Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 17 grudnia 2025 21:21
  • Data zakończenia: 17 grudnia 2025 21:29

Egzamin zdany!

Wynik: 24/40 punktów (60,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Na podstawie przedstawionej tabeli obciążalności długotrwałej przewodów dobierz przekrój żył przewodu czterożyłowego ułożonego na ścianie, na uchwytach, zasilającego oporowy piec trójfazowy o prądzie znamionowym 36 A w sieci o napięciu 230/400 V.

Ilustracja do pytania
A. 10 mm2
B. 6 mm2
C. 2,5 mm2
D. 4 mm2
Wybór przekroju przewodu jest kluczowym zagadnieniem w projektowaniu instalacji elektrycznych, a niewłaściwe podejście do tego tematu może prowadzić do poważnych konsekwencji. Wiele osób może pomylić przekroje żył, myśląc, że im mniejszy przekrój, tym mniejsze straty energii lub łatwiejsza instalacja. Takie podejście jest błędne, ponieważ niewłaściwie wybrany przekrój przewodu może skutkować przegrzewaniem, co z kolei może prowadzić do uszkodzenia przewodów, a nawet pożaru. Na przykład, wybór 10 mm² dla obciążenia 36 A może wydawać się nadmiernym zabezpieczeniem, jednak warto uwzględnić, że nie jest to zgodne z zasadami doboru, które nakazują stosować najbliższą większą wartość w odniesieniu do aktualnego obciążenia. Zastosowanie 4 mm² byłoby niewystarczające, ponieważ nie pokrywałoby minimalnych wymagań dla obciążenia 36 A. Z kolei 2,5 mm² jest zdecydowanie zbyt małym przekrojem, co stwarzałoby ryzyko przegrzewania i uszkodzenia instalacji. Dlatego zasadniczym błędem jest ignorowanie tabel obciążalności, które są niezbędne do bezpiecznego i efektywnego projektowania instalacji elektrycznych. W przemyśle elektrycznym przestrzeganie norm i standardów, takich jak PN-IEC 60364, jest kluczowe dla zapewnienia bezpieczeństwa i efektywności energetycznej. Zrozumienie tych zasad jest kluczowe dla każdego, kto pracuje z instalacjami elektrycznymi i chce uniknąć potencjalnie niebezpiecznych sytuacji.

Pytanie 2

Jaka powinna być minimalna liczba przewodów w miejscach X oraz Y na schemacie instalacji, aby po jej wykonaniu możliwe było załączanie oświetlenia ze wszystkich łączników?

Ilustracja do pytania
A. X - 4 szt., Y - 5 szt.
B. X - 5 szt., Y - 5 szt.
C. X - 4 szt., Y - 4 szt.
D. X - 5 szt., Y - 4 szt.
Poprawna odpowiedź, czyli 4 przewody w miejscu X i 5 w miejscu Y, wynika z analizy struktury instalacji oświetleniowej z łącznikami schodowymi i krzyżowymi. W miejscu X, 4 przewody są niezbędne, aby umożliwić prawidłowe połączenie pomiędzy łącznikami schodowymi, gdzie wymagane są dwa przewody zwrotne, faza oraz przewód neutralny. Warto podkreślić, że stosowanie odpowiedniej liczby przewodów jest kluczowe dla bezpieczeństwa i funkcjonalności instalacji. W miejscu Y konieczność wykorzystania 5 przewodów wynika z tego, że wymaga ono połączeń między łącznikiem schodowym a krzyżowym. W tym przypadku również potrzebna jest faza, przewód neutralny, przewód zwrotny oraz dwa przewody do komunikacji między łącznikiem krzyżowym a pozostałymi. Praktyczne zastosowanie tych zasad znajduje potwierdzenie w normach IEC dotyczących instalacji elektrycznych, które zalecają stosowanie odpowiednich ilości przewodów w zależności od funkcji i układu łączników. Prawidłowe zrozumienie tych zasad jest niezbędne do projektowania bezpiecznych i efektywnych systemów oświetleniowych.

Pytanie 3

Którą funkcję w wyłączniku nadprądowym pełni element wskazany na ilustracji czerwoną strzałką?

Ilustracja do pytania
A. Łączy styki.
B. Reaguje na przeciążenia.
C. Gasi łuk elektryczny.
D. Reaguje na zwarcia.
Element wskazany na ilustracji czerwoną strzałką to bimetaliczny wyzwalacz termiczny, którego główną funkcją jest reagowanie na zwarcia w obwodzie. W momencie wystąpienia zwarcia, natężenie prądu gwałtownie wzrasta, co może prowadzić do poważnych uszkodzeń instalacji elektrycznej oraz zwiększa ryzyko pożaru. Bimetaliczny wyzwalacz termiczny działa na zasadzie odkształcania się dwóch różnych metali w odpowiedzi na wzrost temperatury, co powoduje zamknięcie obwodu i odłączenie zasilania. Zgodnie z normami IEC 60947-2 oraz EN 60898-1, wyłączniki nadprądowe są obowiązkowym elementem w nowoczesnych instalacjach elektrycznych, co podkreśla ich kluczowe znaczenie w zapewnieniu bezpieczeństwa. Przykładem zastosowania może być ochrona obwodów w budynkach mieszkalnych, gdzie wyłączniki te są projektowane tak, aby reagowały na wszelkie anomalie w działaniu urządzeń elektrycznych, co chroni zarówno użytkowników, jak i infrastrukturę. Dlatego znajomość funkcji bimetalicznych wyzwalaczy termicznych jest istotna dla każdego specjalisty z branży elektrycznej.

Pytanie 4

Jakie zakresy powinien mieć multimetr woltomierza, wykorzystywanego do konserwacji systemu sterującego bramą garażową, jeśli brama jest napędzana silnikami prądu stałego, zasilanymi napięciem 24 V, a system sterujący otrzymuje zasilanie z sieci 230 V?

A. AC 500 V i DC 50 V
B. DC 500 V i AC 50 V
C. AC 500 V i DC 10 V
D. DC 500 V i AC 100 V
Wybór zakresów AC 500 V i DC 50 V dla multimetru używanego do prac konserwacyjnych w systemie sterowania bramą garażową jest uzasadniony ze względu na specyfikę zasilania urządzeń. Zasilanie silników prądu stałego o napięciu 24 V wymaga, by woltomierz mierzył napięcia stałe w zakresie do 50 V, co jest wystarczające dla takich zastosowań. Z kolei, zasilanie układu sterowania z sieci 230 V wymaga pomiaru napięcia zmiennego, dlatego górny zakres 500 V w AC jest konieczny dla zapewnienia bezpieczeństwa i dokładności pomiarów. W praktyce, tego typu pomiar może być użyty do diagnozowania i konserwacji obwodów sterujących, co jest kluczowe w zapewnieniu ich prawidłowej pracy. Używając multimetru o odpowiednich zakresach, technicy mogą swobodnie sprawdzać zarówno napięcia niskie, jak i wysokie bez ryzyka uszkodzenia urządzenia, co jest zgodne z zasadami dobrych praktyk branżowych oraz normami bezpieczeństwa.

