Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 9 grudnia 2025 15:08
  • Data zakończenia: 9 grudnia 2025 15:25

Egzamin zdany!

Wynik: 33/40 punktów (82,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Kierunek rotacji wirnika silnika elektrycznego ustala się, obserwując jego wał z perspektywy

A. tabliczki znamionowej
B. wprowadzenia przewodu zasilającego
C. czopu
D. przewietrznika
Kierunek obrotów wirnika silnika elektrycznego określa się patrząc na jego wał od strony czopu, ponieważ jest to standardowa praktyka w inżynierii elektrycznej. Patrzenie z tej strony pozwala na jednoznaczne ustalenie, czy wirnik obraca się w prawo czy w lewo. W przypadku urządzeń napędzanych elektrycznie, znanie kierunku obrotów wirnika jest kluczowe dla prawidłowego działania systemu, ponieważ wpływa na wydajność i bezpieczeństwo całej instalacji. Wiele urządzeń, takich jak pompy czy wentylatory, jest zaprojektowanych do działania w określonym kierunku, a ich niewłaściwe zainstalowanie może prowadzić do uszkodzeń czy zmniejszenia efektywności. Dobrym przykładem jest zastosowanie silników w aplikacjach przemysłowych, gdzie niewłaściwy kierunek obrotów może skutkować nieprawidłowym działaniem maszyn. W związku z tym, podczas instalacji i konserwacji urządzeń elektrycznych, istotne jest przypilnowanie, aby kierunek obrotów był sprawdzany w odpowiedni sposób, co jest zgodne z najlepszymi praktykami w branży.

Pytanie 2

Który z przedstawionych na rysunkach przewodów należy użyć do montażu obwodów zasilających jednofazowej instalacji elektrycznej w układzie TN-S?

Ilustracja do pytania
A. A.
B. D.
C. B.
D. C.
Odpowiedź C jest poprawna, ponieważ przewód, który przedstawia, spełnia wymogi dotyczące kolorów przewodów w instalacjach elektrycznych w układzie TN-S. Zgodnie z normą PN-HD 308 S2:2009, kolor brązowy jest przeznaczony dla przewodów fazowych (L), kolor niebieski dla przewodów neutralnych (N), a kolor żółto-zielony dla przewodów ochronnych (PE). Przewody te są stosowane w systemach zasilania jednofazowego, co jest istotne dla zapewnienia bezpieczeństwa użytkowania i poprawności działania instalacji. W kontekście praktycznym, użycie przewodu zgodnego z tymi normami pozwala na uniknięcie błędów przy podłączaniu urządzeń elektrycznych, co może prowadzić do uszkodzeń sprzętu lub zagrożenia dla życia i zdrowia użytkowników. W przemyśle elektrycznym znajomość i stosowanie tych standardów jest kluczowe dla zapewnienia zgodności z przepisami oraz dla bezpieczeństwa instalacji.

Pytanie 3

Który z wymienionych elementów należy do dodatkowej ochrony przed porażeniem elektrycznym?

A. Dodatkowe miejscowe wyrównawcze połączenia ochronne
B. Uniedostępnianie (umieszczenie poza zasięgiem ręki)
C. Bardzo niskie napięcie ze źródła bezpiecznego
D. Samoczynne wyłączenie zasilania
Uniedostępnianie, czyli umieszczenie urządzeń elektrycznych poza zasięgiem ręki, jest jedną z metod ochrony, jednak nie stanowi uzupełniającej ochrony przeciwporażeniowej. W rzeczywistości, polega ono na fizycznym oddzieleniu użytkownika od potencjalnych zagrożeń, co może w pewnych sytuacjach zwiększać bezpieczeństwo, ale nie eliminuje ryzyka całkowicie. Ponadto, taka metoda nie jest skuteczna w przypadku sytuacji awaryjnych, gdzie dostęp do urządzeń elektrycznych jest niezbędny do ich wyłączenia. Samoczynne wyłączenie zasilania to kolejna strategia, która ma na celu zminimalizowanie skutków porażenia prądem, ale jej skuteczność jest uzależniona od wykrycia awarii, co nie zawsze jest gwarantowane. Bardzo niskie napięcie ze źródła bezpiecznego również jest metodą ochrony, lecz nie jest to metoda uzupełniająca, a podstawowa koncepcja, która sama w sobie nie wystarcza do zapewnienia pełnej ochrony. Dobre praktyki w zakresie ochrony przeciwporażeniowej wymagają zastosowania złożonych systemów zabezpieczeń, w tym połączeń wyrównawczych, co pokazuje, że ignorowanie tych podstawowych zasad może prowadzić do błędnych wniosków i zwiększonego ryzyka w sytuacjach awaryjnych.

Pytanie 4

Którą z wymienionych funkcji posiada przyrząd przedstawiony na ilustracji?

Ilustracja do pytania
A. Lokalizacja przewodów pod tynkiem.
B. Badanie kolejności faz.
C. Sprawdzanie wyłączników różnicowoprądowych.
D. Pomiar rezystancji uziemienia.
Tester wyłączników różnicowoprądowych, który widzisz na ilustracji, odgrywa kluczową rolę w zapewnieniu bezpieczeństwa w instalacjach elektrycznych. Jego główną funkcją jest sprawdzanie poprawności działania wyłączników różnicowoprądowych. Te urządzenia zabezpieczające mają na celu ochronę ludzi przed porażeniem prądem elektrycznym, wykrywając nieprawidłowości w przepływie prądu. Tester symuluje różne warunki, takie jak prąd upływowy, co pozwala na weryfikację, czy wyłącznik prawidłowo zareaguje na zagrożenie. W praktyce, regularne testowanie wyłączników różnicowoprądowych jest zalecane zgodnie z normami PN-EN 61010-1 i PN-EN 60947-2, co pomaga w utrzymaniu wysokiego poziomu bezpieczeństwa elektrycznego w budynkach. Warto również pamiętać, że nieprzeprowadzanie takich testów może prowadzić do niebezpiecznych sytuacji, w których uszkodzone lub wadliwe wyłączniki nie zadziałają w przypadku awarii, co stwarza ryzyko porażenia prądem lub pożaru.

Pytanie 5

Przedstawiony na rysunku przyrząd służy do

Ilustracja do pytania
A. sprawdzania ciągłości połączeń w instalacji.
B. lokalizacji przewodów w instalacji elektrycznej.
C. bezdotykowego pomiaru rezystancji przewodów.
D. pomiaru parametrów oświetlenia.
Przedstawiony przyrząd to detektor przewodów elektrycznych, który jest istotnym narzędziem w branży elektrycznej. Jego głównym celem jest lokalizacja przewodów w instalacjach elektrycznych, co stanowi kluczowy etap w różnych pracach remontowych i instalacyjnych. Dzięki precyzyjnym funkcjom detekcji, możliwe jest zlokalizowanie przewodów schowanych w ścianach, co pozwala uniknąć ich uszkodzenia podczas wiercenia czy innych prac budowlanych. Zastosowanie tego urządzenia jest zgodne z najlepszymi praktykami w zakresie bezpieczeństwa i efektywności pracy, ponieważ minimalizuje ryzyko uszkodzenia instalacji oraz potencjalnych zagrożeń związanych z porażeniem prądem. Warto dodać, że tego typu detektory mogą również pomóc w identyfikacji źle wykonanych instalacji elektrycznych, co może być kluczowe dla zapewnienia bezpieczeństwa użytkowników. Oprócz tego, dobrze jest znać zasady i normy dotyczące instalacji elektrycznych, takie jak PN-IEC 60364, które podkreślają znaczenie lokalizacji przewodów w zapewnieniu skutecznych i bezpiecznych prac budowlanych.

