważne. Wyłączniki różnicowoprądowe też warto sprawdzić, bo są kluczowe dla ochrony przed porażeniem elektrycznym. Możesz to zrobić, wciskając przycisk testowy, co jest dość standardowe. Dzięki temu łatwiej zauważysz, czy coś jest nie tak. Taki sposób działania pomaga uniknąć problemów i sprawia, że instalacja będzie bezpieczna i zgodna z normami.

Pytanie 9

Wymagana izolacja przewodów używanych w trójfazowej sieci niskiego napięcia 230/400 V powinna wynosić co najmniej

A. 450/750 V
B. 300/300 V
C. 300/500 V
D. 100/100 V
Izolacja przewodów stosowanych w sieci trójfazowej niskiego napięcia 230/400 V powinna być wykonana na poziomie co najmniej 300/500 V, co jest zgodne z obowiązującymi normami IEC 60227 oraz IEC 60502. Tego rodzaju izolacja zapewnia odpowiednią ochronę przed przebiciem i krótko-terminowymi napięciami, które mogą wystąpić w trakcie normalnej eksploatacji instalacji elektrycznej. Przykładowo, w systemach zasilania budynków komercyjnych, gdzie przewody muszą być odporne na różne warunki otoczenia, zastosowanie przewodów o klasie izolacji 300/500 V jest standardem, który zapewnia długotrwałość oraz bezpieczeństwo użytkowników. Warto również zauważyć, że wyższe klasy izolacji, takie jak 450/750 V, są stosowane w bardziej wymagających aplikacjach, jak instalacje przemysłowe, ale w przypadku typowych instalacji niskonapięciowych, klasa 300/500 V jest wystarczająca i zalecana.

Pytanie 10

Urządzenie pokazane na zdjęciu to

Ilustracja do pytania
A. regulator natężenia oświetlenia.
B. łącznik zmierzchowy.
C. programowalny przełącznik czasowy.
D. regulator fotokomórki.
Łącznik zmierzchowy to urządzenie, które automatycznie aktywuje oświetlenie, gdy poziom naturalnego światła spada poniżej określonego progu. Urządzenie, które widzimy na zdjęciu, ma charakterystyczne oznaczenie "AZH-S" oraz pokrętło z symbolami słońca i księżyca. Te elementy wskazują na jego funkcję detekcji zmierzchu. W praktyce, łącznik zmierzchowy jest powszechnie stosowany w systemach oświetleniowych w budynkach mieszkalnych oraz komercyjnych, umożliwiając automatyczne włączanie lamp w godzinach wieczornych. Dzięki zastosowaniu tego typu urządzenia, można znacznie zwiększyć efektywność energetyczną, ograniczając zużycie energii i jednocześnie poprawiając komfort użytkowników. Dodatkowo, zgodnie z aktualnymi standardami budowlanymi, wprowadzenie automatyzacji w systemach oświetleniowych staje się coraz bardziej popularną praktyką, co wpisuje się w globalne trendy oszczędności energii i zrównoważonego rozwoju.

Pytanie 11

Która z poniższych zasad nie jest zawsze obligatoryjna w trakcie serwisowania i konserwacji instalacji elektrycznych o napięciu do 1 kV?

A. Pod napięciem wolno wymieniać tylko bezpieczniki lub żarówki (świetlówki) w nienaruszonej oprawie
B. Wszelkie prace można wykonywać jedynie w obecności osoby asekurującej
C. Pomiary i próby można realizować bez wyłączania napięcia, o ile zastosuje się odpowiednie środki ochrony
D. Każde prace remontowe powinny być prowadzone po odłączeniu napięcia
Odpowiedzi sugerujące, że prace remontowe należy zawsze wykonywać po wyłączeniu napięcia, że pod napięciem można wymieniać tylko bezpieczniki lub żarówki, czy że wszelkie prace można wykonywać tylko w obecności osoby asekurującej, mogą prowadzić do nieporozumień i błędnych praktyk. Owszem, wyłączenie napięcia jest generalnie najbezpieczniejszym podejściem, jednak w niektórych sytuacjach, takich jak wymiana bezpieczników czy żarówek, przy zachowaniu odpowiednich środków ostrożności, można te prace wykonać pod napięciem. Istnieją normy i przepisy BHP, które określają, kiedy i jak można pracować w warunkach napięcia, a także jakie środki ochrony osobistej należy stosować. Ponadto, nie wszystkie prace wymagają obecności osoby asekurującej, co może spowodować niepotrzebne opóźnienia w realizacji zadań. Kluczowym błędem myślowym w takich podejściach jest założenie, że każda sytuacja jest równoznaczna z wysokim ryzykiem i wymaga nadzoru, co nie zawsze jest prawdą. Zrozumienie kontekstu, w jakim przeprowadzane są prace oraz umiejętność oceny ryzyka to umiejętności, które powinny być rozwijane przez osoby pracujące w branży elektrycznej. Należy również pamiętać, że interpretacja przepisów powinna być dostosowywana do specyficznych warunków pracy oraz typu realizowanej operacji.

Pytanie 12

W instalacji elektrycznej, której schemat przedstawiono na rysunku, po wykonanym montażu włączono pierwszy klawisz łącznika i wszystkie żarówki się tylko żarzyły, natomiast po włączeniu drugiego klawisza, przy włączonym pierwszym, zaświeciły się cztery żarówki. W celu ustalenia przyczyny nieprawidłowego działania instalacji należy sprawdzić poprawność połączeń przewodów do zacisków

Ilustracja do pytania
A. puszki zasilającej.
B. gniazda wtyczkowego.
C. łącznika.
D. żyrandola.
Błędne podejście do analizy problemu może prowadzić do mylnych wniosków i nieefektywnego rozwiązania problemów w instalacji elektrycznej. Wskazanie na łącznik jako źródło problemu z pewnością jest nieprecyzyjne, ponieważ działanie łącznika powinno być zgodne z jego przeznaczeniem, a ewentualne usterki w tym obszarze zazwyczaj objawiają się innym rodzajem awarii, np. brakiem działania całej instalacji. Podobnie, puszka zasilająca czy gniazdo wtyczkowe pełnią kluczowe funkcje w instalacji, ale w omawianym przypadku, ich poprawność działania nie jest wystarczającym wyjaśnieniem. Oparcie się na tych elementach w kontekście problemu nieprawidłowego działania żarówek jest błędne, ponieważ nie uwzględnia specyfiki obwodu, który powinien być analizowany jako całość. Typowym błędem rozumowania jest przenoszenie odpowiedzialności na elementy, które w rzeczywistości nie mają wpływu na zaobserwowane zjawisko. Właściwa diagnoza problemu wymaga szczegółowego zrozumienia interakcji pomiędzy poszczególnymi komponentami instalacji, co w tym przypadku jednoznacznie wskazuje na żyrandol jako miejsce potencjalnych usterek, a nie na elementy zasilające czy łączące.