Pytanie 5

Którego z przedstawionych przyrządów pomiarowych należy użyć w celu wyznaczenia tras ułożenia przewodów elektrycznych w instalacjach podtynkowych?

Ilustracja do pytania
A. B.
B. C.
C. A.
D. D.
Odpowiedź D. jest poprawna, ponieważ detektor przewodów elektrycznych to specjalistyczne narzędzie, które umożliwia lokalizację przewodów w ścianach oraz innych elementach budowlanych. W przypadku instalacji podtynkowych, gdzie przewody są ukryte, kluczowe jest precyzyjne określenie ich położenia, aby uniknąć uszkodzeń podczas prac remontowych czy budowlanych. Detektory te działają na zasadzie wykrywania pola elektromagnetycznego emitowanego przez przewody, co pozwala na ich skuteczną lokalizację bez potrzeby przeprowadzania skomplikowanych badań. Dzięki zastosowaniu detektorów, można również zminimalizować ryzyko uszkodzenia istniejących instalacji. W branży elektrycznej stosowanie tego typu przyrządów jest zgodne z zasadami bezpieczeństwa oraz dobrymi praktykami, co podkreśla ich znaczenie w planowaniu i realizacji instalacji elektrycznych.

Pytanie 6

Na rysunku przedstawiono przewód

Ilustracja do pytania
A. o żyłach jednodrutowych w izolacji i powłoce polwinitowej, okrągły.
B. o żyłach wielodrutowych w izolacji i powłoce polwinitowej, płaski.
C. o żyłach wielodrutowych w izolacji i powłoce polwinitowej, okrągły.
D. o żyłach jednodrutowych w izolacji i powłoce polwinitowej, płaski.
Poprawna odpowiedź to przewód o żyłach jednodrutowych w izolacji i powłoce polwinitowej, płaski. W analizowanym rysunku widać, że przewód składa się z żył, które mają jednolitą strukturę, co jednoznacznie wskazuje na zastosowanie żył jednodrutowych. Żyły te charakteryzują się większą odpornością na uszkodzenia mechaniczne oraz lepszym przewodnictwem elektrycznym w porównaniu do żył wielodrutowych, które są bardziej elastyczne, ale mniej trwałe. Płaska konstrukcja przewodu sprawia, że jest on odpowiedni do zastosowań, w których wymagana jest oszczędność miejsca, na przykład w instalacjach elektrycznych w budynkach. Warto również wspomnieć, że przewody te często stosowane są w instalacjach, gdzie ważna jest estetyka oraz minimizacja przestrzeni, jak w przypadku zasilania sprzętu audio czy wideo. Zgodnie z normami PN-IEC 60227, które regulują wymagania dla kabli i przewodów, stosowanie przewodów płaskich o żyłach jednodrutowych w instalacjach domowych jest powszechnie uznawane za praktykę zgodną z najwyższymi standardami bezpieczeństwa i efektywności energetycznej.

Pytanie 7

Ile pomiarów izolacyjnej rezystancji należy przeprowadzić, aby zidentyfikować uszkodzenie w przewodzie YDY3x 6 450/700 V?

A. 12
B. 9
C. 3
D. 6
Odpowiedzi sugerujące większą liczbę pomiarów, takie jak 6, 9 czy 12, wynikają z powszechnych nieporozumień na temat metodologii przeprowadzania pomiarów rezystancji izolacji przewodów. W praktyce, zbyt wiele pomiarów może prowadzić do komplikacji w interpretacji wyników. Zgodnie z wytycznymi, kluczowe jest, aby pomiary były skoncentrowane i dotyczyły najważniejszych punktów w systemie. Często błędne podejście do tematu polega na mylnym założeniu, że im więcej pomiarów zostanie wykonanych, tym bardziej dokładne będą wyniki. Rzeczywistość jest jednak taka, że nadmiar pomiarów może wprowadzać w błąd, a wyniki mogą się nie zgadzać z rzeczywistym stanem izolacji. Prawidłowe podejście polega na dobraniu odpowiednich miejsc pomiarowych oraz ich liczby, co z kolei powinno opierać się na charakterystyce instalacji oraz bieżących wymaganiach normatywnych. Warto również zwrócić uwagę na to, że wykonanie niewłaściwej liczby pomiarów może prowadzić do pominięcia krytycznych miejsc, gdzie uszkodzenia izolacji mogą występować, co w konsekwencji zagraża bezpieczeństwu użytkowników i prawidłowemu działaniu instalacji elektrycznej.

Pytanie 8

Przewód OMY 2x0,5 300/300 V przedstawia zdjęcie

Ilustracja do pytania
A. D.
B. C.
C. A.
D. B.
Odpowiedź D jest prawidłowa, ponieważ przedstawia przewód OMY 2x0,5 300/300 V, który charakteryzuje się elastycznością i odpowiednią izolacją z PVC. Przewody OMY są powszechnie stosowane w instalacjach niskiego napięcia, co czyni je idealnym wyborem do zasilania urządzeń w domach, biurach oraz w innych obiektach. Zastosowanie przewodów o przekroju 0,5 mm² jest zgodne z wymogami dla niskonapięciowych instalacji oraz zapewnia odpowiednią wydajność przesyłu energii. Przewody tego typu są również zgodne z normami PN-IEC 60227, które regulują kwestie związane z materiałami używanymi do izolacji i przewodzenia prądu. Zrozumienie właściwości różnych przewodów pozwala na ich efektywne i bezpieczne wykorzystanie w praktyce, co jest niezwykle istotne w kontekście projektowania instalacji elektrycznych.

Pytanie 9

Który przekaźnik oznacza się przedstawionym symbolem graficznym?

Ilustracja do pytania
A. Priorytetowy.
B. Impulsowy.
C. Czasowy.
D. Wielofunkcyjny.
Przekaźnik impulsowy, który widzisz na rysunku w pytaniu, to fajne urządzenie, które jest często używane w automatyce. Działa tak, że przy każdym kolejnym impulsie prądu zmienia stan obwodu. To pozwala na lepsze zarządzanie sygnałami i sterowanie różnymi procesami. W praktyce można go spotkać w systemach zabezpieczeń, automatycznych włącznikach światła czy w urządzeniach do zdalnego sterowania. Jak to działa? Pierwszy impuls zamyka obwód, a następny go otwiera. Dzięki temu można robić różne rzeczy, takie jak liczenie impulsów czy przełączanie. Fajnie, że są normy IEC 60947, które mówią o bezpieczeństwie i niezawodności tych przekaźników, bo to sprawia, że są naprawdę ważnym elementem w nowoczesnych systemach sterowania.

Pytanie 10

Na którym rysunku przedstawiono przyrząd do lokalizowania trasy przebiegu przewodów instalacyjnych pod tynkiem?

