Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik pojazdów samochodowych
  • Kwalifikacja: MOT.05 - Obsługa, diagnozowanie oraz naprawa pojazdów samochodowych
  • Data rozpoczęcia: 8 grudnia 2025 14:42
  • Data zakończenia: 8 grudnia 2025 14:59

Egzamin zdany!

Wynik: 22/40 punktów (55,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Samozapłon mieszanki powietrza i paliwa w silniku Diesla jest spowodowany

A. wysokim ciśnieniem wtryskiwanego paliwa
B. wysoką temperaturą sprężonego powietrza
C. dużą gęstością sprężonego powietrza
D. iskrą świecy zapłonowej
Samozapłon mieszanki paliwowo-powietrznej w silniku Diesla jest wynikiem wysokiej temperatury sprężonego powietrza. W silnikach Diesla proces zapłonu odbywa się bez użycia świec zapłonowych, co jest kluczowym elementem różniącym je od silników benzynowych. Podczas sprężania powietrza w cylindrze, jego temperatura znacznie wzrasta, a przy odpowiednim ciśnieniu sprężonego powietrza przekraczającym 500-800°C, paliwo wtryskiwane do komory spalania samoczynnie się zapala. Ta zasada działania opiera się na wysokiej efektywności termodynamicznej silników Diesla, które mogą osiągać wyższe ciśnienia sprężania, co prowadzi do lepszego wykorzystania energii. Przykładami zastosowania tej technologii są nowoczesne silniki diesel w pojazdach ciężarowych, gdzie efektywność paliwowa oraz moment obrotowy są kluczowe. Zrozumienie tego procesu jest niezbędne w kontekście projektowania silników oraz ich optymalizacji według norm emisji spalin, takich jak Euro 6, które wymagają innowacyjnych rozwiązań technologicznych.

Pytanie 2

Zgodnie z informacjami od producenta, właściwa zbieżność kół przednich pojazdu powinna wynosić
1,5 mm ± 1,5 mm. Która z podanych wartości nie mieści się w zakresie tolerancji?

A. 2 mm
B. 4 mm
C. 1 mm
D. 3 mm
Odpowiedź 3 mm jest poprawna, ponieważ znajduje się ona poza zakresem tolerancji podanym przez producenta, który wynosi 1,5 mm ± 1,5 mm, co oznacza, że akceptowalne wartości powinny mieścić się w przedziale od 0 mm do 3 mm. Wartość 4 mm przekracza maksymalny dopuszczalny limit tolerancji, co może prowadzić do problemów z geometrią zawieszenia, a w efekcie wpływać na bezpieczeństwo i komfort jazdy. Utrzymanie właściwej zbieżności kół jest kluczowe dla równomiernego zużycia opon oraz optymalnej przyczepności pojazdu. Należy regularnie monitorować zbieżność kół, zwłaszcza po wymianie opon lub po kolizjach, aby zapewnić ich prawidłowe ustawienie. W praktyce serwisowej zaleca się korzystanie z profesjonalnych narzędzi do pomiaru zbieżności, które pozwalają na precyzyjne dostosowanie ustawień pojazdu według norm producenta.

Pytanie 3

Określając natężenie prądu podczas ładowania akumulatora za pomocą prostownika sieciowego, jakie czynniki powinny być brane pod uwagę?

A. nominalne napięcie akumulatora
B. elektryczną pojemność akumulatora
C. maksymalny prąd rozładowania
D. nominalny prąd rozruchowy
Elektryczna pojemność akumulatora jest kluczowym parametrem, który bezpośrednio wpływa na ustalanie natężenia prądu ładowania. Pojemność ta, wyrażana w amperogodzinach (Ah), określa ilość energii, którą akumulator może przechować. W praktyce, przy ładowaniu akumulatora, ważne jest, aby prąd ładowania nie przekraczał 10-20% jego pojemności, co pozwala na efektywne i bezpieczne naładowanie akumulatora. Na przykład, dla akumulatora o pojemności 100 Ah, maksymalne natężenie prądu ładowania powinno wynosić od 10 A do 20 A. Przestrzeganie tej zasady pozwala uniknąć przegrzewania się akumulatora oraz przedłuża jego żywotność. Dobrą praktyką w branży jest również monitorowanie napięcia oraz temperatury akumulatora podczas ładowania, co zapewnia dodatkowe bezpieczeństwo i efektywność całego procesu. Zgodnie z normami branżowymi, ważne jest również, aby korzystać z prostowników posiadających funkcje automatycznego dostosowania prądu ładowania do pojemności akumulatora.

Pytanie 4

Element aerodynamiczny samochodu, który zwiększa przyczepność do nawierzchni, korzystający z przepływu powietrza pod nadwoziem, to

A. rezonator
B. dyfuzor
C. rekuperator
D. retarder
Rezonator, retarder i rekuperator to terminy, które odnoszą się do różnych technologii, które nie mają bezpośredniego związku z zagadnieniem docisku aerodynamicznego. Rezonator to element układu wydechowego, którego głównym celem jest poprawa dźwięku silnika i optymalizacja przepływu spalin. Nie ma on wpływu na aerodynamikę pojazdu ani na docisk do podłoża, co jest istotne w kontekście stabilności pojazdu podczas jazdy. Retarder to natomiast system hamulcowy, który wykorzystuje opór silnika lub układu hydraulicznego do spowolnienia pojazdu. Chociaż poprawia bezpieczeństwo i kontrolę nad pojazdem, nie wpływa na aerodynamikę, a więc nie zwiększa docisku do podłoża. Rekuperator to urządzenie stosowane w systemach odzyskiwania energii, które może być używane w kontekście elektryfikacji pojazdów i nie ma związku z aerodynamiką. Wybór niewłaściwych terminów pokazuje powszechny błąd myślowy, polegający na myleniu funkcji i zastosowania różnych technologii motoryzacyjnych. Aby zrozumieć, jak poprawnie wykorzystać elementy aerodynamiki w projektowaniu pojazdów, kluczowe jest zrozumienie ich właściwości oraz wpływu na osiągi i bezpieczeństwo w ruchu drogowym.

Pytanie 5

Kiedy prędkość obrotowa silnika wzrasta w wyniku nagłego wciśnięcia pedału gazu, prędkość samochodu rośnie w sposób nieproporcjonalny. Taki symptom w pojeździe z mechaniczną skrzynią biegów może sugerować uszkodzenie

A. mechanizmu różnicowego
B. skrzyni biegów
C. przekładni głównej
D. sprzęgła
Wybór odpowiedzi związanej z mechanizmem różnicowym, przekładnią główną czy skrzynią biegów wskazuje na niepełne zrozumienie zasad działania układu napędowego w samochodzie. Mechanizm różnicowy jest odpowiedzialny za umożliwienie różnicy prędkości obrotowej kół, co jest istotne podczas skręcania, ale nie ma bezpośredniego wpływu na przyspieszanie pojazdu przy gwałtownym naciśnięciu pedału gazu. Przekładnia główna z kolei przekazuje moc z silnika do kół, jednak w przypadku prawidłowego działania, nie spowoduje nieproporcjonalnego wzrostu prędkości pojazdu. Skrzynia biegów reguluje prędkość i moment obrotowy silnika, ale jeśli jest w dobrym stanie, również nie przyczyni się do tego typu objawów. Typowym błędem myślowym jest mylenie objawów uszkodzenia sprzęgła z usterek innych komponentów układu napędowego. W praktyce, podczas wystąpienia nieproporcjonalnych reakcji silnika na naciśnięcie pedału gazu, zawsze pierwszym krokiem diagnostycznym powinno być sprawdzenie stanu sprzęgła, a następnie pozostałych elementów. Właściwe podejście do diagnostyki i naprawy układu napędowego jest kluczowe dla utrzymania samochodu w dobrym stanie technicznym.

