Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Automatyk
  • Kwalifikacja: ELM.01 - Montaż, uruchamianie i obsługiwanie układów automatyki przemysłowej
  • Data rozpoczęcia: 17 grudnia 2025 08:24
  • Data zakończenia: 17 grudnia 2025 08:57

Egzamin zdany!

Wynik: 27/40 punktów (67,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Na podstawie fragmentu dokumentacji przekaźnika wskaż zaciski, do których należy podłączyć napięcie zasilania 24 V DC.

Ilustracja do pytania
A. Do zacisku 1 podłączyć „-”, a do zacisku 3 „+”
B. Do zacisku 3 podłączyć „-”, a do zacisku 4 „+”
C. Do zacisku 1 podłączyć „+”, a do zacisku 3 „-”
D. Do zacisku 3 podłączyć „+”, a do zacisku 4 „-”
Podłączenie zasilania do przekaźnika wymaga ścisłego przestrzegania oznaczeń i schematów zawartych w dokumentacji. Zaciski 1 i 3, które są błędnie wskazywane w niektórych odpowiedziach, są przeznaczone dla napięcia 230 V AC. Podłączenie 24 V DC do tych zacisków może prowadzić do uszkodzenia urządzenia lub nieprawidłowego działania przekaźnika. To częsty błąd polegający na myleniu zacisków zasilania sieciowego z niskonapięciowym. Warto zawsze upewnić się, jakie napięcie jest przewidziane dla danego urządzenia, zwłaszcza gdy mamy do czynienia z mieszanymi systemami zasilania. Typowym błędem jest również ignorowanie oznaczeń biegunów. W przypadku zasilania prądem stałym kluczowe jest, aby bieguny były podłączone zgodnie z oznaczeniem: '+' do '+' i '-' do '-'. Zmiana biegunowości może skutkować nieprzewidywalnymi konsekwencjami, w tym uszkodzeniem obwodów. Takie pomyłki można zminimalizować poprzez uważne czytanie dokumentacji i oznaczanie przewodów.

Pytanie 2

W celu zmierzenia mocy czynnej pobieranej z sieci elektrycznej przez klimatyzator, należy użyć

A. termometru i miernika natężenia przepływu powietrza.
B. woltomierza i miernika natężenia przepływu powietrza.
C. woltomierza i amperomierza.
D. termometru i woltomierza.
Moc czynna, zwana też mocą rzeczywistą, jest kluczowa w określaniu, ile energii elektrycznej urządzenie zużywa do wykonywania rzeczywistej pracy, w tym przypadku chłodzenia powietrza przez klimatyzator. Aby ją zmierzyć, niezbędne są dwa podstawowe przyrządy: woltomierz i amperomierz. Woltomierz mierzy napięcie elektryczne, które jest potencjałem, jaki napędza prąd przez urządzenie. Amperomierz z kolei mierzy natężenie prądu, które jest ilością przepływających ładunków elektrycznych. Moc czynna to iloczyn napięcia, natężenia oraz współczynnika mocy. Z tego wynika, że sama znajomość napięcia i natężenia nie wystarcza do pełnego zrozumienia zużycia energii przez urządzenie, ale są to kluczowe składniki. W praktyce, mierząc moc czynną, możemy efektywnie zarządzać zużyciem energii, optymalizować koszty i unikać przeciążeń w instalacji domowej. Standardy międzynarodowe, takie jak te opracowane przez IEC, zalecają regularne monitorowanie mocy czynnej w urządzeniach elektrycznych dla ich bezpiecznej i efektywnej pracy. Klimatyzatory, szczególnie w dużych budynkach, są znaczącymi odbiorcami energii i ich efektywne monitorowanie może przełożyć się na znaczne oszczędności energetyczne. Dlatego znajomość i umiejętność stosowania tych przyrządów pomiarowych to podstawa w zawodzie elektryka.

Pytanie 3

Aby zapewnić stałą wartość ciśnienia doprowadzanego do układu pneumatycznego, należy zastosować zawór

A. dławiący.
B. bezpieczeństwa.
C. zwrotny.
D. redukujący.
Zawór redukujący to kluczowy element w systemach pneumatycznych, gdzie niezbędne jest utrzymanie stałego ciśnienia, niezależnie od wahań w ciśnieniu zasilania. Tego rodzaju zawory działają na zasadzie redukcji ciśnienia wlotowego do określonego poziomu, co jest niezbędne dla bezpieczeństwa i efektywności pracy układu. W praktyce, zawór redukujący można spotkać w różnych aplikacjach przemysłowych, takich jak systemy sterowania maszyn czy linie produkcyjne, gdzie wymagana jest precyzyjna kontrola ciśnienia. Dobre praktyki branżowe sugerują instalowanie zaworów redukujących w miejscach, gdzie ciśnienie zasilania może ulegać znacznym wahaniom, co mogłoby prowadzić do niekontrolowanych zmian w działaniu siłowników lub innych komponentów pneumatycznych. Warto również zauważyć, że zawory te często są wyposażone w manometry do monitorowania ciśnienia po redukcji, co pozwala na precyzyjną kontrolę i ewentualne dostosowanie ustawień. Wybór odpowiedniego zaworu redukującego, spełniającego normy takie jak ISO 4414, jest kluczowy dla zapewnienia bezpieczeństwa i niezawodności całego systemu. Takie rozwiązania są szeroko stosowane w przemyśle motoryzacyjnym, lotniczym i wielu innych sektorach, gdzie precyzyjna kontrola ciśnienia jest krytyczna dla działania urządzeń.

Pytanie 4

Tabliczka znamionowa przedstawiona na rysunku, to tabliczka znamionowa

Ilustracja do pytania
A. kondensatora.
B. silnika prądu przemiennego.
C. silnika prądu stałego.
D. transformatora.
Tabliczka znamionowa, którą widzimy, to klasyczna tabliczka silnika prądu przemiennego. Jest to ważny element, który zawiera kluczowe informacje o specyfikacji technicznej urządzenia. Na tej tabliczce znajdziemy między innymi dane dotyczące napięcia, mocy, prędkości obrotowej oraz częstotliwości. Te parametry są istotne dla poprawnego podłączenia i eksploatacji silnika. W przypadku silników prądu przemiennego, zgodnie z dobrymi praktykami, warto zwrócić uwagę na współczynnik mocy (cos φ), który wpływa na efektywność energetyczną urządzenia. Moim zdaniem, takie tabliczki są nie tylko praktyczne, ale wręcz niezbędne w procesie instalacji i konserwacji. W praktyce zawodowej często spotykamy się z sytuacjami, gdzie dokładne odczytanie tych informacji potrafi zaoszczędzić wiele problemów. Silniki prądu przemiennego są szeroko stosowane w przemyśle, od napędów maszyn po wentylatory, dlatego zrozumienie ich specyfikacji to podstawa.

Pytanie 5

Który z elementów należy zastosować do wykonania rozgałęzienia sygnału/przewodu pneumatycznego w celu podłączenia w układzie manometru?

A. Element 3.
Ilustracja do odpowiedzi A
B. Element 1.
Ilustracja do odpowiedzi B
C. Element 2.
Ilustracja do odpowiedzi C
D. Element 4.
Ilustracja do odpowiedzi D
Do wykonania rozgałęzienia przewodu pneumatycznego stosuje się element typu „trójnik”, czyli ten przedstawiony na zdjęciu numer 2. Trójnik umożliwia podłączenie trzech przewodów – jednego doprowadzającego sygnał i dwóch odprowadzających, co pozwala np. na równoczesne zasilenie siłownika i podłączenie manometru kontrolnego. W układach pneumatycznych takie złącze typu „T” jest podstawowym sposobem tworzenia odgałęzień sygnału ciśnienia lub przepływu powietrza. Moim zdaniem to jedno z najczęściej używanych złączy w praktyce – proste, szczelne i bardzo wygodne w montażu, szczególnie w systemach z przewodami poliuretanowymi. Wystarczy wsunąć przewód aż do oporu, a uszczelnienie zapewnia pierścień zaciskowy. Trójniki występują w wielu wersjach: proste, z gwintem, obrotowe, a nawet z zaworem odcinającym, ale zasada działania zawsze ta sama – jedno wejście, dwa wyjścia. Dzięki temu można łatwo podłączyć manometr do istniejącego przewodu bez przerywania pracy całego układu. W automatyce przemysłowej stosuje się je przy rozdziale powietrza do kilku zaworów lub przy pomiarze ciśnienia w różnych punktach instalacji.

Pytanie 6

W której pozycji ustawią się tłoczyska siłowników 1A1 i 2A1 po włączeniu zasilania układu sprężonym powietrzem przy niewzbudzonych cewkach Y1 i Y2?