Ilustracja do pytania
A. B.
B. D.
C. A.
D. C.
Odpowiedź C jest w porządku, bo na tym rysunku widzimy detektor przewodów, który jest super ważnym narzędziem w elektryce. Detektory, takie jak te od Boscha, pomagają znaleźć ukryte kable pod tynkiem, co jest mega przydatne, gdy robimy remonty lub zakładamy nowe systemy elektryczne. Dzięki detektorowi możemy uniknąć uszkodzenia już istniejących instalacji, co może prowadzić do naprawdę poważnych problemów, jak zwarcia czy uszkodzenie sprzętu. W branży ważne jest, żeby dokładnie lokalizować przewody, co mówi norma IEC 60364. Poza tym, te urządzenia potrafią też rozpoznać różne typy przewodów, co bardzo ułatwia planowanie prac budowlanych i remontowych, moim zdaniem to spora oszczędność czasu.

Pytanie 11

Przewód pokazany na zdjęciu ma symbol literowy

Ilustracja do pytania
A. YnDYo
B. YLYp
C. YDYo
D. YDYp
Odpowiedź YDYp jest poprawna, ponieważ oznaczenie to dokładnie opisuje charakterystykę przewodu, który możemy zaobserwować na zdjęciu. Litera 'Y' wskazuje na izolację wykonaną z polichlorku winylu (PVC), co jest powszechnie stosowane w przewodach elektrycznych dzięki swojej odporności na działanie chemikaliów i dobrej izolacyjności elektrycznej. Następnie litera 'D' informuje nas, że wewnątrz przewodu znajdują się żyły jednodrutowe, co jest istotne w kontekście zastosowania. Takie przewody są powszechnie stosowane w instalacjach elektrycznych, gdzie wymagana jest duża elastyczność i odporność na zginanie. Oznaczenie 'p' sugeruje, że przewód ma płaską konstrukcję, co może być korzystne przy instalacji w miejscach o ograniczonej przestrzeni. Zastosowanie przewodu YDYp możemy zaobserwować w domowych instalacjach elektrycznych, a także w różnych aplikacjach przemysłowych, gdzie wymagane są wysokie standardy bezpieczeństwa i niezawodności. Zgodność z normą PN-EN 50525-2-11 potwierdza wysoką jakość tego typu przewodów, czyniąc go odpowiednim wyborem w wielu zastosowaniach.

Pytanie 12

Ile wynosi wartość impedancji pętli zwarcia wyznaczonej w układzie pomiarowym przedstawionym na rysunku, jeśli przy otwartym wyłączniku W woltomierz wskazywał napięcie 228 V, a przy zamkniętym wyłączniku W woltomierz wskazywał 218 V, a amperomierz wskazał prąd 4 A?

Ilustracja do pytania
A. 1,50 Ω
B. 1,25 Ω
C. 2,75 Ω
D. 2,50 Ω
Aby obliczyć wartość impedancji pętli zwarcia, należy uwzględnić spadek napięcia, który pojawia się przy zamkniętym wyłączniku W, oraz wartość prądu zmierzonego amperomierzem. W tym przypadku różnica napięcia wynosi 10 V (228 V - 218 V). Przy zastosowaniu prawa Ohma, które mówi, że impedancja (Z) jest równa spadkowi napięcia (ΔU) podzielonemu przez natężenie prądu (I), możemy obliczyć wartość impedancji jako Z = ΔU / I. Dla danych w pytaniu mamy Z = 10 V / 4 A = 2,50 Ω. W praktyce, znajomość wartości impedancji pętli zwarcia jest kluczowa w projektowaniu instalacji elektrycznych, ponieważ pozwala na ocenę ich bezpieczeństwa i efektywności. Wartości impedancji pętli zwarcia powinny być zgodne z normami, takimi jak PN-IEC 60364, które określają wymagania dotyczące zabezpieczeń i ochrony przed porażeniem prądem elektrycznym. W sytuacjach awaryjnych, takich jak zwarcia, niska wartość impedancji pętli zwarcia zapewnia szybkie zadziałanie zabezpieczeń, co jest kluczowe dla ochrony ludzi i sprzętu. Poznanie metody obliczania impedancji pętli zwarcia pozwala na skuteczniejsze zapobieganie awariom i poprawę warunków pracy w instalacjach elektrycznych.

Pytanie 13

Oprawa oświetleniowa oznaczona przedstawionym symbolem graficznym należy do klasy oświetlenia

Ilustracja do pytania
A. przeważnie bezpośredniego.
B. bezpośredniego.
C. pośredniego.
D. przeważnie pośredniego.
Zrozumienie klasyfikacji oświetlenia jest kluczowe dla prawidłowego zastosowania w praktyce, a błędna interpretacja może prowadzić do niewłaściwego doboru opraw oświetleniowych. Odpowiedzi sugerujące, że oprawa ta należy do kategorii oświetlenia bezpośredniego są mylące, ponieważ oświetlenie bezpośrednie charakteryzuje się tym, że światło jest emitowane bezpośrednio na powierzchnię użytkową, co zazwyczaj prowadzi do silnego kontrastu i może powodować olśnienia. W praktyce, takie podejście może być korzystne w sytuacjach wymagających intensywnego oświetlenia, jak w przypadku precyzyjnych prac ręcznych, jednak w wielu środowiskach, gdzie komfort i estetyka są równie ważne, może być niewłaściwe. Ponadto, odpowiedzi wskazujące na przeważnie bezpośrednie oświetlenie nie uwzględniają faktu, że oświetlenie pośrednie zapewnia bardziej równomierne rozproszenie światła, co minimalizuje cienie i poprawia ogólną widoczność. Typowe błędne myślenie dotyczy także klasyfikacji w kontekście zastosowania — oprawy, które kierują światło głównie w dół, często wzbogacają przestrzeń o efekt estetyczny, co jest istotne w architekturze wnętrz. Dlatego kluczowe jest, aby przy doborze opraw oświetleniowych uwzględniać nie tylko ich funkcjonalność, ale także wpływ na atmosferę i użytkowanie przestrzeni.

Pytanie 14

Na której ilustracji przedstawiono pomiar rezystancji izolacji między przewodami czynnymi w układzie TN-C?

Ilustracja do pytania
A. Na ilustracji 4.
B. Na ilustracji 2.
C. Na ilustracji 3.
D. Na ilustracji 1.
W przypadku niepoprawnych odpowiedzi, takich jak wskazanie ilustracji 2, 3 lub 4, ważne jest zrozumienie, dlaczego te opcje nie są właściwe. Ilustracje te nie przedstawiają prawidłowego schematu pomiaru rezystancji izolacji w układzie TN-C, co jest kluczowe dla bezpieczeństwa. Na przykład, niektóre z tych ilustracji mogą sugerować podłączenie miernika w sposób, który nie obejmuje przewodu PEN lub błędnie wskazują na pomiar innego rodzaju, co prowadzi do mylnych wniosków na temat metodyki pracy z instalacjami elektrycznymi. Często popełnianym błędem jest mylenie pomiarów rezystancji izolacji z pomiarami rezystancji przewodów czy innych wartości elektrycznych, co może prowadzić do ignorowania kluczowych aspektów bezpieczeństwa. Pamiętaj, że poprawne zrozumienie układu TN-C oraz jego właściwe pomiary są nie tylko kwestią techniczną, ale również istotnym elementem bezpieczeństwa użytkowników instalacji. Zastosowanie nieodpowiednich metod pomiarowych może nie tylko zafałszować wyniki, ale również narazić osoby pracujące w pobliżu instalacji na niebezpieczeństwo. Wykształcenie właściwych nawyków w zakresie przeprowadzania pomiarów jest kluczowe dla każdego technika elektryka i powinno być zgodne z obowiązującymi normami oraz zaleceniami branżowymi.

