Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik informatyk
  • Kwalifikacja: INF.02 - Administracja i eksploatacja systemów komputerowych, urządzeń peryferyjnych i lokalnych sieci komputerowych
  • Data rozpoczęcia: 9 lutego 2026 11:31
  • Data zakończenia: 9 lutego 2026 11:55

Egzamin zdany!

Wynik: 23/40 punktów (57,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Uzyskanie przechowywania kopii często odwiedzanych witryn oraz zwiększenia bezpieczeństwa przez odfiltrowanie konkretnych treści w sieci Internet można osiągnąć dzięki

A. automatycznemu zablokowaniu plików cookies
B. konfiguracji serwera pośredniczącego proxy
C. zainstalowaniu oprogramowania antywirusowego oraz aktualnej bazy wirusów
D. użytkowaniu systemu z uprawnieniami administratora
Konfiguracja serwera pośredniczącego proxy pozwala na efektywne przechowywanie kopii często odwiedzanych stron oraz zwiększenie bezpieczeństwa użytkowników. Proxy działa jako pośrednik pomiędzy użytkownikiem a serwerem docelowym, co umożliwia buforowanie danych. Dzięki temu, gdy użytkownik odwiedza tę samą stronę ponownie, serwer proxy może dostarczyć mu zawartość z lokalnej pamięci, co znacząco przyspiesza ładowanie strony. Dodatkowo, proxy może filtrować treści, blokując dostęp do niebezpiecznych stron lub zawartości, co zwiększa zabezpieczenia sieciowe. W praktyce, wiele organizacji wykorzystuje serwery proxy do kontroli dostępu do internetu, monitorowania aktywności użytkowników oraz ochrony przed zagrożeniami sieciowymi. Zgodnie z dobrymi praktykami branżowymi, konfiguracja serwerów proxy powinna być wykonana przez specjalistów IT, którzy zapewnią optymalizację oraz odpowiednie zabezpieczenia, co przyczynia się do zwiększenia wydajności oraz bezpieczeństwa infrastruktury sieciowej.

Pytanie 2

Do zainstalowania serwera proxy w systemie Linux, konieczne jest zainstalowanie aplikacji

A. Samba
B. Postfix
C. Webmin
D. Squid
Squid to wydajny serwer proxy, który jest powszechnie stosowany w systemach Linux do zarządzania ruchem internetowym. Jest to oprogramowanie typu open source, co oznacza, że jest dostępne za darmo i cieszy się szerokim wsparciem społeczności. Squid umożliwia cache'owanie stron internetowych, co znacząco przyspiesza dostęp do najczęściej odwiedzanych zasobów. Dzięki temu nie tylko oszczędzamy pasmo, ale również zmniejszamy obciążenie serwerów zewnętrznych. Dodatkowo, Squid może pełnić rolę filtra treści, co jest przydatne w środowiskach korporacyjnych i edukacyjnych. Możliwość konfigurowania reguł dostępu i autoryzacji użytkowników sprawia, że Squid jest bardzo elastyczny i dostosowuje się do różnych scenariuszy użycia. Warto również zaznaczyć, że Squid obsługuje protokoły HTTP, HTTPS oraz FTP, co czyni go wszechstronnym narzędziem do zarządzania połączeniami sieciowymi.

Pytanie 3

AC-72-89-17-6E-B2 to adres MAC karty sieciowej zapisany w formacie

A. oktalnej
B. binarnej
C. heksadecymalnej
D. dziesiętnej
Adres AC-72-89-17-6E-B2 to przykład adresu MAC, który jest zapisany w formacie heksadecymalnym. W systemie heksadecymalnym każda cyfra może przyjmować wartości od 0 do 9 oraz od A do F, co pozwala na reprezentację 16 różnych wartości. W kontekście adresów MAC, każda para heksadecymalnych cyfr reprezentuje jeden bajt, co jest kluczowe w identyfikacji urządzeń w sieci. Adresy MAC są używane w warstwie łącza danych modelu OSI i są istotne w takich protokołach jak Ethernet. Przykładowe zastosowanie adresów MAC to filtrowanie adresów w routerach, co pozwala na kontrolę dostępu do sieci. Zrozumienie systemów liczbowych, w tym heksadecymalnego, jest istotne dla profesjonalistów w dziedzinie IT, ponieważ wiele protokołów i standardów, takich jak IPv6, stosuje heksadecymalną notację. Ponadto, dobra znajomość adresowania MAC jest niezbędna przy rozwiązywaniu problemów z sieciami komputerowymi, co czyni tę wiedzę kluczową w pracy administratorów sieci.

Pytanie 4

Jakie polecenie jest wysyłane do serwera DHCP, aby zwolnić wszystkie adresy przypisane do interfejsów sieciowych?

A. ipconfig /release
B. ipconfig /renew
C. ipconfig /displaydns
D. ipconfig /flushdns
Polecenie 'ipconfig /release' jest używane do zwolnienia aktualnie przypisanych adresów IP przez klienta DHCP, co oznacza, że informuje serwer DHCP o zwolnieniu dzierżawy. Użycie tego polecenia jest kluczowe w sytuacjach, gdy użytkownik chce zmienić adres IP lub zresetować konfigurację sieciową. Na przykład, po zakończeniu korzystania z sieci Wi-Fi w biurze, użytkownik może użyć tego polecenia, aby zwolnić adres IP, który został mu przypisany. Dzięki temu serwer DHCP może przydzielić go innym urządzeniom w sieci. To podejście jest zgodne z dobrymi praktykami, ponieważ umożliwia efektywne zarządzanie zasobami adresów IP, szczególnie w dynamicznych środowiskach, gdzie urządzenia często łączą się i rozłączają z siecią. Dodatkowo, korzystanie z tego polecenia pomaga unikać konfliktów adresów IP, które mogą wystąpić, gdy dwa urządzenia próbują używać tego samego adresu jednocześnie, co jest szczególnie ważne w dużych sieciach.

Pytanie 5

Zgodnie z zamieszczonym fragmentem testu w systemie komputerowym zainstalowane są

Ilustracja do pytania
A. pamięć fizyczna 0,70 GB i plik wymiany 1,22 GB
B. pamięć fizyczna 0,49 GB i plik wymiany 1,22 GB
C. pamięć fizyczna 0,49 GB i plik wymiany 1,20 GB
D. pamięć fizyczna 0,50 GB i plik wymiany 1,00 GB
Niepoprawne odpowiedzi dotyczą różnic w interpretacji i odczycie wartości pamięci fizycznej oraz pliku wymiany. Napotykane błędy wynikają często z błędnego rozumienia jednostek miary oraz mechanizmów zarządzania pamięcią przez systemy operacyjne. Pamięć fizyczna odnosi się do zainstalowanego RAM, podczas gdy plik wymiany to logiczna przestrzeń na dysku twardym, której system operacyjny używa jako wirtualnego rozszerzenia pamięci RAM. Niepoprawne odczytanie tych wartości może wynikać z pomylenia jednostek miary takich jak MB i GB, co jest powszechnym problemem w interpretacji danych systemowych. Niezrozumienie tego, jak system wykorzystuje pamięć fizyczną i wirtualną, prowadzi do błędnych wniosków dotyczących wydajności komputera. Użytkownicy często nie uwzględniają różnic między pamięcią używaną a dostępną, co jest kluczowe, by odpowiednio zarządzać zasobami systemowymi. W kontekście zawodowym takie nieporozumienia mogą prowadzić do niewłaściwych decyzji związanych z zakupem czy konfiguracją sprzętu komputerowego. Dlatego tak ważne jest, aby regularnie poszerzać swoją wiedzę na temat zarządzania pamięcią w systemach komputerowych oraz umiejętnie interpretować dane związane z jej użyciem i alokacją w celu optymalizacji wydajności systemu.