Pytanie 6

Metodą oceny efektywności połączeń wyrównawczych powinien być pomiar napięć

A. skutecznych
B. rażeniowych
C. dotykowych
D. krokowych
Mówiąc o napięciach dotykowych, rażeniowych czy krokowych, chociaż są istotne z punktu widzenia bezpieczeństwa, niekoniecznie są najlepszym sposobem na ocenę efektywności połączeń wyrównawczych. Napięcia dotykowe to te, które można poczuć, gdy dotykamy czegoś przewodzącego, ale to nie mówi nam zbyt wiele o tym, jak skutecznie działają połączenia wyrównawcze. Z napięciami rażeniowymi jest podobnie – one dotyczą kontaktu z niebezpiecznym przewodnikiem, ale także nie oceniają efektywności samego połączenia. Napięcia krokowe, które mogą wystąpić podczas awarii, mają większe znaczenie dla oceny ryzyka dla ludzi w pobliżu, ale znów nie dostarczają informacji o samych połączeniach. Dlatego poleganie na tych pomiarach może prowadzić do błędnych wniosków, bo nie biorą one pod uwagę całego rozkładu napięć w instalacji, a to w końcu może być mylące. Ważne jest, by rozróżniać kwestie bezpieczeństwa od skuteczności systemu ochrony. Prawdziwe pomiary napięć skutecznych dają nam ważne informacje, które pomagają upewnić się, że instalacja elektryczna spełnia normy, takie jak PN-IEC 60364, które mocno akcentują bezpieczeństwo oraz prawidłowe działanie systemów ochronnych.

Pytanie 7

Na której ilustracji przedstawiono kabel typu YAKY?

Ilustracja do pytania
A. Na ilustracji 3.
B. Na ilustracji 1.
C. Na ilustracji 4.
D. Na ilustracji 2.
Wybór innej ilustracji niż ta, która przedstawia kabel YAKY, może wynikać z braku zrozumienia specyfikacji tego typu kabla. Kable YAKY są rozpoznawalne dzięki swojej charakterystycznej budowie, która obejmuje trzy przewody izolowane materiałem polwinitowym oraz dodatkowy oplot PVC. Na ilustracjach, które nie przedstawiają kabla YAKY, możemy dostrzec inne typy kabli, które mogą mieć różne zastosowania, lecz nie spełniają kryteriów YAKY. Na przykład, kabel z izolacją gumową lub innym rodzajem tworzywa sztucznego może wyglądać na pierwszy rzut oka podobnie, ale jego właściwości, takie jak odporność na temperaturę czy działanie chemikaliów, mogą się znacznie różnić. Często mylone są również kable o różnych przeznaczeniach, jak kable do instalacji telekomunikacyjnych czy sygnalizacyjnych, które nie nadają się do zasilania urządzeń elektrycznych w sposób bezpieczny. Konsekwencje błędnego doboru kabli mogą być poważne, prowadząc do awarii, a w skrajnych przypadkach do zagrożenia pożarowego. Kluczowe jest, aby przy wyborze kabla kierować się nie tylko jego wyglądem, ale przede wszystkim parametrami technicznymi oraz zaleceniami producentów, które są zgodne z obowiązującymi normami i standardami branżowymi.

Pytanie 8

Na rysunku przedstawiono sposób podłączenia miernika MZC-201 do pomiaru

Ilustracja do pytania
A. rezystancji uziomu.
B. impedancji pętli zwarcia.
C. ciągłości połączeń ochronnych.
D. rezystancji izolacji.
Zrozumienie różnych rodzajów pomiarów elektrycznych jest kluczowe dla prawidłowego funkcjonowania instalacji elektrycznych. Odpowiedzi dotyczące ciągłości połączeń ochronnych, rezystancji izolacji oraz impedancji pętli zwarcia są związane z innymi ważnymi aspektami, ale nie dotyczą pomiaru rezystancji uziomu w sposób przedstawiony na rysunku. Ciągłość połączeń ochronnych dotyczy sprawdzenia, czy wszystkie elementy systemu ochrony są właściwie połączone, co jest istotne dla skuteczności ochrony przed porażeniem prądem, ale nie oblicza bezpośrednio wartości rezystancji uziomu. Rezystancja izolacji odnosi się do zdolności materiałów izolacyjnych do minimalizowania niepożądanych prądów, co również nie jest przedmiotem tego pomiaru. Z kolei impedancja pętli zwarcia dotyczy analizy skuteczności zabezpieczeń przed zwarciami w instalacji, co jest zupełnie innym zagadnieniem. Typowe błędy myślowe, które prowadzą do takich nieprawidłowych wniosków, obejmują mylenie różnych rodzajów pomiarów oraz brak zrozumienia kontekstu zastosowania miernika MZC-201. Właściwe podejście do pomiaru rezystancji uziomu jest fundamentem dla zapewnienia bezpieczeństwa oraz zgodności z obowiązującymi normami i praktykami w branży elektrycznej.

Pytanie 9

Jaką proporcję strumienia świetlnego kieruje się w dół w oprawie oświetleniowej klasy V?

A. 60 ÷ 90%
B. 0 ÷ 10%
C. 90 ÷ 100%
D. 40 ÷ 60%
Odpowiedzi wskazujące na wyższe wartości strumienia świetlnego, takie jak 40 ÷ 60%, 60 ÷ 90% oraz 90 ÷ 100%, koncentrują się na nieprawidłowych założeniach dotyczących funkcji opraw V klasy. Te klasy oprawy oświetleniowej są zaprojektowane w taki sposób, aby dostarczać minimalną ilość światła w kierunku podłogi, co jest sprzeczne z ideą intensywnego oświetlenia. Błędne założenie, że oprawy V klasy mogą emitować znaczną ilość światła w dół, wynika z nieporozumienia dotyczącego ich zastosowań oraz sposobu działania. W praktyce, oprawy te powinny być wykorzystywane w takich miejscach, gdzie kontrola nad oświetleniem jest kluczowa, a intensywne oświetlenie w dół mogłoby powodować olśnienie lub zwiększać zużycie energii. Należy również zwrócić uwagę na to, że istnieją standardy dotyczące odpowiedniego oświetlenia w budynkach, które jednoznacznie określają dopuszczalne wartości strumienia świetlnego w zależności od jego zastosowania. Stosowanie opraw z niewłaściwą klasą efektywności może prowadzić do niekorzystnych warunków pracy, a także do naruszenia przepisów dotyczących ochrony środowiska oraz efektywności energetycznej. Dlatego tak ważne jest, aby projektanci oświetlenia oraz użytkownicy byli świadomi różnic między klasami opraw, aby uniknąć błędnych decyzji projektowych.