Pytanie 15

W którym układzie sieciowym występuje przewód oznaczany przedstawionym symbolem graficznym?

Ilustracja do pytania
A. TN-C
B. IT
C. TN-S
D. TT
Wybór odpowiedzi TN-S, IT lub TT może wynikać z nieporozumienia dotyczącego podstawowych zasad ochrony i neutralizacji w instalacjach elektrycznych. W układzie TN-S przewody ochronne (PE) i neutralne (N) są rozdzielone, co oznacza, że nie ma miejsca na przewód PEN. To rozdzielenie jest istotne w kontekście bezpieczeństwa, ponieważ zapewnia niezależność ochrony przed porażeniem, co jest kluczowe w przypadku awarii. Z kolei układ IT jest stosowany przede wszystkim w miejscach, gdzie wymagana jest wysoka niezawodność zasilania, a jego konstrukcja opiera się na izolacji od ziemi, co sprawia, że nie stosuje się w nim przewodu PEN. W układzie TT, podobnie jak w TN-S, przewody są także rozdzielone, a dodatkowo zastosowanie uziemienia lokalnego zwiększa bezpieczeństwo. Typowym błędem myślowym jest założenie, że wszystkie układy, w których występują przewody ochronne, będą miały tę samą funkcjonalność. Dlatego ważne jest, aby zapoznać się z zasadami działania różnych układów oraz ich zastosowaniem w praktyce. Bez właściwej wiedzy na temat tych układów można łatwo wprowadzić się w błąd, co może prowadzić do poważnych konsekwencji w projektowaniu i eksploatacji instalacji elektrycznych.

Pytanie 16

Którego typu gniazda elektrycznego dotyczy symbol graficzny przedstawiony na ilustracji?

Ilustracja do pytania
A. Jednofazowego bez styku ochronnego.
B. Jednofazowego ze stykiem ochronnym.
C. Trójfazowego ze stykiem ochronnym.
D. Trójfazowego bez styku ochronnego.
Poprawna odpowiedź to "Jednofazowego ze stykiem ochronnym". Symbol graficzny przedstawiony na ilustracji rzeczywiście odpowiada gniazdu jednofazowemu, co można zidentyfikować dzięki obecności trzech kluczowych elementów. Linia pionowa oznacza fazę, pozioma reprezentuje przewód neutralny, a półokrąg wskazuje na styk ochronny. Stosowanie gniazd jednofazowych ze stykiem ochronnym jest istotne w kontekście bezpieczeństwa elektrycznego, gdyż zapewniają one dodatkową ochronę przed porażeniem prądem elektrycznym. W praktyce, takie gniazda są powszechnie stosowane w gospodarstwach domowych oraz biurach, gdzie istnieje ryzyko kontaktu użytkownika z elementami przewodzącymi prąd. Standardy krajowe, takie jak PN-EN 60309, podkreślają znaczenie stosowania gniazd z zabezpieczeniem, zwłaszcza w środowiskach o dużym ryzyku, takich jak warsztaty czy miejsca pracy z zastosowaniem maszyn elektrycznych. Wiedza o tych standardach jest kluczowa dla odpowiedniego doboru sprzętu elektrycznego oraz zapewnienia bezpieczeństwa użytkowników.

Pytanie 17

W którym miejscu układu przedstawionego na schemacie powinny zostać zainstalowane zabezpieczenia nadprądowe o największej wartości prądu znamionowego?

Ilustracja do pytania
A. Bezpośrednio przed licznikami.
B. W rozdzielnicy mieszkaniowej.
C. W rozdzielnicy głównej.
D. W złączu.
Wydaje się, że instalowanie zabezpieczeń nadprądowych w rozdzielnicy głównej, mieszkaniowej lub przed licznikami to dobry pomysł, ale nie do końca tak jest. Rozdzielnica główna służy do rozdzielania obwodów, ale nie jest najlepszym miejscem na montaż zabezpieczeń o najwyższej wartości prądu, bo nie będzie chronić całego układu przed przeciążeniami na etapie przyłączenia do sieci. Jak się je włoży w rozdzielnicy mieszkaniowej, to chronią tylko lokalne obwody, a nie całą instalację. A umiejscowienie ich przed licznikami może prowadzić do problemów, jak źle dobrane przewody czy izolacja, co sprawi, że nie zadziałają, gdy dojdzie do awarii. Najlepiej, żeby te zabezpieczenia były w złączu, aby mogły działać w momencie zwarcia i przeciążenia, gdzie energia z sieci wchodzi do instalacji. Źle dobrane miejsce do montażu zabezpieczeń może prowadzić do poważnych problemów, jak pożar lub uszkodzenia urządzeń elektrycznych. Dlatego ważne jest, by projektując instalację, trzymać się norm i zasad, które wskazują, że złącze elektryczne to kluczowe miejsce dla zabezpieczeń.

Pytanie 18

Kabel typu YAKY przedstawiono na rysunku

Ilustracja do pytania
A. B.
B. D.
C. A.
D. C.
Kabel typu YAKY jest kluczowym elementem instalacji elektroenergetycznych, charakteryzującym się izolacją z polwinitu oraz okrągłym przekrojem. Odpowiedź B jest właściwa, ponieważ przedstawiony kabel spełnia te kryteria. W praktyce kable YAKY są powszechnie wykorzystywane w różnych zastosowaniach, zarówno w budynkach mieszkalnych, jak i przemysłowych. Dzięki swojej konstrukcji, kable te zapewniają wysoką odporność na działanie niekorzystnych warunków atmosferycznych oraz mechanicznych uszkodzeń, co czyni je idealnym rozwiązaniem w instalacjach na zewnątrz budynków. Zgodnie z normami PN-EN 60332-1, kable YAKY muszą wykazywać określone właściwości dielektryczne i mechaniczne, co zapewnia ich niezawodność i bezpieczeństwo użytkowania. Wiedza na temat takich kabli jest niezbędna dla inżynierów i techników zajmujących się projektowaniem oraz montażem instalacji elektrycznych, co pozwala na dobór odpowiednich komponentów do konkretnych warunków pracy.

Pytanie 19

Na którym rysunku przedstawiono schemat podłączenia automatu schodowego, umożliwiający prawidłową pracę układu oświetlenia?