Ilustracja do pytania
A. Tłoczysko siłownika 1A1 nie wysunie się, a tłoczysko siłownika 2A1 wysunie się.
B. Tłoczyska obu siłowników wysuną się.
C. Tłoczyska obu siłowników pozostaną wsunięte.
D. Tłoczysko siłownika 1A1 wysunie się, a tłoczysko siłownika 2A1 nie wysunie się.
Poprawna odpowiedź to: tłoczysko siłownika 1A1 nie wysunie się, a tłoczysko siłownika 2A1 wysunie się. Wynika to z analizy położenia zaworów w stanie spoczynku, czyli przy niewzbudzonych cewkach Y1 i Y2. Zawór 1V1 (sterujący siłownikiem 1A1) w pozycji podstawowej blokuje dopływ powietrza do komory wysuwu – dlatego tłoczysko pozostaje schowane. Natomiast zawór 2V1 (sterujący siłownikiem 2A1) w swojej pozycji spoczynkowej podaje ciśnienie na stronę wysuwu, przez co siłownik 2A1 się wysuwa. Sprężyna przy zaworze 2V1 ustawia go w pozycji, w której port 1 jest połączony z portem 2. W praktyce oznacza to, że po podaniu zasilania sprężonym powietrzem, bez aktywacji elektromagnesów, tylko siłownik 2A1 zostaje zasilony od strony tłoczyska i wykonuje ruch. Moim zdaniem to klasyczny przykład układu, który pokazuje znaczenie pozycji spoczynkowej zaworu oraz kierunku działania sprężyn – coś, co często umyka początkującym automatykom. W rzeczywistych aplikacjach takie rozwiązanie stosuje się np. do automatycznego ustawienia elementu w pozycji startowej po uruchomieniu maszyny.

Pytanie 7

Jaka jest właściwa kolejność czynności przy wymianie elektropneumatycznego zaworu kulowego?

  1. Wyłączyć media zasilające.
  2. Za pomocą klucza maszynowego odkręcić zawór kulowy.
  3. Zainstalować nowy zawór.
  4. Odłączyć przewody elektryczne i pneumatyczne od zdemontowanego zaworu.
  5. Podłączyć przewody elektryczne i pneumatyczne do zamontowanego zaworu.
  6. Włączyć media zasilające.
A.
  1. Wyłączyć media zasilające.
  2. Za pomocą klucza maszynowego odkręcić zawór kulowy.
  3. Odłączyć przewody elektryczne i pneumatyczne od zdemontowanego zaworu.
  4. Podłączyć przewody elektryczne i pneumatyczne do zamontowanego zaworu.
  5. Zainstalować nowy zawór.
  6. Włączyć media zasilające.
B.
  1. Wyłączyć media zasilające.
  2. Odłączyć przewody elektryczne i pneumatyczne od demontowanego zaworu.
  3. Podłączyć przewody elektryczne i pneumatyczne do montowanego zaworu.
  4. Za pomocą klucza maszynowego odkręcić zawór kulowy.
  5. Zainstalować nowy zawór.
  6. Włączyć media zasilające.
C.
  1. Wyłączyć media zasilające.
  2. Odłączyć przewody elektryczne i pneumatyczne od zdemontowanego zaworu.
  3. Za pomocą klucza maszynowego odkręcić zawór kulowy.
  4. Zainstalować nowy zawór.
  5. Podłączyć przewody elektryczne i pneumatyczne do zamontowanego zaworu.
  6. Włączyć media zasilające.
D.
A. 1. Wyłączyć media zasilające. 2. Odłączyć przewody elektryczne i pneumatyczne od zdemontowanego zaworu. 3. Za pomocą klucza maszynowego odkręcić zawór kulowy. 4. Zainstalować nowy zawór. 5. Podłączyć przewody elektryczne i pneumatyczne do zamontowanego zaworu. 6. Włączyć media zasilające.
B. 1. Wyłączyć media zasilające. 2. Za pomocą klucza maszynowego odkręcić zawór kulowy. 3. Zainstalować nowy zawór. 4. Odłączyć przewody elektryczne i pneumatyczne od demontowanego zaworu. 5. Podłączyć przewody elektryczne i pneumatyczne do zamontowanego zaworu. 6. Włączyć media zasilające.
C. 1. Wyłączyć media zasilające. 2. Odłączyć przewody elektryczne i pneumatyczne od demontowanego zaworu. 3. Podłączyć przewody elektryczne i pneumatyczne do montowanego zaworu. 4. Za pomocą klucza maszynowego odkręcić zawór kulowy. 5. Zainstalować nowy zawór. 6. Włączyć media zasilające.
D. 1. Wyłączyć media zasilające. 2. Za pomocą klucza maszynowego odkręcić zawór kulowy. 3. Odłączyć przewody elektryczne i pneumatyczne od zdemontowanego zaworu. 4. Podłączyć przewody elektryczne i pneumatyczne do zamontowanego zaworu. 5. Zainstalować nowy zawór. 6. Włączyć media zasilające.
Analizując błędne odpowiedzi, zauważamy kilka typowych błędów, które mogą prowadzić do poważnych problemów podczas wymiany elektropneumatycznego zaworu kulowego. Po pierwsze, w niektórych odpowiedziach pominięto krok odłączenia przewodów elektrycznych i pneumatycznych przed odkręceniem zaworu kulowego. Jest to poważny błąd, ponieważ pozostawienie podłączonych przewodów podczas demontażu może prowadzić do uszkodzenia instalacji, a nawet porażenia prądem. Kolejność czynności ma znaczenie, ponieważ zapewnia, że żadna część systemu nie jest pod napięciem ani ciśnieniem, co mogłoby stanowić zagrożenie. Kolejnym często spotykanym błędem jest odwrotny montaż zaworu przed podłączeniem przewodów. Taka sekwencja może powodować problemy z prawidłowym dopasowaniem elementów i utrudniać dostęp do połączeń, co z kolei może wpłynąć na szczelność i niezawodność całego układu. Dobre praktyki w branży nakazują, aby zawsze najpierw odłączyć i podłączyć przewody, zanim zajmiemy się mechanicznym montażem lub demontażem. Warto także pamiętać o przestrzeganiu zasady wyłączania i włączania zasilania mediów jako pierwszego i ostatniego kroku, co jest kluczowe dla bezpieczeństwa pracy. Właściwa sekwencja czynności zgodna z przyjętymi standardami przemysłowymi nie tylko zapewnia bezpieczeństwo, ale także optymalizuje czas i efektywność pracy, minimalizując ryzyko nieplanowanych przestojów i uszkodzeń systemu.

Pytanie 8

Na rysunku przedstawiono symbol graficzny czujnika

Ilustracja do pytania
A. indukcyjnego.
B. magnetycznego.
C. optycznego.
D. pojemnościowego.
Przedstawiony symbol to czujnik optyczny. Na rysunku widać charakterystyczny symbol diody emitującej światło (LED) oraz odbiornika, najczęściej fototranzystora lub fotodiody. To właśnie ten zestaw elementów odpowiada za działanie czujników optycznych, które wykrywają obiekty poprzez analizę promienia światła – odbitego lub przerwanego. W praktyce czujniki optyczne dzielą się na refleksyjne, bariery i odbiciowe. W automatyce przemysłowej wykorzystuje się je np. do zliczania elementów na taśmie, wykrywania obecności detali, kontroli etykiet lub pomiaru prędkości obrotowej. Ich ogromną zaletą jest bezkontaktowa praca i bardzo szybka reakcja, co pozwala uniknąć zużycia mechanicznego. Moim zdaniem warto zwrócić uwagę na strzałki przy symbolu – pokazują kierunek emisji światła, co pomaga odróżnić czujniki optyczne od innych typów w dokumentacji technicznej.