Pytanie 6

Najskuteczniejszym sposobem na codzienną archiwizację pojedynczego pliku o objętości 4,8 GB, na jednym komputerze bez dostępu do sieci, jest

A. spakowaniem i umieszczeniem w lokalizacji sieciowej
B. zastosowaniem pamięci USB z systemem plików NTFS
C. zastosowaniem pamięci USB z systemem plików FAT
D. nagraniem na płytę DVD-5 w formacie ISO
Użycie pamięci USB z systemem plików NTFS to najbardziej efektywny sposób archiwizacji pliku o rozmiarze 4,8 GB. System plików NTFS obsługuje pliki większe niż 4 GB, co jest kluczowe w tej sytuacji, ponieważ rozmiar pliku przekracza limit systemu plików FAT32, który wynosi 4 GB. NTFS oferuje również dodatkowe funkcje, takie jak zarządzanie uprawnieniami, kompresję danych oraz wsparcie dla dużych partycji, co czyni go bardziej elastycznym i bezpiecznym rozwiązaniem w porównaniu do FAT32. Przykładowo, podczas przenoszenia plików multimedialnych o dużych rozmiarach, użytkownicy mogą polegać na NTFS, aby uniknąć problemów z ograniczeniami rozmiaru pliku. Warto również zauważyć, że NTFS jest standardem w systemach Windows, co sprawia, że jest to naturalny wybór dla użytkowników tych systemów operacyjnych. Dobre praktyki zalecają korzystanie z NTFS w sytuacjach, gdzie wymagana jest archiwizacja dużych plików, aby zapewnić ich integralność i dostępność.

Pytanie 7

Matryce monitorów typu charakteryzują się najmniejszymi kątami widzenia

A. PVA
B. TN
C. MVA
D. IPS/S-IPS
Matryce TN (Twisted Nematic) mają dość ograniczone kąty widzenia w porównaniu do innych typów, jak IPS czy MVA. To wynika z konstrukcji technologii TN, bo cząsteczki ciekłych kryształów są tam skręcone, przez co światło przechodzi inaczej. W praktyce oznacza to, że jak patrzysz na monitor TN pod kątem, to jakość obrazu i kontrast się pogarszają. To ważna rzecz do przemyślenia, jeśli planujesz używać monitora do pracy z grafiką lub wideo. Z drugiej strony, matryce TN mają bardzo szybki czas reakcji, więc świetnie się sprawdzają w grach czy podczas oglądania filmów akcji, gdzie ważne to, żeby nie było lagów. Warto zrozumieć, do czego będziesz używać monitora – jeśli zależy Ci na szybkości, TN mogą być ok, ale do zadań wymagających szerokich kątów widzenia lepiej się zastanowić nad innym typem matrycy.

Pytanie 8

Który symbol wskazuje na zastrzeżenie praw autorskich?

Ilustracja do pytania
A. A.
B. C.
C. B.
D. D.
Rozpoznanie symbolu zastrzeżenia praw autorskich jest kluczowe w zakresie ochrony własności intelektualnej. Błędne interpretacje tych symboli mogą prowadzić do naruszeń praw co ma istotne konsekwencje prawne i finansowe. Symbol R w kółku oznacza znak towarowy który jest zarejestrowany co chroni nazwę lub logo firmy przed nieuprawnionym użyciem przez innych. Jest ono istotne w kontekście budowania marki i ochrony tożsamości biznesowej. Symbol T w kółku nie ma powszechnie uznanego znaczenia w kontekście praw własności intelektualnej i jego użycie jest zazwyczaj nieformalnym oznaczeniem. G w kółku również nie jest standardowo używany w ochronie prawnej chociaż mógłby być utożsamiany z różnymi nieoficjalnymi znaczeniami w zależności od kontekstu. Niezrozumienie różnic między tymi symbolami i ich znaczeniem może prowadzić do błędów w ochronie praw co jest kluczowe w rozwijającym się globalnym rynku. Dlatego edukacja na temat praw własności intelektualnej i związanych z nimi symboli jest niezbędna dla profesjonalistów w każdej branży aby zapewnić prawidłowe zastosowanie i unikanie konfliktów prawnych. Prawidłowe rozpoznanie symbolu praw autorskich pozwala na świadome korzystanie z utworów i przestrzeganie praw twórców co jest fundamentem etycznym i prawnym w wielu dziedzinach działalności zawodowej. Poprawna interpretacja tych symboli jest zatem kluczowa w zarządzaniu własnością intelektualną i ochronie interesów twórców oraz firm.

Pytanie 9

Jakim standardem posługuje się komunikacja między skanerem a aplikacją graficzną?

A. TWAIN
B. OPC
C. USB
D. SCAN
Standard TWAIN jest kluczowym protokołem komunikacyjnym, który umożliwia interakcję między skanerami a aplikacjami graficznymi, takimi jak programy do obróbki zdjęć czy skanowania dokumentów. TWAIN zapewnia jednolity sposób wymiany danych, co eliminuje potrzebę pisania dedykowanych sterowników dla każdego urządzenia. Dzięki temu użytkownicy mogą bezproblemowo skanować obrazy bez względu na producenta sprzętu. Przykładem zastosowania standardu TWAIN jest skanowanie dokumentów w biurach, gdzie wiele komputerów korzysta z jednego skanera. W takim przypadku oprogramowanie zgodne z TWAIN może być użyte na każdym z komputerów, co zwiększa wydajność i ułatwia pracę. Standard ten jest także szeroko wspierany przez różne systemy operacyjne, co czyni go rozwiązaniem uniwersalnym w branży. Dodatkowo, wiele nowoczesnych aplikacji, takich jak Adobe Photoshop czy GIMP, obsługuje standard TWAIN, co czyni go standardem de facto w dziedzinie skanowania.

Pytanie 10

W drukarce laserowej do stabilizacji druku na papierze używane są

A. bęben transferowy
B. promienie lasera
C. rozgrzane wałki
D. głowice piezoelektryczne
W drukarkach laserowych proces utrwalania wydruku na papierze jest kluczowym etapem, który zapewnia trwałość i jakość wydruku. Rozgrzane wałki, znane jako wałki utrwalające, pełnią w tym procesie fundamentalną rolę. Po nałożeniu tonera na papier, wałki te przekształcają energię cieplną na ciśnienie, co powoduje stopienie tonera i jego wniknięcie w strukturę papieru. Dzięki temu, po zakończeniu procesu utrwalania, wydruk staje się odporny na działanie wody, tarcia oraz blaknięcie. Ważne jest, aby wałki były odpowiednio rozgrzane do temperatury około 180-200 stopni Celsjusza, co zapewnia optymalną jakość i trwałość wydruku. Utrwalanie przy użyciu wałków jest zgodne z najlepszymi praktykami w branży, co potwierdzają liczne standardy ISO dotyczące jakości wydruków. Warto również zauważyć, że dobry stan wałków jest kluczowy dla utrzymania wysokiej jakości druku, dlatego regularna konserwacja i czyszczenie urządzenia są niezbędne. Przykładem zastosowania tej technologii są biura, które potrzebują wydruków o wysokiej jakości, takich jak raporty czy prezentacje, gdzie estetyka i trwałość wydruku są kluczowe.

Pytanie 11

Aby zapewnić maksymalną ochronę danych przy użyciu dokładnie 3 dysków, powinny one być przechowywane w macierzy RAID

A. RAID 6
B. RAID 50
C. RAID 10
D. RAID 5
RAID 5 to popularny poziom macierzy dyskowej, który wykorzystuje zarówno striping, jak i parzystość, co pozwala na zapewnienie bezpieczeństwa danych przy użyciu co najmniej trzech dysków. W przypadku utraty jednego dysku, dane mogą być odtworzone z pozostałych, dzięki zapisanej parzystości. RAID 5 jest często wykorzystywany w zastosowaniach, gdzie ważna jest zarówno wydajność, jak i bezpieczeństwo, na przykład w serwerach plików czy systemach baz danych. Warto zauważyć, że RAID 5 zapewnia efektywne wykorzystanie przestrzeni dyskowej, ponieważ tylko jeden dysk jest zarezerwowany na parzystość. Dodatkowo, przy zastosowaniu RAID 5 możliwe jest zwiększenie wydajności odczytu, co czyni go dobrym wyborem dla średnich i dużych organizacji. Zgodnie z najlepszymi praktykami, RAID 5 należy stosować w środowiskach, które mogą tolerować awarię jednego dysku, ale nie więcej. Ważne jest również regularne tworzenie kopii zapasowych danych, aby zabezpieczyć się przed innymi zagrożeniami, takimi jak usunięcie danych przez błąd ludzki czy złośliwe oprogramowanie.