Pytanie 13

Na rysunku przedstawiono symbol graficzny

Ilustracja do pytania
A. warystora.
B. odgromnika wydmuchowego.
C. iskiernika.
D. odgromnika zaworowego.
Wybory takie jak 'odgromnika wydmuchowego', 'iskiernika' czy 'odgromnika zaworowego' odzwierciedlają typowe nieporozumienia dotyczące rozróżnienia między różnymi elementami ochrony przeciwprzepięciowej. Odgromnik wydmuchowy, choć również pełni funkcję ochronną, różni się zasadniczo od warystora, gdyż ich działanie opiera się na odprowadzaniu energii z piorunów i wyładowań atmosferycznych, a nie na zmieniającej się rezystancji w zależności od napięcia. Iskiernik natomiast to element, który działa poprzez tworzenie łuku elektrycznego i jest używany w sytuacjach wymagających natychmiastowego odprowadzenia wysokich napięć, ale jego symbol graficzny jest odmienny. W przypadku odgromnika zaworowego mamy do czynienia z innym rodzajem technologii, który wykorzystuje różne mechanizmy do ochrony przed przepięciami. Typowe błędy myślowe mogą wynikać z mylenia funkcji i zastosowania tych elementów, co prowadzi do nieporozumień w zakresie ich symboliki. Dla każdego z tych elementów istnieją specyficzne standardy i praktyki, które są kluczowe dla ich poprawnego stosowania w systemach ochrony. Dlatego zrozumienie, które z tych elementów są stosowane w określonych kontekstach jest niezbędne dla zapewnienia odpowiedniego poziomu bezpieczeństwa w instalacjach elektrycznych.

Pytanie 14

W jaki sposób można zweryfikować funkcjonowanie wyłącznika różnicowoprądowego?

A. Tworząc zwarcie w obwodzie zabezpieczonym
B. Zmieniając ustawienie dźwigni "ON-OFF"
C. Naciskając przycisk "TEST"
D. Sprawdzając napięcie oraz prąd wyłącznika
Wyłącznik różnicowoprądowy (RCD) jest kluczowym elementem systemów zabezpieczeń elektrycznych, który chroni przed porażeniem prądem elektrycznym oraz pożarami spowodowanymi prądami upływowymi. Aby sprawdzić jego działanie, należy wcisnąć przycisk 'TEST', co symuluje warunki, w których RCD powinien zareagować na różnicę między prądem wpływającym a wypływającym. Działanie tego przycisku uruchamia mechanizm w RCD, który odłącza zasilanie, jeżeli wykryje jakiekolwiek nieprawidłowości. Zgodnie z normą PN-EN 61008-1, regularne testowanie RCD jest zalecane, co najmniej raz na miesiąc, aby zapewnić ich prawidłowe funkcjonowanie. Przykładem zastosowania takiego testowania może być mieszkanie, w którym w przypadku uszkodzenia izolacji w przewodzie, RCD powinien wyłączyć obwód, zanim doprowadzi to do porażenia prądem. Regularne testowanie RCD, poprzez naciśnięcie przycisku 'TEST', upewnia użytkowników, że ich systemy zabezpieczeń są w pełni sprawne i gotowe do ochrony przed zagrożeniami.

Pytanie 15

Który rodzaj sterowania zapewnia układ silnika przedstawiony na schemacie?

Ilustracja do pytania
A. Hamowanie dynamiczne.
B. Regulację obrotów przez zmianę napięcia twornika.
C. Regulację obrotów przez bocznikowanie uzwojenia wzbudzenia.
D. Hamowanie prądnicowe.
Regulacja obrotów silnika przez zmianę napięcia twornika to jedna z najczęściej stosowanych metod w praktyce inżynieryjnej. Na schemacie widać rezystory R1, R2 i R3, które, działając na zasadzie zmiany rezystancji, wpływają na napięcie na tworniku silnika elektrycznego. Zmniejszając rezystancję, zwiększamy napięcie, co prowadzi do wzrostu prędkości obrotowej silnika, natomiast zwiększając rezystancję, napięcie maleje, co skutkuje spowolnieniem obrotów. Tego rodzaju regulacja znajduje zastosowanie w różnych aplikacjach, takich jak napędy elektryczne w przemyśle, gdzie precyzyjna kontrola prędkości jest kluczowa. Dobre praktyki w tej dziedzinie obejmują zastosowanie kontrolerów napięcia oraz odpowiednich układów zasilających, które zapewniają stabilność i bezpieczeństwo pracy silnika. Dodatkowo, warto zwrócić uwagę na wpływ zmian obciążenia na pracę silnika oraz na konieczność stosowania zabezpieczeń przed przeciążeniem, co jest zgodne z normami IEC dotyczących układów napędowych.

Pytanie 16

Który z wymienionych parametrów można zmierzyć przyrządem przedstawionym na ilustracji?

Ilustracja do pytania
A. Chwilową moc obciążenia.
B. Impedancję pętli zwarcia.
C. Rezystancję izolacji.
D. Prąd upływu.
Rezystancja izolacji jest kluczowym parametrem, który można zmierzyć przy pomocy miernika izolacji, znanego również jako megomierz. Urządzenie to jest wykorzystywane do oceny stanu izolacji elektrycznej w instalacjach i urządzeniach elektrycznych. Pomiar ten jest niezwykle istotny, ponieważ odpowiednia rezystancja izolacji zapewnia bezpieczeństwo użytkowania i zapobiega porażeniom prądem, a także minimalizuje ryzyko awarii. Miernik izolacji generuje wysokie napięcie, które powoduje, że prąd przepływa przez izolację. Na podstawie zmierzonego prądu można obliczyć rezystancję, która jest wyrażana w megaomach (MΩ). W praktyce, normy takie jak PN-EN 61557-2 określają wymagania dotyczące pomiarów rezystancji izolacji. Regularne pomiary rezystancji izolacji są zalecane w ramach działań prewencyjnych, szczególnie w przemyśle, gdzie eksploatacja urządzeń elektrycznych odbywa się w trudnych warunkach. Dbanie o odpowiednie wartości rezystancji izolacyjnej to nie tylko wymóg prawny, ale również dobra praktyka, która przyczynia się do zapewnienia długotrwałej i bezawaryjnej pracy instalacji.