Pytanie 9

Przyrząd do sprawdzania średnicy otworów przedstawia

A. ilustracja 1.
Ilustracja do odpowiedzi A
B. ilustracja 3.
Ilustracja do odpowiedzi B
C. ilustracja 2.
Ilustracja do odpowiedzi C
D. ilustracja 4.
Ilustracja do odpowiedzi D
Wybór innej ilustracji niż pierwsza może wynikać z błędnego rozpoznania przyrządu. Ilustracja 2 pokazuje suwmiarkę, która służy do pomiaru odległości zewnętrznych, wewnętrznych oraz głębokości, ale nie jest dedykowanym przyrządem do mierzenia średnicy otworów. Choć suwmiarka jest uniwersalna, to jej dokładność w porównaniu do specjalistycznych przyrządów, takich jak szczelinomierz, jest ograniczona. Z kolei ilustracja 3 przedstawia kątomierz, wykorzystywany do pomiaru kątów, co całkowicie odbiega od funkcji mierzenia średnicy otworów. Błąd w wyborze może wynikać z mylnego utożsamienia narzędzi wielofunkcyjnych z tymi bardziej wyspecjalizowanymi. W końcu ilustracja 4 ukazuje klucz nastawny, przydatny do dokręcania śrub o zróżnicowanych rozmiarach, jednak nieprzydatny w kontekście pomiaru średnicy otworów. Kluczowym błędem jest tu generalizowanie funkcji narzędzi i brak wiedzy na temat ich specjalistycznych zastosowań. Rozpoznawanie właściwych narzędzi jest niezbędne dla efektywnego i precyzyjnego wykonywania zadań technicznych, a także unikania błędów operacyjnych.

Pytanie 10

Według której zasady należy w układzie sterowania zaprojektować działanie umożliwiające wyłączenie zautomatyzowanego systemu sterowanego przez sterownik PLC?

A. Zasady blokady sygnałów wyjściowych.
B. Zasady przerwy roboczej - podanie stanu 0 na wejście sterownika.
C. Zasady blokady programowej sygnałów wejściowych.
D. Zasady prądu roboczego - podanie stanu 1 na wejście sterownika.
Zasady blokady sygnałów wyjściowych oraz blokady programowej sygnałów wejściowych to częste błędy koncepcyjne, gdy myślimy o wyłączaniu systemów sterowania. Pierwsza z nich sugeruje, że można po prostu zablokować sygnały na wyjściu, ale to nie rozwiązuje problemu potencjalnych awarii sterownika lub innych komponentów systemu. Blokowanie sygnałów wyjściowych może jedynie zatrzymać działanie siłowników czy innych wykonawczych elementów, ale nie gwarantuje, że system faktycznie przestanie działać w bezpieczny sposób. Podobnie zasady blokady programowej sygnałów wejściowych mogą wprowadzać fałszywe poczucie bezpieczeństwa – nawet jeśli blokujemy niektóre sygnały, to sterownik PLC może nadal operować na pozostałych danych, co może prowadzić do niekontrolowanych działań. Zasady prądu roboczego, które sugerują podanie stanu 1 na wejście, również są mylące. W sytuacjach awaryjnych wymagamy, aby system automatycznie przechodził w stan bezpieczny, co oznacza, że powinien przyjąć stan 0 jako domyślne ustawienie. W praktyce, błędne założenie, że podanie stanu 1 rozwiąże problem, może prowadzić do zwiększenia ryzyka awarii. Często spotykanym błędem jest niedocenianie potrzeby implementacji procedur fail-safe, które są fundamentem w projektowaniu systemów zautomatyzowanych, zwłaszcza tam, gdzie stawiamy na minimalizację ryzyka dla zdrowia i mienia. W kontekście standardów i dobrych praktyk unikanie przełączania systemu w stan aktywny w krytycznych momentach jest kluczowe dla zapewnienia bezpieczeństwa operacyjnego.

Pytanie 11

Do sygnalizacji położenia tłoka siłownika pneumatycznego, którego symbol graficzny pokazano na rysunku, należy zastosować czujnik

Ilustracja do pytania
A. magnetyczny.
B. pojemnościowy.
C. indukcyjny.
D. ultradźwiękowy.
Zastosowanie czujnika magnetycznego do sygnalizacji położenia tłoka siłownika pneumatycznego to bardzo trafny wybór. W praktyce przemysłowej najczęściej stosuje się siłowniki magnetyczne, gdzie na tłoku zamontowany jest magnes. Czujnik magnetyczny, zamontowany na korpusie siłownika, wykrywa obecność tego magnesu, co pozwala na precyzyjne określenie położenia tłoka. Jest to rozwiązanie powszechnie stosowane w automatyce, ponieważ czujniki magnetyczne są bezkontaktowe i odporne na zużycie mechaniczne, co wydłuża ich żywotność. Warto wspomnieć, że są one także odporne na wpływ zanieczyszczeń i mogą pracować w trudnych warunkach środowiskowych, co czyni je niezwykle wszechstronnymi. Standardy branżowe, takie jak ISO 5599 dotyczące pneumatyki, często wspominają o wykorzystaniu czujników magnetycznych w takich zastosowaniach. Moim zdaniem, takie rozwiązanie jest zarówno ekonomiczne, jak i efektywne, gdyż minimalizuje ryzyko awarii dzięki swojej prostocie i niezawodności. To podejście pozwala również na łatwe zintegrowanie z systemami automatyki, co jest niezwykle istotne w nowoczesnych zakładach produkcyjnych. Dodatkowo, czujniki magnetyczne mogą być wyposażone w różne funkcje, takie jak możliwość programowania punktów przełączania, co zwiększa ich funkcjonalność i elastyczność zastosowań.

Pytanie 12

Zgodnie z charakterystyką przetwarzania, dla temperatury 80ºC na wyjściu przetwornika pojawi się prąd o natężeniu

Ilustracja do pytania
A. 13 mA
B. 16 mA
C. 10 mA
D. 18 mA
Doskonale! Odpowiedź 16 mA jest prawidłowa, ponieważ związana jest z liniowym charakterem przetwornika prądu w odniesieniu do temperatury. Patrząc na wykres, można zauważyć, że przy 0°C prąd wynosi 0 mA, a przy 100°C wynosi 20 mA. To wskazuje, że przetwornik ma charakterystykę liniową z przelicznikiem 0,2 mA na każdy stopień Celsjusza. Przy 80°C, przeliczenie daje dokładnie 16 mA, co jest zgodne z wykresem. Takie przetworniki są powszechnie używane w przemysłowych systemach automatyki, gdzie precyzyjne odwzorowanie zmiennych fizycznych na sygnał elektryczny jest kluczowe. Dzięki temu, kontrola temperatur w procesach chemicznych czy energetycznych jest bardziej efektywna. Standardy przemysłowe, takie jak 4-20 mA, są często wykorzystywane ze względu na ich odporność na zakłócenia i łatwość integracji z systemami sterowania. Ułatwia to też diagnostykę, bo sygnały poniżej 4 mA mogą wskazywać na awarię czujnika.

Pytanie 13

Do przykręcenia zaworu za pomocą śruby przedstawionej na rysunku należy użyć

Ilustracja do pytania
A. klucza imbusowego.
B. klucza „francuskiego”.
C. klucza hydraulicznego nastawnego.
D. wkrętaka gwiazdkowego.
Klucz imbusowy jest nieodzownym narzędziem w przypadku pracy ze śrubami posiadającymi sześciokątne gniazdo. Ten typ śruby, znany jako śruba z łbem na klucz imbusowy, jest szeroko stosowany w wielu dziedzinach, od meblarstwa po inżynierię mechaniczną. Klucz imbusowy, czasami nazywany kluczem sześciokątnym, cechuje się prostotą budowy, co czyni go niezwykle praktycznym w użyciu. Jednym z głównych powodów popularności tego rozwiązania jest możliwość uzyskania dużego momentu obrotowego bez ryzyka uszkodzenia łba śruby. Użycie klucza imbusowego jest zgodne ze standardami ISO dla narzędzi ręcznych, co gwarantuje jego uniwersalność i zgodność z większością śrub tego typu na całym świecie. W praktyce, śruby na klucz imbusowy są często wykorzystywane w konstrukcjach, gdzie dostęp jest ograniczony, ponieważ klucz imbusowy może być stosowany pod kątem. To także narzędzie, które z powodzeniem znajdziemy w wielu zestawach do samodzielnego montażu, popularnych wśród skandynawskich firm meblowych. Moim zdaniem, jeśli ktoś często pracuje z montażem lub demontażem różnych elementów, posiadanie zestawu kluczy imbusowych to absolutna konieczność.

Pytanie 14

Urządzenie połączone ze sterownikiem PLC, oznaczone ADMC-1801, pełni w układzie przedstawionym na ilustracji funkcję

Ilustracja do pytania
A. modułu wyjściowego.
B. zasilacza sterownika PLC.
C. modułu wejściowego.
D. interfejsu komunikacyjnego.
Świetnie, zrozumiałeś funkcję tego urządzenia! ADMC-1801 działa jako moduł wejściowy w systemie sterowania PLC. Moduły wejściowe są kluczowe w zbieraniu danych z różnych czujników i urządzeń w celu monitorowania stanu systemu. W tym przypadku ADMC-1801 jest połączony z czujnikiem PT100, który mierzy temperaturę. Moduły wejściowe przetwarzają sygnały z czujników na sygnały cyfrowe, które PLC może analizować. Dzięki temu można efektywnie kontrolować procesy przemysłowe. Dobre praktyki w branży wskazują na używanie odpowiednich modułów wejściowych, aby zapewnić dokładność i niezawodność danych. Praktyczne zastosowanie takich modułów jest szerokie, od automatyki budynkowej po zaawansowane systemy produkcyjne. Upewnienie się, że moduł wejściowy jest poprawnie skonfigurowany i skalibrowany, jest kluczowe dla prawidłowego działania całego systemu. Moim zdaniem, zrozumienie roli modułów wejściowych jest fundamentem w nauce o systemach PLC.