Pytanie 6

Złączenie elementów składowych podłogi w samochodzie osobowym zazwyczaj realizuje się poprzez

A. kręcenie
B. zgrzewanie
C. klejenie
D. lutowanie
Wydaje się, że wybór innych metod łączenia elementów podłogi w samochodach może być łatwy, ale każda z nich ma swoje ograniczenia. Na przykład, skręcanie wykorzystuje mechaniczne połączenia, które mogą osłabić strukturę, szczególnie gdy elementy są narażone na wibracje i różne obciążenia. Jeśli używamy śrub czy nakrętek, to czasem może to prowadzić do luzów, a w ekstremalnych warunkach użytkowania, jak w samochodach, mogą wystąpić poważne awarie. A lutowanie, mimo że jest popularne w elektronice, nie nadaje się raczej do materiałów konstrukcyjnych podłogi - potrzebuje szczególnych stopów, które mogą nie wytrzymać obciążeń w pojazdach. I jeszcze do tego, lutowanie nie tworzy jednolitej struktury, co może być kluczowe dla wytrzymałości. Choć klejenie czasami działa, w motoryzacji często nie radzi sobie z warunkami atmosferycznymi i zmianami temperatury. To wszystko sprawia, że zgrzewanie wydaje się najlepszym wyborem, bo łączy w sobie wytrzymałość, niską wagę oraz koszty produkcji, co pokazuje, jak ważne jest dobrze dobierać metody łączenia w inżynierii motoryzacyjnej.

Pytanie 7

Czy azotowanie stali prowadzi do

A. eliminacji negatywnych efektów hartowania
B. oczyszczenia wyrobu z tłuszczu
C. zapobiegania korozji
D. wzmocnienia powierzchni
Choć azotowanie stali może być mylone z innymi procesami obróbki, kluczowe jest zrozumienie, że żaden z wymienionych w pytaniu procesów nie jest związany z utwardzeniem powierzchni. Usunięcie szkodliwych skutków hartowania, jak na przykład naprężenia wewnętrzne, nie ma nic wspólnego z azotowaniem. Proces hartowania polega na szybkim chłodzeniu stali, co może wprowadzać niepożądane naprężenia, ale azotowanie nie jest techniką, która je eliminuje. Ochrona przed korozją jest również niepoprawnym skojarzeniem; azotowanie może podnieść odporność na zużycie, ale nie ma bezpośredniego wpływu na odporność stali na korozję, co jest bardziej związane z odpowiednim doborem materiałów i warstw ochronnych. Proces odtłuszczenia wyrobu, z kolei, jest etapem przygotowawczym, który ma na celu usunięcie zanieczyszczeń z powierzchni stali przed jakąkolwiek obróbką, ale nie jest bezpośrednio związany z azotowaniem. Typowym błędem myślowym jest utożsamienie azotowania z innymi procesami obróbczo-chemicznymi, co prowadzi do nieporozumień w kontekście ich zastosowań. Aby uniknąć tych nieporozumień, warto zgłębić różne techniki obróbcze i ich specyfikę, co pozwoli na lepsze zrozumienie właściwości materiałów i optymalizację procesów produkcyjnych.

Pytanie 8

Po zakończeniu naprawy systemu wydechowego w pojeździe zlecono wykonanie pomiaru poziomu hałasu. Przy jakiej prędkości obrotowej silnika należy dokonać odczytu jego poziomu w dB?

A. Przy 75% maksymalnej prędkości obrotowej.
B. Przy maksymalnej prędkości obrotowej.
C. Przy zwiększaniu prędkości obrotowej od biegu jałowego do maksymalnej.
D. Przy prędkości 1 000-15 000 obr/min.
Odczyt poziomu hałasu w dB przy 75% prędkości obrotowej mocy maksymalnej jest standardową metodą stosowaną w branży motoryzacyjnej. Tego rodzaju pomiar pozwala na uzyskanie reprezentatywnych danych dotyczących pracy układu wydechowego w warunkach, które najlepiej odwzorowują jego rzeczywiste działanie w trakcie eksploatacji. Praktyczne zastosowanie tej metody można zauważyć w procesie homologacji pojazdów, gdzie istotne jest spełnienie norm emisji hałasu narzuconych przez przepisy. Wykonywanie pomiarów przy wyższych obrotach, jak przy maksymalnej prędkości obrotowej, może prowadzić do nieadekwatnych wyników, które nie oddają rzeczywistych warunków większości sytuacji drogowych. Ponadto, pomiar przy 75% obrotów daje możliwość wykrywania potencjalnych problemów z układem wydechowym, takich jak nieszczelności czy uszkodzenia, które mogą wpływać na poziom generowanego hałasu. Takie podejście jest zgodne z normami ISO oraz z zaleceniami producentów i specjalistów w dziedzinie motoryzacji.

Pytanie 9

Symbol 16V wskazuje na

A. silnik widlasty z szesnastoma cylindrami
B. silnik Wankla
C. silnik rzędowy z szesnastoma cylindrami
D. silnik szesnastozaworowy
Oznaczenie silnika 16V odnosi się do liczby zaworów w każdej głowicy cylindrów silnika, co w przypadku silników czterocylindrowych oznacza, że każdy cylinder ma po cztery zawory: dwa ssące i dwa wydechowe. Takie rozwiązanie pozwala na lepsze napełnienie cylindrów mieszanką paliwowo-powietrzną oraz efektywniejsze odprowadzanie spalin, co przekłada się na wyższą moc silnika oraz lepszą ekonomikę spalania. Silniki 16V są powszechnie stosowane w nowoczesnych pojazdach, co czyni je standardem w przemyśle motoryzacyjnym. Przykładem mogą być popularne jednostki napędowe w pojazdach marki Volkswagen czy Honda, które charakteryzują się dużą wydajnością i oszczędnością paliwa. Zastosowanie technologii 16V jest zgodne z dobrymi praktykami konstrukcyjnymi, które dążą do optymalizacji parametrów silnika. Warto również dodać, że silniki z większą liczbą zaworów mogą osiągać lepsze osiągi przy wyższych prędkościach obrotowych, co jest istotne w kontekście sportowego charakteru niektórych pojazdów.

Pytanie 10

W przednim lewym kole auta zaobserwowano pęknięcie tarczy hamulcowej, a zmierzona grubość okładzin ciernych klocków hamulcowych wynosi 1,4 mm. W trakcie naprawy należy wymienić

A. tarcze i klocki hamulcowe wszystkich kół
B. jedynie tarczę hamulcową koła lewego przedniego
C. tarcze oraz klocki hamulcowe osi przedniej
D. wyłącznie tarcze hamulcowe kół osi przedniej
Odpowiedź, która wskazuje na konieczność wymiany zarówno tarcz, jak i klocków hamulcowych kół osi przedniej, jest prawidłowa z kilku powodów. Pęknięcie tarczy hamulcowej może prowadzić do nierównomiernego zużycia klocków hamulcowych oraz obniżenia skuteczności hamowania. Zgodnie z obowiązującymi standardami w branży motoryzacyjnej, podczas wymiany tarczy hamulcowej zawsze zaleca się wymianę klocków hamulcowych na tej samej osi, aby zapewnić równomierne działanie układu hamulcowego oraz uniknąć sytuacji, w której nowe komponenty będą pracować z zużytymi elementami. Przykładowo, jeśli nowe tarcze są połączone z klockami o niewłaściwej grubości, może to prowadzić do zwiększonego ryzyka przegrzewania się i szybszego zużycia nowych tarcz. W praktyce, wymiana tarcz i klocków hamulcowych na osi przedniej zapewnia lepsze bezpieczeństwo oraz komfort jazdy, a także wydłuża żywotność całego układu hamulcowego.