Ilustracja do pytania
A. C.
B. A.
C. B.
D. D.
Rysunek C przedstawia prawidłowe podłączenie automatu schodowego, co jest kluczowe dla zapewnienia efektywnego i bezpiecznego działania systemu oświetleniowego w miejscach o dużym natężeniu ruchu, takich jak klatki schodowe. W tym układzie przewód fazowy L jest prawidłowo podłączony do zacisku L automatu, co umożliwia kontrolowanie przepływu prądu. Zastosowanie przewodu neutralnego N do zacisku N zapewnia zamknięcie obwodu, a poprawne podłączenie przewodu oświetleniowego do symbolu żarówki gwarantuje, że po naciśnięciu przycisku oświetlenie zostanie włączone. Przyciski połączeniowe do zacisków A1 i A2 są niezbędne, aby umożliwić użytkownikom uruchomienie oświetlenia z różnych lokalizacji. Dobrą praktyką jest również stosowanie automatów schodowych, które mają możliwość regulacji czasu świecenia, co zwiększa komfort użytkowania oraz oszczędność energii. W kontekście norm i standardów, instalacje elektryczne powinny być zgodne z wymaganiami normy PN-IEC 60364, która określa zasady projektowania i wykonania instalacji elektrycznych, zapewniając bezpieczeństwo oraz efektywność energetyczną.

Pytanie 20

Jaka jest znamionowa sprawność silnika jednofazowego przy danych: PN = 3,7 kW (moc mechaniczna), UN = 230 V, IN = 21,4 A oraz cos φN = 0,95?

A. 0,95
B. 0,71
C. 0,79
D. 0,75
Zrozumienie wyniku sprawności silnika wymaga znajomości pojęcia mocy, napięcia oraz prądu, a także współczynnika mocy. Odpowiedzi, które wskazują na wartości takie jak 0,95, 0,75 czy 0,71, opierają się na niepełnym zrozumieniu tych pojęć. Przykładowo, wybór 0,95 może sugerować, że użytkownik pomylił sprawność z współczynnikiem mocy, co jest powszechnym błędem. Współczynnik mocy jest miarą efektywności wykorzystania energii, ale nie mierzy strat samego silnika, dlatego nie może być bezpośrednio uznawany za sprawność. Z kolei wartości takie jak 0,75 czy 0,71 mogą wynikać z błędnego obliczenia lub nieprawidłowego zrozumienia danych wejściowych. Aby poprawnie ocenić sprawność silnika, kluczowe jest zrozumienie, że sprawność to stosunek mocy mechanicznej do mocy elektrycznej dostarczanej do silnika. Niskie wartości sprawności wskazują na wysokie straty energii, co jest niekorzystne w kontekście eksploatacji silników. W branży energetycznej, zgodnie z normami IEC, dąży się do maksymalizacji efektywności energetycznej, co oznacza, że silniki o sprawności poniżej 0,80 są uważane za nieefektywne. W praktyce, wybierając silnik, warto zwrócić uwagę na jego parametry, aby uniknąć wyższych kosztów eksploatacji i zapewnić lepszą wydajność systemu.

Pytanie 21

Na schematach instalacji elektrycznych symbolem przedstawionym na ilustracji oznacza się przewód prowadzony

Ilustracja do pytania
A. w korytku instalacyjnym.
B. nad sufitem podwieszanym.
C. pod tynkiem.
D. w tynku.
Odpowiedź "w tynku" jest poprawna, ponieważ symbol przedstawiony na ilustracji jest standardowym oznaczeniem przewodu prowadzonego w tynku. W instalacjach elektrycznych przewody często prowadzi się w ścianach, aby zapewnić estetykę i ochronę przed uszkodzeniami mechanicznymi. Zgodnie z normą PN-IEC 60364, przewody układane w tynku muszą być odpowiednio zabezpieczone, aby zminimalizować ryzyko uszkodzeń. W praktyce, implementacja takiego rozwiązania wymaga staranności w wykonaniu bruzd, gdzie przewody powinny być umieszczane w odpowiednich korytkach lub rurkach osłonowych, co zapobiega ich bezpośredniemu kontaktowi z tynkiem, a tym samym przedłuża ich żywotność. Przykładem mogą być instalacje oświetleniowe, w których przewody są prowadzone w tynku, co pozwala na ich łatwe ukrycie i dostępność podczas ewentualnych napraw. Dodatkowo, stosowanie przewodów w tynku jest zgodne z przyjętymi praktykami branżowymi, co podkreśla istotność znajomości symboliki elektrycznej w projektowaniu instalacji.

Pytanie 22

Na podstawie zamieszczonych w tabeli wyników pomiarów dotyczących przewodu przedstawionego na ilustracji określ, które z jego żył są ze sobą zwarte.

Ilustracja do pytania
A. N i PE
B. L1 i PE
C. N i L3
D. L1 i L3
Odpowiedzi L1 i PE, N i L3 oraz L1 i L3 są błędne z kilku powodów. Przede wszystkim, przy analizie wyników pomiarów rezystancji kluczowe jest zrozumienie, że rezystancja wynosząca 0 Ω wskazuje na bezpośrednie zwarcie, podczas gdy nieskończona rezystancja (∞) sugeruje odseparowane obwody. Wybranie odpowiedzi L1 i PE sugeruje, że te przewody są ze sobą zwarte, co jest sprzeczne z wynikami pomiarów. Takie błędne wnioski mogą wynikać z nieprawidłowej interpretacji danych pomiarowych. Z kolei odpowiedź N i L3 implikuje, że przewód neutralny jest w połączeniu z przewodem fazowym, co w rzeczywistości jest niewłaściwe, ponieważ nie powinno się łączyć przewodów fazowych z neutralnymi w sposób, który mógłby prowadzić do zwarcia. Odpowiedź L1 i L3 także jest błędna, ponieważ nie wykazuje żadnego zwarcia, a w praktyce powinna być traktowana jako odrębne obwody. Te nieporozumienia mogą wskazywać na brak zrozumienia przyczyn i skutków oraz standardów bezpieczeństwa elektrycznego, takich jak PN-IEC 60364, które zalecają szczegółowe analizy i stosowanie właściwych metod pomiarowych w celu zapewnienia bezpieczeństwa instalacji elektrycznych.

Pytanie 23

Który typ silnika elektrycznego najczęściej stosuje się w urządzeniach gospodarstwa domowego?

A. Silnik liniowy
B. Silnik synchroniczny trójfazowy
C. Silnik indukcyjny jednofazowy
D. Silnik krokowy
Silniki synchroniczne trójfazowe, choć są niezwykle wydajne i precyzyjne, nie są powszechnie używane w urządzeniach gospodarstwa domowego. Ich konstrukcja wymaga bardziej skomplikowanego układu zasilania oraz większego nakładu na utrzymanie synchronizacji prędkości wirnika z częstotliwością zasilania. Z tego powodu znajdują zastosowanie głównie w przemyśle, gdzie precyzyjna kontrola prędkości jest kluczowa, na przykład w maszynach produkcyjnych lub generatorach prądu. Silniki krokowe natomiast, choć używane w sytuacjach wymagających precyzyjnego sterowania pozycyjnego, takich jak w drukarkach czy robotyce, nie są typowe dla podstawowych urządzeń AGD. Ich koszt oraz specyficzne wymagania co do sterowania czynią je mniej optymalnym wyborem dla prostych zastosowań domowych. Silniki liniowe, choć interesujące ze względu na ich zdolność do generowania ruchu liniowego bezpośrednio, są rzadko spotykane w urządzeniach AGD z powodu kosztów i skomplikowanej konstrukcji. Zwykle znajdują zastosowanie w specjalistycznych aplikacjach, takich jak transport wewnętrzny w zakładach produkcyjnych czy w kolejkach magnetycznych. Typowe błędy myślowe, które mogą prowadzić do wyboru tych silników do urządzeń domowych, wynikają z niezrozumienia specyficznych potrzeb i ograniczeń każdego z tych rodzajów silników.