Pytanie 15

Do pomiaru ciśnienia cieczy w układach hydraulicznych stosuje się

A. higrometry.
B. areometry.
C. manometry.
D. barometry.
Areometry, higrometry i barometry to przyrządy pomiarowe, ale żaden z nich nie jest odpowiedni do pomiaru ciśnienia cieczy w układach hydraulicznych. Areometry służą do określania gęstości cieczy, co jest przydatne przy pomiarach właściwości fizycznych płynów, ale nie ma związku z ciśnieniem. Ich zastosowanie jest bardziej związane z analizą chemiczną niż z przemysłem hydraulicznym. Z kolei higrometry mierzą wilgotność powietrza, co jest kluczowe w meteorologii czy w kontroli klimatu w pomieszczeniach, ale nie ma związku ze środowiskiem pracy manometrów. Stosowanie higrometrów w kontekście ciśnienia cieczy to typowy błąd wynikający z mylenia ciśnienia z wilgotnością. Barometry natomiast są używane do pomiaru ciśnienia atmosferycznego, co pozwala przewidywać zmiany pogodowe i jest użyteczne w nawigacji. Warto zauważyć, że barometry działają na zasadzie pomiaru ciśnienia powietrza, co czyni je nieodpowiednimi do pomiarów w zamkniętych systemach hydraulicznych, gdzie wymagane są manometry. Częste błędy wynikają z braku zrozumienia specyfiki każdego z tych urządzeń, co prowadzi do niepoprawnych wniosków na temat ich zastosowań. Ważne jest, aby zrozumieć, że każdy z tych przyrządów ma swoje specyficzne zastosowania, które nie powinny być mylone ze sobą.

Pytanie 16

Przedstawione na rysunku narzędzie służy do

Ilustracja do pytania
A. ściągania izolacji.
B. zaciskania tulejek.
C. cięcia przewodów pneumatycznych.
D. oznaczania przewodów.
Narzędzie, które widzisz, jest specjalistycznym przyrządem do cięcia przewodów pneumatycznych. Tego typu narzędzia są zaprojektowane tak, aby zapewnić czyste i precyzyjne cięcie, co jest kluczowe w systemach pneumatycznych. Niedokładnie przycięty wąż może prowadzić do nieszczelności lub trudności z montażem w złączkach. W praktyce, zastosowanie narzędzia do cięcia przewodów pneumatycznych jest nie tylko wygodne, ale również zapewnia, że cięcie nie uszkadza struktury przewodu. Moim zdaniem, to narzędzie jest niezastąpione w warsztatach, gdzie często pracuje się z instalacjami pneumatycznymi. Warto również zwrócić uwagę, że tego typu narzędzia są zgodne z branżowymi standardami, które zalecają używanie narzędzi dostosowanych do specyficznego typu przewodów. Standardowe nożyce mogą nie zapewniać takiej samej precyzji, a co za tym idzie, mogą prowadzić do problemów eksploatacyjnych. Dobre praktyki mówią, że użycie właściwego narzędzia zwiększa bezpieczeństwo i wydajność pracy.

Pytanie 17

Do pomiaru wartości podciśnienia w zautomatyzowanej instalacji pneumatycznej, w której stosowane są ejektory wraz z przyssawkami, należy zastosować

A. manometr.
B. barometr.
C. manometr różnicowy.
D. wakuometr.
Wybór odpowiedniego przyrządu do pomiaru podciśnienia jest kluczowy w zautomatyzowanych systemach pneumatycznych. Często pojawia się błąd myślowy polegający na myleniu wakuometru z innymi przyrządami do pomiaru ciśnienia. Barometr, na przykład, mierzy ciśnienie atmosferyczne i jest używany głównie do celów meteorologicznych, a nie w systemach technicznych, gdzie potrzebny jest pomiar podciśnienia. Manometr, z kolei, to przyrząd mierzący ciśnienie powyżej ciśnienia atmosferycznego, stosowany najczęściej do pomiaru ciśnienia cieczy lub gazów w systemach zamkniętych. Manometr różnicowy mierzy różnicę ciśnień między dwoma punktami, co jest użyteczne w systemach, gdzie trzeba kontrolować przepływy, ale nie w pomiarze podciśnienia. Typowym błędem jest także niedocenianie znaczenia dokładnego pomiaru w aplikacjach takich jak ejektory. Ewentualne niepoprawne wartości mogą prowadzić do nieefektywnej pracy systemu, co w konsekwencji może wpłynąć na cały proces produkcyjny. Warto pamiętać, że poprawny dobór narzędzi pomiarowych to nie tylko kwestia techniczna, ale również ekonomiczna, gdyż niewłaściwe narzędzia mogą powodować przestoje i dodatkowe koszty związane z konserwacją systemu.

Pytanie 18

Urządzenie połączone ze sterownikiem PLC, oznaczone ADMC-1801 pełni w układzie przedstawionym na rysunku funkcję

Ilustracja do pytania
A. interfejsu komunikacyjnego.
B. zasilacza sterownika PLC.
C. modułu wejściowego.
D. modułu wyjściowego.
Moduł wejściowy, w tym przypadku oznaczony jako ADMC-1801, to kluczowy komponent w systemach sterowania opartych na PLC. Jego główną funkcją jest przetwarzanie sygnałów z różnych czujników i przekazywanie ich do sterownika PLC. Dzięki temu sterownik może podjąć decyzje na podstawie aktualnych danych z procesu, co jest fundamentalne w automatyce przemysłowej. Moduły wejściowe mogą obsługiwać różne typy sygnałów, w tym cyfrowe i analogowe, co pozwala na elastyczność w projektowaniu systemów. W naszym przypadku, czujnik PT100, który jest czujnikiem temperatury, podłączony jest do tego modułu. To typowy przykład zastosowania modułu wejściowego do monitorowania parametrów procesowych. Dzięki takim rozwiązaniom, systemy sterowania mogą być bardziej precyzyjne i niezawodne. Dobre praktyki branżowe zalecają regularne testowanie i kalibrację modułów wejściowych, aby zapewnić ich dokładność i niezawodność. Warto również pamiętać o zgodności z normami, takimi jak IEC 61131, które definiują wymagania dla systemów sterowania. Moim zdaniem, zrozumienie roli modułów wejściowych jest kluczowe dla każdego, kto zajmuje się automatyką przemysłową, ponieważ pozwala to na lepsze zaprojektowanie i optymalizację procesów.

Pytanie 19

Przedstawiony na zdjęciu czujnik jest przeznaczony do detekcji

Ilustracja do pytania
A. ciśnienia.
B. temperatury.
C. naprężeń.
D. pola magnetycznego.
Jeśli myślałeś, że przedstawiony czujnik może mierzyć ciśnienie, naprężenia lub temperaturę, to niestety nie jest to prawidłowe rozumowanie. Czujniki ciśnienia zazwyczaj charakteryzują się membraną, która pod wpływem ciśnienia odkształca się, a jej ruch jest przekształcany na sygnał elektryczny. Typowe zastosowania to monitorowanie ciśnienia w oponach czy systemach hydraulicznych. Czujniki naprężeń, z kolei, pracują na zasadzie zmiany rezystancji pod wpływem deformacji materiału i są kluczowe w inżynierii konstrukcji do oceny trwałości materiałów. Natomiast czujniki temperatury, takie jak termistory czy termopary, działają na zasadzie zmiany własności fizycznych materiału pod wpływem temperatury. Mogą być używane w systemach klimatyzacyjnych i chłodniczych. Typowym błędem myślowym jest zakładanie, że każdy mały czujnik może pełnić dowolną funkcję, jednak w praktyce każdy z tych czujników ma swoją specyficzną konstrukcję i zastosowanie. Z tego właśnie powodu rozpoznawanie specyfikacji i zastosowań jest kluczowe w pracy z czujnikami.

Pytanie 20

Które piny przetwornika pomiarowego należy podłączyć z odbiornikami sygnału?