Pytanie 11

W jednostce napędowej o symbolu V6 24V zaleca się wymianę zaworów. Ile zaworów trzeba pobrać z magazynu?

A. 6
B. 24
C. 12
D. 18
Wybór nieprawidłowej liczby zaworów do wymiany w silniku V6 24V może wynikać z nieporozumienia dotyczącego konstrukcji silników. Silnik V6 oznacza, że mamy do czynienia z sześcioma cylindrami, a liczba zaworów jest zwykle określona w zależności od konstrukcji silnika. W przypadku systemu 24V, liczba ta odnosi się do 24 zaworów, które są rozmieszczone w sześciu cylindrach. Wybór 12 lub 6 zaworów sugeruje, że jednostka nie została zrozumiana w kontekście podziału na cylinder lub ogólną liczbę. Często można spotkać się z błędnym rozumowaniem, że każdy cylinder ma mniej niż cztery zawory, co jest niezgodne z normami inżynieryjnymi. W szczególności, w silnikach współczesnych, takich jak V6, mamy do czynienia z bardziej skomplikowanymi układami, które wymagają precyzyjnego podejścia do wymiany części. Ostatecznie, wybór 18 zaworów również nie jest logiczny, ponieważ nie jest to liczba, która wchodzi w skład standardowej konstrukcji silników 24V. W praktyce, zrozumienie liczby zaworów w kontekście silnika ma kluczowe znaczenie dla prawidłowego utrzymania i naprawy pojazdów. Dlatego bardzo ważne jest, aby przed przystąpieniem do wymiany dokładnie zapoznać się z dokumentacją producenta oraz specyfikacjami technicznymi, co pozwoli uniknąć nieporozumień i błędów w przyszłości.

Pytanie 12

Podczas weryfikacji sworznia tłokowego, jak należy zmierzyć jego zewnętrzną średnicę?

A. przymiarem kreskowym
B. mikrometrem
C. suwmiarką modułową
D. średnicówką mikrometryczną
Mikrometr to narzędzie pomiarowe o wysokiej precyzji, które jest idealne do pomiaru średnicy zewnętrznej sworznia tłokowego, ponieważ pozwala na uzyskanie dokładności do setnych lub nawet tysięcznych części milimetra. Dzięki konstrukcji mikrometru, pomiar jest stabilny i powtarzalny, co jest niezbędne w procesie weryfikacji elementów mechanicznych. Przykładowo, mikrometr może być użyty do pomiaru średnicy sworznia, który następnie będzie montowany w tłoku, aby upewnić się, że pasuje on do otworu w cylindrze silnika. W przypadku silników spalinowych, precyzyjny pomiar średnicy jest kluczowy dla zapewnienia prawidłowego funkcjonowania silnika oraz minimalizacji luźnych tolerancji, które mogłyby prowadzić do zwiększonego zużycia i awarii. Standardy branżowe, takie jak ISO 286, określają wymagania dotyczące tolerancji wymiarowych, które szczególnie w przypadku elementów silnikowych, muszą być ściśle przestrzegane, aby zapewnić ich niezawodność i trwałość.

Pytanie 13

Podczas diagnostyki układu chłodzenia zaobserwowano ciągły wzrost temperatury silnika. Jaka może być tego przyczyna?

A. Niedziałający wentylator chłodnicy
B. Zbyt wysokie ciśnienie w oponach
C. Niski poziom oleju w silniku
D. Uszkodzony alternator
Niedziałający wentylator chłodnicy to jedna z najbardziej oczywistych przyczyn ciągłego wzrostu temperatury silnika. Układ chłodzenia w pojazdach ma za zadanie utrzymanie optymalnej temperatury pracy silnika, co jest kluczowe dla jego efektywności i trwałości. Wentylator chłodnicy wspomaga przepływ powietrza przez chłodnicę, szczególnie podczas postoju lub jazdy w niskiej prędkości, kiedy naturalny nawiew powietrza jest niewystarczający. Jeśli wentylator nie działa, chłodnica nie jest w stanie skutecznie obniżać temperatury płynu chłodzącego, co prowadzi do przegrzewania się silnika. Z mojego doświadczenia, regularne sprawdzanie stanu wentylatora oraz jego układu sterowania jest niezbędne w ramach konserwacji pojazdu. Często problem leży w zepsutym przekaźniku, bezpieczniku lub uszkodzonym silniku wentylatora. Warto również dodać, że nadmierna temperatura silnika może prowadzić do poważnych uszkodzeń, takich jak pęknięcie głowicy lub uszczelki pod głowicą, co wiąże się z kosztownymi naprawami. Dlatego szybka i trafna diagnoza problemu z wentylatorem jest kluczowa.

Pytanie 14

"Sworzeń pływający" to element sworznia

A. mogący swobodnie przesuwać się wzdłuż osi w piastach tłoka
B. zamocowany w piastach tłoka i obracający się w głowicy korbowodu
C. zamocowany w głowicy korbowodu i obracający się w piastach tłoka
D. obracający się w głowicy korbowodu i w piastach tłoka
Odpowiedź, że 'sworzeń pływający' obraca się w główce korbowodu i w piastach tłoka, jest prawidłowa ze względu na jego funkcję w mechanizmach silników spalinowych. Sworzeń pływający jest kluczowym elementem, który umożliwia swobodne obracanie się korbowodu w górnym martwym punkcie oraz pozwala na pełne wykorzystanie energii generowanej przez spalanie paliwa. W praktyce, odpowiednia konstrukcja sworznia pozwala na zminimalizowanie luzów oraz zwiększenie efektywności pracy silnika. Dzięki temu, sworzeń pływający odgrywa istotną rolę w zapewnieniu płynności pracy silnika i niezawodności jego działania. W branży automotive, zgodność z normami, takimi jak ISO 9001, jest kluczowa dla zapewnienia wysokiej jakości komponentów, w tym sworzni pływających. Dobrze zaprojektowane sworznie, wykonane z odpowiednich materiałów, zwiększają wytrzymałość i odporność na zużycie, co przyczynia się do dłuższej żywotności silnika.

Pytanie 15

Aby prawidłowo zainstalować tuleję gumowo-metalową w wahaczu, jakie narzędzie należy wykorzystać?

A. prasę hydrauliczną
B. imadło
C. końcówkę klucza nasadowego oraz młotek
D. ściągacz bezwładnościowy
Prasa hydrauliczna to naprawdę ważne narzędzie, gdy mówimy o montażu tulei gumowo-metalowej w wahaczach. Dzięki niej możemy uzyskać taki nacisk, który pozwala na prawidłowe osadzenie tego elementu. Co ciekawe, użycie prasy hydraulicznej umożliwia równomierne rozłożenie siły, co w dużym stopniu zmniejsza ryzyko zniszczenia zarówno tulei, jak i wahacza. W branży motoryzacyjnej to podstawa, by stosować odpowiednie narzędzia, bo to wpływa na trwałość i działanie komponentów. Na przykład, przy wymianie tulei w autach, dokładne dopasowanie jest kluczowe dla stabilności całego zawieszenia. Warto też pamiętać, że jeśli montaż tulei zrobimy źle, używając niewłaściwych narzędzi, to może to prowadzić do szybszego zużycia części układu zawieszenia, a to wpływa na bezpieczeństwo jazdy.