Pytanie 24

Naciśnięcie przycisku TEST na wyłączniku różnicowoprądowym, imituje

A. uszkodzenie przewodu
B. przeciążenie
C. upływ prądu
D. przepięcie
Przyciśnięcie przycisku TEST na wyłączniku różnicowoprądowym nie symuluje przeciążenia, ponieważ przeciążenie związane jest z sytuacją, w której obciążenie prądowe przewyższa maksymalne dopuszczalne wartości dla danego obwodu. W takich sytuacjach działają zabezpieczenia nadprądowe, takie jak bezpieczniki lub wyłączniki automatyczne, które mają za zadanie przerwać obwód, aby zapobiec przegrzaniu przewodów i potencjalnym pożarom. Wciśniecie przycisku TEST nie dotyczy również przepięcia, które jest skutkiem nagłych wzrostów napięcia, na przykład podczas wyładowań atmosferycznych. Przepięcia są zazwyczaj niwelowane przez urządzenia ochronne, takie jak ograniczniki przepięć, a nie przez wyłączniki różnicowoprądowe. Wreszcie, wciśnięcie przycisku TEST nie dotyczy przerwy przewodu, co jest sytuacją, w której prąd nie przepływa w obwodzie z powodu uszkodzenia przewodu. Tego rodzaju problem nie jest związany z funkcją różnicowoprądową, ponieważ RCD działa na podstawie różnicy prądów między przewodami fazowymi a neutralnym, a nie na podstawie ich ciągłości. Zrozumienie tych różnic jest kluczowe dla prawidłowego użytkowania i ochrony instalacji elektrycznych.

Pytanie 25

Którą rolę pełni w styczniku element wskazany na ilustracji czarną strzałką?

Ilustracja do pytania
A. Zmniejsza napięcie podtrzymania cewki.
B. Zmniejsza siłę docisku zwory.
C. Likwiduje magnetyzm szczątkowy.
D. Likwiduje drgania zwory.
W kontekście analizowanej ilustracji oraz roli elementu w styczniku, ważne jest zrozumienie, dlaczego pozostałe opcje są nieprawidłowe. Pierwsza z błędnych odpowiedzi sugeruje, że element ten likwiduje magnetyzm szczątkowy. Magnetyzm szczątkowy to zjawisko, które występuje po odłączeniu zasilania i najczęściej jest związane z materiałem rdzenia elektromagnesu. Eliminacja tego efektu wymaga zastosowania odpowiednich materiałów magnetycznych oraz projektowania, a nie tłumika drgań. Kolejna opcja mówi o zmniejszeniu siły docisku zwory, co nie jest rolą opisanego elementu. Siła docisku zwory jest istotna dla prawidłowego działania stycznika i wpływa na jakość kontaktu elektrycznego. Zmniejszenie jej mogłoby prowadzić do przegrzewania lub niestabilności kontaktów. Ostatnia odpowiedź odnosi się do zmniejszenia napięcia podtrzymania cewki. Napięcie podtrzymania jest kluczowe dla utrzymania zwory w pozycji załączonej i jego zmniejszenie mogłoby skutkować przypadkowym wyłączeniem stycznika, co jest niepożądane w aplikacjach wymagających ciągłej pracy. Warto zauważyć, że poszczególne pomyłki w odpowiedziach wynikają często z niepełnego zrozumienia działania mechanizmów styczników oraz ich elementów składowych. Kluczowe jest, aby w procesie nauki zwracać uwagę na detale techniczne oraz zasady działania urządzeń, co pozwoli uniknąć mylnych interpretacji w przyszłości.

Pytanie 26

Który z poniższych sposobów ochrony przed porażeniem elektrycznym jest weryfikowany przez pomiar rezystancji pętli zwarcia w instalacji elektrycznej?

A. Umieszczenie części dostępnych poza zasięgiem ręki
B. Uziemienie ochronne
C. Separacja elektryczna
D. Samoczynne wyłączanie zasilania
Samoczynne wyłączanie zasilania jest jednym z kluczowych środków ochrony przeciwporażeniowej, który polega na szybkim odłączeniu zasilania w przypadku wykrycia zwarcia lub innego niebezpiecznego stanu w instalacji elektrycznej. Aby ocenić skuteczność tego systemu, przeprowadza się pomiar rezystancji pętli zwarcia, który pozwala określić, czy prąd zwarciowy jest wystarczająco niski, aby automatyczne wyłączniki mogły zareagować. Standardy, takie jak IEC 60364, określają wymagania dotyczące pomiarów rezystancji pętli, co jest kluczowe dla zapewnienia bezpieczeństwa użytkowników. Praktycznie, jeśli rezystancja pętli zwarcia jest zbyt wysoka, może to oznaczać, że samoczynne wyłączanie zasilania nie zadziała prawidłowo, co może prowadzić do niebezpiecznych sytuacji. Dlatego regularne testowanie i konserwacja instalacji elektrycznych są niezbędne, aby zapewnić ich bezpieczeństwo i sprawność. Warto również zauważyć, że w przypadku braku odpowiednich przeciwwskazań, instalacje elektryczne powinny być projektowane tak, aby ułatwiały pomiar rezystancji pętli, co jest zgodne z najlepszymi praktykami inżynieryjnymi.

Pytanie 27

Jakie działania oraz w jakiej sekwencji powinny zostać przeprowadzone przy wymianie uszkodzonego fragmentu przewodu w instalacji umieszczonej w rurach peszla?

A. Odłączenie napięcia, rozkuwanie tynku, poprowadzenie nowej rury peszla z przewodami, uzupełnienie tynku, włączenie napięcia
B. Pomiar rezystancji przewodu, odłączenie napięcia, wymiana uszkodzonego przewodu, włączenie zasilania, sprawdzenie działania instalacji
C. Odłączenie zasilania, otwarcie puszek instalacyjnych, odkręcenie końców uszkodzonego przewodu, wymiana uszkodzonego odcinka przewodu, połączenie wymienionego przewodu w puszkach, zamknięcie puszek, włączenie zasilania, sprawdzenie poprawności działania instalacji
D. Odłączenie zasilania, rozkuwanie tynku w miejscu uszkodzenia, wymiana rury peszla z przewodami, włączenie napięcia, sprawdzenie funkcjonowania instalacji
Wymiana uszkodzonego odcinka przewodu w instalacji elektrycznej to poważna sprawa, więc trzeba to robić według ustalonej procedury, żeby wszystko działało jak należy i było bezpiecznie. Na początek odłączamy napięcie, bo to kluczowe, żeby nie dostać porażenia. Potem otwieramy puszki instalacyjne, żeby dostać się do przewodów. Kolejno odkręcamy końcówki uszkodzonego przewodu, a następnie zakładamy nowy. Ważne, żeby dobrze połączyć ten nowy przewód z innymi, które są w puszkach, żeby obwód działał bez problemu. Na koniec zamykamy puszki, żeby chronić przewody przed uszkodzeniami. Po wszystkim, włączamy napięcie i robimy test, żeby sprawdzić, czy wszystko działa. Taka procedura to co najmniej standard w branży, a jak wiadomo, bezpieczeństwo i efektywność to podstawa.