Pytanie 12

Rodzajem złośliwego oprogramowania będącego programem rezydentnym, który działa, wykonując konkretną operację, nie powiela się przez sieć, a jedną z jego metod jest samoreplikacja aż do wyczerpania pamięci komputera, jest

A. Rootkit
B. Backdoor
C. Wabbit
D. Stealware
Wielu osobom rootkit, stealware czy backdoor wydają się pasować do opisu złośliwego oprogramowania, ale każda z tych kategorii ma swoje charakterystyczne cechy i działa zupełnie inaczej niż wabbit. Rootkit to w rzeczywistości złośliwy zestaw narzędzi służących do ukrywania obecności atakującego na zainfekowanym systemie – nie chodzi tu o samoreplikację czy wyczerpywanie pamięci, tylko raczej o długofalowe utrzymanie się w systemie i maskowanie innych szkodliwych procesów. Stealware, jak sama nazwa sugeruje, jest projektowane głównie po to, by wykradać dane lub przekierowywać środki, najczęściej przy pomocy manipulowania ruchem internetowym użytkownika. To złośliwe oprogramowanie jest raczej ciche i nie powoduje skokowego zużycia pamięci RAM czy przeciążenia procesora. Jeśli chodzi o backdoora, to mamy do czynienia z funkcją umożliwiającą pominięcie standardowych mechanizmów uwierzytelniania – backdoor pozwala atakującemu na dostęp do systemu, ale nie opiera się na masowej samoreplikacji i wyczerpywaniu zasobów sprzętowych. Moim zdaniem często powtarzanym błędem jest utożsamianie wszelkich poważniejszych objawów infekcji z rootkitami lub backdoorami, bo te określenia są popularne w mediach. Jednak w praktyce, jeśli widzimy objawy typowego wyczerpywania pamięci wskutek masowego namnażania się procesu, to należy pomyśleć właśnie o takich przypadkach jak wabbit. Standardy bezpieczeństwa, jak ISO/IEC 27002, zalecają, by analizować symptomy ataku z kilku perspektyw – nie tylko przez pryzmat wykradania danych lub zdalnej kontroli, ale też pod kątem anomalii w zarządzaniu zasobami systemowymi. W tej sytuacji, żadne z wymienionych błędnych odpowiedzi nie trafia w sedno mechanizmu działania złośliwego programu opisanego w pytaniu.

Pytanie 13

Który kabel powinien być użyty do budowy sieci w lokalach, gdzie występują intensywne pola zakłócające?

A. Koncentryczny z transmisją w paśmie podstawowym
B. Koncentryczny z transmisją szerokopasmową
C. Ekranowany
D. Typu skrętka
Wybór przewodu do instalacji sieciowej w obszarze z intensywnymi zakłóceniami elektromagnetycznymi jest kluczowy dla zapewnienia stabilności i jakości transmisji. Przewody koncentryczne, zarówno te z transmisją w paśmie podstawowym, jak i szerokopasmową, charakteryzują się dobrą odpornością na zakłócenia, jednakże nie są one najlepszym rozwiązaniem w kontekście silnych pól elektromagnetycznych. Głównym ograniczeniem przewodów koncentrycznych jest ich budowa, która, mimo że skutecznie chroni sygnał przed zakłóceniami z otoczenia, nie oferuje tak wysokiego poziomu ekranowania jak przewody ekranowane. Dodatkowo, przewody typu skrętka, chociaż powszechnie stosowane w sieciach komputerowych, również nie są dostatecznie zabezpieczone przed silnymi zakłóceniami, co czyni je mniej efektywnym wyborem w trudnych warunkach. Dlatego ważne jest, aby nie kierować się jedynie ogólnymi zasadami doboru przewodów, ale również rozważać specyfikę danego środowiska. W kontekście standardów branżowych, przewody ekranowane są zgodne z wymaganiami określonymi w dokumentach takich jak ISO/IEC 11801, które podkreślają znaczenie skutecznej ochrony przed zakłóceniami w instalacjach sieciowych. Dlatego, wybierając przewody do miejsc o zwiększonym ryzyku zakłóceń, warto kierować się normami i najlepszymi praktykami, aby zapewnić optymalne parametry transmisji.

Pytanie 14

Na podstawie zaprezentowanego cennika oblicz, jaki będzie całkowity koszt jednego dwumodułowego podwójnego gniazda abonenckiego montowanego na powierzchni.

Lp.Nazwaj.m.Cena jednostkowa brutto
1.Puszka natynkowa 45x45 mm dwumodułowaszt.4,00 zł
2.Ramka + suport 45x45 mm dwumodułowaszt.4,00 zł
3.Adapter 22,5x45 mm do modułu keystoneszt.3,00 zł
4.Moduł keystone RJ45 kategorii 5eszt.7,00 zł
A. 18,00 zł
B. 25,00 zł
C. 32,00 zł
D. 28,00 zł
Wybór innych odpowiedzi może być wynikiem nieporozumienia dotyczącego elementów składających się na gniazdo abonenckie. Często mylone są pojedyncze moduły z całkowitym kosztem gniazda. Na przykład, wybierając 18,00 zł, można błędnie zakładać, że uwzględniono tylko wybrane elementy, takie jak sama puszka i ramka, nie biorąc pod uwagę adapterów czy modułów keystone. Takie podejście prowadzi do niedoszacowania całkowitego kosztu instalacji, co jest typowym błędem wśród osób nieprzeszkolonych w zakresie doboru komponentów elektronicznych. Dla odpowiedzi 25,00 zł, pominięto koszty związane z dodatkowymi modułami, co wskazuje na brak uwzględnienia pełnej specyfikacji produktu. Warto zaznaczyć, że przy projektowaniu systemów IT i telekomunikacyjnych kluczowe jest uwzględnienie wszystkich niezbędnych elementów, aby uniknąć niespodzianek podczas instalacji. W kontekście standardów branżowych, takich jak ISO/IEC 11801, niezbędne jest dostosowanie się do określonych norm, co zapewnia nie tylko zgodność, ale również długoterminową efektywność i bezpieczeństwo systemów.

Pytanie 15

Planowana sieć należy do kategorii C. Została ona podzielona na 4 podsieci, z których każda obsługuje 62 urządzenia. Która z poniższych masek będzie odpowiednia do tego zadania?

A. 255.255.255.224
B. 255.255.255.192
C. 255.255.255.128
D. 255.255.255.240
Odpowiedź 255.255.255.192 jest prawidłowa, ponieważ maska ta umożliwia podział sieci klasy C na cztery podsieci, z których każda obsługuje do 62 urządzeń. Maska 255.255.255.192 w notacji CIDR odpowiada /26, co oznacza, że 6 bitów jest używanych do adresowania hostów w podsieci. Przy 6 bitach dostępnych dla hostów, możemy obliczyć liczbę możliwych adresów za pomocą wzoru 2^n - 2, gdzie n to liczba bitów dla hostów. W tym przypadku 2^6 - 2 = 64 - 2 = 62. Dwa adresy są zarezerwowane: jeden dla adresu sieci (wszystkie bity hostów ustawione na 0) i jeden dla adresu rozgłoszeniowego (wszystkie bity hostów ustawione na 1). Dzięki zastosowaniu maski 255.255.255.192, możemy w pełni wykorzystać dostępne adresy IP w każdej podsieci, co jest zgodne z najlepszymi praktykami w projektowaniu sieci opartej na IP, zapewniając efektywne wykorzystanie zasobów IP.

Pytanie 16

Jak nazywa się topologia fizyczna sieci, która wykorzystuje fale radiowe jako medium transmisyjne?