Pytanie 16

Pasek rozrządu silnika powinien być wymieniany

A. przed każdym okresem zimowym
B. przy wymianie olejowej pompy
C. po zalecanym przebiegu
D. w trakcie każdego przeglądu serwisowego
Wymiana paska rozrządu silnika jest kluczowym elementem konserwacji pojazdu, a jej przeprowadzenie po wskazanym przebiegu jest zgodne z zaleceniami producentów samochodów oraz standardami branżowymi. Zazwyczaj interwał wymiany paska rozrządu oscyluje w granicach 60 000 do 150 000 kilometrów, w zależności od marki i modelu pojazdu. Niezwykle istotne jest przestrzeganie tych zaleceń, ponieważ zużycie paska prowadzi do ryzyka jego zerwania, co może skutkować poważnymi uszkodzeniami silnika, w tym uszkodzeniem zaworów czy tłoków. W praktyce, podczas wymiany paska, warto również kontrolować stan rolek prowadzących i napinaczy, a także wymieniać płyn chłodniczy, co zapewni prawidłowe funkcjonowanie układu rozrządu na kolejne kilometry. Przykładowo, w samochodach takich jak Volkswagen Golf V, brak wymiany paska w odpowiednim czasie może prowadzić do kosztownych napraw, co pokazuje, jak istotne jest regularne monitorowanie stanu paska w kontekście całej konserwacji pojazdu.

Pytanie 17

Aby zweryfikować prawidłowość wykonanego serwisu układu przeniesienia napędu, mechanik powinien zrealizować

A. pomiar zbieżności kół
B. kontrolę luzu elementów układu zawieszenia
C. test na stanowisku rolkowym
D. jazdę próbną
Przeprowadzenie próby na stanowisku rolkowym, pomiaru zbieżności kół lub kontrola luzu elementów układu zawieszenia, choć istotne, nie zastępują jazdy próbnej jako metody weryfikacji naprawy układu przeniesienia napędu. Stanowisko rolkowe jest użyteczne do diagnostyki, jednak nie oddaje rzeczywistych warunków jazdy. Może pokazać pewne parametry, ale nie dostarczy informacji o zachowaniu pojazdu podczas jazdy w terenie, w zakrętach czy w reakcjach na zmiany prędkości. Zbieżność kół jest kluczowym parametrem, który wpływa na stabilność i kierowanie pojazdem, ale jej pomiar nie jest bezpośrednio związany z oceną naprawy układu napędowego. Kontrola luzów w zawieszeniu również ma znaczenie, ale koncentruje się na innym aspekcie pojazdu, a nie na samym układzie przeniesienia napędu. Te błędne podejścia pojawiają się często z braku zrozumienia, że naprawy wymuszają szeroką analizę całego systemu pojazdu w kontekście jego rzeczywistego użytkowania. Jazda próbna jest jedyną metodą, która pozwala na kompleksową ocenę działania układu przeniesienia napędu w rzeczywistych warunkach drogowych, co czyni ją niezbędnym etapem w procesie naprawczym.

Pytanie 18

Jak długo zajmie wymiana zaworów w silniku 4 cylindrowym o oznaczeniu 16V, przy założeniu, że praca nad każdym zaworem trwa 0,5 roboczogodziny?

A. 6 godzin
B. 4 godziny
C. 8 godzin
D. 10 godzin
W silniku czterocylindrowym o oznaczeniu 16V mamy do czynienia z 16 zaworami, ponieważ każdy cylinder posiada po 4 zawory. Aby obliczyć całkowity czas wymiany zaworów, należy pomnożyć liczbę zaworów przez czas wymiany jednego zaworu. W tym przypadku, czas wymiany jednego zaworu wynosi 0,5 roboczogodziny. Zatem całkowity czas wymiany można obliczyć w następujący sposób: 16 zaworów x 0,5 roboczogodziny = 8 roboczogodzin. W praktyce, przy planowaniu prac serwisowych w warsztacie, ważne jest dokładne oszacowanie czasu potrzebnego na wymianę poszczególnych elementów silnika, ponieważ wpływa to na harmonogram pracy oraz koszty usługi. Właściwe uwzględnienie czasu pracy pozwala również na lepsze zarządzanie zasobami oraz zminimalizowanie przestojów w pracy warsztatu, co jest zgodne z najlepszymi praktykami w branży motoryzacyjnej.

Pytanie 19

Na ilustracji przedstawiono przyrząd stosowany przy naprawie/wymianie

Ilustracja do pytania
A. napędu rozrządu.
B. tarczy sprzęgła.
C. zacisków hamulcowych.
D. przegubów napędowych.
Wybierając inne odpowiedzi, możesz napotkać na sporo nieporozumień dotyczących narzędzi używanych w różnych naprawach. Na przykład zaciski hamulcowe to część systemu hamulcowego, a nie mają nic wspólnego z centralizowaniem tarczy sprzęgła. Narzędzia do hamulców wymagają innego podejścia, jak blokowanie elementów podczas wymiany klocków, co to jest zupełnie inny proces. Z resztą, napęd rozrządu zajmuje się synchronizacją ruchów silnika i jego wymiana też nie dotyczy tarczy sprzęgła. A przeguby napędowe? Te przenoszą moment obrotowy z silnika na koła i do ich regulacji używamy zupełnie innych narzędzi. No i powinno się mieć pojęcie o tym, jakie narzędzia są do czego, żeby nie pomylić się w diagnostyce i naprawie. W tym przypadku nie uwzględniono tego aspektu, co może prowadzić do problemów.

Pytanie 20

Po zakończeniu wymiany zaworów dolotowych w silniku należy

A. sprawdzić szczelność zaworów
B. zweryfikować twardość sprężyn zaworowych
C. usunąć zabezpieczenie trzonka zaworu
D. frezować gniazda zaworowe
Sprawdzanie szczelności zaworów jest kluczowym krokiem po wymianie zaworów dolotowych silnika. Zawory są odpowiedzialne za regulację przepływu mieszanki paliwowo-powietrznej do cylindrów oraz za wydobywanie spalin. Nieszczelność zaworów może prowadzić do znacznych strat mocy silnika, zwiększonego zużycia paliwa oraz nieprawidłowego działania jednostki napędowej. W praktyce, podczas sprawdzania szczelności zaworów, można wykorzystać metody takie jak próba ciśnieniowa, która polega na wprowadzeniu powietrza do cylindra i obserwacji, czy ciśnienie utrzymuje się na odpowiednim poziomie. Dobrą praktyką jest również użycie specjalistycznych narzędzi, takich jak zestawy do testowania szczelności, które umożliwiają dokładne określenie ewentualnych wycieków. Należy pamiętać, że zgodnie z normami branżowymi, regularne sprawdzanie szczelności zaworów powinno być częścią rutynowej konserwacji silnika, co pozwala na utrzymanie jego optymalnej wydajności oraz przedłużenie żywotności komponentów.

Pytanie 21

Oblicz czas obsługi pojazdu o przebiegu 60 tys. km. Wykorzystaj dane z tabeli.

Nazwa operacjiPrzebieg (tys. km)
153060100160
Czas wykonania operacji [min]
Kontrola oświetlenia1515151515
Wymiana płynów-10305050
Kontrola układu hamulcowego1010151520
Zabezpieczenia antykorozyjne nadwozia30--30-
Kontrola układu paliwowego-20-40-
Kontrola zawieszenia1010151525
A. 165 minut
B. 185 minut
C. 65 minut
D. 75 minut
Poprawna odpowiedź to 75 minut, co jest wynikiem dokładnego zsumowania czasów poszczególnych operacji serwisowych wymaganych dla pojazdu o przebiegu 60 tys. km. Kontrola oświetlenia trwa 15 minut, wymiana płynów to 30 minut, a kontrola układu hamulcowego i paliwowego po 15 minut każda. Łącznie daje to 15 + 30 + 15 + 15 = 75 minut. Takie podejście do obliczeń jest zgodne z dobrymi praktykami w branży motoryzacyjnej, gdzie dokładność czasu obsługi pojazdu jest kluczowa dla planowania serwisu. Wiedza na temat poszczególnych operacji serwisowych i ich czasów jest niezbędna dla mechaników, aby efektywnie zarządzać harmonogramem prac oraz informować klientów o przewidywanym czasie naprawy. Zrozumienie tych operacji pozwala również na lepsze prognozowanie kosztów serwisowych, co jest istotne z perspektywy zarządzania flotą pojazdów lub w kontekście indywidualnego właściciela samochodu.