Pytanie 10

Rysunek przedstawia pętlę zwarciową w układzie

Ilustracja do pytania
A. TN-S
B. TN-C
C. TT
D. IT
Odpowiedzi IT, TN-S, i TN-C nie są właściwe w kontekście przedstawionego rysunku pętli zwarciowej. W systemie IT, punkt neutralny nie jest uziemiony, co może prowadzić do niebezpiecznych sytuacji w przypadku uszkodzenia izolacji. W takim układzie występuje ryzyko wystąpienia wysokich napięć na częściach przewodzących, co zagraża bezpieczeństwu użytkowników. Z kolei w systemie TN-S, przewody neutralne i robocze są oddzielone, ale wymagają wspólnego uziemienia, co w sytuacji zwarcia nie zapewnia dostatecznego poziomu bezpieczeństwa. Natomiast TN-C, w którym przewód neutralny i ochronny są połączone, nie może być stosowany w instalacjach wymagających wysokiego poziomu ochrony, szczególnie w miejscach, gdzie występuje ryzyko porażenia prądem, jak w obiektach przemysłowych. Łączenie funkcji ochronnych i roboczych w TN-C zwiększa ryzyko potencjalnych zagrożeń. Typowym błędem myślowym jest mylenie różnych typów systemów uziemienia i ich wpływu na bezpieczeństwo, co może prowadzić do niewłaściwych decyzji projektowych oraz poważnych konsekwencji w eksploatacji instalacji elektrycznych.

Pytanie 11

Rysunek przedstawia symbol graficzny przewodu

Ilustracja do pytania
A. PE
B. FE
C. FB
D. PEN
Symbol przedstawiony na rysunku rzeczywiście oznacza przewód ochronny, który w zgodzie z normą PN-EN 60617 jest identyfikowany skrótem "PE" (Protective Earth). Przewód ten jest kluczowy w systemach elektrycznych, ponieważ zapewnia bezpieczeństwo poprzez odprowadzanie potencjalnych prądów upływowych do ziemi, co minimalizuje ryzyko porażenia prądem. W praktyce, przewód PE jest często stosowany w instalacjach elektrycznych w budynkach, gdzie pełni rolę ochronną dla urządzeń oraz użytkowników. Warto również zauważyć, że w systemach zasilania trójfazowego, przewód ochronny jest wymagany, aby spełnić normy bezpieczeństwa, takie jak norma IEC 60364. Przewód PE powinien być zawsze jasno oznakowany zielono-żółtym kolorem, aby umożliwić łatwą identyfikację w instalacjach elektrycznych. Zastosowanie tego przewodu jest nie tylko praktyczne, ale i zgodne z zasadami ochrony przeciwwybuchowej w środowiskach, gdzie mogą występować niebezpieczne substancje.

Pytanie 12

Jaki wyłącznik przedstawiono na rysunku?

Ilustracja do pytania
A. Nadprądowy.
B. Różnicowoprądowy.
C. Silnikowy.
D. Czasowy.
Wyłącznik różnicowoprądowy to naprawdę ważne urządzenie w każdej instalacji elektrycznej. Jego głównym zadaniem jest ochrona nas przed porażeniem prądem. Działa to tak, że jeśli wykryje różnicę między prądem, który wpływa a tym, który wypływa z obwodu, to szybko odłącza zasilanie. Kiedy prąd upływowy przekroczy ustaloną wartość, najczęściej 30 mA, to wyłącznik po prostu wyłącza prąd. Fajnie jest wiedzieć, że takie wyłączniki są stosowane zwłaszcza w łazienkach, czy wszędzie tam, gdzie elektryczność ma kontakt z wodą. Warto zaznaczyć, że według normy PN-EN 61008, powinny być w każdej nowoczesnej instalacji, co świadczy o ich roli w dbaniu o nasze bezpieczeństwo. Poza tym, nowoczesne budynki zwykle są w nie wyposażone, co dodatkowo zwiększa bezpieczeństwo. Oprócz ochrony, wyłączniki różnicowoprądowe też pomagają monitorować stan instalacji, co jest istotne, by była ona w dobrym stanie.

Pytanie 13

Podaj rodzaj i miejsce uszkodzenia w trójfazowym silniku indukcyjnym o uzwojeniach połączonych w gwiazdę, jeżeli wyniki pomiarów rezystancji jego uzwojeń przedstawione są w tabeli.

Rezystancja między zaciskamiWynik
U - V15 Ω
V - W15 Ω
W - U20 Ω
A. Przerwa w uzwojeniu fazy V
B. Przerwa w uzwojeniu fazy W
C. Zwarcie międzyzwojowe w fazie V
D. Zwarcie międzyzwojowe w fazie W
Zwarcie międzyzwojowe w fazie V jest poprawną odpowiedzią, ponieważ analiza wyników pomiarów rezystancji uzwojeń trójfazowego silnika indukcyjnego ujawnia asymetrię, która wskazuje na uszkodzenie. W prawidłowo działającym silniku rezystancje uzwojeń powinny być zbliżone do siebie. W przypadku, gdy rezystancje między zaciskami U-V i V-W wynoszą 15 Ω, a rezystancja W-U wynosi 20 Ω, wyraźnie widać, że różnice te mogą być efektem zwarcia międzyzwojowego. Zwarcia te prowadzą do zmiany charakterystyki prądowej uzwojenia, co skutkuje obniżeniem rezystancji w fazie, w której występuje uszkodzenie. W praktyce, takie uszkodzenia mogą być niebezpieczne, prowadząc do przegrzania silnika i jego uszkodzenia. W związku z tym, regularne pomiary rezystancji uzwojeń są istotne dla utrzymania sprawności sprzętu. Zgodnie z normami branżowymi, takie kontrole powinny być częścią rutynowego przeglądu konserwacyjnego, co pozwala na wczesne wykrycie problemów i ich eliminację.

Pytanie 14

Z jakiego rodzaju metalu oraz w jakiej formie produkowane są żyły przewodu YDYp 4×1,5 mm2?

A. Z aluminium w formie linki
B. Z miedzi w formie linki
C. Z aluminium w formie drutu
D. Z miedzi w formie drutu
Żyły w przewodzie YDYp 4×1,5 mm² są z miedzi, co jest standardem w branży elektrycznej. Miedź jest super, bo dobrze przewodzi prąd, dlatego właśnie się ją najczęściej wybiera do instalacji elektrycznych. W przypadku YDYp, jego druciana konstrukcja daje sporo elastyczności, co ułatwia robienie instalacji, zwłaszcza tam, gdzie jest ciasno. Te przewody można spotkać w budownictwie, szczególnie przy instalacjach oświetleniowych i systemach zasilających. Zgodnie z normą PN-EN 60228, miedziane przewody mają dokładnie określone parametry, co zapewnia bezpieczeństwo i efektywność. Na przykład, YDYp 4×1,5 mm² świetnie sprawdza się w oświetleniu w domach, gdzie trzeba mieć na uwadze zabezpieczenia przed przeciążeniem i zwarciem.

Pytanie 15

Jakie akcesoria są wymagane do podłączenia gniazda wtyczkowego do instalacji zrealizowanej przewodami LY?