A. pierścienia
B. ad-hoc
C. magistrali
D. CSMA/CD
Wybór innych topologii wskazuje na nieporozumienie dotyczące ich definicji oraz zastosowania. Topologia pierścienia polega na tym, że każde urządzenie jest połączone z dwoma innymi, tworząc zamknięty obwód. W tej strukturze dane przesyłane są w jednym kierunku, co skutkuje większym ryzykiem wystąpienia problemów z transmisją, jeśli jedno z urządzeń ulegnie awarii. Topologia magistrali jest prostą strukturą, w której wszystkie urządzenia są podłączone do jednego kabla. Wymaga to jednak, aby medium transmisyjne było stabilne, a w przypadku uszkodzenia kabla cała sieć może przestać funkcjonować. Z kolei CSMA/CD (Carrier Sense Multiple Access with Collision Detection) to metoda kontroli dostępu do medium, która nie jest typologią, lecz protokołem stosowanym w sieciach Ethernet. Oznacza to, że CSMA/CD reguluje, jak urządzenia w sieci powinny uzyskiwać dostęp do medium, aby zminimalizować kolizje, a nie określa samej struktury połączeń. Zrozumienie różnic między tymi terminami jest kluczowe dla efektywnego projektowania i zarządzania sieciami komputerowymi.

Pytanie 17

Wtyczka (modularne złącze męskie) przedstawiona na rysunku stanowi zakończenie przewodu

Ilustracja do pytania
A. koncentrycznego
B. U/UTP
C. F/UTP
D. światłowodowego
Rozważając inne opcje, należy zrozumieć istotę złączy i ich zastosowanie w różnych typach kabli. Kable światłowodowe nie są zakończone złączami RJ-45, ponieważ używają innego typu złączy, takich jak SC czy LC, które są dostosowane do transmisji danych za pomocą światła. Kable koncentryczne, które są stosowane w telewizji kablowej i połączeniach antenowych, również nie używają złączy RJ-45; typowym złączem dla nich jest złącze typu F. Z kolei kable U/UTP, czyli Unshielded Twisted Pair, podobnie jak F/UTP mogą używać złączy RJ-45, ale brak ekranowania w kablach U/UTP sprawia, że są one bardziej podatne na zakłócenia elektromagnetyczne. W związku z tym, w miejscach o dużym natężeniu takich zakłóceń, używa się kabli F/UTP, które zapewniają dodatkową ochronę dzięki ekranowaniu. Typowym błędem jest mylenie rodzajów kabli i ich przeznaczenia, co prowadzi do niewłaściwego doboru komponentów sieciowych. Zrozumienie różnic między tymi technologiami jest kluczowe dla zapewnienia optymalnej wydajności i stabilności systemów teleinformatycznych. Dokonanie niewłaściwego wyboru może prowadzić do problemów z sygnałem i utratą danych, dlatego ważne jest, aby dobrze znać specyfikacje i zastosowanie każdego z rodzaju kabli i złączy.

Pytanie 18

W filmie przedstawiono konfigurację ustawień maszyny wirtualnej. Wykonywana czynność jest związana z

A. konfigurowaniem adresu karty sieciowej.
B. dodaniem drugiego dysku twardego.
C. wybraniem pliku z obrazem dysku.
D. ustawieniem rozmiaru pamięci wirtualnej karty graficznej.
Poprawnie – w tej sytuacji chodzi właśnie o wybranie pliku z obrazem dysku (ISO, VDI, VHD, VMDK itp.), który maszyna wirtualna będzie traktować jak fizyczny nośnik. W typowych programach do wirtualizacji, takich jak VirtualBox, VMware czy Hyper‑V, w ustawieniach maszyny wirtualnej przechodzimy do sekcji dotyczącej pamięci masowej lub napędów optycznych i tam wskazujemy plik obrazu. Ten plik może pełnić rolę wirtualnego dysku twardego (system zainstalowany na stałe) albo wirtualnej płyty instalacyjnej, z której dopiero instalujemy system operacyjny. W praktyce wygląda to tak, że zamiast wkładać płytę DVD do napędu, podłączasz plik ISO z obrazu instalacyjnego Windowsa czy Linuxa i ustawiasz w BIOS/UEFI maszyny wirtualnej bootowanie z tego obrazu. To jest podstawowa i zalecana metoda instalowania systemów w VM – szybka, powtarzalna, zgodna z dobrymi praktykami. Dodatkowo, korzystanie z plików obrazów dysków pozwala łatwo przenosić całe środowiska między komputerami, robić szablony maszyn (tzw. template’y) oraz wykonywać kopie zapasowe przez zwykłe kopiowanie plików. Moim zdaniem to jedna z najważniejszych umiejętności przy pracy z wirtualizacją: umieć dobrać właściwy typ obrazu (instalacyjny, systemowy, LiveCD, recovery), poprawnie go podpiąć do właściwego kontrolera (IDE, SATA, SCSI, NVMe – zależnie od hypervisora) i pamiętać o odpięciu obrazu po zakończonej instalacji, żeby maszyna nie startowała ciągle z „płyty”.

Pytanie 19

Która pula adresów IPv6 jest odpowiednikiem adresów prywatnych w IPv4?

A. ff00::/8
B. fc00::/7
C. 3ffe::/16
D. fe80::/10
Pula fc00::/7 to tzw. adresy ULA (Unique Local Addresses) i właśnie one są odpowiednikiem prywatnych adresów IPv4 z zakresów 10.0.0.0/8, 172.16.0.0/12 czy 192.168.0.0/16. Chodzi o adresy, które mają być routowane tylko wewnątrz organizacji lub sieci lokalnej, a nie w publicznym Internecie. Z punktu widzenia administratora sieci działają więc podobnie jak prywatne IPv4: możesz ich używać do adresacji hostów w LAN, w sieciach firmowych, w labach, bez konieczności rejestracji czy kupowania puli od operatora. Standardowo opisuje to RFC 4193, które definiuje właśnie Unique Local IPv6 Unicast Addresses. W praktyce w IPv6 unika się NAT w takiej formie jak w IPv4, ale ULA nadal ma sens: np. do adresacji urządzeń, które nigdy nie powinny być dostępne z Internetu, do połączeń site-to-site VPN między oddziałami firmy, do serwerów baz danych, drukarek, urządzeń IoT. Dobra praktyka jest taka, żeby w sieci firmowej używać ULA równolegle z globalnymi adresami unicast (np. z puli od ISP) – wtedy nawet jeśli zmienisz operatora i zmieni się globalny prefix, wewnętrzna komunikacja oparta na ULA dalej działa bez przeróbek całej adresacji. Warto też wiedzieć, że fc00::/7 obejmuje zakresy zaczynające się od fc00:: oraz fd00::, przy czym w praktyce używa się najczęściej fd00::/8 z losowo generowanym identyfikatorem globalnym, żeby zminimalizować ryzyko konfliktów między organizacjami. Moim zdaniem, z punktu widzenia projektowania sieci, świadomość różnicy między ULA a link-local i global unicast to absolutna podstawa, bo od tego zależy poprawna i bezpieczna architektura adresacji w IPv6.

Pytanie 20

Parametr pamięci RAM określany czasem jako opóźnienie definiuje się jako

A. CAS Latency
B. RAS Precharge
C. RAS to CAS Delay
D. Command Rate
CAS Latency, czyli opóźnienie dostępu do pamięci, jest kluczowym parametrem pamięci RAM, który określa, jak długo procesor musi czekać na dane po wydaniu polecenia odczytu. Skrót CAS oznacza Column Address Strobe, a 'latency' odnosi się do liczby cykli zegara, jakie są potrzebne, aby uzyskać dostęp do określonej kolumny w pamięci. Przykładowo, jeśli pamięć ma CAS Latency równą 16, oznacza to, że procesor musi czekać 16 cykli zegara na dostęp do danych po wysłaniu polecenia. W praktyce, mniejsze wartości CAS Latency oznaczają szybsze czasy dostępu, co może przekładać się na lepszą wydajność systemu, szczególnie w zastosowaniach wymagających dużej przepustowości danych, takich jak gry komputerowe czy obróbka wideo. Standardy branżowe, takie jak JEDEC, określają różne klasy pamięci RAM i ich parametry, co pozwala na odpowiednie dobieranie komponentów w zależności od potrzeb użytkownika. Dlatego przy wyborze pamięci RAM warto zwracać uwagę na CAS Latency, aby zapewnić optymalną wydajność i stabilność systemu.