Pytanie 22

Urządzenie nazywane "szarpakiem" używane jest do identyfikacji

A. zużycia amortyzatorów
B. uszkodzeń obręczy kół
C. luzów w węzłach układu zawieszenia
D. zużycia przekładni kierowniczej
Szarpak jest specjalistycznym przyrządem wykorzystywanym w diagnostyce układów zawieszenia pojazdów. Jego główną funkcją jest wykrywanie luzów w węzłach zawieszenia, co jest kluczowe dla zapewnienia stabilności i bezpieczeństwa pojazdu. Luz w układzie zawieszenia może prowadzić do nieprawidłowego zachowania się pojazdu na drodze, w tym do utraty kontroli i zwiększonego zużycia opon. Szarpak działa na zasadzie wywoływania drgań w układzie zawieszenia, a następnie pomiaru odpowiedzi na te drgania. Poprawne wyniki pomiaru wskazują na stan luzów, co pozwala na odpowiednią diagnozę i ewentualne naprawy. Ważne jest, aby okresowo kontrolować stan układu zawieszenia, szczególnie w pojazdach intensywnie eksploatowanych. Regularne korzystanie z szarpaka w procesach diagnostycznych jest zgodne z najlepszymi praktykami w branży motoryzacyjnej, co pozwala na wczesne wykrywanie problemów i zmniejsza ryzyko poważnych awarii.

Pytanie 23

Do technik defektoskopowych wykorzystywanych w ocenie komponentów nie zalicza się techniki

A. rentgenowskiej
B. ultradźwiękowej
C. objętościowej
D. magnetycznej
Zastosowanie metod defektoskopowych w weryfikacji części jest kluczowe w zapewnieniu jakości i bezpieczeństwa produktów przemysłowych. Odpowiedzi, które wskazują na metody magnetyczną, rentgenowską oraz ultradźwiękową, są jednym z najczęściej stosowanych podejść w przemyśle, co może wprowadzać w błąd osoby, które nie są zaznajomione z pełnym zakresem metod badań. Metoda magnetyczna, bazująca na właściwościach ferromagnetycznych materiałów, wykorzystuje pole magnetyczne do wykrywania wad powierzchniowych i podpowierzchniowych. Z kolei badania rentgenowskie wykorzystują promieniowanie elektromagnetyczne do analizy strukturalnej materiałów, co pozwala na identyfikację wewnętrznych nieciągłości. Metoda ultradźwiękowa, która polega na wysyłaniu fal dźwiękowych o wysokiej częstotliwości, umożliwia detekcję defektów w materiałach o różnej gęstości i strukturze. Wybór odpowiedniej metody jest kluczowy w zależności od rodzaju materiału oraz charakterystyki wad, co wymaga zrozumienia ich właściwości oraz zastosowania w praktyce. Wybierając nieprawidłową odpowiedź, można wpaść w pułapkę myślenia, że każda metoda defektoskopowa jest równoznaczna w kontekście badań różnych materiałów, co jest dalekie od prawdy. Kluczowe jest zatem świadome podejście do analizy, które uwzględnia specyfikę każdego z podejść oraz ich zastosowanie w praktyce, co jest niezbędne dla zapewnienia skutecznej detekcji wad.

Pytanie 24

Zgodnie z zamieszczonym rysunkiem, podczas badania pojazdu wykonywanego na podnośniku, luz wyczuwalny w kierunku

Ilustracja do pytania
A. "b" może oznaczać uszkodzenie sworznia wahacza.
B. "b" może oznaczać uszkodzenie końcówki drążka kierowniczego.
C. "a" może oznaczać pęknięcie sprężyny kolumny McPhersona.
D. "a" może oznaczać uszkodzenie łącznika stabilizatora.
Zdecydowanie poprawna odpowiedź opiera się na zrozumieniu roli sworznia wahacza w układzie zawieszenia pojazdu. Sworzeń wahacza jest kluczowym elementem, który łączy wahacz z nadwoziem, co pozwala na odpowiednie prowadzenie kół oraz stabilność jazdy. Luz wyczuwalny w kierunku oznaczonym jako 'b' może sugerować, że sworzeń jest uszkodzony lub zużyty, co naraża na poważne problemy z prowadzeniem pojazdu. W praktyce, nieprawidłowości w tym elemencie mogą prowadzić do niestabilności podczas jazdy, co zwiększa ryzyko wypadków. W przypadku stwierdzenia luzu, zaleca się natychmiastowe zbadanie sworznia wahacza przez wykwalifikowanego mechanika, co jest zgodne z najlepszymi praktykami w zakresie bezpieczeństwa i konserwacji pojazdów. Regularne kontrole stanu zawieszenia są kluczowe dla zapewnienia bezpieczeństwa i komfortu jazdy.

Pytanie 25

W trakcie wypadku rolą napinacza pasa bezpieczeństwa jest

A. jak najszybsze, mocne związanie ciała człowieka z konstrukcją pojazdu
B. zmniejszenie nacisku pasa na ludzkie ciało, gdy jest on zbyt duży
C. ułatwienie wypięcia pasa tuż po zamortyzowaniu uderzenia
D. zablokowanie zwijacza, co uniemożliwi rozwinięcie pasa
Napinacz pasa bezpieczeństwa odgrywa kluczową rolę w systemie zabezpieczeń pojazdu. Jego głównym zadaniem jest jak najszybsze i ściśle związanie ciała pasażera z konstrukcją pojazdu w momencie zderzenia. Dzięki temu, podczas nagłego hamowania lub kolizji, napinacz minimalizuje ryzyko przesunięcia się ciała pasażera do przodu, co mogłoby prowadzić do poważnych obrażeń. Warto zauważyć, że napinacze działają na zasadzie mechanizmu automatyzacji, który w momencie detekcji wypadku błyskawicznie napina pas, co zostało zaprojektowane zgodnie z normami bezpieczeństwa, takimi jak ECE R16 w Europie. Przykładowo, w nowoczesnych pojazdach, systemy napinaczy współpracują z poduszkami powietrznymi, co jeszcze bardziej zwiększa poziom ochrony pasażerów. Prawidłowe działanie napinacza jest zatem kluczowe dla zapewnienia bezpieczeństwa podczas jazdy oraz w sytuacjach kryzysowych, co podkreśla jego znaczenie w inżynierii motoryzacyjnej.

Pytanie 26

W klasyfikacji olejów American Petroleum Institute /API/ olej oznaczony symbolem GL to olej

A. do silników o ZS
B. do silników o ZI
C. przekładniowy
D. hydrauliczny
Istnieje kilka błędnych koncepcji związanych z odpowiedziami, które można by uznać za poprawne. Pierwsza z nich dotyczy olejów do silników o zapłonie samoczynnym (ZS). Oleje te, zwane również olejami silnikowymi, są przeznaczone do smarowania silników diesla i charakteryzują się specyficznymi właściwościami, które różnią się od wymagań dla olejów przekładniowych. Ważne jest zrozumienie, że oleje te są klasyfikowane według innych standardów, takich jak API CJ-4 czy ACEA E9, które są dostosowane do eksploatacji w silnikach o zapłonie samoczynnym. Drugą mylną koncepcją są oleje hydrauliczne. Oleje te również różnią się od olejów przekładniowych, gdyż są zaprojektowane do pracy w systemach hydraulicznych, gdzie kluczowe są takie właściwości jak niska lepkość oraz doskonałe właściwości przeciwzużyciowe, a także odporność na działanie wody. Oleje hydrauliczne są klasyfikowane według norm takich jak ISO 32, 46, 68, które wskazują na ich lepkość. Ostatnia z wymienionych opcji to oleje do silników o zapłonie iskrowym (ZI), które są z kolei dedykowane silnikom benzynowym. Oleje te powinny spełniać różne wymagania, takie jak API SN, co nie ma związku z olejami przekładniowymi. Błąd w rozumieniu klasyfikacji olejów API może prowadzić do nieprawidłowego doboru oleju, co z kolei może skutkować uszkodzeniem komponentów pojazdu. Dlatego tak istotne jest posługiwanie się właściwymi oznaczeniami i klasyfikacjami przy wyborze olejów do różnych zastosowań w motoryzacji.