Pytanie 17

Jakiego urządzenia należy użyć, aby zweryfikować ciągłość przewodu podczas instalacji?

A. Megaomomierza
B. Watomierza
C. Amperomierza
D. Omomierza
Omomierz jest instrumentem pomiarowym, który służy do określania oporu elektrycznego w obwodach. Użycie omomierza do sprawdzenia ciągłości przewodów instalacyjnych jest standardową praktyką w branży elektrycznej. Narzędzie to pozwala na ocenę, czy przewody są poprawnie podłączone i czy nie ma w nich przerw, co jest kluczowe dla bezpieczeństwa i efektywności instalacji. Przykładowo, podczas montażu instalacji elektrycznej w budynkach mieszkalnych, omomierz może być użyty do testowania połączeń między różnymi elementami systemu, co zapewnia, że żadne przerwy w przewodzeniu nie zakłócą działania urządzeń. Dobrą praktyką jest również pomiar oporu izolacji, co może zapobiec potencjalnym awariom i zagrożeniom pożarowym. Warto pamiętać, że w przypadku wyniku wskazującego na wysoką wartość oporu, może to oznaczać problem z przewodem, który należy rozwiązać przed zakończeniem instalacji.

Pytanie 18

Symbol graficzny przedstawiony na rysunku oznacza łącznik

Ilustracja do pytania
A. dwubiegunowy.
B. schodowy.
C. hotelowy.
D. świecznikowy.
Odpowiedź schodowy jest poprawna, ponieważ symbol graficzny przedstawiony na rysunku rzeczywiście oznacza łącznik schodowy. Łącznik schodowy jest urządzeniem elektrycznym stosowanym w instalacjach oświetleniowych, które umożliwia kontrolowanie jednego źródła światła z dwóch różnych miejsc, co jest szczególnie przydatne na klatkach schodowych. Przykładowo, w przypadku długich schodów lub korytarzy, możliwe jest umiejscowienie jednego łącznika na dół schodów, a drugiego na górze. Zastosowanie łącznika schodowego przyczynia się do poprawy ergonomii i bezpieczeństwa, eliminując konieczność schodzenia w ciemności. Zgodnie z normą PN-IEC 60669-1, stosowanie łączników schodowych w instalacjach oświetleniowych jest szeroko uznawane jako najlepsza praktyka w celu zwiększenia funkcjonalności i komfortu użytkowania. Warto także zwrócić uwagę, że łączniki schodowe mogą być używane z innymi typami łączników, co umożliwia bardziej złożoną kontrolę oświetlenia w większych przestrzeniach.

Pytanie 19

Który z przedstawionych na rysunkach przewodów należy użyć do montażu obwodów zasilających jednofazowej instalacji elektrycznej w układzie TN-S?

Ilustracja do pytania
A. D.
B. C.
C. A.
D. B.
Odpowiedź C jest poprawna, ponieważ przewód, który przedstawia, spełnia wymogi dotyczące kolorów przewodów w instalacjach elektrycznych w układzie TN-S. Zgodnie z normą PN-HD 308 S2:2009, kolor brązowy jest przeznaczony dla przewodów fazowych (L), kolor niebieski dla przewodów neutralnych (N), a kolor żółto-zielony dla przewodów ochronnych (PE). Przewody te są stosowane w systemach zasilania jednofazowego, co jest istotne dla zapewnienia bezpieczeństwa użytkowania i poprawności działania instalacji. W kontekście praktycznym, użycie przewodu zgodnego z tymi normami pozwala na uniknięcie błędów przy podłączaniu urządzeń elektrycznych, co może prowadzić do uszkodzeń sprzętu lub zagrożenia dla życia i zdrowia użytkowników. W przemyśle elektrycznym znajomość i stosowanie tych standardów jest kluczowe dla zapewnienia zgodności z przepisami oraz dla bezpieczeństwa instalacji.

Pytanie 20

Które oznaczenie literowe ma przewód o przekroju przedstawionym na rysunku?

Ilustracja do pytania
A. DY
B. LgY
C. YDYp
D. YDY
Odpowiedź YDY jest poprawna, ponieważ oznaczenie to dotyczy przewodów miedzianych, które są izolowane polwinitiem i posiadają ekran zewnętrzny. Przewody te znajdują zastosowanie w instalacjach elektrycznych, gdzie wymagane jest zabezpieczenie przed zakłóceniami elektromagnetycznymi oraz ochrona przed wpływem warunków atmosferycznych. W praktyce, przewody YDY są często stosowane w budynkach mieszkalnych i użyteczności publicznej do zasilania urządzeń elektrycznych, a także w obiektach przemysłowych. Dzięki zastosowaniu ekranu, przewody te charakteryzują się wysoką odpornością na zakłócenia, co jest kluczowe dla utrzymania stabilności i jakości sygnałów. Oznaczenie to jest zgodne z normami PN-EN 50525-2-51, które określają wymagania dla przewodów w instalacjach niskiego napięcia. Znajomość tych oznaczeń jest niezbędna dla każdej osoby zajmującej się projektowaniem lub wykonawstwem instalacji elektrycznych.

Pytanie 21

Podczas sprawdzania samoczynnego wyłączenia zasilania jako metody ochrony przeciwporażeniowej w sieciach TN-S, realizowanego poprzez nadprądowy wyłącznik instalacyjny, oprócz pomiaru impedancji pętli zwarcia, należy dla danego wyłącznika ustalić

A. próg zadziałania wyzwalacza przeciążeniowego
B. czas zadziałania wyzwalacza zwarciowego
C. wartość prądu wyłączającego
D. zwarciową zdolność łączeniową
Wybór niewłaściwej odpowiedzi może prowadzić do błędnych wniosków dotyczących istoty samoczynnego wyłączenia zasilania w systemach TN-S. Na przykład, określenie zwarciowej zdolności łączeniowej jest ważne, jednak nie jest to parametr, który bezpośrednio wpływa na działanie wyłącznika w kontekście jego reakcji na prąd wyłączający. Zwarciowa zdolność łączeniowa odnosi się do maksymalnego prądu zwarciowego, który dany wyłącznik jest w stanie bezpiecznie przerwać, co jest kluczowe dla bezpieczeństwa instalacji, ale nie ma bezpośredniego związku z szybkością zadziałania na prąd wyłączający. Podobnie, próg zadziałania wyzwalacza przeciążeniowego dotyczy innego aspektu ochrony i nie odnosi się do wyłączenia w przypadku porażenia prądem. Czas zadziałania wyzwalacza zwarciowego również jest istotny, ale to wartość prądu wyłączającego decyduje o tym, czy wyłącznik zadziała w odpowiednim czasie, aby chronić użytkowników przed skutkami porażenia. Niezrozumienie różnicy pomiędzy tymi parametrami może prowadzić do niewłaściwego doboru wyłączników oraz ryzyka nieodpowiedniej ochrony w instalacjach elektrycznych. Kluczowe jest, aby zrozumieć, że wartość prądu wyłączającego musi być dostosowana do specyfikacji danego obwodu oraz wymagań ochrony przeciwporażeniowej, co jest fundamentem bezpieczeństwa w instalacjach elektrycznych.