Pytanie 21

Jaką maksymalną długość kabla typu skrętka pomiędzy panelem krosowniczym a gniazdem abonenckim przewiduje norma PN-EN 50174-2?

A. 50 m
B. 100 m
C. 10 m
D. 90 m
Długości 10 m i 50 m są znacznie poniżej wymagań określonych w normach dla kabli skrętkowych, co może prowadzić do nieprawidłowych założeń dotyczących instalacji sieciowych. Krótsze kable mogą wydawać się bardziej efektywne, jednak w praktyce mogą ograniczać elastyczność układu sieci. Na przykład, w biurze zaprojektowanym na 10 m długości kabli, może być trudno dostosować rozmieszczenie stanowisk pracy, co prowadzi do zwiększenia kosztów związanych z rozbudową lub przelokowaniem instalacji. Z drugiej strony, długość 100 m przekracza dopuszczalne limity określone przez normę PN-EN 50174-2, co może skutkować degradacją sygnału i obniżeniem wydajności sieci. Długie kable mogą generować większe straty sygnału, co jest szczególnie zauważalne w sieciach działających na wyższych prędkościach, takich jak 1 Gbps czy nawet 10 Gbps. Przekroczenie dopuszczalnej długości może prowadzić do błędów w transmisji danych, co w wielu sytuacjach kończy się koniecznością przeprowadzenia kosztownych napraw lub modyfikacji instalacji. Właściwe zrozumienie długości segmentów kabli i ich wpływu na jakość sieci jest kluczowe dla efektywnego projektowania i wdrażania systemów okablowania strukturalnego.

Pytanie 22

Komputery K1, K2, K3, K4 są podłączone do interfejsów przełącznika, które są przypisane do VLAN-ów wymienionych w tabeli. Które z tych komputerów mają możliwość komunikacji ze sobą?

Nazwa komputeraAdres IPNazwa interfejsuVLAN
K110.10.10.1/24F1VLAN 10
K210.10.10.2/24F2VLAN 11
K310.10.10.3/24F3VLAN 10
K410.10.11.4/24F4VLAN 11
A. K1 i K2
B. K1 z K3
C. K1 i K4
D. K2 i K4
W sieciach komputerowych VLAN-y są używane do segmentacji sieci w logiczne domeny rozgłoszeniowe. Komputery przypisane do różnych VLAN-ów nie mogą się ze sobą bezpośrednio komunikować, ponieważ każdy VLAN to oddzielna sieć logiczna. Jeśli dwa urządzenia znajdują się w różnych VLAN-ach, jak w przypadku K1 i K2, K1 i K4, oraz K2 i K4, nie będą mogły się komunikować bez dodatkowego sprzętu lub konfiguracji, takiego jak routery lub przełączniki warstwy trzeciej, które umożliwiają routowanie między VLAN-ami. Typowym błędem jest założenie, że bliskość fizyczna lub wspólny przełącznik pozwala na komunikację; jednakże bez odpowiedniej konfiguracji VLAN-y działają jak odrębne sieci. Zrozumienie tej izolacji jest kluczowe w projektowaniu bezpiecznych i wydajnych sieci. Niepoprawna konfiguracja może prowadzić do problemów z wydajnością i bezpieczeństwem. Konceptualnie, osoby często mylą adresację IP z przypisaniem do VLAN-u, co może dodatkowo powodować nieporozumienia w kontekście dostępu do zasobów sieciowych. Implementacja VLAN-ów pozwala na lepsze zarządzanie ruchem sieciowym i skuteczniejszą kontrolę nad przepływem danych w organizacji. Ważne jest, aby administratorzy sieci rozumieli, że przypisanie do tego samego VLAN-u jest niezbędne do bezpośredniej komunikacji między urządzeniami bez dodatkowych mechanizmów.

Pytanie 23

W którym z rejestrów wewnętrznych procesora są przechowywane dodatkowe informacje o wyniku realizowanej operacji?

A. W akumulatorze
B. W rejestrze flagowym
C. We wskaźniku stosu
D. W liczniku rozkazów
W akumulatorze, wskaźniku stosu oraz liczniku rozkazów nie przechowuje się informacji o dodatkowych cechach wyników operacji w takim samym sensie jak w rejestrze flagowym. Akumulator jest głównie używany do przechowywania tymczasowych wyników obliczeń oraz operacji arytmetycznych, które są wykonywane przez procesor. Choć służy do przetwarzania danych, nie dostarcza informacji o statusie wyników, co ogranicza jego funkcjonalność w kontekście monitorowania stanów operacji. Wskaźnik stosu z kolei odpowiada za zarządzanie stosami danych w pamięci, umożliwiając przechowywanie adresów powrotu oraz lokalnych zmiennych, ale nie jest odpowiedzialny za rejestrowanie dodatkowych informacji o wynikach operacyjnych. Natomiast licznik rozkazów ma za zadanie śledzenie adresu następnej instrukcji do wykonania, co również nie ma związku z analizą wyników operacji. Typowe błędy myślowe, które mogą prowadzić do wyboru tych niepoprawnych odpowiedzi, to mylenie funkcji przechowywania wyników z funkcjami kontrolnymi. Istotne jest zrozumienie, że rejestr flagowy, jako element architektury procesora, pełni unikalną rolę w monitorowaniu stanów operacji, co jest kluczowe dla prawidłowego działania programów i optymalizacji ich wydajności.

Pytanie 24

Licencja Office 365 PL Personal (jedno stanowisko, subskrypcja na rok) ESD jest przypisana do

A. wyłącznie jednego użytkownika, na jednym komputerze, jednym tablecie i jednym telefonie, tylko do celów niekomercyjnych
B. dowolnej liczby użytkowników, jedynie na jednym komputerze do celów komercyjnych i niekomercyjnych
C. wyłącznie jednego użytkownika na jednym komputerze oraz jednym urządzeniu mobilnym do celów komercyjnych i niekomercyjnych
D. dowolnej liczby użytkowników, jedynie na jednym komputerze do celów komercyjnych
Wiele osób myli zasady licencjonowania oprogramowania, co może prowadzić do błędnych wniosków. Przykładowo, przypisanie licencji do "dowolnej liczby użytkowników" jest nieprawidłowe w kontekście Office 365 PL Personal, ponieważ licencja ta jest ściśle ograniczona do jednego użytkownika. Użytkownicy mogą mieć tendencję do interpretacji licencji jako możliwości dzielenia się oprogramowaniem z innymi, co jest niezgodne z jej warunkami. Kolejnym powszechnym błędem jest przekonanie, że licencja może być używana na kilku urządzeniach przez różnych użytkowników, co jest sprzeczne z zasadą przypisania licencji do jednej osoby. Warto również zauważyć, że wiele osób może błędnie założyć, że licencje do celów komercyjnych i niekomercyjnych są wymienne, co jest mylnym podejściem. Licencje na oprogramowanie często mają różne warunki użycia, a ich niewłaściwe zrozumienie może prowadzić do naruszenia umowy licencyjnej, co z kolei może skutkować konsekwencjami prawnymi i finansowymi. Kluczowe jest zatem dokładne zapoznanie się z zapisami umowy licencyjnej, aby uniknąć problemów związanych z jej naruszeniem. W kontekście zarządzania oprogramowaniem, znajomość modeli licencjonowania oraz ich praktyczne zastosowanie w codziennej pracy ma kluczowe znaczenie dla efektywności oraz zgodności z przepisami prawa.