Pytanie 27

Na rysunku przedstawiono przyrząd używany do

Ilustracja do pytania
A. montażu i demontaż tłoczków hamulcowych.
B. demontażu zaworów.
C. demontażu łożysk alternatora.
D. zablokowania mechanizmu rozrządu.
Odpowiedź dotycząca montażu i demontażu tłoczków hamulcowych jest poprawna, ponieważ przyrząd na zdjęciu jest typowym narzędziem stosowanym w warsztatach samochodowych do tej właśnie czynności. Tłoczki hamulcowe są kluczowym elementem układu hamulcowego, a ich prawidłowa obsługa jest niezbędna dla zapewnienia bezpieczeństwa jazdy. Przyrząd ten, dzięki swojej konstrukcji z ruchomymi ramionami, umożliwia łatwe i skuteczne wypychanie oraz wciąganie tłoczków, co jest szczególnie ważne podczas wymiany klocków hamulcowych. Użycie odpowiednich narzędzi w serwisie samochodowym ma na celu minimalizację ryzyka uszkodzenia elementów układu hamulcowego oraz przyspieszenie pracy. Zastosowanie tego narzędzia zgodnie z zaleceniami producenta i standardami branżowymi zapewnia nie tylko skuteczność, ale również bezpieczeństwo wykonywanych prac. Warto podkreślić, że nieodpowiedni montaż lub demontaż tłoczków hamulcowych może prowadzić do poważnych awarii hamulców, co stanowi zagrożenie dla kierowcy oraz innych uczestników ruchu drogowego.

Pytanie 28

Na rysunku przedstawiono pomiar bicia

Ilustracja do pytania
A. promieniowego tarczy hamulcowej.
B. osiowego piasty koła.
C. promieniowego piasty koła.
D. osiowego tarczy hamulcowej.
Niepoprawne odpowiedzi mogą wynikać z błędnego zrozumienia zasad pomiarów mechanicznych oraz koncepcji bicia. Odpowiedzi sugerujące pomiar osiowego tarczy hamulcowej, promieniowego tarczy hamulcowej czy osiowego piasty koła nie uwzględniają specyfiki pomiaru, który w tym przypadku koncentruje się na odchyleniach promieniowych piasty koła. Pomiar bicia osiowego dotyczy odchylenia wzdłuż osi obrotu, co oznacza, że wszelkie zmiany lub nierówności w tym obszarze mogą prowadzić do zupełnie innych problemów, takich jak niestabilność podczas hamowania. Natomiast pomiar promieniowy tarczy hamulcowej nie jest właściwy, ponieważ tarcza nie jest miejscem, gdzie dokonuje się pomiaru bicia piasty, co może skutkować mylnym wnioskiem o stanie całego układu. Często, myląc te pojęcia, można dojść do fałszywego wniosku o konieczności wymiany elementów, które są w rzeczywistości sprawne. W kontekście praktycznym, zrozumienie różnicy między tymi pomiarami jest istotne dla prawidłowej diagnostyki i konserwacji pojazdów, co w konsekwencji wpływa na bezpieczeństwo użytkowników dróg. Właściwe zrozumienie tych różnic jest kluczowe dla techników samochodowych, którzy powinni być dobrze zaznajomieni z zasadami działania układów jezdnych oraz technikami pomiarowymi, aby unikać kosztownych błędów w diagnozie.

Pytanie 29

Nadmierne ścieranie się środkowej części bieżnika na całym obwodzie opony jest rezultatem

A. niewłaściwym wyważeniem koła
B. częstym uderzaniem w krawężnik
C. zbyt wysokim ciśnieniem w oponie
D. zbyt niskim ciśnieniem powietrza w oponie
Zbyt duże ciśnienie w oponie prowadzi do nadmiernego zużycia środkowej części bieżnika, ponieważ w takiej sytuacji opona nie ma odpowiedniej elastyczności i nie przylega do nawierzchni równomiernie. W wyniku tego, środkowa część bieżnika staje się głównym punktem kontaktu z drogą, co powoduje większe zużycie tego obszaru. Przykładem zastosowania tej wiedzy jest regularne sprawdzanie ciśnienia w oponach, które powinno być dostosowane do zaleceń producenta pojazdu. W praktyce, kierowcy powinni również pamiętać, że zbyt wysokie ciśnienie wpływa nie tylko na zużycie opon, ale także na bezpieczeństwo jazdy oraz komfort prowadzenia pojazdu. Zgodnie z zaleceniami branżowymi, należy regularnie kontrolować ciśnienie w oponach, szczególnie przed dłuższymi podróżami oraz po zmianach temperatury otoczenia, które mogą wpływać na ciśnienie powietrza w oponach. Znalezienie równowagi ciśnienia powietrza jest kluczowe dla osiągnięcia optymalnej wydajności i bezpieczeństwa samochodu.

Pytanie 30

Parownik stanowi składnik systemu

A. klimatyzacji
B. wydechowego
C. smarowania
D. chłodzenia
Wybór odpowiedzi związanych z chłodzeniem, smarowaniem lub wydechem jest niezgodny z funkcją parownika. Elementy te pełnią różne role w mechanice i automatyce pojazdów oraz systemach chłodniczych. Układ chłodzenia, na przykład, ma na celu utrzymanie optymalnej temperatury silnika poprzez odprowadzanie ciepła, co jest realizowane przez chłodnicę i termostat, a nie przez parownik. Z kolei układ smarowania jest odpowiedzialny za minimalizację tarcia między ruchomymi częściami silnika, co osiąga się poprzez dostarczanie oleju silnikowego, a nie przez procesy odparowania czy chłodzenia powietrza. W kontekście układu wydechowego, jego rolą jest odprowadzanie spalin z silnika, co ma niewiele wspólnego z funkcją parownika w klimatyzacji. Wybór niepoprawnych opcji może wynikać z pomylenia ról poszczególnych komponentów w systemach mechanicznych. Właściwe zrozumienie każdego z tych układów, ich specyfiki oraz oddziaływań jest kluczowe dla prawidłowego diagnozowania problemów oraz efektywnego projektowania systemów. Dlatego ważne jest, aby nie mylić roli parownika w systemie klimatyzacyjnym z innymi, niepowiązanymi komponentami, które mają zupełnie odmienne funkcje i zastosowania.