Pytanie 22

Jaka jest maksymalna wartość napięcia dotykowego bezpiecznego dla człowieka przy normalnych warunkach eksploatacji?

A. 100 V
B. 230 V
C. 12 V
D. 50 V
Napięcie dotykowe bezpieczne dla człowieka przy normalnych warunkach eksploatacji wynosi 50 V. To stwierdzenie opiera się na normach elektrycznych, takich jak PN-EN 61140, które definiują granice bezpieczeństwa w kontekście ochrony przed porażeniem prądem elektrycznym. Powyżej tej wartości istnieje znaczne ryzyko wystąpienia niebezpiecznych sytuacji zdrowotnych, w tym migotania komór serca. W praktyce, przestrzeganie tego limitu jest kluczowe w projektowaniu i eksploatacji instalacji elektrycznych, aby zapewnić ochronę użytkowników. Przykładem mogą być instalacje niskonapięciowe, które są szeroko stosowane w budynkach mieszkalnych oraz przemysłowych, gdzie zachowanie tego limitu jest absolutnie konieczne. Dodatkowo, stosowanie odpowiednich środków ochrony, takich jak izolacja i uziemienie, pomaga w utrzymaniu bezpieczeństwa elektrycznego. Z mojego doświadczenia, wiedza o tych wartościach jest podstawą dla każdego fachowca zajmującego się instalacjami elektrycznymi i warto ją mieć na uwadze, szczególnie podczas inspekcji i konserwacji.

Pytanie 23

Który rodzaj przewodu przedstawiono na rysunku?

Ilustracja do pytania
A. Wielożyłowy uzbrojony.
B. Wielodrutowy nieuzbrojony.
C. Jednodrutowy nieuzbrojony.
D. Jednożyłowy uzbrojony.
Wybór niepoprawnej odpowiedzi może wynikać z nieporozumienia w interpretacji konstrukcji przewodów elektrycznych. Odpowiedź "Jednożyłowy uzbrojony" sugeruje, że przewód składa się z jednej, grubej żyły otoczonej metalowym pancerzem. Przewody jednożyłowe są często używane w instalacjach, gdzie wymagana jest wysoka odporność na mechaniczne uszkodzenia, jednak w przypadku przedstawionego rysunku nie ma żadnych oznak uzbrojenia. To prowadzi do kolejnego błędnego wniosku, który wskazuje na "Wielożyłowy uzbrojony". Takie przewody posiadają wiele żył, ale ich konstrukcja wskazuje na obecność zabezpieczeń mechanicznych, co nie ma miejsca w analizowanym przypadku. Z kolei "Jednodrutowy nieuzbrojony" nie odzwierciedla budowy przewodu, ponieważ sugeruje, że przewód składa się z jednego drutu, co jest sprzeczne z widocznym przekrojem. W praktyce, przewody uzbrojone często stosowane są w miejscach, gdzie mogą być narażone na uszkodzenia, co również wyklucza ich obecność w tym przypadku. Kluczowym aspektem w rozróżnieniu tych przewodów jest znajomość ich struktury i przeznaczenia, co jest niezbędne do prawidłowego wyboru materiałów w instalacjach elektrycznych, aby zapewnić bezpieczeństwo oraz efektywność energetyczną. Zrozumienie różnicy między różnymi typami przewodów pomoże uniknąć poważnych błędów w projektach elektrycznych.

Pytanie 24

W układzie przedstawionym na rysunku zmierzono rezystancję pomiędzy poszczególnymi żyłami kabla, otrzymując następujące wyniki: RA-B = 0; RB-C = ∞; RC-D = ∞; RD-A= 0. Z wyników pomiarów wynika, że przerwana jest

Ilustracja do pytania
A. żyła B
B. żyła A
C. żyła D
D. żyła C
Odpowiedź dotycząca żyły C jako przerwanej jest prawidłowa z powodu wyników pomiarów rezystancji, które wskazują na istotną przerwę w obwodzie. Rezystancje R_A-B i R_D-A wynoszą 0, co oznacza, że obydwie żyły są w pełni przewodzące, co jest zgodne z teorią obwodów elektrycznych. Z kolei nieskończona rezystancja pomiędzy żyłami B-C i C-D sugeruje, że prąd nie ma możliwości przemieszczenia się przez te żyły, co jest klasycznym objawem uszkodzenia. W praktyce, identyfikacja przerwy w obwodzie jest kluczowa dla diagnostyki systemów elektrycznych, zwłaszcza w instalacjach przemysłowych. Przykład zastosowania tej wiedzy można znaleźć w systemach monitorujących, które regularnie sprawdzają integralność obwodów, co przyczynia się do minimalizacji ryzyka awarii. W kontekście norm, stosuje się procedury testowania rezystancji zgodnie z normami IEC 60364, co pozwala na systematyczne podejście do diagnozowania i utrzymania instalacji elektrycznych.

Pytanie 25

Który układ połączeń watomierza jest zgodny ze schematem pomiarowym pokazanym na rysunku?

Ilustracja do pytania
A. C.
B. D.
C. B.
D. A.
Wybór innej opcji niż C wynika z nieporozumienia dotyczącego zasad prawidłowego pomiaru mocy czynnej przy użyciu watomierza. W wielu przypadkach, osoby uczące się mylnie zakładają, że cewka prądowa powinna być połączona równolegle z obciążeniem, co jest błędne. Równoległe połączenie cewki prądowej wprowadzałoby do pomiaru dodatkowe zmiany, prowadząc do błędnych wyników. Cewka prądowa ma za zadanie mierzyć prąd płynący przez obciążenie, a jej poprawne połączenie szeregowe zapewnia, że cały prąd, który jest mierzony przez watomierz, jest tym, który rzeczywiście przepływa przez obciążenie. Ponadto, błędne połączenie cewki napięciowej również wprowadzałoby istotne zniekształcenia w pomiarze, ponieważ nie mierzyłaby ona napięcia na obciążeniu, co jest kluczowe dla obliczenia mocy czynnej. W praktyce, każdy z tych błędów może prowadzić do nieprawidłowych obliczeń i nieefektywnego zarządzania energią elektryczną. Zrozumienie podstawowych zasad związanych z pomiarem mocy czynnej oraz zastosowanie ich w praktyce jest kluczowe dla uzyskania dokładnych wyników oraz zapewnienia odpowiedniego zarządzania systemami elektrycznymi.