A. Ściągacz izolacji, wkrętak, próbnik
B. Ściągacz izolacji, lutownica, tester
C. Szczypce, wkrętak, lutownica
D. Tester, wkrętak, lutownica
Aby prawidłowo podłączyć gniazdo wtyczkowe do sieci wykonanej przewodami LY, niezbędne są trzy podstawowe narzędzia: ściągacz izolacji, wkrętak oraz próbnik. Ściągacz izolacji pozwala na bezpieczne usunięcie izolacji z końców przewodów, co jest kluczowe dla uzyskania dobrego kontaktu elektrycznego. Użycie ściągacza jest zalecane, aby uniknąć uszkodzenia miedzi wewnątrz przewodu. Wkrętak jest niezbędny do mocowania gniazda oraz łączenia przewodów w zaciskach. Próbnik z kolei umożliwia sprawdzenie, czy w obwodzie znajduje się napięcie, co jest niezwykle istotne dla zapewnienia bezpieczeństwa podczas pracy. Stosując te narzędzia, wykonawcy mogą zapewnić, że instalacja będzie zgodna z obowiązującymi normami, takimi jak PN-IEC 60364, które określają zasady dotyczące instalacji elektrycznych. Prawidłowe użycie tych narzędzi poprawia niezawodność całego systemu elektrycznego oraz minimalizuje ryzyko awarii.

Pytanie 16

Którym symbolem graficznym oznacza się instalację prowadzoną na drabinkach kablowych?

Ilustracja do pytania
A. B.
B. A.
C. C.
D. D.
Symbol B, który wskazujesz jako poprawny, jest zgodny z powszechnie akceptowanymi oznaczeniami w dokumentacji elektrycznej. Oznaczenie to jest używane do wskazywania instalacji prowadzonych na drabinkach kablowych, co jest niezwykle istotne w kontekście organizacji i zarządzania systemami kablowymi. Drabinki kablowe są kluczowym elementem w infrastrukturze elektroenergetycznej, ponieważ umożliwiają bezpieczne i uporządkowane prowadzenie kabli, co z kolei wpływa na efektywność oraz bezpieczeństwo instalacji. W praktyce, poprawne oznaczenie instalacji pozwala na łatwiejsze lokalizowanie i utrzymanie systemu, co jest zgodne z zasadami projektowania zgodnymi z normami IEC i PN-EN. Dodatkowo, stosowanie właściwych symboli w dokumentacji technicznej wspiera procesy inspekcyjne oraz ułatwia zrozumienie schematów przez różne zespoły pracowników. Warto także zaznaczyć, że niepoprawne oznaczenia mogą prowadzić do poważnych błędów w instalacji, co podkreśla znaczenie precyzyjnego stosowania symboliki w projektowaniu systemów elektrycznych.

Pytanie 17

Który przewód przedstawiono na rysunku?

Ilustracja do pytania
A. H03VVH2-F
B. H03VV-F
C. H07V-K
D. H07V2-U
Przewód przedstawiony na rysunku to H03VV-F, który jest typem przewodu elastycznego przeznaczonego do zastosowań w niskonapięciowych urządzeniach przenośnych. Charakteryzuje się on wieloma żyłami o różnorodnych kolorach izolacji, co jest zgodne z normą PN-EN 50525. H03VV-F jest często wykorzystywany w urządzeniach takich jak odkurzacze, małe sprzęty AGD i inne urządzenia o niewielkim obciążeniu. Jego konstrukcja umożliwia elastyczność i odporność na uszkodzenia mechaniczne, co czyni go idealnym do użytku w warunkach, gdzie przewód może być narażony na ruch. Dodatkowo, przewód ten spełnia normy dotyczące odporności na wysoką temperaturę oraz napotykane chemikalia, co zwiększa jego trwałość i bezpieczeństwo użytkowania. Stosując ten przewód, można mieć pewność, że urządzenie z niego zasilane będzie pracowało w sposób bezpieczny i efektywny.

Pytanie 18

Korzystając z podanego wzoru i tabeli wyznacz wartość rezystancji izolacji uzwojeń silnika w temperaturze
20 oC, jeżeli rezystancja izolacji uzwojeń tego silnika zmierzona w temperaturze 23 oC wyniosła 6,8 MΩ.

Współczynniki przeliczeniowe K20 dla rezystancji izolacji uzwojeń silników
R20 = K20·Rx
Temperatura, w °C0111417202326293235445262
Współczynnik przeliczeniowy K200,670,730,810,901,01,101,211,341,481,642,503,335,00
A. 7,48 MΩ
B. 6,18 MΩ
C. 6,73 MΩ
D. 6,87 MΩ
Obliczenie rezystancji izolacji uzwojeń silnika w temperaturze 20°C wymaga zastosowania odpowiednich współczynników przeliczeniowych, które uwzględniają zmiany rezystancji w zależności od temperatury. W tym przypadku zastosowaliśmy wzór R20 = K20 * Rs, gdzie Rs to zmierzona rezystancja w temperaturze 23°C, a K20 to współczynnik przeliczeniowy dla temperatury 20°C. Z tabeli uzyskujemy wartości K20 = 1,0 dla 20°C i K23 = 1,1 dla 23°C. Zatem, dzieląc zmierzoną rezystancję 6,8 MΩ przez 1,1, uzyskujemy rezystancję w niższej temperaturze, co daje wynik 6,18 MΩ. Jednak w praktyce, biorąc pod uwagę zastosowania w przemyśle, znajomość tych wartości jest kluczowa do oceny stanu izolacji silnika. Izolacja musi spełniać normy, aby zapewniać bezpieczeństwo operacyjne i zapobiegać awariom. Takie obliczenia są standardem w diagnostyce stanu technicznego maszyn elektrycznych.

Pytanie 19

Jeśli do pomiaru napięcia w sieci 230 V zastosowano miernik analogowy o dokładności 0,5 i zakresie 300 V, jakie będą wskazania tego miernika?

A. 230 V (±1,40 V)
B. 230 V (±1,50 V)
C. 230 V (±1,30 V)
D. 230 V (±1,20 V)
Pomiar napięcia sieciowego o wartości 230 V za pomocą miernika analogowego o klasie dokładności 0,5 w zakresie 300 V daje wskazania w formacie 230 V (±1,50 V). Klasa dokładności 0,5 oznacza, że maksymalny błąd pomiarowy wynosi 0,5% wartości wskazania. W przypadku napięcia 230 V, obliczamy błąd jako 0,5% z 230 V, co daje 1,15 V. Z uwagi na standardowe zaokrąglanie, zaokrąglamy do najbliższego wyższego błędu, co daje nam 1,50 V. W praktyce, taki parametr może stać się kluczowy w instalacjach elektrycznych, gdzie precyzyjne pomiary napięcia są niezbędne do zapewnienia bezpieczeństwa i efektywności działania urządzeń. Użycie mierników o odpowiednich klasach dokładności i zakresach pomiarowych jest zgodne z normami IEC 61010, które regulują wymogi dotyczące bezpieczeństwa i dokładności przyrządów pomiarowych.

Pytanie 20

W dokumentacji dotyczącej instalacji elektrycznej w łazience podano, że gniazdo zasilające dla pralki powinno być umieszczone poza strefą II. Jaką minimalną odległość od wanny powinno mieć to gniazdo?