Pytanie 25

Zintegrowana karta sieciowa na płycie głównej uległa awarii. Komputer nie może załadować systemu operacyjnego, ponieważ brakuje zarówno dysku twardego, jak i napędów optycznych, a system operacyjny jest uruchamiany z lokalnej sieci. W celu przywrócenia utraconej funkcjonalności, należy zainstalować w komputerze

A. najprostszą kartę sieciową wspierającą IEEE 802.3
B. kartę sieciową wspierającą funkcję Preboot Execution Environment
C. dysk SSD
D. napęd DVD-ROM
Wybór napędu CD-ROM jest niewłaściwy, ponieważ w przedstawionym scenariuszu komputer nie ma zainstalowanego żadnego lokalnego nośnika danych, co uniemożliwia uruchomienie systemu z płyty. Napęd CD-ROM jest użyteczny tylko w przypadku, gdy istnieje fizyczny dostęp do nośników z systemem operacyjnym, co nie ma miejsca w omawianej sytuacji. Dysk twardy również nie jest odpowiednim rozwiązaniem, gdyż brak jest jakiegokolwiek dysku w komputerze, co wyklucza tę opcję. W kontekście nowoczesnych rozwiązań, instalowanie systemu operacyjnego na dysku twardym jest standardową praktyką, lecz w tym przypadku nie jest to możliwe. Wybór najprostszej karty sieciowej wspierającej IEEE 802.3 również jest błędny, ponieważ chociaż jest to standard Ethernet, brak w jej opisie wsparcia dla PXE sprawia, że nie spełnia ona wymogów do uruchomienia systemu operacyjnego przez sieć. W szczególności, aby zrealizować bootowanie z sieci, karta sieciowa musi obsługiwać protokół PXE, co nie jest gwarantowane w przypadku podstawowych kart Ethernet. Powszechnym błędem jest założenie, że każdy komponent sieciowy będzie działał w każdej sytuacji, co wskazuje na brak zrozumienia specyfiki funkcjonowania systemów i ich wymagań.

Pytanie 26

Jakim poleceniem w systemie Linux można utworzyć nowych użytkowników?

A. usermod
B. usersadd
C. useradd
D. net user
Polecenie 'useradd' jest podstawowym narzędziem w systemach Linux do zakupu nowych użytkowników. Umożliwia ono administratorom systemu tworzenie kont użytkowników z określonymi atrybutami, takimi jak nazwa użytkownika, hasło, katalog domowy oraz powiązane grupy. W przeciwieństwie do 'usersadd', które jest literówką, 'useradd' jest standardowym poleceniem zgodnym z normami UNIX. Przykładowa komenda, aby dodać nowego użytkownika o nazwie 'janek', to 'sudo useradd janek'. Można także określić dodatkowe opcje, takie jak '-m' do utworzenia katalogu domowego lub '-s' do zdefiniowania domyślnej powłoki użytkownika. Dobre praktyki sugerują stosowanie opcji '-e' do ustalenia daty wygaśnięcia konta oraz '-G' do przypisania użytkownika do dodatkowych grup. Dzięki takim funkcjom, 'useradd' jest niezwykle elastycznym narzędziem, które pozwala na skuteczne zarządzanie użytkownikami w systemie. Zrozumienie jego działania jest kluczowe dla administracyjnych zadań w systemie Linux.

Pytanie 27

Jaki adres IPv4 wykorzystuje się do testowania protokołów TCP/IP na jednym hoście?

A. 127.0.0.1
B. 224.0.0.9
C. 128.0.0.1
D. 1.1.1.1
Adresy IPv4, takie jak 1.1.1.1, 128.0.0.1 oraz 224.0.0.9, nie są odpowiednie do sprawdzania stosu protokołów TCP/IP wewnątrz jednego hosta, co może być mylnie interpretowane przez niektórych użytkowników. Adres 1.1.1.1 jest publicznym adresem IP przydzielonym przez Cloudflare, używanym głównie jako DNS, co oznacza, że nie jest on przeznaczony do komunikacji lokalnej. Wykorzystanie takiego adresu do testów lokalnych prowadzi do nieporozumień, ponieważ wymaga on dostępu do internetu oraz właściwych konfiguracji sieciowych. Podobnie, adres 128.0.0.1 to również adres publiczny, który nie ma żadnego specjalnego znaczenia w kontekście lokalnej komunikacji. Natomiast 224.0.0.9 to adres multicastowy, używany do jednoczesnego przesyłania danych do grupy odbiorców w sieci; nie jest on stosowany do komunikacji lokalnej na poziomie jednego hosta. W związku z tym, używanie tych adresów do testowania lokalnych aplikacji prowadzi do błędnych wniosków oraz braku zrozumienia działania protokołów sieciowych. Kluczowym błędem myślowym jest pomylenie koncepcji komunikacji lokalnej z komunikacją zewnętrzną, co może skutkować nieefektywnymi testami oraz trudnościami w diagnozowaniu problemów z aplikacjami sieciowymi.

Pytanie 28

Jakie jest zadanie usługi DNS?

A. weryfikacja poprawności adresów domenowych
B. weryfikacja poprawności adresów IP
C. konwersja adresów IP na nazwy domenowe
D. konwersja nazw domenowych na adresy IP
Usługa DNS (Domain Name System) jest fundamentalnym elementem infrastruktury internetu, odpowiadającym za translację nazw domenowych na adresy IP. Dzięki DNS użytkownicy mogą korzystać z łatwych do zapamiętania nazw domen, takich jak www.przyklad.pl, zamiast skomplikowanych ciągów liczb, które są adresami IP (np. 192.168.1.1). Proces ten nie tylko ułatwia korzystanie z internetu, ale również zwiększa efektywność, ponieważ umożliwia szybsze i bardziej intuicyjne przeszukiwanie zasobów online. W praktycznym zastosowaniu, gdy użytkownik wpisuje adres strony w przeglądarkę, jego komputer wysyła zapytanie do serwera DNS, który następnie odpowiada odpowiednim adresem IP. W odpowiedzi zawarte jest również zarządzanie strefami DNS, co pozwala na delegowanie odpowiedzialności za różne poddomeny. Warto zaznaczyć, że standardy DNS (RFC 1034 i RFC 1035) definiują sposób działania tego systemu, co zapewnia jego interoperacyjność i stabilność. Zrozumienie roli DNS jest kluczowe dla administratorów sieci oraz specjalistów IT, ponieważ błędne skonfigurowanie usług DNS może prowadzić do problemów z dostępem do stron internetowych czy usług online.

Pytanie 29

Jakie typy połączeń z Internetem mogą być współdzielone w sieci lokalnej?

A. Tylko tzw. szybkie połączenia, czyli te powyżej 64 kb/s
B. Połączenie o prędkości przesyłu co najmniej 56 kb/s
C. Wszystkie rodzaje połączeń
D. Wszystkie połączenia oprócz analogowych modemów
Wszystkie rodzaje połączeń z Internetem mogą być udostępniane w sieci lokalnej, co oznacza, że niezależnie od rodzaju technologii dostępu do Internetu, można ją współdzielić z innymi użytkownikami w ramach lokalnej sieci. Przykładem mogą być połączenia DSL, kablowe, światłowodowe, a także mobilne połączenia LTE czy 5G. W praktyce, routery sieciowe są w stanie obsługiwać różne typy połączeń i umożliwiają ich udostępnianie. To podejście jest zgodne z normami branżowymi, które wskazują na elastyczność w projektowaniu rozwiązań sieciowych. Warto również zauważyć, że niezależnie od szybkości transmisji, kluczowym czynnikiem jest stabilność i jakość połączenia, co ma wpływ na doświadczenia użytkowników. Dzięki odpowiedniej konfiguracji routera, możliwe jest nie tylko udostępnianie połączenia, ale także zarządzanie priorytetami ruchu sieciowego, co jest szczególnie ważne w biurach i domach, gdzie wiele urządzeń korzysta z Internetu jednocześnie.