Pytanie 26

Minimalna akceptowalna wartość rezystancji izolacji dla przewodów instalacji przeznaczonej na napięcie znamionowe nieprzekraczające 500 V, w tym FELV, wynosi

A. 1,0 MΩ
B. 0,5 MΩ
C. 1,5 MΩ
D. 2,0 MΩ
Wybór wartości 1,5 MΩ, 0,5 MΩ lub 2,0 MΩ jako minimalnej rezystancji izolacji dla instalacji elektrycznych do 500 V jest wynikiem nieporozumień dotyczących standardów bezpieczeństwa i wymagań technicznych. Wartość 1,5 MΩ może wydawać się odpowiednia w kontekście innych zastosowań, jednak nie spełnia podstawowych norm dla instalacji na napięcie do 500 V, które wyraźnie określają minimalną wartość na poziomie 1,0 MΩ. Z kolei wartość 0,5 MΩ jest całkowicie niewystarczająca i stwarza poważne ryzyko dla bezpieczeństwa, ponieważ nie zapewnia odpowiedniej ochrony przed przebiciem i porażeniem prądem. Natomiast 2,0 MΩ, choć wydaje się być odpowiednio wysoka, nie jest zakładanym minimum, co może prowadzić do nadmiernych kosztów w kontekście wymogów projektowych, gdzie nie zawsze jest konieczne stosowanie tak wysokiej wartości. W praktyce rzeczywiste wymagania powinny być dostosowane do specyfiki instalacji oraz jej przeznaczenia, jednak zawsze z poszanowaniem ustalonych norm i standardów. Błędem jest zatem myślenie, że wartości wyższe niż wymagane są zawsze korzystne; kluczowe jest przestrzeganie ściśle określonych norm, które zostały opracowane w celu ochrony bezpieczeństwa ludzi i mienia.

Pytanie 27

Na ilustracji przedstawiono schemat do pomiaru rezystancji

Ilustracja do pytania
A. izolacji pomiędzy zaciskami uzwojeń silnika.
B. pętli zwarciowej.
C. izolacji pomiędzy zaciskami uzwojeń a korpusem silnika.
D. uzwojenia fazowego.
Pomiar rezystancji izolacji jest kluczowym zagadnieniem w diagnostyce silników elektrycznych, dlatego błędne podejścia do tego tematu mogą prowadzić do poważnych konsekwencji. Udzielenie odpowiedzi dotyczącej uzwojeń fazowego lub izolacji pomiędzy zaciskami uzwojeń a korpusem silnika wskazuje na niezrozumienie podstawowych zasad stosowanych w pomiarach elektrycznych. Uzwojenia fazowe są elementem, który nie powinien być bezpośrednio analizowany w kontekście izolacji, ponieważ ich pomiar odnosi się bardziej do stanu pracy silnika, a nie do izolacji. Izolacja pomiędzy zaciskami uzwojeń a korpusem silnika, chociaż istotna, nie jest punktem odniesienia przy tak skonstruowanym pomiarze, ponieważ skupia się na wykryciu problemów wewnętrznych, które mogą nie manifestować się w takim pomiarze. Inną niewłaściwą koncepcją jest pomiar pętli zwarciowej, który jest zupełnie innym procesem, wymagającym innej konfiguracji oraz celów, zazwyczaj związanych z bezpieczeństwem systemów elektrycznych. W praktyce, pomiar rezystancji izolacji powinien być wykonywany z użyciem odpowiednich przyrządów, które są zaprojektowane do tego celu, aby uniknąć błędów pomiarowych i zapewnić rzetelność wyników. Ignorowanie tych zasad prowadzi do nieprawidłowych wniosków i potencjalnych zagrożeń związanych z bezpieczeństwem urządzenia.

Pytanie 28

Jaką minimalną wartość powinno mieć napięcie probiercze miernika używanego do pomiaru rezystancji izolacji w instalacji elektrycznej pracującej pod napięciem 230/400 V?

A. 500 V
B. 1 000 V
C. 2 500 V
D. 250 V
Minimalna wartość napięcia probierczego miernika używanego do pomiaru rezystancji izolacji w instalacjach elektrycznych o napięciu 230/400 V powinna wynosić 500 V. Taka wartość jest zgodna z międzynarodowymi standardami, takimi jak IEC 61557, które określają wymagania dotyczące pomiaru rezystancji izolacji. Przy napięciu probierczym wynoszącym 500 V, można skutecznie ocenić stan izolacji przewodów oraz innych elementów instalacji, co jest kluczowe dla zapewnienia bezpieczeństwa użytkowników. Pomiar przy tym napięciu pozwala na wykrycie potencjalnych uszkodzeń izolacji, które mogą prowadzić do zwarć czy porażenia prądem. W praktyce, testowanie izolacji w instalacjach elektrycznych wykonywane jest regularnie, szczególnie przed oddaniem do użytkowania nowych instalacji oraz podczas przeglądów okresowych. Użycie napięcia 500 V zapewnia odpowiednią reprezentatywność stanu izolacji, co jest istotne dla dalszej eksploatacji i bezpieczeństwa całej instalacji elektrycznej.

Pytanie 29

Jaka maksymalna wartość impedancji pętli zwarcia jest dopuszczalna w trójfazowym obwodzie elektrycznym o napięciu nominalnym 230/400 V, aby zapewnić skuteczną ochronę przed porażeniem w przypadku uszkodzenia izolacji, jeżeli wiadomo, że zasilanie tego obwodu ma odłączyć instalacyjny wyłącznik nadprądowy B20?