Ilustracja do pytania
A. 1 i 4.
B. 2 i 3.
C. 2 i 4.
D. 3 i 4.
Dobrze, że zauważyłeś, że piny 2 i 4 są kluczowe w tym układzie. Pin 2 oznaczony jest jako NC (normally closed), a pin 4 jako NO (normally open). To typowe oznaczenia w technice przekaźników i czujników, gdzie NC oznacza, że obwód jest zamknięty w stanie nieaktywnym, a NO że jest otwarty. W praktyce, wiele przetworników, szczególnie w automatyce przemysłowej, wykorzystuje te piny do przesyłania sygnałów do odbiorników. Podłączając piny 2 i 4 do odbiorników, zapewniasz prawidłowe działanie zarówno w trybie normalnie zamkniętym, jak i otwartym, co jest często wymogiem w systemach zabezpieczeń i automatyki. To podejście jest zgodne z wieloma normami, takimi jak IEC 60947 dotyczących aparatury rozdzielczej i sterowniczej. Warto pamiętać, że takie połączenia zwiększają niezawodność systemu i pozwalają na szybką reakcję w przypadku zmiany stanu czujnika.

Pytanie 21

Który przyrząd należy zastosować, aby zmierzyć z dokładnością 0,1 mm otwory o średnicy φ10 wykonane pod montaż czujników indukcyjnych?

A. Suwmiarkę uniwersalną.
B. Mikrometr zewnętrzny.
C. Przymiar kreskowy.
D. Czujnik zegarowy.
Suwmiarka uniwersalna to wszechstronne narzędzie pomiarowe, które odgrywa kluczową rolę w przemysłowej kontroli jakości oraz w warsztatowych pomiarach. Dzięki niej możemy z dużą precyzją, bo aż do 0,1 mm, mierzyć różne wielkości, takie jak średnice zewnętrzne, wewnętrzne, a także głębokości. W przypadku otworów o średnicy φ10, suwmiarka jest idealnym wyborem, ponieważ jej szczęki pomiarowe są zaprojektowane tak, aby dokładnie wpasować się w otwory, co pozwala na precyzyjne odczyty bez ryzyka błędu wynikającego z niedopasowania przyrządu. Przykładowo, w branży produkcji czujników indukcyjnych, gdzie precyzja montażu jest kluczowa, stosowanie suwmiarki uniwersalnej zapewnia, że czujniki będą prawidłowo umieszczone. Ponadto stosowanie suwmiarki jest zgodne z dobrymi praktykami metrologicznymi i zaleceniami norm ISO dotyczących pomiarów warsztatowych. Z mojego doświadczenia wynika, że choć nowoczesne technologie oferują bardziej zaawansowane narzędzia, to suwmiarka pozostaje niezastąpiona w codziennych zadaniach, łącząc prostotę z dokładnością, co czyni ją nieodzownym narzędziem w rękach każdego technika.

Pytanie 22

Aby dokręcić nakrętkę z określonym momentem obrotowym, należy zastosować klucz

A. przegubowy.
B. dynamometryczny.
C. udarowy.
D. grzechotkowy.
Klucz dynamometryczny to narzędzie, które pozwala na precyzyjne dokręcenie śruby czy nakrętki z określonym momentem obrotowym. Jego główną zaletą jest to, że umożliwia osiągnięcie dokładnie takiej siły dokręcania, jakiej potrzebujesz, co jest kluczowe w wielu zastosowaniach technicznych, np. w motoryzacji czy przemyśle lotniczym. Użycie klucza dynamometrycznego zapobiega przekręceniu, a co za tym idzie, uszkodzeniu elementów, co mogłoby prowadzić do poważnych awarii. Moment obrotowy jest mierzony w niutonometrach (Nm) i jest to standard przyjęty w branży. Przykładowo, dokręcając głowicę silnika, bardzo ważne jest, aby siła była równomiernie rozłożona na wszystkie śruby, co zapewnia prawidłowe funkcjonowanie silnika. Z mojego doświadczenia wynika, że posiadając wysokiej jakości klucz dynamometryczny, można uniknąć wielu błędów, które często pojawiają się przy używaniu innych narzędzi. Ważne jest też, aby regularnie kalibrować klucz dynamometryczny, co zapewnia jego dokładność i niezawodność. To narzędzie jest często stosowane w warsztatach samochodowych, gdzie specyfikacje producenta wymagają precyzyjnego dokręcania elementów. Pamiętaj, że ignorowanie momentu dokręcania może skutkować niebezpieczeństwem dla użytkownika bądź osób postronnych.

Pytanie 23

Przetwornik przedstawiony na rysunkach to

Ilustracja do pytania
A. zadajnik cyfrowo-analogowy.
B. analogowo-cyfrowy konwerter USB.
C. przetwornica napięcia.
D. przetwornik PWM.
Zgadza się, przedstawiony przetwornik to analogowo-cyfrowy konwerter USB. Dlaczego? Konwertery tego rodzaju służą do przekształcania sygnałów analogowych na cyfrowe, co jest kluczowe w wielu aplikacjach, gdzie potrzebujemy monitorować i analizować sygnały analogowe za pomocą komputerów. Proces ten odbywa się dzięki przetwornikowi analogowo-cyfrowemu (A/D), który zamienia sygnał analogowy na cyfrowy, a następnie poprzez interfejs USB przekazuje go do komputera. USB zapewnia także zasilanie i komunikację, co czyni te urządzenia bardzo praktycznymi i wszechstronnymi. W praktyce takie konwertery są często używane w laboratoriach, przemyśle oraz w projektach inżynieryjnych, gdzie dokładne pomiary i analiza danych są niezbędne. Z mojego doświadczenia, są one również bardzo wygodne w zastosowaniach edukacyjnych, ponieważ pozwalają na szybkie i bezproblemowe podłączenie urządzeń pomiarowych do PC.

Pytanie 24

Który rozrusznik typu „softstart” należy zastosować do łagodnego rozruchu silnika 1-fazowego prądu przemiennego o mocy 0,3 kW, jeżeli będzie on zamontowany bez dodatkowej obudowy, bezpośrednio przy silniku pracującym w środowisku wysokiego zapylenia?

Ilustracja do pytania
A. Rozrusznik 4.
B. Rozrusznik 3.
C. Rozrusznik 2.
D. Rozrusznik 1.
Wybór odpowiedniego rozrusznika softstart to nie tylko kwestia dopasowania mocy, ale też warunków środowiskowych, w jakich będzie on pracował. Rozruszniki 1 i 4, mimo że obsługują odpowiednie napięcie 1x230 V, posiadają obudowy o stopniu ochrony IP 20. Oznacza to, że są one tylko zabezpieczone przed ciałami stałymi większymi niż 12,5 mm, co nie jest wystarczające w środowisku wysokiego zapylenia. Bardzo często zapomina się, że pył może być jednym z najważniejszych czynników wpływających na niezawodność sprzętu elektrycznego. Rozrusznik 2, choć ma wyższy stopień ochrony IP 67, przeznaczony jest do pracy na wyższe napięcia (380-415 V), więc nie nadaje się do silnika jednofazowego na 230 V. Brak zgodności napięcia może prowadzić do nieprawidłowego działania urządzenia lub nawet jego uszkodzenia. Często pojawia się błędne przekonanie, że wyższy stopień ochrony zawsze oznacza lepszy wybór, ale nie można pomijać kwestii dopasowania do specyfikacji technicznej całego systemu. Kluczem do sukcesu jest zawsze pełne zrozumienie wymagań aplikacji i środowiska, w jakim urządzenie będzie pracować, co pozwala unikać niepotrzebnych kosztów i potencjalnych awarii.

Pytanie 25

Połączenie zacisku L2 przemiennika częstotliwości ze źródłem zasilania należy wykonać przewodem w izolacji o kolorze

Ilustracja do pytania
A. białym.
B. czerwonym.
C. niebieskim.
D. brązowym.
Zrozumienie, jakie kolory izolacji przewodów są odpowiednie w danej sytuacji, jest kluczowe dla bezpieczeństwa i funkcjonalności instalacji elektrycznej. W przypadku zacisku L2 przemiennika częstotliwości, stosowanie białej, brązowej czy czerwonej izolacji byłoby niezgodne z przyjętymi standardami. Biały kolor izolacji jest rzadko używany w instalacjach standardowych do oznaczenia przewodów, ponieważ może wprowadzać zamieszanie. Brązowy kolor jest najczęściej używany do oznaczania przewodów fazowych, a nie neutralnych, co w tym przypadku byłoby nieprawidłowe, ponieważ fazowe przewody powinny być oznaczone w instalacjach trójfazowych w zgodzie z normami takimi jak IEC 60446. Z kolei czerwony kolor, dawniej używany w niektórych krajach jako oznaczenie fazy, obecnie jest eliminowany na rzecz bardziej ujednoliconego systemu oznaczeń. Takie błędne oznaczenia mogą prowadzić do nieporozumień, a nawet zagrożeń, szczególnie podczas prac serwisowych lub rozbudowy instalacji. Ważne jest, aby zawsze odnosić się do aktualnych standardów i lokalnych przepisów, aby uniknąć błędów, które mogą wpływać na bezpieczeństwo zarówno instalacji, jak i jej użytkowników.