Pytanie 30

W technologii Ethernet 100Base-TX do przesyłania danych używane są żyły kabla UTP podłączone do pinów:

A. 1,2,5,6
B. 1,2,3,6
C. 4,5,6,7
D. 1,2,3,4
Wybór niepoprawnych odpowiedzi wskazuje na pewne nieporozumienia dotyczące sposobu, w jaki zdefiniowane są pary żył w standardzie 100Base-TX. Odpowiedzi, które nie uwzględniają pinów 3 i 6, są błędne, ponieważ w tej specyfikacji transmisja opiera się na pełnodupleksowym połączeniu, które wymaga użycia obu par żył. Odpowiedzi, które sugerują użycie pinów 4, 5, 7, wskazują na nieprawidłowe zrozumienie struktury kabli UTP, w których to piny 4, 5, 7 i 8 nie są wykorzystywane w standardzie 100Base-TX. Dobrą praktyką jest znajomość układu pinów oraz zasad dzielenia na pary, co jest kluczowe dla zrozumienia działania sieci Ethernet. Wiele osób myli także pojęcia związane z transmisją danych i nie dostrzega, że w 100Base-TX używa się wyłącznie czterech żył. Niezrozumienie tych zasad prowadzi do błędnych założeń i niewłaściwego projektowania infrastruktury sieciowej, co może skutkować problemami z wydajnością i stabilnością połączeń.

Pytanie 31

Administrator pragnie udostępnić w sieci folder C:instrukcje trzem użytkownikom z grupy Serwisanci. Jakie rozwiązanie powinien wybrać?

A. Udostępnić grupie Serwisanci folder C:instrukcje i nie ograniczać liczby równoczesnych połączeń
B. Udostępnić grupie Serwisanci dysk C: i nie ograniczać liczby równoczesnych połączeń
C. Udostępnić grupie Wszyscy folder C:instrukcje i ograniczyć liczbę równoczesnych połączeń do 3
D. Udostępnić grupie Wszyscy dysk C: i ograniczyć liczbę równoczesnych połączeń do 3
Poprawna odpowiedź to udostępnienie grupie Serwisanci folderu C:instrukcje oraz brak ograniczenia liczby równoczesnych połączeń. Ta opcja jest zgodna z zasadami wdrażania zarządzania dostępem w systemach operacyjnych. Udostępnienie konkretnego folderu, a nie całego dysku, minimalizuje możliwość nieautoryzowanego dostępu do innych danych, co jest kluczowe dla zachowania bezpieczeństwa. Przykładowo, w środowiskach serwerowych, gdy użytkownicy potrzebują dostępu do zasobów, administracja powinna implementować zasady dostępu oparte na rolach, co w tym przypadku można zrealizować poprzez przypisanie odpowiednich uprawnień do grupy Serwisanci. Dodatkowo brak ograniczenia liczby równoczesnych połączeń pozwala na swobodny dostęp wielu użytkowników, co zwiększa efektywność pracy zespołowej. W praktyce, jeśli użytkownicy korzystają z zasobów sieciowych, otwieranie ich w tym samym czasie może być korzystne, aby zminimalizować czas oczekiwania na dostęp do niezbędnych informacji, co jest zgodne z najlepszymi praktykami IT, takimi jak zasada minimalnych uprawnień oraz maksymalizacja dostępności zasobów.

Pytanie 32

Jaką topologię fizyczną charakteryzuje zapewnienie nadmiarowych połączeń między urządzeniami sieciowymi?

A. Magistralną
B. Gwiazdkową
C. Pierścieniową
D. Siatkową
Topologia siatki jest uznawana za jedną z najbardziej niezawodnych struktur w sieciach komputerowych, ponieważ zapewnia nadmiarowe połączenia między urządzeniami. W tej topologii każde urządzenie jest zazwyczaj połączone z wieloma innymi, co pozwala na alternatywne trasy przesyłania danych. Taki układ minimalizuje ryzyko awarii, ponieważ nawet jeśli jedno połączenie przestanie działać, dane mogą być przesyłane inną trasą. Przykłady zastosowań topologii siatki obejmują sieci rozległe (WAN) w dużych organizacjach, gdzie niezawodność i możliwość szybkiego przywrócenia łączności są kluczowe. W praktyce, wdrażając tę topologię, należy przestrzegać standardów takich jak IEEE 802.3 dla Ethernetu, co zapewnia kompatybilność i wydajność. Dobrze zaprojektowana sieć siatkowa zwiększa także wydajność dzięki równoległemu przesyłaniu danych, co jest istotne w aplikacjach wymagających dużej przepustowości. W związku z tym, stosowanie topologii siatki w projektach sieciowych jest zgodne z najlepszymi praktykami w branży, co czyni ją preferowanym wyborem dla krytycznych zastosowań.

Pytanie 33

Czym jest kopia różnicowa?

A. kopiowaniem jedynie tych plików, które zostały stworzone lub zmodyfikowane od momentu wykonania ostatniej kopii pełnej
B. kopiowaniem jedynie tej części plików, która została dodana od momentu stworzenia ostatniej kopii pełnej
C. kopiowaniem wyłącznie plików, które zostały zmienione od utworzenia ostatniej kopii pełnej
D. kopiowaniem tylko plików, które powstały od ostatniej kopii pełnej
Wybór niewłaściwej odpowiedzi na temat kopii różnicowej może wynikać z nieporozumienia dotyczącego tego, jakie dane są faktycznie kopiowane. Odpowiedzi wskazujące jedynie na pliki utworzone lub zmienione, ale w węższym zakresie, jak tylko pliki utworzone lub tylko zmienione, są nieprawidłowe, ponieważ ignorują istotny aspekt działania kopii różnicowej, który opiera się na pełnej ocenie stanu plików od ostatniej kopii pełnej. Warto zrozumieć, że kopia różnicowa nie jest ani kopią pełną, ani kopią inkrementalną, ale stanowi połączenie obu tych metod, co czyni ją najbardziej efektywną w wielu scenariuszach. Ponadto, odpowiedź sugerująca kopiowanie tylko części plików, które zostały dopisane, wprowadza w błąd, ponieważ kopia różnicowa nie koncentruje się na fragmentach plików, lecz na całych plikach, które zostały zmodyfikowane. Tego rodzaju myślenie może prowadzić do błędnych praktyk przy tworzeniu strategii tworzenia kopii zapasowych, co z kolei może wpłynąć na zdolność organizacji do przywracania danych w przypadku awarii. Zrozumienie tych koncepcji jest kluczowe, aby skutecznie zarządzać danymi i minimalizować ryzyko utraty informacji.

Pytanie 34

ACPI to interfejs, który pozwala na

A. zarządzanie konfiguracją oraz energią dostarczaną do różnych urządzeń komputera
B. przesył danych między dyskiem twardym a napędem optycznym
C. przeprowadzenie testu weryfikującego działanie podstawowych komponentów komputera, takich jak procesor
D. konwersję sygnału analogowego na cyfrowy
Odpowiedź dotycząca zarządzania konfiguracją i energią dostarczaną do poszczególnych urządzeń komputera jest prawidłowa, ponieważ ACPI (Advanced Configuration and Power Interface) to standard opracowany w celu zarządzania energią w komputerach osobistych oraz urządzeniach mobilnych. ACPI umożliwia systemowi operacyjnemu kontrolowanie stanu zasilania różnych komponentów, takich jak procesory, pamięci, karty graficzne oraz urządzenia peryferyjne. Dzięki ACPI system operacyjny może dynamicznie dostosowywać zużycie energii w czasie rzeczywistym, co wpływa na zwiększenie efektywności energetycznej oraz wydłużenie czasu pracy na baterii w urządzeniach mobilnych. Przykładem zastosowania ACPI jest możliwość przechodzenia komputera w różne stany zasilania, takie jak S0 (pełne działanie), S3 (uśpienie) czy S4 (hibernacja). Takie mechanizmy są zgodne z najlepszymi praktykami w zakresie zarządzania energią w nowoczesnych systemach komputerowych, co wspiera zarówno oszczędność energii, jak i dbałość o środowisko.

Pytanie 35

Jak nazywa się atak na sieć komputerową, który polega na przechwytywaniu przesyłanych w niej pakietów?