A. 2,3 Ω
B. 6,6 Ω
C. 4,0 Ω
D. 3,8 Ω
Odpowiedź 2,3 Ω jest prawidłowa, ponieważ w trójfazowym obwodzie elektrycznym o napięciu 230/400 V ochrona przeciwporażeniowa polega na szybkim wyłączeniu zasilania w przypadku uszkodzenia izolacji. Zgodnie z normą PN-EN 61140, maksymalna wartość impedancji pętli zwarcia, przy której może działać wyłącznik nadprądowy B20, wynosi 2,3 Ω. Wyłącznik B20 w typowych zastosowaniach ma czas zadziałania do 0,4 sekundy w przypadku zwarcia doziemnego, co oznacza, że impedancja pętli zwarcia nie powinna przekraczać tej wartości, aby zapewnić wystarczająco szybkie wyłączenie zasilania. W praktyce, aby system ochrony był skuteczny, wartość ta jest kluczowa, gdyż wpływa na bezpieczeństwo osób oraz urządzeń. Przykładowo, w instalacjach budowlanych i przemysłowych, pomiar impedancji pętli zwarcia powinien być regularnie wykonywany, aby upewnić się, że nie przekracza dopuszczalnych norm, co pomoże uniknąć niebezpiecznych sytuacji związanych z porażeniem prądem. Dodatkowo, przestrzeganie norm i wytycznych ochrony przeciwporażeniowej jest niezbędne do zapewnienia bezpieczeństwa użytkowników systemów elektrycznych.

Pytanie 30

Którego z narzędzi należy użyć do wkręcenia przedstawionego elementu w nagwintowany otwór?

Ilustracja do pytania
A. Wkrętaka krzyżowego.
B. Klucza ampulowego.
C. Wkrętaka typu torks.
D. Klucza nasadowego.
Wybór narzędzia do wkręcania elementów w nagwintowane otwory jest kluczowy dla efektywności oraz bezpieczeństwa pracy. Użycie wkrętaka typu torks mogłoby wydawać się logiczne, jednak ostatecznie jest to niewłaściwe podejście, ponieważ wkrętak torks jest przeznaczony do obsługi wkrętów z łbami torx, które mają zupełnie inny kształt. Niepoprawne pomylenie wkrętaka torks z kluczem ampulowym może prowadzić do uszkodzenia łba śruby, co z kolei uniemożliwi dalsze wkręcanie. Klucz nasadowy to kolejne narzędzie, które w tym przypadku nie sprawdzi się, ponieważ jest on przeznaczony do pracy z śrubami i nakrętkami o łbach sześciokątnych lub kwadratowych, a nie z łbami sześciokątnymi wewnętrznymi. Użycie klucza nasadowego do śrub z gwintem wewnętrznym może skutkować zbyt luźnym dopasowaniem i poślizgiem narzędzia, co zwiększa ryzyko uszkodzenia zarówno narzędzia, jak i śruby. Ponadto, wkrętak krzyżowy również nie jest odpowiednim wyborem, gdyż jest on zaprojektowany do pracy z wkrętami o łbach krzyżowych, co uniemożliwia wkręcanie śrub z łbem sześciokątnym wewnętrznym. Klucz ampulowy to jedyne narzędzie, które zapewnia odpowiednie dopasowanie, skuteczność i bezpieczeństwo, co jest niezbędne w każdym działaniu związanym z montażem lub demontażem elementów mechanicznych.

Pytanie 31

Jaką wartość bezwzględną ma błąd pomiaru natężenia prądu, jeżeli multimetr pokazał wynik 35,00 mA, a producent określił dokładność urządzenia dla używanego zakresu pomiarowego jako ±(1 % +2) cyfry?

A. ±2,35 mA
B. ±0,02 mA
C. ±0,37 mA
D. ±0,35 mA
Aby obliczyć bezwzględną wartość błędu pomiaru natężenia prądu, musimy wziąć pod uwagę zarówno procentową dokładność, jak i dodatkowe cyferki. W naszym przypadku multimetr wyświetlił rezultat 35,00 mA, a dokładność producenta została określona jako ±(1 % +2). Rozpoczynamy od obliczenia 1 % z 35,00 mA, co daje 0,35 mA. Następnie dodajemy stałą wartość 2 jednostek, co w przypadku mA odpowiada 2 mA. Sumując te wartości, uzyskujemy 0,35 mA + 2 mA = 2,35 mA, co wskazuje, że przy takiej dokładności błąd może być dość istotny. Jednak dla pomiarów w praktyce do obliczeń najczęściej stosuje się wartości w granicach typowych pomiarów. Wartość ±0,37 mA, która została uznana za poprawną, uwzględnia precyzyjne zaokrąglenie i daje bardziej realistyczny obraz błędu, gdyż błąd nie powinien przekraczać jednostek pomiarowych, co w praktyce oznacza, że nawet niewielkie różnice mogą wpływać na dalsze analizy. Tego rodzaju wiedza jest kluczowa w wielu dziedzinach, zwłaszcza w inżynierii i elektrotechnice, gdzie precyzyjne pomiary są niezbędne do prawidłowego funkcjonowania systemów elektrycznych i elektronicznych.

Pytanie 32

Na którym rysunku przedstawiono schemat montażowy zgodny z przedstawionym planem instalacji?

Ilustracja do pytania
A. B.
B. D.
C. A.
D. C.
Wybór odpowiedzi, która nie jest zgodna z planem instalacji, może wynikać z kilku błędnych założeń dotyczących montażu i podłączenia instalacji elektrycznych. Wiele osób myli pojęcia dotyczące przewodów PE, N i L, co prowadzi do nieprawidłowych wniosków. Przykładowo, w niepoprawnych schematach może występować niewłaściwe połączenie przewodu neutralnego z fazowym, co stwarza ryzyko zwarcia oraz uszkodzenia urządzeń elektrycznych. Często spotykaną pomyłką jest również brak odpowiedniego uziemienia, które jest kluczowe dla bezpieczeństwa. Bezpośrednie połączenie przewodów do gniazda wtyczkowego bez uwzględnienia zasadności ich rozmieszczenia może prowadzić do nieefektywności pracy urządzeń oraz zwiększonego ryzyka porażenia prądem. Ważne jest, aby pamiętać, że każdy element instalacji musi być zgodny z odpowiednimi normami, takimi jak normy PN-EN 60364, które precyzują zasady projektowania oraz montażu. Wiedza na temat symboliki i oznaczeń w schematach montażowych jest kluczowa dla zrozumienia, jak prawidłowo zrealizować instalację. Pomocne może być również zapoznanie się z wytycznymi dotyczącymi bezpieczeństwa, które podkreślają znaczenie zachowania odpowiednich odstępów pomiędzy przewodami, aby uniknąć zakłóceń oraz potencjalnych zagrożeń.

Pytanie 33

W jakim z podanych typów źródeł światła wykorzystuje się zapłonnik?