Pytanie 26

Którego z przedstawionych na rysunkach mierników należy użyć w celu sprawdzenia poprawności wskazań sygnału wyjściowego +Q1 analogowego łącznika krańcowego?

Ilustracja do pytania
A. Miernik 4
Ilustracja do odpowiedzi A
B. Miernik 1
Ilustracja do odpowiedzi B
C. Miernik 2
Ilustracja do odpowiedzi C
D. Miernik 3
Ilustracja do odpowiedzi D
Poprawna odpowiedź to miernik numer 3, który ma zakres pomiarowy od –5 do +15 V. Jest to klasyczny woltomierz analogowy do pomiaru napięcia stałego (DC), idealny do sprawdzenia sygnału wyjściowego +Q1 z czujnika analogowego. W schemacie układu pomiarowego widać, że napięcie wyjściowe zawiera się w zakresie 0–10 V, więc miernik o takim zakresie zapewni odpowiednią dokładność i bezpieczeństwo pomiaru. Dodatkowo posiada on podziałkę symetryczną z częścią ujemną, co umożliwia kontrolę również błędnych polaryzacji lub sygnałów odwróconych. W praktyce technicznej takie mierniki stosuje się do diagnostyki czujników, regulatorów PID, przetworników sygnałów oraz wyjść analogowych PLC. Z mojego doświadczenia wynika, że warto używać mierników o zakresie nieco szerszym od mierzonego napięcia – w tym wypadku 15 V zamiast 10 V – żeby nie przeciążyć ustroju pomiarowego. W przemyśle automatyki miernik o takim zakresie jest często montowany w szafie sterowniczej, by umożliwić bieżący podgląd sygnału sterującego zaworem, siłownikiem czy czujnikiem położenia.

Pytanie 27

Który przyrząd pomiarowy należy zastosować do pomiaru amplitudy, częstotliwości i kształtu sygnałów w montowanych urządzeniach automatyki przemysłowej?

A. Mostek RLC.
B. Multimetr.
C. Oscyloskop.
D. Częstotliwościomierz.
Oscyloskop to naprawdę niezastąpione narzędzie w dziedzinie automatyki przemysłowej, szczególnie gdy chodzi o analizę sygnałów elektrycznych. Jest to urządzenie, które pozwala nam precyzyjnie zobaczyć, jak wygląda sygnał w czasie rzeczywistym. Możemy mierzyć zarówno amplitudę, jak i częstotliwość oraz kształt sygnału, co jest kluczowe przy diagnozowaniu układów elektronicznych. W praktyce oznacza to, że możemy dokładnie zidentyfikować, czy na przykład sygnały sterujące w maszynach przemysłowych działają poprawnie. Użycie oscyloskopu pozwala na szybkie wykrywanie zakłóceń i innych problemów w sieci elektrycznej, co jest nieocenione w utrzymaniu ciągłości pracy. Co więcej, oscyloskopy są standardem w laboratoriach i serwisach elektronicznych, co świadczy o ich uniwersalności i niezawodności. Moim zdaniem, kto raz dobrze opanuje pracę z oscyloskopem, zawsze znajdzie zastosowanie dla tego urządzenia. Dodatkowo, nowoczesne oscyloskopy cyfrowe oferują funkcje, które pozwalają na jeszcze bardziej szczegółową analizę sygnałów, takie jak zapis danych i ich szczegółowa analiza na komputerze. Bez tego przyrządu trudno wyobrazić sobie skuteczne diagnozowanie i naprawę skomplikowanych systemów automatyki przemysłowej.

Pytanie 28

W której pozycji ustawią się tłoczyska siłowników 1A1 i 2A1 po włączeniu zasilania układu sprężonym powietrzem przy niewzbudzonych cewkach Y1 i Y2?

Ilustracja do pytania
A. Tłoczyska obu siłowników wysuną się.
B. Tłoczysko siłownika 1A1 wysunie się, a tłoczysko siłownika 2A1 nie wysunie się.
C. Tłoczyska obu siłowników pozostaną wsunięte.
D. Tłoczysko siłownika 1A1 nie wysunie się, a tłoczysko siłownika 2A1 wysunie się.
Siłownik 1A1 nie wysunie się z powodu braku zasilania cewki Y1, co pozostawia zawór 1V1 w pozycji, która odcina dopływ powietrza do siłownika 1A1. To jest zgodne z zasadą działania zaworów rozdzielających, które kierują przepływem medium w zależności od stanu cewek. W praktyce oznacza to, że siłownik pozostanie w pozycji wsuniętej, co jest często stosowane w sytuacjach, gdzie bezpieczeństwo wymaga, aby ruch nie został wykonany bez wyraźnego sygnału sterującego. Z kolei siłownik 2A1 wysunie się, ponieważ zawór 2V1, w stanie niewzbudzonym, umożliwia przepływ powietrza, co powoduje ruch tłoczyska. Taka konstrukcja jest używana w systemach, gdzie natychmiastowe działanie siłowników jest wymagane, np. do szybkiego uruchamiania procesów produkcyjnych. Standardy pneumatyki przemysłowej, takie jak ISO 1219, opisują właśnie takie układy jako podstawowe dla zrozumienia sterowania pneumatycznego. Dzięki temu możemy lepiej zaplanować i kontrolować procesy, minimalizując ryzyko błędów i zwiększając efektywność produkcji.

Pytanie 29

Na schemacie przedstawiono

Ilustracja do pytania
A. regulowany wzmacniacz napięć lub prądów zmiennych.
B. konwerter łącza szeregowego na łącze światłowodowe.
C. przetwornik pomiarowy prądu lub napięcia AC.
D. przetwornik napięcia AC na prąd AC.
Na schemacie widzimy konwerter, który zamienia klasyczne łącze szeregowe RS-232 na łącze światłowodowe. Po lewej stronie oznaczenia TxD i RxD wskazują na typowy interfejs komunikacji szeregowej, natomiast po prawej znajdują się symbole nadajnika i odbiornika światłowodowego (FO – Fiber Optic). Urządzenie to umożliwia przesyłanie danych w formie impulsów świetlnych, co pozwala na transmisję na duże odległości bez zakłóceń elektromagnetycznych i bez konieczności galwanicznego połączenia między urządzeniami. Zasilanie w szerokim zakresie (24–240 V AC/DC) sugeruje zastosowanie przemysłowe – typowe dla automatyki, sterowników PLC i systemów monitoringu. Moim zdaniem to przykład nowoczesnego podejścia do komunikacji, które łączy prostotę RS-232 z niezawodnością światłowodu. W praktyce takie konwertery montuje się w szafach sterowniczych, by połączyć odległe stanowiska pomiarowe lub serwery. Dzięki nim można znacznie wydłużyć zasięg transmisji (nawet do kilku kilometrów) i uniezależnić się od szumów elektrycznych obecnych w fabrykach.

Pytanie 30

Na podstawie fragmentu karty katalogowej zaworu elektromagnetycznego określ maksymalne wartości ciśnienia roboczego i temperatury medium.

Fragment karty katalogowej
Typ modułu pneumatykizawór elektromagnetyczny
GwintBSP 3/4"
Średnica zewnętrzna przewodu20 mm
Ciśnienie robocze0.1÷16 bar
Temperatura pracymax. 50°C
Temperatura medium maks.90°C
Napięcie zasilania24 V DC
Klasa szczelnościIP65
Materiał korpusumosiądz
Materiał uszczelnieniakauczuk NBR
Podłączenie elektryczneDIN 43650 typ A
A. Ciśnienie robocze 16 barów i temperatura 90°C
B. Ciśnienie robocze 0,1 bara i temperatura 50°C
C. Ciśnienie robocze 16 barów i temperatura 50°C
D. Ciśnienie robocze 10 barów i temperatura 90°C
Maksymalne wartości ciśnienia roboczego i temperatury medium w zaworach elektromagnetycznych są kluczowe dla ich prawidłowego funkcjonowania i trwałości. W podanym fragmencie karty katalogowej znajdziemy informację, że ciśnienie robocze wynosi od 0,1 do 16 barów, co oznacza, że zawór może pracować z ciśnieniem nawet do 16 barów. To ważne, bo różne aplikacje w przemyśle wymagają różnych poziomów ciśnienia, a zawory muszą być w stanie spełnić te wymagania. Jeżeli chodzi o temperaturę medium, tutaj maksymalna wartość wynosi 90°C. Oznacza to, że ciecz lub gaz przepływające przez zawór mogą mieć temperaturę do 90°C, co jest istotne przy zastosowaniach w miejscach, gdzie medium może być gorące, na przykład w systemach grzewczych lub przemysłowych procesach chemicznych. Ważne jest, aby zawsze sprawdzać te parametry przed doborem zaworu do konkretnego zastosowania, ponieważ przekroczenie dopuszczalnych wartości może prowadzić do uszkodzenia zaworu i potencjalnych awarii w systemie. Warto też zwrócić uwagę na standardy branżowe, które regulują dobór i zastosowanie zaworów elektromagnetycznych, takie jak normy PN-EN dotyczące armatury przemysłowej.