Pytanie 31

Czujniki magnetoindukcyjne wykorzystywane w systemach zapłonowych silników ZI zlikwidowały

A. rozdzielacz zapłonu
B. czujnik położenia wału korbowego silnika
C. cewkę zapłonową
D. przerywacz
Wybór odpowiedzi dotyczącej cewki zapłonowej, rozdzielacza zapłonu czy czujnika położenia wału korbowego może prowadzić do nieporozumień dotyczących funkcji poszczególnych elementów układu zapłonowego. Cewka zapłonowa jest kluczowym komponentem, który przekształca niskonapięciowy sygnał z akumulatora na wysokie napięcie, niezbędne do wytworzenia iskry w świecy zapłonowej. Dlatego jej eliminacja nie jest możliwa w kontekście działania silnika ZI. Z kolei rozdzielacz zapłonu, który kieruje impulsy zapłonowe do odpowiednich cylindrów, również nie może zostać wyeliminowany, ponieważ pełni rolę w synchronizacji procesu zapłonu z cyklem pracy silnika. A czujnik położenia wału korbowego, jako element odpowiedzialny za monitorowanie pozycji wału, jest niezwykle istotny dla precyzyjnego sterowania zapłonem i nie może być zastąpiony przez czujniki magnetoindukcyjne. Wybór tych odpowiedzi może wynikać z mylnego przekonania, że nowoczesne technologie całkowicie zastępują tradycyjne elementy, podczas gdy w rzeczywistości wiele z nich nadal współistnieje w złożonych układach zapłonowych, aby zapewnić ich optymalne działanie. Zrozumienie funkcji każdego z tych elementów jest kluczowe dla właściwej diagnozy i naprawy układów zapłonowych w silnikach ZI.

Pytanie 32

W hydraulicznym oraz pneumatycznym amortyzatorze jednorurowym wysokociśnieniowym używa się oleju oraz

A. azotu
B. acetylenu
C. tlenu
D. powietrza
Wykorzystanie powietrza w wysokociśnieniowych amortyzatorach hydraulicznych nie jest zalecane, ponieważ jest to mieszanka gazów, która zawiera wilgoć i zanieczyszczenia. Wilgoć w układzie może prowadzić do korozji, a zanieczyszczenia mogą wpłynąć na działanie tłoka i innych elementów. Ponadto, powietrze jest bardziej podatne na zmiany objętości przy zmianach temperatury i ciśnienia, co może prowadzić do niestabilności pracy amortyzatora. Zastosowanie acetylenów czy tlenu w tym kontekście jest jeszcze bardziej niebezpieczne. Acetylen to gaz palny, który w połączeniu z powietrzem może tworzyć wybuchowe mieszaniny, co stanowi poważne zagrożenie w układach hydraulicznych. Tlen, z kolei, w wysokim ciśnieniu może powodować łatwiejsze utlenianie materiałów, co może prowadzić do uszkodzenia uszczelnień i innych elementów konstrukcyjnych. Niewłaściwe dobieranie gazów do amortyzatorów opartych na hydraulice prowadzi do poważnych usterek, a w skrajnych przypadkach do awarii całego systemu. Dlatego ważne jest, aby stosować azot, który nie tylko zwiększa efektywność, ale także bezpieczeństwo pracy amortyzatora w różnych warunkach eksploatacyjnych.

Pytanie 33

Część przegubu Cardana należy do

A. skrzyni biegów
B. sprzęgła ciernego
C. wału napędowego
D. koła dwumasowego
Wybór odpowiedzi dotyczących koła dwumasowego, sprzęgła ciernego czy skrzyni biegów wskazuje na pewne nieporozumienia co do funkcji i zastosowania tych elementów w układzie napędowym pojazdu. Koło dwumasowe jest elementem, który tłumi drgania silnika i redukuje wibracje przenoszone na skrzynię biegów, co sprzyja płynniejszej pracy układu. Jego zadaniem jest poprawa komfortu jazdy poprzez eliminację drgań, a nie bezpośrednie przenoszenie momentu obrotowego, co jest główną funkcją przegubu Cardana. Sprzęgło cierne natomiast jest komponentem, który umożliwia odłączenie i połączenie wału napędowego z silnikiem, jednak nie jest ono przeznaczone do kompensowania różnic kątowych, co stanowi kluczową rolę przegubu Cardana. Skrzynia biegów z kolei to mechanizm, który zmienia przełożenie momentu obrotowego z silnika na koła, a nie element, który bezpośrednio łączy różne płaszczyzny w układzie napędowym. Wybierając te odpowiedzi, można wpaść w pułapkę myślenia o elementach układu napędowego jako o zamiennych, co jest błędnym założeniem. Każdy z tych komponentów ma swoje unikalne funkcje i właściwości, a ich poprawne zrozumienie jest kluczowe dla efektywnego projektowania i diagnostyki systemów przeniesienia napędu w pojazdach.

Pytanie 34

Łączny koszt naprawy (koszt wymienianego elementu i koszt wymiany) elementu, zgodnie ze specyfikacją zamieszczoną w tabeli, przy cenie 1 rbg. 50 zł i 10% rabacie na wykonanie naprawy, wynosi

Opis czynnościMiejsceRodzajRbgCena
Reflektor kpl.LWY1300
A. 315 zł
B. 350 zł
C. 250 zł
D. 330 zł
Obliczenie łącznego kosztu naprawy jest kluczowym aspektem zarządzania kosztami w każdej branży, w której prowadzone są naprawy. W tym przypadku, aby uzyskać poprawny wynik, musimy dodać koszt wymienianego elementu do kosztu wymiany, pamiętając o uwzględnieniu rabatu. Koszt wymienianego elementu wynosi 300 zł, co jest wartością standardową w branży. Koszt wymiany wynosi 50 zł, lecz po zastosowaniu 10% rabatu (5 zł), uzyskujemy finalny koszt wymiany równy 45 zł. Zsumowanie tych wartości daje nam 345 zł, co jest poprawnym wynikiem. Niemniej jednak, jeśli chodzi o przedstawione w pytaniu wartości, żadna odpowiedź nie zgadza się z obliczeniami. W praktyce, przy takich obliczeniach warto zwrócić uwagę na dokładność danych źródłowych oraz proces weryfikacji kosztów, co jest zgodne z najlepszymi praktykami zarządzania kosztami w projektach. Uważne podejście pozwala na lepsze planowanie finansowe oraz unikanie nieprawidłowości w prognozowaniu wydatków.

Pytanie 35

W pojeździe z silnikiem ZS obserwuje się nadmierną emisję czarnych spalin. Co jest przyczyną tej sytuacji?

A. nieszczelność uszczelki podgłowicowej
B. wadliwe rozpylenie paliwa spowodowane usterką wtryskiwaczy
C. nieprawidłowe ustawienie zaworów
D. nieszczelność pierścieni tłokowych oraz spalanie oleju silnikowego
Nieprawidłowe wyregulowanie zaworów, nieszczelność pierścieni tłokowych czy uszczelki podgłowicowej to problemy, które mogą wpływać na ogólną wydajność silnika, jednak nie są one głównym powodem nadmiernego zadymienia spalin barwy czarnej w przypadku silników ZS. Zawory w silniku odpowiadają za kontrolę przepływu mieszanki paliwowo-powietrznej oraz spalin, a ich niewłaściwe wyregulowanie może prowadzić do nieefektywnego spalania, jednak nie generuje to czarnych spalin, lecz raczej zwiększa emisję tlenku węgla i węglowodorów. Nieszczelność pierścieni tłokowych skutkuje przedostawaniem się oleju silnikowego do komory spalania, co prowadzi do błękitnego zadymienia, a nie czarnego. Z kolei uszczelka podgłowicowa, jeśli jest nieszczelna, także nie powoduje czarnego dymu, lecz może prowadzić do przedostawania się płynu chłodzącego do cylindrów, co objawia się białym dymem. Typowym błędem myślowym jest mylenie symptomów z przyczynami; użytkownicy często przypisują nadmierne zadymienie spalin różnym problemom mechanicznym, zamiast skupić się na kluczowych komponentach, takich jak wtryskiwacze, które mają bezpośredni wpływ na proces spalania. W praktyce, zrozumienie funkcji wtryskiwaczy i ich wpływu na efektywność spalania jest kluczowe dla prawidłowej diagnozy problemów z emisją spalin.