A. Świetlówka tradycyjna
B. Lampa sodowa
C. Lampa rtęciowa
D. Żarówka halogenowa
Wybór lampy sodowej, rtęciowej czy żarówki halogenowej jako źródła światła, w którym stosuje się zapłonnik, jest nieprawidłowy z powodu różnic w technologii i zasadzie działania tych lamp. Lampy sodowe wykorzystują zjawisko emisji światła poprzez naładowany gaz sodowy, jednak nie potrzebują zapłonnika, gdyż zamiast tego działają na zasadzie bezpośredniego przepływu prądu. Ponadto, lampy rtęciowe również nie wymagają zapłonnika w tradycyjnym sensie, ponieważ ich uruchomienie odbywa się poprzez elektryczne rozładowanie w gazie rtęciowym, co jest realizowane przez układ zapłonowy zintegrowany z balastem. Żarówki halogenowe, z kolei, są konstrukcją opartą na technologii żarowej, w której nie stosuje się zapłonników; zamiast tego, działają na zasadzie podgrzewania włókna wolframowego do wysokiej temperatury, co generuje światło. Zrozumienie różnic między tymi technologiami jest kluczowe, ponieważ prowadzi do lepszego doboru źródeł światła w zależności od zastosowania. Ignorowanie tych różnic może skutkować nieefektywnym działaniem systemów oświetleniowych i wyższymi kosztami eksploatacyjnymi. W praktyce, kluczowe jest stosowanie odpowiednich rozwiązań technologicznych w zależności od potrzeb i charakterystyki danego środowiska oświetleniowego.

Pytanie 34

W celu sprawdzenia poprawności wykonania fragmentu instalacji oświetleniowej, przystosowanej do zasilania napięciem 230 V, zwarto łączniki P1 i P2 i zmierzono rezystancję obwodu. Schemat instalacji wraz z włączonym omomierzem pokazano na rysunku.

Ilustracja do pytania
A. w obwodzie zastosowano żarówki o napięciu znamionowym U = 24 V.
B. nieprawidłowo odczytano wynik pomiaru.
C. w obwodzie wykonano dodatkowe połączenia nieuwzględnione na schemacie.
D. obwód połączony jest prawidłowo.
Obwód został połączony tak, jak należy, co można łatwo zauważyć, analizując schemat instalacji oświetleniowej. Z mojego doświadczenia wynika, że każda żarówka powinna działać niezależnie, dlatego stosujemy połączenia równoległe. Dzięki temu, jak jedna żarówka padnie, reszta nadal świeci. Gdy łączniki P1 i P2 są zwarte, obwód zamyka się, co pozwala na mierzenie rezystancji. W domowych instalacjach standardowe napięcie to 230 V, i to jest całkiem zgodne z normami. Dobrze jest też regularnie sprawdzać instalację, żeby wyłapać ewentualne błędy wcześniej. A przy pomiarach rezystancji, pamiętaj, że wyniki zależą od tego, jakie elementy zastosowano i jak są one połączone, co w tym przypadku masz na właściwym poziomie.

Pytanie 35

Na podstawie wyników pomiarów rezystancji w przewodzie elektrycznym przedstawionym na ilustracji można stwierdzić, że żyły

Pomiar pomiędzy końcami żyłRezystancja w Ω
L1.1 – L1.20
L2.1 – L2.20
L3.1 – L3.2
N.1 – N.20
PE.1 – PE.20
L1.1 – L2.1
L1.1 – L3.1
L1.1 – N.1
L1.1 – PE.1
N.1 – PE.10
N.1 – L2.1
N.1 – L3.1
Ilustracja do pytania
A. N i L3 są zwarte oraz PE jest przerwana.
B. L1 i L2 są zwarte.
C. L1 i L2 są przerwane.
D. N i PE są zwarte oraz L3 jest przerwana.
Analizując inne odpowiedzi, można zauważyć, że stwierdzenie, iż żyły N i L3 są zwarte, bazuje na błędnym rozumieniu pomiarów rezystancji. W przypadku, gdy L3 byłaby rzeczywiście zwarte, rezystancja między N a L3 musiałaby wynosić 0 Ω. Kolejne podejście, które sugeruje, że L1 i L2 są przerwane, pomija kluczową informację, że ich rezystancja również wynosi 0 Ω, co oznacza, że są sprawne. Warto zwrócić uwagę na to, że mylenie pojęć związanych z pomiarami rezystancji prowadzi do fałszywych wniosków. Rezystancja nieskończona, jak w przypadku L3, nie może być interpretowana jako stan zwarty. Ostatecznie, błędne odpowiedzi pokazują, że zrozumienie, jak powinny działać różne żyły w instalacji elektrycznej, jest niezbędne dla prawidłowego diagnozowania problemów. Kluczowym aspektem jest znajomość funkcji żył neutralnych, ochronnych oraz fazowych w instalacji, co jest fundamentem dla zapewnienia bezpieczeństwa oraz efektywności systemów elektrycznych.

Pytanie 36

Rysunek przedstawia sposób zainstalowania urządzenia ochronnego różnicowoprądowego w sieci typu

Ilustracja do pytania
A. TT
B. IT
C. TN-S
D. TN-C-S
Wybór odpowiedzi spośród pozostałych typów sieci może prowadzić do nieporozumień związanych z zasadami ich działania. Sieci TN-S charakteryzują się tym, że przewód neutralny i przewód ochronny są oddzielone, co jest zupełnie inną koncepcją niż izolacja stosowana w sieciach IT. Użytkownicy mogą błędnie myśleć, że w sieci TN-S urządzenia różnicowoprądowe są tak samo efektywne jak w IT, jednak w przypadku awarii izolacji, prąd upływowy w sieci TN-S może spowodować poważniejsze konsekwencje. Podobnie sieci TN-C-S, które łączą funkcję przewodów neutralnych i ochronnych, są bardziej narażone na zjawiska związane z prądami upływowymi, co stawia pod znakiem zapytania ich bezpieczeństwo. Z kolei w sieciach TT, gdzie przewód neutralny i ochronny są oddzielne, istnieje większe ryzyko wystąpienia różnicy potencjałów między ziemią a neutralnym przewodem, co może prowadzić do niebezpiecznych sytuacji. Błędem jest zakładanie, że wszystkie te systemy zapewniają taki sam poziom ochrony jak sieci IT; każdy typ ma swoje unikalne właściwości i zastosowania, które powinny być starannie rozważane w kontekście wymagań bezpieczeństwa. W przypadku sieci IT, kluczowe jest zrozumienie ich struktury oraz właściwego zastosowania, aby uniknąć niebezpieczeństw związanych z awariami. Warto również zaznaczyć, że w sieciach TN i TT instalacje różnicowoprądowe są często mniej skuteczne w detekcji uszkodzeń, co może prowadzić do większych zagrożeń dla użytkowników i urządzeń.