Pytanie 31

Jakie powinny być nastawy przełącznika przemiennika częstotliwości, aby można było sterować jego pracą za pomocą sygnału 0÷20 mA?

Ilustracja do pytania
A. 1-ON, 2-OFF, 3-OFF, 4-OFF
B. 1-ON, 2-ON, 3-ON, 4-ON
C. 1-OFF, 2-OFF, 3-OFF, 4-OFF
D. 1-OFF, 2-ON, 3-OFF, 4-OFF
Nastawy przełącznika przemiennika częstotliwości są kluczowe dla prawidłowego sterowania urządzeniem, zwłaszcza gdy korzystamy z sygnału sterującego 0÷20 mA. Dlaczego właśnie takie ustawienie? Przełącznik w położeniu 1-ON, 2-OFF, 3-OFF, 4-OFF odpowiada sygnałowi 0÷20 mA, co jest jednym z najbardziej popularnych standardów sygnałów analogowych używanych w automatyce przemysłowej. Ten zakres sygnałów jest szczególnie preferowany ze względu na jego odporność na zakłócenia elektryczne, co jest nieocenionym atutem w środowisku przemysłowym. Dodatkowo, sygnały 0÷20 mA umożliwiają precyzyjne sterowanie, co jest kluczowe w wielu aplikacjach, takich jak sterowanie prędkością silników czy regulacja przepływu w zaworach. Ważne jest również, że ustawienie 1-ON, 2-OFF, 3-OFF, 4-OFF jest zgodne z najlepszymi praktykami i standardami branżowymi. W przypadku przemienników częstotliwości, takie nastawy zapewniają nie tylko właściwą interpretację sygnału, ale także optymalną pracę urządzenia w szerokim zakresie zastosowań. Z mojego doświadczenia, wiele błędów w konfiguracji przemienników wynika właśnie z nieprawidłowego ustawienia przełączników, dlatego warto zwrócić na to szczególną uwagę.

Pytanie 32

W jaki sposób należy ustawić separator dla toru pomiarowego czujnika 0÷100°C/0÷20 mA dla wejścia sterownika PLC 0÷20 mA?

Ilustracja do pytania
A. input SW1 - 01011010, output SW2 - 1001
B. input SW1 - 10001100, output SW2 - 0000
C. input SW1 - 01001001, output SW2 - 0000
D. input SW1 - 01011010, output SW2 - 0110
Ustawienie separatora toru pomiarowego czujnika w zakresie 0÷100°C/0÷20 mA dla wejścia sterownika PLC 0÷20 mA jest kluczowe dla zapewnienia dokładności pomiarów oraz bezawaryjnej pracy urządzenia. Poprawna odpowiedź to ustawienie input SW1 na 01001001 oraz output SW2 na 0000. To ustawienie zapewnia, że sygnał wejściowy w pełni pokrywa zakres 0÷20 mA, co jest zgodne z wymaganiami sterownika PLC. W praktyce, ustawienie to pozwala na pełne odwzorowanie sygnałów z czujnika, eliminując ryzyko błędów pomiarowych. Dobrze dobrany separator sygnału nie tylko optymalizuje działanie systemu, ale także zapewnia jego długotrwałą niezawodność. Ustawienie SW1 na 01001001 oznacza, że aktywowane są odpowiednie przełączniki dla zakresu 0÷20 mA, co jest często wykorzystywane w aplikacjach przemysłowych, gdzie precyzja i stabilność odczytu są kluczowe. To ustawienie jest zgodne z najlepszymi praktykami w dziedzinie automatyki przemysłowej, co gwarantuje nie tylko poprawność działania, ale również zgodność z normami.

Pytanie 33

Na podstawie danych umieszczonych w tabeli, dobierz średnicę wiertła do wykonania otworu pod gwint M8 o skoku 1 mm.

Średnica
znamionowa
gwintu
Skok
gwintu
mm
Średnica
nominalna
wiertła
mm
M81.256.80
17.00
0.757.25
M91.257.80
18.00
0.758.25
A. 6,80 mm
B. 7,25 mm
C. 7,80 mm
D. 7,00 mm
Odpowiedź 7,00 mm jest prawidłowa, ponieważ zgodnie z tabelą, dla gwintu M8 z skokiem 1 mm, należy użyć wiertła o średnicy 7,00 mm. To ważne, aby zrozumieć, dlaczego dobór właściwej średnicy wiertła jest kluczowy. Gwinty są używane do tworzenia połączeń śrubowych, które muszą być trwałe i wytrzymałe. Jeśli otwór jest za ciasny, może dojść do uszkodzenia narzędzi lub nawet materiału, z którym pracujesz. Z kolei zbyt duży otwór wpłynie na siłę połączenia, a nawet spowoduje jego luzowanie się. Praktyka mówi, że otwór powinien być na tyle duży, by śruba mogła bez problemu wejść, ale jednocześnie na tyle mały, by gwint miał odpowiednią przyczepność. Dobrze jest zapamiętać, że dla gwintów metrycznych, średnicę wiertła często oblicza się jako różnicę średnicy gwintu i skoku gwintu. Dlatego w przypadku M8 (8 mm) i skoku 1 mm, 8 mm - 1 mm = 7 mm. To nie tylko teoria, ale także zasada stosowana w praktyce przez profesjonalistów w branży.

Pytanie 34

Na podstawie przedstawionej listy kontrolnej procedury postępowania uruchomieniowego przed załączeniem układu regulacji opartym na sterowniku PLC należy w pierwszej kolejności sprawdzić

Ilustracja do pytania
A. kolejność podłączeń elementów wejściowych do sterownika.
B. kolejność podłączeń elementów wyjściowych do sterownika.
C. prawidłowość podłączeń przewodów ochronnych w układzie.
D. położenie przełącznika trybu pracy sterownika PLC.
Wybór niewłaściwej odpowiedzi może wynikać z niepełnego zrozumienia procedury uruchomieniowej. Zaczynając od położenia przełącznika trybu pracy sterownika PLC, jego prawidłowe ustawienie jest oczywiście ważne, ale nie stanowi pierwszego kroku w kontekście bezpieczeństwa całego układu. Przełącznik trybu pracy wpływa na działanie sterownika, ale nie ma bezpośredniego związku z bezpieczeństwem elektrycznym. Jeśli chodzi o kolejność podłączeń elementów wejściowych i wyjściowych do sterownika, to są to kroki ważne dla poprawnego działania funkcji sterownika, ale nie dla bezpieczeństwa użytkownika. Prawidłowa kolejność podłączeń zapewnia, że sygnały są właściwie odbierane i wysyłane, lecz nie chroni przed zagrożeniem porażenia prądem. Typowe błędy myślowe mogą wynikać z przekonania, że techniczna poprawność funkcjonowania systemu automatycznie zapewnia bezpieczeństwo, co nie zawsze jest prawdą. Bezpieczeństwo musi być weryfikowane na poziomie fundamentów, jakimi są przewody ochronne. Dlatego tak ważne jest, by na samym początku upewnić się, że fundamenty tego bezpieczeństwa są prawidłowo ustanowione.