Pytanie 28

Jakie typy przewodów instaluje się na izolatorach wspornikowych?

A. Rdzeniowe
B. Kabelkowe
C. Szynowe
D. Uzbrojone
Odpowiedzi 'uzbrojone', 'kabelkowe' oraz 'rdzeniowe' są niewłaściwe w kontekście montażu na izolatorach wsporczych, ponieważ każda z tych opcji odnosi się do innego rodzaju przewodów, które nie są projektowane do takiego zastosowania. Uzbrojone przewody, na przykład, są zazwyczaj stosowane w instalacjach, gdzie wymagana jest dodatkowa ochrona mechaniczna, jednak ich montaż polega na umieszczaniu w rurkach lub osłonach, a nie na izolatorach. Kabelkowe to przewody, które są z reguły używane w systemach o niskim napięciu, gdzie ich budowa i sposób prowadzenia nie wymagają izolatorów wsporczych w tradycyjnym sensie. Rdzeniowe przewody są natomiast konstrukcjami, które można spotkać w aplikacjach zasilających, jednak nie są one mocowane na izolatorach. Typowe błędy myślowe związane z tymi odpowiedziami to mylenie różnych typów przewodów oraz nieznajomość ich podstawowych zastosowań. Właściwe zrozumienie różnic między tymi rodzajami przewodów jest kluczowe dla prawidłowego projektowania systemów elektroenergetycznych oraz ich bezpiecznej eksploatacji.

Pytanie 29

O czym świadczy słabsze świecenie diody L2 w stosunku do świecących się diod L1 i L3 na wskazanym strzałką urządzeniu w rozdzielni elektrycznej przedstawionej na rysunku?

Ilustracja do pytania
A. W układzie zasilania wystąpiła nieprawidłowa kolejność faz.
B. W jednej z faz wystąpił zanik napięcia.
C. Wystąpiła asymetria napięciowa między fazami.
D. Instalacja działa poprawnie.
Słabsze świecenie diody L2 w porównaniu do diod L1 i L3 wyraźnie wskazuje na asymetrię napięciową między fazami. Asymetria ta może być spowodowana różnymi obciążeniami poszczególnych faz, co prowadzi do nierównomiernego rozkładu napięcia. W praktyce, taki stan może wystąpić na przykład w instalacjach, gdzie urządzenia elektryczne są podłączone do różnych faz. W przypadku zróżnicowanego obciążenia, jedna faza może być bardziej obciążona niż inne, co skutkuje obniżeniem napięcia. Zgodnie z normami branżowymi, takim jak IEC 61000, utrzymanie symetrii napięciowej jest kluczowe dla optymalnej pracy urządzeń elektrycznych oraz zapobiegania ich uszkodzeniom. W praktyce, monitorowanie parametrów zasilania oraz stosowanie rozwiązań stabilizacyjnych, takich jak transformatory trójfazowe, może pomóc w minimalizacji tego typu problemów. Dlatego, w przypadku zauważenia słabszego świecenia diody, należy przeprowadzić analizę obciążenia fazowego oraz zainwestować w odpowiednie technologie zabezpieczające.

Pytanie 30

Zdjęcie przedstawia

Ilustracja do pytania
A. łącznik żaluzjowy.
B. wyłącznik schodowy.
C. łącznik wielofunkcyjny.
D. wyłącznik krzyżowy.
Właściwa odpowiedź to łącznik żaluzjowy, ponieważ na zdjęciu widoczny jest element sterujący z dwoma przyciskami, które są oznaczone symbolami wskazującymi na ruch żaluzji w górę i w dół. Łącznik żaluzjowy jest stosowany w celu precyzyjnego sterowania pozycją żaluzji, co jest niezwykle przydatne w przypadku regulacji natężenia światła wpadającego do wnętrza pomieszczeń. W praktyce, umożliwia on komfortowe dostosowywanie osłony okiennej do zmieniających się warunków oświetleniowych, co przyczynia się do oszczędności energii oraz zwiększenia wygody użytkowników. Standardowe oznaczenia na łącznikach żaluzjowych są zgodne z normami branżowymi, co pozwala na ich łatwe rozpoznawanie. Przykładem zastosowania łącznika żaluzjowego może być instalacja w biurach, gdzie użytkownicy chcą mieć kontrolę nad ilością światła oraz prywatnością, a także w domach jednorodzinnych, gdzie można zautomatyzować proces otwierania i zamykania żaluzji.

Pytanie 31

Do której czynności przeznaczone jest narzędzie przedstawione na ilustracji?

Ilustracja do pytania
A. Do zaciskania końcówek oczkowych.
B. Do zaciskania końcówek tulejkowych.
C. Do ściągania izolacji z żył przewodów.
D. Do docinania przewodów.
To, co widzisz na obrazku, to szczypce do ściągania izolacji. To naprawdę ważne narzędzie, jeśli pracujesz z kablami elektrycznymi. Mają one fajną budowę, bo mają regulowany ogranicznik, dzięki czemu możesz dokładnie ściągnąć izolację i nie uszkodzić samego przewodu. Jak już wiesz, do podłączania przewodów elektrycznych trzeba dobrze przygotować te kable, dlatego te szczypce są wręcz niezbędne. W elektryce bezpieczeństwo jest priorytetem, więc robienie tego z dużą uwagą zmniejsza ryzyko zwarć i innych problemów. Kiedy wszystko jest dobrze połączone, to znaczy, że instalacja będzie trwała i bezpieczna. No i nie można zapomnieć, że używając takich szczypiec, oszczędzasz czas, co na budowie albo przy modernizacji instalacji jest super ważne.

Pytanie 32

Jaką minimalną wartość prądu powinno mieć wykonanie pomiaru ciągłości elektrycznej przewodów ochronnych w głównych i dodatkowych połączeniach wyrównawczych oraz przewodów czynnych w przypadku obwodów odbiorczych typu pierścieniowego?

A. 200 mA
B. 100 mA
C. 500 mA
D. 150 mA
Pomiar ciągłości elektrycznej przewodów ochronnych jest kluczowym aspektem zapewnienia bezpieczeństwa instalacji elektrycznych. W przypadku połączeń wyrównawczych oraz pierścieniowych obwodów odbiorczych, zastosowanie prądu o wartości co najmniej 200 mA jest zgodne z normami oraz dobrymi praktykami branżowymi. Użycie takiej wartości prądu pozwala na dokładne sprawdzenie ciągłości przewodów ochronnych, co jest niezbędne do zapewnienia właściwego działania systemu ochrony przeciwporażeniowej. W praktyce oznacza to, że w przypadku wykrycia jakiejkolwiek przerwy w przewodach ochronnych, prąd o tej wartości będzie w stanie wywołać odpowiednią reakcję w zabezpieczeniach, takich jak wyłączniki różnicowoprądowe. Taki pomiar powinien być przeprowadzany regularnie w ramach przeglądów okresowych instalacji elektrycznych, aby zminimalizować ryzyko uszkodzeń i zagrożeń dla użytkowników. Warto również podkreślić, że zgodnie z normą PN-EN 61557-4, pomiary te powinny być wykonywane przez wykwalifikowany personel z użyciem odpowiedniego sprzętu pomiarowego.