Pytanie 37

Jaką rolę odgrywa uzwojenie biegunów komutacyjnych w urządzeniach prądu stałego?

A. Kompensuje SEM samoindukcji, co eliminuje iskrzenie na szczotkach
B. Tworzy nieruchome, stałe pole magnetyczne
C. Redukuje hałas podczas eksploatacji
D. Generuje moment magnetyczny o stałym kierunku
Uzwojenie biegunów komutacyjnych w maszynach prądu stałego pełni kluczową rolę w kompensacji siły elektromotorycznej (SEM) samoindukcji, co jest istotne dla prawidłowego funkcjonowania silników. W trakcie pracy silnika, gdy zmienia się kierunek prądu, powstaje SEM samoindukcji, która może prowadzić do iskrzenia na szczotkach. Uzwojenie biegunów komutacyjnych, poprzez odpowiednie wytwarzanie pola magnetycznego, pomaga zminimalizować to zjawisko, co przekłada się na dłuższą żywotność szczotek oraz zmniejszenie strat energetycznych. Przykładem zastosowania tej zasady jest wykorzystanie silników prądu stałego w aplikacjach, gdzie wymagana jest duża niezawodność, jak w napędach elektrycznych tramwajów czy w robotyce. Dobre praktyki w projektowaniu maszyn prądu stałego uwzględniają parametry uzwojenia komutacyjnego, co umożliwia uzyskanie optymalnej charakterystyki pracy silnika oraz minimalizację zakłóceń.

Pytanie 38

Do której czynności należy użyć narzędzie przedstawione na rysunku?

Ilustracja do pytania
A. Zaciskania końcówek tulejkowych.
B. Zaciskania końcówek oczkowych.
C. Docinania przewodu.
D. Ściągania izolacji z przewodu.
Narzędzie przedstawione na zdjęciu to szczypce do ściągania izolacji, które są kluczowe w procesie przygotowywania przewodów elektrycznych do dalszego wykorzystania. Ich głównym przeznaczeniem jest usunięcie izolacyjnej warstwy zewnętrznej z przewodów, co umożliwia ich prawidłowe podłączenie do gniazd, wtyczek lub innych elementów instalacji elektrycznej. Użycie tych szczypiec zapewnia dokładność oraz minimalizuje ryzyko uszkodzenia samego przewodu, co jest szczególnie ważne w kontekście standardów bezpieczeństwa przy instalacjach elektrycznych. Przykładem praktycznego zastosowania jest przygotowanie przewodów do montażu gniazdka elektrycznego, gdzie odpowiednie ściągnięcie izolacji jest niezbędne do zapewnienia solidnych połączeń elektrycznych. Dobrze wykonane połączenie nie tylko zwiększa efektywność przesyłu energii, ale również zmniejsza ryzyko wystąpienia awarii czy zwarć. W branży elektrycznej, przestrzeganie dobrych praktyk przy używaniu tego rodzaju narzędzi jest kluczowe dla zapewnienia bezpieczeństwa i niezawodności instalacji.

Pytanie 39

Na podstawie charakterystyki przedstawionej na rysunku określ przedział czasu, w którym może, lecz nie musi nastąpić zadziałanie wyzwalacza termobimetalowego wyłącznika S301 B10 1P 6 kA, przy przepływie przez niego prądu o wartości 25 A.

Ilustracja do pytania
A. 0,06 s ÷ 0,017 s
B. 60 s ÷ 10 000 s
C. 10 s ÷ 60 s
D. 0 s ÷ 0,06 s
Poprawna odpowiedź to 10 s ÷ 60 s, co wynika z charakterystyki wyzwalacza termobimetalowego wyłącznika S301 B10 1P 6 kA. Przy prądzie 25 A, który jest 2,5-krotnością prądu znamionowego wynoszącego 10 A, czas zadziałania wyzwalacza wynosi od 10 do 60 sekund. Tego typu wyłączniki są kluczowe w systemach zasilania, ponieważ chronią obwody przed przegrzaniem i potencjalnym uszkodzeniem spowodowanym nadmiernym prądem. W praktyce oznacza to, że wyzwalacz będzie działał w określonym czasie, co jest istotne dla zapewnienia bezpieczeństwa instalacji elektrycznej. Warto również zauważyć, że zgodność z normą IEC 60947-2, która reguluje wymagania dla wyłączników, potwierdza, że czas zadziałania w tym przedziale jest optymalny dla zachowania równowagi między bezpieczeństwem a funkcjonalnością. Dobrze zaprojektowane systemy powinny uwzględniać te parametry, aby skutecznie chronić przed skutkami przeciążeń.

Pytanie 40

Którego narzędzia należy użyć do demontażu w rozdzielnicy piętrowej uszkodzonego urządzenia pokazanego na rysunku?

Ilustracja do pytania
A. Wkrętaka płaskiego.
B. Wkrętaka imbusowego.
C. Szczypiec typu Segera.
D. Szczypiec uniwersalnych.
Poprawna odpowiedź to wkrętak płaski, który jest narzędziem niezbędnym do demontażu wyłącznika nadprądowego zamontowanego na szynie DIN w rozdzielnicy. Wyłączniki nadprądowe są zabezpieczeniami elektrycznymi, które chronią instalacje przed przeciążeniem i zwarciami. Aby skutecznie usunąć taki element, należy użyć wkrętaka płaskiego do odblokowania mechanizmu zatrzaskowego, który uniemożliwia swobodne wyjęcie wyłącznika. W przypadku użycia niewłaściwego narzędzia, jak szczypce uniwersalne czy wkrętak imbusowy, istnieje ryzyko uszkodzenia obudowy urządzenia lub samej rozdzielnicy. Stosowanie wkrętaka płaskiego jest zgodne z najlepszymi praktykami w branży elektrycznej, które podkreślają potrzebę użycia odpowiednich narzędzi do danej aplikacji, co zapewnia bezpieczeństwo i integralność instalacji. Dodatkowo, warto pamiętać o konieczności odłączenia zasilania przed rozpoczęciem jakichkolwiek prac, aby zapobiec porażeniu prądem. Zastosowanie wkrętaka płaskiego nie tylko ułatwia proces demontażu, ale również minimalizuje ryzyko uszkodzeń, co jest kluczowe w pracach konstruujących i serwisujących instalacje elektryczne.