Pytanie 35

Do wykrycia nieciągłości okablowania w komunikacyjnej sieci przemysłowej stosuje się

A. tester przewodów.
B. wykrywacz przewodów.
C. kamerę termowizyjną.
D. miernik parametrów instalacji.
Tester przewodów to urządzenie, które jest specjalnie zaprojektowane do sprawdzania ciągłości okablowania i wykrywania nieciągłości w sieciach komunikacyjnych. Działa na zasadzie wysyłania sygnału elektrycznego przez przewody i sprawdzania, czy sygnał ten dociera do drugiego końca kabla. Jeśli sygnał zostaje przerwany lub nie dociera, oznacza to, że w kablu występuje nieciągłość, taka jak przerwanie przewodu. Testery przewodów są nieocenione w diagnozowaniu problemów w sieciach przemysłowych, gdzie niezawodność komunikacji jest kluczowa. Korzystanie z testerów przewodów jest zgodne z dobrymi praktykami utrzymania sieci, ponieważ pozwala szybciej zidentyfikować i naprawić problemy, minimalizując przestoje w działaniu systemu. Warto zaznaczyć, że tego typu urządzenia mogą również wykrywać inne problemy, takie jak zwarcia czy błędne połączenia, co czyni je wszechstronnym narzędziem w arsenale technika sieciowego. W wielu branżach tester przewodów to standardowe wyposażenie każdego inżyniera utrzymania ruchu, co pozwala na szybkie lokalizowanie i usuwanie awarii, a tym samym zwiększa efektywność i niezawodność całych systemów komunikacyjnych. Są również urządzeniami stosunkowo prostymi w obsłudze, co oznacza, że nawet osoby z mniejszym doświadczeniem mogą z nich skutecznie korzystać, co dodatkowo podnosi ich użyteczność w codziennej pracy.

Pytanie 36

Na rysunku przedstawiono

Ilustracja do pytania
A. przegub robota.
B. podstawę robota.
C. ramię robota.
D. chwytak robota.
Kiedy myślimy o komponentach robota, łatwo jest pomylić pojęcia, bo często wyglądają podobnie. Ramię robota, na przykład, to najczęściej ruchoma część, która przypomina ludzką rękę. Jego głównym celem jest umożliwienie ruchu w wielu osiach. W przeciwieństwie do chwytaka, ramię nie manipuluje bezpośrednio obiektami, ale wspiera inne komponenty, takie jak chwytaki czy narzędzia. Przegub robota to kolejna część, którą łatwo pomylić z chwytakiem. Przeguby umożliwiają ruch pomiędzy segmentami ramienia, ale nie mają zdolności chwytania. Są istotne dla elastyczności robota, ale nie mogą bezpośrednio wpływać na obiekt. Podstawa robota to element, który stabilizuje całą maszynę. Jest to fundament, na którym opiera się cała konstrukcja robota. Bez solidnej podstawy, robot nie mógłby działać stabilnie ani precyzyjnie. Typowe błędy myślowe wynikają z braku rozróżnienia między funkcjami poszczególnych części. W branży robotyki istotne jest zrozumienie, że każdy komponent ma swoje unikalne zadanie i spełnia określoną rolę w całym systemie.

Pytanie 37

Na rysunku przedstawiono program sterowniczy realizujący funkcję logiczną

Ilustracja do pytania
A. OR
B. NAND
C. AND
D. XNOR
Na rysunku widzimy schemat, który realizuje funkcję logiczną NAND. To jest dość popularna operacja w logice cyfrowej, szczególnie w układach sterowania przemysłowego. Operacja NAND jest kombinacją operacji AND i NOT - daje wynik prawdziwy, jeżeli przynajmniej jeden z jej wejść jest fałszywy. W praktyce oznacza to, że wyjście będzie wyłączone tylko wtedy, gdy oba wejścia są w stanie wysokim (1). Ten rodzaj logiki jest często stosowany w projektowaniu zabezpieczeń, gdzie konieczne jest wyłączenie systemu w przypadku odczytu niepożądanych stanów na wejściach. W codziennej pracy inżynierskiej, bramka NAND jest uważana za jedną z najczęściej używanych, bo pozwala na realizację dowolnej funkcji logicznej przy użyciu odpowiednich kombinacji. Dodatkowo, z mojego doświadczenia, w układach sterowania PLC, stosowanie NAND jest efektywne i oszczędza miejsce oraz zasoby, co jest zgodne z dobrymi praktykami projektowania.

Pytanie 38

Na podstawie danych zawartych w tabeli wskaż co oznacza litera H w oznakowaniu przewodu elektrycznego, układanego na stałe?

Ilustracja do pytania
A. Izolacja żył wykonana z polwinitu.
B. Zewnętrzna powłoka izolacyjna wykonana z gumy silikonowej.
C. Zewnętrzna powłoka izolacyjna wykonana z materiału bezhalogenowego.
D. Izolacja żył wykonana z gumy.
Litera 'H' w oznakowaniu przewodów elektrycznych wskazuje na materiał bezhalogenowy użyty do zewnętrznej powłoki izolacyjnej. To istotna informacja, zwłaszcza w kontekście bezpieczeństwa pożarowego. Materiały bezhalogenowe nie emitują toksycznych gazów podczas spalania, co jest kluczowe w środowiskach, gdzie ludzie mogą być narażeni na dym, jak np. budynki użyteczności publicznej czy transport publiczny. Z mojego doświadczenia, coraz więcej firm stawia na takie rozwiązania, ponieważ pożary mogą stanowić duże zagrożenie dla życia. Takie przewody są zgodne z normami międzynarodowymi, takimi jak IEC 60754 czy EN 50267, które określają limity emisji dymu i toksycznych gazów. W praktyce, instalując przewody z oznaczeniem 'H', zapewniamy wyższy poziom bezpieczeństwa i spełniamy rygorystyczne wymagania ochrony środowiska. Warto zwrócić uwagę, że coraz częściej przepisy wymagają stosowania przewodów bezhalogenowych w miejscach publicznych. Wiedza o materiałach izolacyjnych i ich właściwościach jest kluczem do prawidłowego doboru przewodów w projektach elektroinstalacyjnych.

Pytanie 39

W której przemysłowej sieci komunikacyjnej stosowane jest urządzenie przedstawione na rysunku?

Ilustracja do pytania
A. DeviceNet
B. Profibus
C. Modbus
D. Profinet
Wybór innych odpowiedzi może wynikać z nieznajomości specyfiki różnych sieci przemysłowych. DeviceNet to standard oparty na sieciach CAN i jest używany głównie do komunikacji w mniejszych systemach automatyki. Jego zastosowanie jest z reguły ograniczone do prostszych urządzeń, takich jak czujniki i aktuatory. Modbus z kolei to jeden z najstarszych i najbardziej wszechstronnych protokołów komunikacyjnych, używany szeroko w różnych branżach, ale pierwotnie nie oparty na Ethernecie, co odróżnia go od Profinet. Profibus, mimo że jest blisko spokrewniony z Profinet, działa na innych zasadach, często z użyciem magistrali szeregowej. Typowe błędy w rozumieniu to mylenie standardów opartych na Ethernecie z tymi, które na nim nie bazują. Ważne jest, aby pamiętać, że Profinet, jako protokół oparty na Ethernecie, oferuje większą elastyczność i możliwości w integracji z systemami IT niż inne wymienione technologie. Dlatego kluczowe jest zrozumienie, jakie protokoły i urządzenia są najbardziej odpowiednie dla danego zastosowania.

Pytanie 40

Odpowiedź skokowa regulatora ciągłego przedstawiona na rysunku wskazuje, że w układzie regulacji zastosowano regulator typu

Ilustracja do pytania
A. PD
B. PI
C. P
D. PID
Odpowiedź skokowa na wykresie wskazuje, że mamy do czynienia z regulatorem PI, a nie P, PD czy PID. Regulator P, który jest najprostszą formą regulatora, daje odpowiedź natychmiastową proporcjonalną do błędu, ale nie usuwa uchybu ustalonego, co jest widoczne w statycznym zachowaniu systemu. W przypadku regulatora PD, integracja nie występuje, zamiast tego mamy do czynienia z różniczkowaniem, które poprawia odpowiedź dynamiczną systemu, ale nie zawsze jest praktyczne, zwłaszcza w obecności szumów. Regulator PID łączy w sobie cechy wszystkich trzech: proporcjonalność, całkowanie i różniczkowanie, oferując najbardziej wszechstronne rozwiązanie. W praktyce, jednak jego złożoność i konieczność precyzyjnego dostrojenia parametrów mogą być wyzwaniem. Dlatego też często używa się regulatorów PI tam, gdzie nie potrzebujemy tak szybkiej odpowiedzi dynamicznej, jaką oferuje PD, a utrzymanie zerowego uchybu ustalonego jest kluczowe. Często spotykanym błędem jest niedocenienie wpływu całkowania, które może znacząco poprawić dokładność regulacji, jednak może też prowadzić do przeregulowania, jeśli nie jest właściwie skonfigurowane. To właśnie właściwe zrozumienie i zastosowanie teorii regulatorów pozwala na ich skuteczne wykorzystanie w różnych aplikacjach przemysłowych oraz w automatyce domowej.