A. 1,2 m
B. 0,5 m
C. 0,6 m
D. 1,0 m
Odpowiedź 0,6 m jest okej, bo według zasad dotyczących instalacji elektrycznych w wilgotnych miejscach, takich jak łazienki, gniazdo musi być umieszczone w bezpiecznej odległości od wody. Strefa II w łazience to obszar do 0,6 m od krawędzi wanny czy brodzika. Dzięki temu zabezpieczamy użytkowników przed niebezpieczeństwem porażenia prądem, co się może zdarzyć, gdy woda dostanie się do gniazda. Przykładowo, gniazdo zasilające dla pralki powinno być w miejscu, gdzie nie ma ryzyka kontaktu z wodą. Dobrze jest planować instalację gniazd tak, żeby były jak najdalej od potencjalnych źródeł wody. Pamiętaj, że zgodnie z normą PN-EN 61140, urządzenia elektryczne w takich pomieszczeniach muszą być dobrze zabezpieczone, a gniazdka powinny mieć odpowiednią klasę ochrony, na przykład IP44. To wszystko znacznie zwiększa bezpieczeństwo.

Pytanie 21

Zdjęcie przedstawia

Ilustracja do pytania
A. łącznik wielofunkcyjny.
B. wyłącznik schodowy.
C. wyłącznik krzyżowy.
D. łącznik żaluzjowy.
Właściwa odpowiedź to łącznik żaluzjowy, ponieważ na zdjęciu widoczny jest element sterujący z dwoma przyciskami, które są oznaczone symbolami wskazującymi na ruch żaluzji w górę i w dół. Łącznik żaluzjowy jest stosowany w celu precyzyjnego sterowania pozycją żaluzji, co jest niezwykle przydatne w przypadku regulacji natężenia światła wpadającego do wnętrza pomieszczeń. W praktyce, umożliwia on komfortowe dostosowywanie osłony okiennej do zmieniających się warunków oświetleniowych, co przyczynia się do oszczędności energii oraz zwiększenia wygody użytkowników. Standardowe oznaczenia na łącznikach żaluzjowych są zgodne z normami branżowymi, co pozwala na ich łatwe rozpoznawanie. Przykładem zastosowania łącznika żaluzjowego może być instalacja w biurach, gdzie użytkownicy chcą mieć kontrolę nad ilością światła oraz prywatnością, a także w domach jednorodzinnych, gdzie można zautomatyzować proces otwierania i zamykania żaluzji.

Pytanie 22

W jaki sposób realizowana jest ochrona przed porażeniem elektrycznym poprzez dotyk pośredni w oprawie oświetleniowej drugiej klasy ochronności działającej w sieci TN-S?

A. Zastosowanie podwójnej warstwy izolacji
B. Połączenie obudowy z przewodem ochronnym sieci
C. Użycie napięcia zasilania o zmniejszonej wartości
D. Zasilanie z transformatora izolacyjnego
Zastosowanie podwójnej warstwy izolacji jest kluczowym elementem ochrony przeciwporażeniowej w oprawach oświetleniowych klasy II, które nie wymagają przewodu ochronnego. W tego typu rozwiązaniach, sprzęt jest projektowany w taki sposób, aby minimalizować ryzyko porażenia prądem elektrycznym, poprzez wprowadzenie dodatkowej warstwy izolacyjnej, która skutecznie odseparowuje części przewodzące od części, które mogą być dotykane przez użytkowników. Przykładem może być wykorzystanie materiałów izolacyjnych o wysokiej wytrzymałości, które są odporne na działanie wysokiej temperatury oraz wilgoci, co jest istotne w kontekście opraw oświetleniowych stosowanych w różnych warunkach atmosferycznych. W praktyce, urządzenia spełniające normy IEC 61140 oraz IEC 60598-1, których celem jest zapewnienie bezpieczeństwa użytkowników, korzystają z tej technologii, a jej zastosowanie jest powszechnie zalecane w branży elektrycznej, co przekłada się na redukcję ryzyka wypadków związanych z porażeniem prądem.

Pytanie 23

Jakim oznaczeniem charakteryzuje się przewód jednożyłowy z żyłą wykonaną z aluminium, w izolacji z PVC, o przekroju 2,5 mm2, przeznaczony na napięcie znamionowe izolacji 500 V?

A. ADY 500 V 2,5 mm2
B. YLY 500 V 2,5 mm2
C. ALY 500 V 2,5 mm2
D. YDY 500 V 2,5 mm2
Odpowiedź ADY 500 V 2,5 mm2 jest jak najbardziej trafna. To standardowy symbol przewodu jednożyłowego wykonanego z aluminium, który ma izolację z PVC, czyli polichlorku winylu. W tej nazwie 'A' oznacza, że materiał żyły to aluminium, 'D' informuje nas, że mamy do czynienia z PVC, a 'Y' pokazuje, że to przewód jednożyłowy. Wiedza o takich oznaczeniach jest naprawdę ważna w inżynierii, bo dzięki temu można dobrze dobierać przewody do różnych zastosowań. To jest kluczowe dla bezpieczeństwa instalacji elektrycznych. Przewody o średnicy 2,5 mm2 są szeroko stosowane w budynkach mieszkalnych i przemysłowych, gdzie potrzebna jest odpowiednia wydolność prądowa. Napięcie 500 V oznacza maksymalne napięcie, które można stosować, co jest zgodne z normą PN-EN 60228 dotyczącą przewodów elektrycznych.

Pytanie 24

Łącznik przedstawiony na zdjęciu oznaczamy symbolem graficznym

Ilustracja do pytania
A. B.
B. A.
C. D.
D. C.
Odpowiedź B jest poprawna, ponieważ łącznik przedstawiony na zdjęciu to łącznik pojedynczy, jednobiegunowy, co jest zgodne z symboliką stosowaną w branży elektrycznej. W praktyce, łączniki te są powszechnie używane do włączania i wyłączania obwodów oświetleniowych w domach i biurach. Zgodnie z normami IEC (Międzynarodowa Komisja Elektrotechniczna), poprawne oznaczenie graficzne elementów instalacji elektrycznych ma kluczowe znaczenie dla ich właściwej identyfikacji i funkcjonowania. Użycie symbolu z opcji B ułatwia instalatorom i technikom szybkie rozpoznanie typu łącznika, co przyspiesza proces montażu oraz ewentualnych prac serwisowych. Przykładem praktycznym może być zastosowanie łącznika jednobiegunowego w domach jednorodzinnych, gdzie jedna para przycisków kontroluje jedno źródło światła, co jest zgodne z powszechnymi standardami instalacyjnymi. Dobrą praktyką jest również stosowanie jednolitych symboli graficznych na schematach elektrycznych, co minimalizuje ryzyko pomyłek podczas realizacji projektów elektrycznych.

Pytanie 25

Który rodzaj układu sieciowego przedstawiono na schemacie?

Ilustracja do pytania
A. IT
B. TT
C. TN-C
D. TN-S
Odpowiedzi IT, TT i TN-S są nieprawidłowe z różnych powodów związanych z charakterystyką układów sieciowych. Układ IT oznacza instalację, w której przewody nie są uziemione, a uziemienie ochronne jest realizowane w sposób alternatywny. Takie podejście, choć może być stosowane w niektórych specyficznych warunkach, nie pozwala na wykorzystanie wspólnego przewodu neutralnego i ochronnego, co jest kluczowe w układzie TN-C. Odpowiedź TT wskazuje na układ, w którym przewód neutralny jest oddzielony od przewodu ochronnego, co również jest sprzeczne z zasadami TN-C, gdzie przewody te są połączone. Układ TN-S, z kolei, w odróżnieniu od TN-C, zakłada oddzielne przewody neutralny i ochronny, co czyni go mniej efektywnym pod względem kosztów w instalacjach, w których można zastosować TN-C. Typowe błędy myślowe przy wyborze tych odpowiedzi często wynikają z nieznajomości praktycznych różnic między tymi układami a ich realnych zastosowań w instalacjach elektrycznych. Znajomość norm i standardów, takich jak PN-IEC 60364, jest kluczowa dla właściwego doboru układów sieciowych, co pozwala na uniknięcie nieporozumień i zapewnienie bezpieczeństwa w eksploatacji urządzeń elektrycznych.