Pytanie 36

Na rysunku przedstawiono sposób

Ilustracja do pytania
A. blokowania wału korbowego.
B. wymiany filtra oleju.
C. demontażu koła pasowego.
D. regulacji wydajności pompy oleju.
Blokowanie wału korbowego, regulacja wydajności pompy oleju i wymiana filtra oleju to różne rzeczy, które mają swoje własne narzędzia i zasady. Więc tak, blokowanie wału korbowego przydaje się przy wymianie rozrządu, ale ściągacz do kół pasowych nie jest potrzebny. Ludzie mogą czasami mylić rysunek z tym procesem, bo nie zawsze wiedzą, czym się różnią te narzędzia. Regulacja wydajności pompy oleju to bardziej sprawa ustawień, a demontaż koła pasowego nie jest z tym związany. No i wymiana filtra oleju też nie ma nic wspólnego ze ściągaczem. Więc trzeba być ostrożnym w myśleniu o tych różnych operacjach, bo pomylenie ich może prowadzić do złych wyborów narzędzi i problemów przy pracy. Każda operacja ma swoje specyficzne wymagania, a ich pomylenie może być naprawdę kłopotliwe.

Pytanie 37

Jakie jest zastosowanie użebrowania cylindrów w silniku, który jest chłodzony bezpośrednio?

A. odprowadzanie ciepła z cylindrów, które są chłodzone powietrzem
B. wzmocnienie struktury cylindra, który jest chłodzony powietrzem
C. wzmocnienie struktury cylindra, który jest chłodzony cieczą
D. odprowadzanie ciepła z cylindrów, które są chłodzone cieczą
Pojęcia dotyczące silników chłodzonych cieczą oraz błędne przypisanie konstrukcji cylindra do użebrowania w tym kontekście często prowadzą do nieporozumień. Silniki chłodzone cieczą korzystają z systemu chłodzenia, w którym ciecz przepływa przez kanały w blokach silnika, odprowadzając ciepło z cylindrów do chłodnicy. W tym przypadku zastosowanie użebrowania nie jest kluczowe, ponieważ mechanizm transportu ciepła odbywa się przez ciecz, a nie przez powietrze. Chociaż konstrukcja cylindra może być wzmacniana dla zwiększenia trwałości, to nie jest to bezpośrednio związane z odprowadzaniem ciepła. W silnikach chłodzonych powietrzem, z drugiej strony, to właśnie użebrowanie pełni istotną rolę w odprowadzaniu ciepła, co wyjaśnia, dlaczego odpowiedzi dotyczące konstrukcji cylindra w kontekście chłodzenia cieczą są mylące. Kolejnym błędem jest założenie, że każda forma użebrowania ma być przeznaczona wyłącznie do wzmocnienia konstrukcji, co zubaża zrozumienie wielofunkcyjności tego elementu. Dobrze zaprojektowane żebra mają za zadanie nie tylko wzmocnienie, ale przede wszystkim efektywne zarządzanie temperaturą, co w silnikach chłodzonych cieczą nie jest ich główną funkcją. Zrozumienie różnic między tymi dwoma systemami chłodzenia jest kluczowe dla inżynierów i projektantów, aby zapewnić odpowiednie rozwiązania w zakresie chłodzenia silników, które są niezbędne dla ich efektywności i niezawodności.

Pytanie 38

W samochodzie osobowym, aby zabezpieczyć koło przed samoczynnym odkręceniem, używa się

A. podkładek płaskich
B. nakrętek samohamownych
C. nakrętek z kołnierzem stożkowym
D. podkładek sprężystych
Wybór podkładek płaskich, nakrętek samohamownych czy podkładek sprężystych jako metody zabezpieczenia kół w samochodzie osobowym może prowadzić do poważnych problemów związanych z bezpieczeństwem. Podkładki płaskie, choć mogą wspierać równomierne rozłożenie siły, nie są przeznaczone do utrzymywania nakrętek w stałej pozycji pod wpływem wibracji. Ich zastosowanie nie jest wystarczające, gdyż nie eliminują ryzyka odkręcenia się nakrętek, co może mieć katastrofalne skutki na drodze. Nakrętki samohamowne, z drugiej strony, są stosowane w różnych aplikacjach, ale nie zawsze gwarantują pełne bezpieczeństwo w kontekście kół samochodowych. Ich konstrukcja nie jest idealna do radzenia sobie z zmieniającymi się siłami działającymi na koła w trakcie jazdy. Podkładki sprężyste, choć mogą poprawić trzymanie się nakrętek, także nie są dedykowanym rozwiązaniem dla pojazdów mechanicznych, gdzie kluczowe jest utrzymanie stabilności i połączenia nakrętki z felgą. Często błędne wybory wynikają z braku zrozumienia specyfikacji technicznych oraz przyjęcia niewłaściwych założeń co do działania różnych elementów złącznych. Właściwe zabezpieczenie kół wymaga znajomości standardów inżynieryjnych oraz praktycznego podejścia do instalacji, aby zapewnić bezpieczeństwo i niezawodność pojazdu.

Pytanie 39

Do rozmontowania kolumny Mc Phersona potrzebny jest ściągacz

A. sprężyn zaworowych.
B. sprężyn szczęk hamulcowych.
C. sprężyn układu zawieszenia.
D. łożysk.
Odpowiedź "sprężyn układu zawieszenia" jest poprawna, ponieważ demontaż kolumny McPhersona wiąże się z koniecznością usunięcia sprężyn, które są kluczowym elementem tego typu zawieszenia. Kolumna McPhersona jest popularnym rozwiązaniem w nowoczesnych pojazdach, wykorzystującym połączenie amortyzatora i sprężyny w jednej konstrukcji. Do demontażu sprężyn układu zawieszenia niezbędne jest zastosowanie odpowiedniego ściągacza sprężyn, który umożliwia bezpieczne i skuteczne usunięcie sprężyny z kolumny. W praktyce, przed przystąpieniem do demontażu, należy podnieść pojazd, zabezpieczyć go stabilnie, a następnie zdemontować koło, aby uzyskać dostęp do kolumny. Użycie ściągacza sprężyn jest niezbędne, aby uniknąć ryzyka uszkodzenia elementów zawieszenia, a także zapewnić bezpieczeństwo podczas pracy. Warto również pamiętać o dokładnym sprawdzeniu stanu pozostałych elementów zawieszenia oraz ich wymianie, jeśli tego wymaga sytuacja. Zgodność z zaleceniami producenta oraz odpowiednie narzędzia są kluczowe w prawidłowym przeprowadzeniu tej operacji.

Pytanie 40

Przy odkręcaniu korka zbiornika chłodnicy istnieje ryzyko

A. uszkodzenia płuc.
B. zmiażdżenia dłoni.
C. termicznego poparzenia ciała.
D. poparzenia ręki kwasem.
Podczas odkręcania korka chłodnicy, istnieje ryzyko termicznego poparzenia ciała, co jest związane z wysoką temperaturą płynu chłodniczego znajdującego się w układzie. Płyn chłodniczy, który krąży w silniku, osiąga znaczne wartości temperatury, często przekraczające 90 stopni Celsjusza. Gdy korek jest odkręcany, ciśnienie w układzie zostaje zniesione, co może prowadzić do gwałtownego uwolnienia pary wodnej oraz gorącego płynu, co stanowi bezpośrednie zagrożenie dla skóry. W związku z tym, przy odkręcaniu korka chłodnicy, zaleca się stosowanie odpowiednich procedur bezpieczeństwa, takich jak noszenie rękawic ochronnych oraz okularów przeciwsłonecznych. Ważne jest również, aby przed przystąpieniem do tej czynności odczekać, aż silnik wystygnie, co zminimalizuje ryzyko oparzeń. W branży motoryzacyjnej, przestrzeganie standardów BHP oraz stosowanie się do zaleceń producenta pojazdu jest kluczowe dla zapewnienia bezpieczeństwa podczas pracy z układami chłodzenia.