A. skanowanie sieci
B. spoofing
C. ICMP echo
D. nasłuchiwanie
Nasłuchiwanie, czyli sniffing, to całkiem ważna technika, jeśli mówimy o atakach na sieci komputerowe. W skrócie, chodzi o to, że atakujący przechwytuje dane, które są przesyłane przez sieć. Zazwyczaj do tego używa odpowiedniego oprogramowania, jak na przykład Wireshark, który pozwala mu monitorować i analizować, co się dzieje w ruchu sieciowym. Dzięki tej technice, osoby nieuprawnione mogą łatwo zdobyć poufne informacje, takie jak hasła czy dane osobowe. W kontekście zabezpieczeń sieciowych, rozumienie nasłuchiwaniu jest naprawdę kluczowe. Organizacje powinny wdrażać różne środki ochrony, typu szyfrowanie danych (patrz protokoły HTTPS, SSL/TLS), żeby zminimalizować ryzyko ujawnienia informacji. Warto też myśleć o segmentacji sieci i monitorowaniu podejrzanych działań, żeby wykrywać i blokować takie ataki. Ogólnie, im więcej wiemy o nasłuchiwaniu, tym lepiej możemy chronić nasze sieci przed nieautoryzowanym dostępem.

Pytanie 36

Jakie zakresy częstotliwości określa klasa EA?

A. 600 MHz
B. 250 MHz
C. 300 MHz
D. 500 MHz
Odpowiedzi 600 MHz, 250 MHz i 300 MHz są błędne, bo pewnie źle zrozumiałeś, jakie częstotliwości przypisane są do klasy EA. 600 MHz to nie to, bo zwykle jest powiązane z telewizją cyfrową i niektórymi usługami mobilnymi, co może wprowadzać w błąd. Jeśli chodzi o 250 MHz, to jest częścią pasm używanych w różnych systemach, ale nie ma to nic wspólnego z EA. Czasem można spotkać te częstotliwości w systemach satelitarnych czy radiowych, więc łatwo się pomylić. Z kolei 300 MHz też jest niepoprawne, bo dotyczy pasm z lokalnych systemów, jak w niektórych aplikacjach IoT, ale też nie ma związku z definicją klasy EA. Z mojego doświadczenia wynika, że błędy przy wyborze odpowiedzi zwykle biorą się z nie do końca zrozumianych terminów dotyczących częstotliwości i ich zastosowania w różnych technologiach. Ważne jest, aby pojąć, że specyfikacje pasm częstotliwości są ściśle regulowane i przypisane do konkretnych zastosowań, co jest kluczowe w telekomunikacji.

Pytanie 37

Osobom pracującym zdalnie, dostęp do serwera znajdującego się w prywatnej sieci za pośrednictwem publicznej infrastruktury, jaką jest Internet, umożliwia

A. FTP
B. VPN
C. Telnet
D. SSH
Wybór FTP, SSH czy Telnet jako odpowiedzi na pytanie o zdalny dostęp do serwera w sieci prywatnej nie jest właściwy, ponieważ te technologie mają różne zastosowania i ograniczenia. FTP, czyli File Transfer Protocol, służy głównie do przesyłania plików, ale nie zapewnia szyfrowania, co czyni go nieodpowiednim do bezpiecznego dostępu do zasobów sieciowych. W przypadku przesyłania danych wrażliwych, stosowanie FTP może prowadzić do poważnych naruszeń bezpieczeństwa. SSH (Secure Shell) to protokół, który umożliwia bezpieczne logowanie do zdalnych systemów i zarządzanie nimi. Chociaż SSH oferuje silne szyfrowanie, jego podstawowym celem jest zdalne wykonywanie poleceń, a nie zapewnienie pełnego dostępu do sieci prywatnej. Telnet, z kolei, jest protokołem znanym z braku zabezpieczeń – dane przesyłane przez Telnet są przesyłane w postaci niezaszyfrowanej, co czyni go nieodpowiednim do pracy w środowiskach, gdzie bezpieczeństwo danych ma kluczowe znaczenie. Błędem jest zakładanie, że te protokoły mogą pełnić rolę zabezpieczenia dostępu do sieci prywatnej w sposób, w jaki robi to VPN, co skutkuje narażeniem danych na ataki i utratę poufności.

Pytanie 38

Która z poniższych wskazówek nie jest właściwa w kontekście konserwacji skanera płaskiego?

A. Dbać, aby podczas prac nie uszkodzić szklanej powierzchni tacy dokumentów
B. Sprawdzać, czy kurz nie zgromadził się na powierzchni tacy dokumentów
C. Używać do czyszczenia szyby acetonu lub alkoholu etylowego wylewając bezpośrednio na szybę
D. Zachować ostrożność, aby podczas prac nie wylać płynu na mechanizm skanera oraz na elementy elektroniczne
Czyszczenie szyby skanera acetonu czy alkoholem etylowym to kiepski pomysł, bo te substancje mogą zniszczyć specjalne powłoki ochronne. Najlepiej sięgnąć po środki czyszczące zaprojektowane do urządzeń optycznych. Są one dostosowane, żeby skutecznie wyczyścić, a przy tym nie zaszkodzić powierzchni. Na przykład, roztwór alkoholu izopropylowego w odpowiednim stężeniu to bezpieczna i skuteczna opcja. Ważne jest też, żeby używać miękkiej ściereczki z mikrofibry – dzięki temu unikniemy zarysowań. Regularne czyszczenie szyby skanera wpływa na jego dłuższą żywotność i lepszą jakość skanów, co jest kluczowe, gdy pracujemy z ważnymi dokumentami.

Pytanie 39

Pozyskiwanie materiałów z odpadów w celu ich ponownego użycia to

A. recykling
B. segregacja
C. utylizacja
D. kataliza
Recykling to super ważny proces, który pozwala nam odzyskiwać surowce z odpadów i wykorzystać je na nowo. W kontekście gospodarki o obiegu zamkniętym ma kluczowe znaczenie, bo pomaga zmniejszyć ilość śmieci, oszczędzać surowce naturalne i ograniczać emisję gazów cieplarnianych. Możemy tu wspomnieć o recyklingu szkła, plastiku, metali czy papieru, które tak czy siak wracają do produkcji. Żeby recykling działał jak należy, trzeba przestrzegać pewnych standardów, takich jak EN 13430, które pomagają w uzyskaniu wysokiej jakości surowców wtórnych. Dobrym przykładem są programy zbiórki odpadów, które zachęcają ludzi do segregacji i oddawania surowców do ponownego użycia. To nie tylko zwiększa efektywność, ale też uczy nas, jak dbać o środowisko i zrównoważony rozwój.

Pytanie 40

Do pomiaru wartości mocy pobieranej przez zestaw komputerowy służy

A. omomierz.
B. dozymetr.
C. watomierz.
D. anemometr.
Właściwie, watomierz to przyrząd przeznaczony właśnie do pomiaru mocy pobieranej przez urządzenia elektryczne, w tym zestawy komputerowe. Sam kiedyś sprawdzałem, ile dokładnie prądu pożera mój komputer podczas grania i watomierz był wtedy niezastąpiony – nie tylko pokazuje chwilowe zużycie energii, ale często zapisuje też całkowite zużycie w dłuższym czasie. Takie narzędzia są obowiązkowym elementem wyposażenia każdego serwisanta czy instalatora, szczególnie gdy chodzi o sprawdzanie, czy zasilacz pracuje zgodnie ze swoją specyfikacją. W branży IT i automatyce zaleca się regularne pomiary mocy, żeby ocenić, czy infrastruktura nie jest przeciążana i czy nie dochodzi do niepotrzebnych strat energii. To też świetna metoda na wykrycie 'pożeraczy prądu' w biurze albo domu, a osobiście uważam, że każdy powinien choć raz sprawdzić, ile realnie kosztuje go działanie komputera przez cały miesiąc. Watomierze bywają proste, w formie gniazdek, a czasem bardziej zaawansowane, podłączane w rozdzielniach. W praktyce, bez watomierza, nie da się rzetelnie ocenić poboru mocy przez zestaw komputerowy – inne przyrządy po prostu się do tego nie nadają.