Pytanie 26

Jakie optymalne odległości X, Y i Z należy zachować, trasując przebieg przewodów instalacji podtynkowej, przedstawionej na rysunku?

Ilustracja do pytania
A. B.
B. D.
C. A.
D. C.
Odpowiedź C (30 cm, 15 cm, 30 cm) jest prawidłowa, ponieważ odpowiada ogólnym normom i przepisom dotyczącym instalacji elektrycznych podtynkowych, które są kluczowe dla zapewnienia bezpieczeństwa oraz funkcjonalności. Zachowanie takich odległości od krawędzi ścian i otworów drzwiowych minimalizuje ryzyko uszkodzenia przewodów podczas dalszych prac budowlanych, takich jak wiercenie lub montaż elementów wykończeniowych. W praktyce, odpowiednia separacja przewodów od konstrukcji budynku pozwala na uniknięcie przegrzewania się instalacji, co z kolei redukuje ryzyko pożaru. Zgodnie z normą PN-IEC 60364, minimalne odległości są ustalone na podstawie analizy potencjalnych zagrożeń, co czyni je standardem w branży. Dodatkowo, zachowanie tych odległości ułatwia ewentualną konserwację oraz naprawy, co jest istotne w dłuższej perspektywie użytkowania budynku. Przykładem zastosowania tej wiedzy jest planowanie rozkładu gniazdek elektrycznych w nowoczesnych wnętrzach, gdzie estetyka i funkcjonalność muszą iść w parze z bezpieczeństwem. W związku z tym, odpowiedź C jest nie tylko zgodna z przepisami, ale także praktyczna w codziennym użytkowaniu instalacji elektrycznych.

Pytanie 27

Rysunek przedstawia oprawę oświetlenia

Ilustracja do pytania
A. bezpośredniego - klasy I
B. przeważnie pośredniego - klasy IV
C. przeważnie bezpośredniego - klasy II
D. pośredniego - klasy V
Oprawa oświetleniowa przedstawiona na rysunku charakteryzuje się osłoną nieprzezroczystą, co ma kluczowe znaczenie dla klasyfikacji jej rodzaju. Oprawy pośrednie, do których ta należy, emitują światło w sposób rozproszony, co oznacza, że kierują je w dół, ale także odbijają od powierzchni, na które padają. Taki system oświetlenia jest szczególnie efektywny w przestrzeniach biurowych oraz handlowych, gdzie ważne jest równomierne oświetlenie, a nie bezpośrednie źródło światła, które mogłoby powodować olśnienie. W kontekście standardów oświetleniowych, oprawy pośrednie są zalecane w przypadku przestrzeni wymagających komfortu wizualnego, ponieważ minimalizują kontrast między oświetleniem a otoczeniem. Dodatkowo, zgodnie z normami EN 12464, oprawy klasy V zapewniają odpowiednią jakość światła, co jest kluczowe dla pracy i bezpieczeństwa użytkowników. Warto również wspomnieć o zastosowaniach dekoracyjnych takich opraw, które mogą wpływać na estetykę wnętrz, przyczyniając się do stworzenia przyjemnej atmosfery w przestrzeniach publicznych.

Pytanie 28

Na rysunku przedstawiono sposób przeprowadzenia pomiaru

Ilustracja do pytania
A. rezystancji uziemienia.
B. napięcia dotykowego.
C. impedancji pętli zwarcia.
D. prądu udarowego zwarciowego.
Pomiar rezystancji uziemienia, jak przedstawiono na zdjęciu, jest kluczowym aspektem zapewnienia bezpieczeństwa w instalacjach elektrycznych. Uziemienie ma na celu ochronę ludzi oraz sprzętu przed skutkami awarii, a jego skuteczność można ocenić jedynie poprzez dokładne pomiary. Wykorzystanie miernika do pomiaru rezystancji uziemienia pozwala na stwierdzenie, czy wartości rezystancji mieszczą się w granicach określonych norm, takich jak PN-EN 50522, która wskazuje, że rezystancja uziemienia powinna być niższa niż 10 Ω dla obiektów użyteczności publicznej. Prawidłowe uziemienie minimalizuje ryzyko porażenia prądem elektrycznym oraz poprawia stabilność systemu zasilania. W praktyce, pomiar ten jest szczególnie istotny podczas instalacji nowych systemów elektrycznych, ich modernizacji, a także w okresowych inspekcjach, które powinny być przeprowadzane zgodnie z wymaganiami prawa budowlanego oraz normami ochrony przeciwporażeniowej. Ważne jest, aby każdy instalator posiadał wiedzę o technikach pomiarowych oraz umiał interpretować wyniki w kontekście zapewnienia bezpieczeństwa operacji elektrycznych.

Pytanie 29

Określ przyczynę nadmiernego wzrostu napięcia na zaciskach odbiornika Z1 w układzie przedstawionym na schemacie, przy założeniu, że impedancje Z1, Z2 i Z3 znacznie się różnią.

Ilustracja do pytania
A. Zwarcie pomiędzy dwoma przewodami fazowymi.
B. Przerwa na zaciskach odbiornika Z2 lub Z3.
C. Przerwa w przewodzie neutralnym.
D. Zwarcie na zaciskach odbiornika Z2 lub Z3.
Przerwa w przewodzie neutralnym w układzie trójfazowym może prowadzić do poważnych problemów z równowagą napięć. W sytuacji, gdy odbiorniki Z2 i Z3 mają różne impedancje, przerwa ta skutkuje przesunięciem punktu neutralnego, co z kolei prowadzi do nadmiernego wzrostu napięcia na zaciskach Z1. Dla praktyków, kluczowe jest zrozumienie, jak różnice w impedancjach mogą wpływać na rozkład napięcia w sieci. W sytuacjach awaryjnych, takich jak uszkodzenie przewodu neutralnego, należy natychmiast przeprowadzić ocenę układu i zastosować odpowiednie procedury, aby zapobiec uszkodzeniom urządzeń i zapewnić bezpieczeństwo użytkowników. Zgodnie z obowiązującymi normami, jak PN-IEC 60364, zaleca się regularne przeglądy instalacji elektrycznych oraz zachowanie szczególnej ostrożności przy wykonywaniu prac konserwacyjnych w systemach trójfazowych, aby zminimalizować ryzyko powstania takich awarii.

Pytanie 30

Do czego służy narzędzie przedstawione na rysunku?

Ilustracja do pytania
A. Formowania oczek z końców żył przewodów.
B. Zaciskania końcówek na żyłach przewodów.
C. Zdejmowania powłoki przewodów.
D. Zdejmowania izolacji żył przewodów.
Narzędzie przedstawione na zdjęciu to specjalistyczne szczypce do ściągania izolacji, które są kluczowym elementem w pracy z przewodami elektrycznymi. Jego głównym zadaniem jest usuwanie warstwy izolacyjnej z żył przewodów, co jest niezbędne do zapewnienia poprawnego połączenia elektrycznego. Dzięki charakterystycznej budowie, która często posiada regulowany ogranicznik, użytkownik ma możliwość precyzyjnego dostosowania głębokości cięcia. Umożliwia to bezpieczne usunięcie izolacji bez uszkodzenia samej żyły, co jest istotne z punktu widzenia nie tylko wydajności, ale również bezpieczeństwa instalacji elektrycznych. W praktyce, stosując to narzędzie, można wykonać prace takie jak łączenie przewodów w instalacjach domowych czy przygotowywanie kabli do podłączeń w urządzeniach elektronicznych. Przestrzeganie dobrych praktyk, jak na przykład unikanie zbyt głębokiego nacięcia, jest kluczowe, aby zminimalizować ryzyko uszkodzenia przewodów. Narzędzie to jest zgodne z normami branżowymi, co potwierdza jego przydatność i efektywność w codziennym użytkowaniu.

Pytanie 31

Do zacisku odbiornika podłączonego na stałe w instalacji TN-S oznaczonego symbolem graficznym przedstawionym na rysunku należy podłączyć przewód

Ilustracja do pytania
A. ochronny.
B. neutralny.
C. wyrównawczy.
D. odgromowy.
Wybór odpowiedzi "ochronny" jest trafiony! W instalacji TN-S przewód, który widzisz na rysunku, to rzeczywiście przewód ochronny (PE). Jego głównym zadaniem jest ochrona użytkowników przed porażeniem prądem. Dzięki temu przewód odprowadza niebezpieczne napięcia do ziemi, co zmniejsza ryzyko wypadków. W systemach TN-S przewód ochronny jest oddzielony od neutralnego (N), co jest zgodne z zasadami bezpieczeństwa. Ważne, żeby ten przewód był dobrze podłączony, bo wtedy ochronne urządzenia, jak wyłącznik różnicowoprądowy, będą działać tak jak powinny. Dobrze jest też regularnie sprawdzać, czy przewody ochronne są w dobrym stanie, żeby mieć pewność, że ich działanie jest skuteczne. Jeśli chcesz bardziej zgłębić temat, popatrz na normy PN-IEC 60364 i PN-HD 60364 – tam znajdziesz konkretne wytyczne dotyczące instalacji elektrycznych.

Pytanie 32

Na ilustracji przedstawiono schemat do pomiaru rezystancji

Ilustracja do pytania
A. pętli zwarciowej.
B. uzwojenia fazowego.
C. izolacji pomiędzy zaciskami uzwojeń a korpusem silnika.
D. izolacji pomiędzy zaciskami uzwojeń silnika.
Poprawna odpowiedź odnosi się do pomiaru rezystancji izolacji pomiędzy zaciskami uzwojeń silnika, co jest kluczowym elementem zapewnienia bezpieczeństwa i funkcjonalności urządzeń elektrycznych. Schemat przedstawia połączenie miernika, co wskazuje na jego użycie do oceny stanu izolacji. W praktyce, regularne pomiary izolacji są niezbędne w procesach konserwacyjnych oraz w diagnostyce awarii silników elektrycznych. Zgodnie z normą IEC 60364, należy dążyć do utrzymania odpowiednich wartości rezystancji izolacji, które powinny być znacznie wyższe niż 1 MΩ, aby zapewnić bezpieczeństwo użytkowania oraz minimalizować ryzyko porażenia prądem. W przypadku stwierdzenia niskiej rezystancji, co może wskazywać na uszkodzenie izolacji, konieczne jest natychmiastowe podjęcie działań naprawczych, aby zapobiec dalszym problemom. Dobre praktyki inżynieryjne zalecają również dokumentowanie wyników pomiarów, co może być pomocne w opracowywaniu programów konserwacyjnych oraz w audytach bezpieczeństwa.

Pytanie 33

W układzie przedstawionym na rysunku, po podłączeniu odbiornika, zadziałał wyłącznik różnicowoprądowy. Przyczyną tego jest

Ilustracja do pytania
A. zwarcie między przewodem neutralnym i ochronnym.
B. dotyk bezpośredni przewodu pod napięciem.
C. pojawienie się napięcia na części metalowej normalnie nie przewodzącej.
D. nieprawidłowe połączenie przewodu neutralnego i ochronnego.
Nieprawidłowe połączenie przewodu neutralnego (N) z przewodem ochronnym (PE) jest kluczowym czynnikiem, który spowodował zadziałanie wyłącznika różnicowoprądowego. W momencie, gdy te dwa przewody są połączone, wyłącznik różnicowoprądowy wykrywa różnicę w prądzie, co prowadzi do jego zadziałania w celu ochrony użytkowników przed porażeniem prądem. Przykładowo, w przypadku instalacji elektrycznych w budynkach mieszkalnych, zaleca się stosowanie wyłączników różnicowoprądowych w obwodach zasilających gniazda, co zwiększa bezpieczeństwo użytkowników. W praktyce, aby zapewnić prawidłowe działanie wyłączników, konieczne jest przestrzeganie standardów, takich jak norma PN-EN 61008-1, która określa wymagania dla różnicowoprądowych wyłączników nadprądowych. Dobre praktyki obejmują regularne testowanie tych urządzeń, aby upewnić się, że działają prawidłowo i mogą skutecznie chronić przed zagrożeniami elektrycznymi.

Pytanie 34

Złącze wtykowe przedstawione na rysunku przeznaczone jest do zastosowań w obszarach zagrożonych

Ilustracja do pytania
A. wybuchem pyłu.
B. nadmierną wilgotnością.
C. wyziewami żrącymi.
D. wzrostem temperatury.
Złącze wtykowe z oznaczeniem "Ex" jest przeznaczone do pracy w obszarach, gdzie istnieje ryzyko wystąpienia atmosfer wybuchowych, w tym wybuchu pyłu. Zgodnie z normami IECEx oraz ATEX, sprzęt oznaczony jako Ex musi spełniać rygorystyczne wymagania dotyczące bezpieczeństwa, aby zminimalizować ryzyko zapłonu. W obszarach przemysłowych, takich jak przemysł farmaceutyczny, chemiczny czy energetyczny, złącza te są niezbędne do zapewnienia bezpiecznej pracy. Przykłady zastosowań to instalacje elektryczne w silosach, gdzie mogą zbierać się drobne cząstki materiałów sypkich, co stwarza zagrożenie wybuchem. Wybór odpowiednich komponentów z certyfikacją Ex jest kluczowy dla ochrony pracowników i mienia, dlatego znajomość oznaczeń oraz standardów jest niezbędna w branży przemysłowej.

Pytanie 35

Izolację przewodu YDY 5x6 450/700 V należy kontrolować induktorem przy napięciu

A. 500 V
B. 250 V
C. 2500 V
D. 1000 V
Pomiar rezystancji izolacji przewodu YDY 5x6 450/700 V powinien być przeprowadzany przy użyciu induktora na napięciu 1000 V. Taki poziom napięcia jest zgodny z normami i standardami branżowymi, które zalecają używanie wyższych napięć w celu uzyskania dokładnych i wiarygodnych wyników pomiarów izolacji. Przy pomiarze rezystancji izolacji na napięciu 1000 V można skutecznie sprawdzić, czy izolacja przewodu wytrzymuje wymagane napięcia robocze oraz czy nie występują mikrouszkodzenia, które mogłyby prowadzić do awarii. Przykładem zastosowania pomiaru na takim poziomie napięcia jest testowanie instalacji elektrycznych w budynkach przemysłowych, gdzie zabezpieczenie przed porażeniem prądem jest kluczowe. Dobrą praktyką jest także przeprowadzanie takich pomiarów w cyklu konserwacyjnym, aby zapobiec ewentualnym uszkodzeniom i zapewnić bezpieczeństwo użytkowników.

Pytanie 36

W instalacji elektrycznej wykorzystującej przekaźnik priorytetowy, po osiągnięciu ustawionej w tym przekaźniku wartości natężenia prądu w obwodzie

A. priorytetowym, zostaje wyłączony obwód priorytetowy
B. niepriorytetowym, zostaje wyłączony obwód niepriorytetowy
C. niepriorytetowym, zostaje wyłączony obwód priorytetowy
D. priorytetowym, zostaje wyłączony obwód niepriorytetowy
Odpowiedź dotycząca wyłączenia obwodu niepriorytetowego w przypadku przekroczenia ustawionej wartości natężenia prądu w obwodzie priorytetowym jest poprawna. Przekaźniki priorytetowe są kluczowymi elementami w systemach zarządzania energią, gdzie zapewniają odpowiednie gospodarowanie dostępnymi zasobami elektrycznymi. W praktyce oznacza to, że gdy prąd w obwodzie priorytetowym osiąga niebezpieczny poziom, przekaźnik automatycznie odłącza obwód niepriorytetowy, aby zminimalizować ryzyko przeciążenia oraz uszkodzenia urządzeń. Takie rozwiązanie jest szczególnie istotne w instalacjach przemysłowych, gdzie obciążenie elektryczne może być dynamiczne. Normy, takie jak PN-IEC 60947, określają zasady projektowania i użytkowania takich urządzeń, a ich przestrzeganie zapewnia większe bezpieczeństwo oraz efektywność energetyczną systemów elektrycznych. Dobrą praktyką jest również regularne monitorowanie stanu przekaźników i ich konfiguracji, aby zapewnić ich prawidłowe funkcjonowanie.

Pytanie 37

Z którym zaciskiem będzie połączony zacisk 23 stycznika K2, jeżeli układ elektryczny zostanie zmontowany zgodnie z przedstawionym schematem montażowym?

Ilustracja do pytania
A. Z zaciskiem 21 przycisku S1
B. Z zaciskiem X1 lampki kontrolnej H1
C. Z zaciskiem 1 listwy zaciskowej X1
D. Z zaciskiem 2 listwy zaciskowej X1
Poprawna odpowiedź to połączenie zacisku 23 stycznika K2 z zaciskiem 2 listwy zaciskowej X1. Analizując schemat montażowy, możemy dostrzec, że linia łącząca te dwa elementy jest wyraźnie zaznaczona, co jednoznacznie wskazuje na to połączenie. W kontekście praktycznym, takie połączenie jest kluczowe dla prawidłowego działania układów sterujących. Zachowanie zgodności z schematem montażowym jest istotne, aby zapewnić bezpieczeństwo i niezawodność instalacji. W branży elektrycznej przestrzeganie schematów oraz standardów, takich jak normy IEC czy PN-EN, jest fundamentem dobrych praktyk. Na przykład, błędne połączenie mogłoby prowadzić do uszkodzenia urządzeń lub stanowić zagrożenie dla użytkowników. Dlatego ważne jest, aby zawsze dokonywać dokładnych analiz i weryfikacji schematów przed przystąpieniem do montażu, co nie tylko zwiększa efektywność, ale także minimalizuje ryzyko awarii.

Pytanie 38

Na którym schemacie połączeń przedstawiono zgodne z zamieszczonym planem instalacji podłączenie przewodów w puszce numer 3?

Ilustracja do pytania
A. A.
B. D.
C. B.
D. C.
Schemat D przedstawia poprawne podłączenie przewodów w puszce numer 3, zgodne z planem instalacji elektrycznej. W instalacjach elektrycznych kluczowe jest właściwe prowadzenie przewodów, aby zapewnić bezpieczeństwo oraz efektywność działania systemu. W tym schemacie przewód fazowy L jest poprowadzony przez łącznik, co umożliwia jego załączanie i wyłączanie. To zgodne z dobrymi praktykami, które nakazują, aby w obwodach oświetleniowych umieszczać łączniki w obwodzie fazowym, co minimalizuje ryzyko wystąpienia porażenia prądem. Dodatkowo, schemat D uwzględnia odpowiednie oznaczenia i kolorystykę przewodów, co jest zgodne z normami PN-IEC 60446. Przykładowo, przewód neutralny N powinien być niebieski, a przewód ochronny PE zielono-żółty. Użycie właściwych kolorów oraz odpowiednich połączeń zabezpiecza przed ewentualnymi awariami oraz błędami w instalacji, co jest kluczowe w każdej nowoczesnej instalacji elektrycznej.

Pytanie 39

Którą lampę przedstawiono na rysunku?

Ilustracja do pytania
A. Rtęciową.
B. Żarową.
C. Sodową.
D. Ledową.
Odpowiedź "Ledową" jest poprawna, ponieważ na zdjęciu widoczna jest lampa LED, która charakteryzuje się wieloma małymi diodami emitującymi światło. W przeciwieństwie do lamp żarowych, które mają jedno większe źródło światła, lampy LED oferują szereg zalet. Przykładowo, ich wydajność energetyczna jest znacznie wyższa, co prowadzi do oszczędności energii i dłuższej żywotności. W praktycznym zastosowaniu oznacza to, że lampy LED mogą być wykorzystywane w różnych kontekstach, jak oświetlenie wnętrz, iluminacje zewnętrzne, a także w instalacjach przemysłowych. Zgodnie z normami branżowymi, lampy LED nie emitują promieniowania UV, co czyni je bezpiecznymi w zastosowaniach, gdzie istotna jest ochrona przed szkodliwym wpływem światła. Warto również dodać, że technologia LED jest zgodna z trendami zrównoważonego rozwoju, co czyni je preferowanym wyborem w nowoczesnych budynkach.

Pytanie 40

W którym z punktów spośród wskazanych strzałkami na charakterystyce diody prostowniczej przedstawionej na rysunku odczytywane jest napięcie przebicia?

Ilustracja do pytania
A. B.
B. A.
C. D.
D. C.
Napięcie przebicia diody prostowniczej to kluczowy parametr, który odgrywa istotną rolę w projektowaniu układów elektronicznych. Odczytywane w punkcie A, napięcie przebicia wskazuje na moment, w którym dioda zaczyna przewodzić prąd w kierunku wstecznym, co może prowadzić do jej uszkodzenia, jeśli nie jest odpowiednio zabezpieczona. W praktyce, zrozumienie tego zjawiska jest niezbędne podczas projektowania układów z diodami prostowniczymi, takich jak zasilacze impulsowe czy układy zabezpieczeń. Warto pamiętać o standardach, takich jak IEC 60747, które definiują charakterystyki diod, w tym ich napięcie przebicia. Właściwe zastosowanie wartości napięcia przebicia w projektach pozwala na uniknięcie awarii i zwiększa niezawodność urządzeń. Zastosowanie tego w praktyce, na przykład w zasilaczach, pozwala na dobór odpowiednich komponentów, co jest kluczowe dla długoterminowej stabilności systemów elektronicznych.