Pytanie 33

Jakie oznaczenia oraz jaka minimalna wartość prądu znamionowego powinna mieć wkładka topikowa, aby chronić przewody przed skutkami zwarć i przeciążeń w obwodzie jednofazowego bojlera elektrycznego o parametrach znamionowych: PN = 3 kW, UN = 230 V?

A. gG 16 A
B. aM 20 A
C. gB 20 A
D. aR 16 A
Wkładka topikowa oznaczona jako gG 16 A jest odpowiednia do ochrony obwodów elektrycznych, w tym przypadku obwodu jednofazowego bojlera elektrycznego o mocy znamionowej 3 kW i napięciu 230 V. Oznaczenie gG (ogólne zabezpieczenie, przystosowane do ochrony obwodów przed przeciążeniami oraz zwarciami) wskazuje, że wkładka ta ma zdolność do przerwania obwodu zarówno w przypadku zwarcia, jak i przeciążenia. Analizując parametry bojlera, obliczamy prąd znamionowy przy pomocy wzoru: I = P / U, co daje I = 3000 W / 230 V ≈ 13 A. Wkładka gG 16 A będzie odpowiednia, ponieważ jej nominalny prąd przewyższa obliczony prąd znamionowy bojlera, a jednocześnie zapewnia odpowiednie zabezpieczenie przed skutkami zwarć. W praktyce wkładki gG są powszechnie stosowane w instalacjach domowych oraz przemysłowych, co gwarantuje ich niezawodność oraz efektywność w odpowiednich zastosowaniach. Dla bezpieczeństwa zaleca się również regularne kontrolowanie stanu wkładek oraz ich wymianę, aby zapewnić optymalne funkcjonowanie systemu elektrycznego.

Pytanie 34

Instalacja elektryczna, której odbiorniki oznaczone są symbolem graficznym pokazanym na rysunku

Ilustracja do pytania
A. nie posiada ochrony przed dotykiem pośrednim.
B. posiada podwójną lub wzmocnioną izolację.
C. ma uziemione przewodzące obudowy odbiorników.
D. jest zasilana bardzo niskim napięciem.
Wybór odpowiedzi innych niż "jest zasilana bardzo niskim napięciem" wskazuje na nieporozumienie dotyczące klasyfikacji urządzeń elektrycznych i ich właściwości. Przykładowo, stwierdzenie, że instalacja "ma uziemione przewodzące obudowy odbiorników" jest nieprawidłowe, ponieważ urządzenia klasy III nie wymagają uziemienia dla zapewnienia bezpieczeństwa. Uziemienie dotyczy głównie urządzeń klasy I, gdzie ochrona przed porażeniem elektrycznym realizowana jest poprzez uziemienie metalowej obudowy. Kolejna opcja, mówiąca o "podwójnej lub wzmocnionej izolacji", odnosi się także do urządzeń klasy II, które są zabezpieczone dodatkową izolacją, a nie do urządzeń klasy III. Twierdzenie, że urządzenie "nie posiada ochrony przed dotykiem pośrednim", jest mylące, ponieważ urządzenia klasy III są projektowane z myślą o minimalizacji ryzyka kontaktu z napięciem, korzystając z niskich wartości napięcia, co w praktyce oznacza, że nie ma zagrożenia dotyku pośredniego. Wreszcie, stwierdzenie, że "jest zasilana bardzo niskim napięciem" jest jedynym prawidłowym opisem, a błędne odpowiedzi wynikają z niepełnego zrozumienia klasyfikacji i bezpieczeństwa w elektryce, co jest kluczowe dla prawidłowego stosowania zasad ochrony w instalacjach elektrycznych.

Pytanie 35

Jakie parametry wyłącznika różnicowoprądowego powinny być zmierzone, aby ocenić jego poprawne działanie?

A. Obciążenie prądowe i czas reakcji
B. Napięcie w sieci oraz prąd różnicowy
C. Prąd różnicowy oraz czas reakcji
D. Napięcie w sieci oraz prąd obciążeniowy
Wybór parametrów, takich jak prąd obciążenia oraz czas zadziałania, nie jest odpowiedni dla oceny działania wyłącznika różnicowoprądowego. Prąd obciążenia odnosi się do natężenia prądu, które przepływa przez obwód w normalnych warunkach pracy, ale nie dostarcza informacji na temat ewentualnych upływów prądu. Zrozumienie różnicy między prądem obciążenia a prądem różnicowym jest kluczowe, ponieważ to prąd różnicowy jest wskaźnikiem zagrożenia dla bezpieczeństwa. Czas zadziałania w połączeniu z prądem obciążenia nie dostarczy pełnego obrazu skuteczności wyłącznika w sytuacjach awaryjnych. Podobnie, pomiar napięcia sieciowego oraz prądu różnicowego w aspekcie bezpieczeństwa jest niewłaściwy, ponieważ napięcie nie jest bezpośrednio związane z funkcjonowaniem wyłącznika różnicowoprądowego. W kontekście bezpieczeństwa elektrycznego, kluczowe jest, aby wyłącznik reagował na upływ prądu do ziemi, co wskazuje prąd różnicowy, a nie tylko na obciążenie czy napięcie. Ignorowanie tych fundamentalnych różnic prowadzi do błędnego rozumienia działania wyłączników różnicowoprądowych, co może mieć poważne konsekwencje w kwestii bezpieczeństwa użytkowników.

Pytanie 36

Z instrukcji obsługi przedstawionego na ilustracji miernika wynika, że przed pomiarem rezystancji należy wyzerować omomierz. W tym celu należy przełącznikiem funkcji wybrać pomiar rezystancji i ustawić wskazówkę na 0 Ω przy pomocy pokrętła oznaczonego

Ilustracja do pytania
A. cyfrą 2 przy zwartych przewodach pomiarowych.
B. cyfrą 1 przy zwartych przewodach pomiarowych.
C. cyfrą 2 przy odłączonych przewodach pomiarowych.
D. cyfrą 1 przy odłączonych przewodach pomiarowych.
Poprawna odpowiedź to cyfrą 2 przy zwartych przewodach pomiarowych. Wyzerowanie omomierza jest kluczowym krokiem przed pomiarem rezystancji, ponieważ pozwala na zredukowanie wpływu wszelkich błędów pomiarowych. Przy zwartych przewodach pomiarowych nie ma żadnej rezystancji, co umożliwia ustawienie wskazówki miernika na 0 Ω. Dzięki temu uzyskujemy dokładniejsze wyniki pomiarów. W praktyce, wiele urządzeń pomiarowych, w tym profesjonalne omomierze, mają wbudowane funkcje umożliwiające automatyczne wyzerowanie, co jest zgodne z najlepszymi praktykami pomiarowymi. Prawidłowe wyzerowanie miernika przed przystąpieniem do pomiarów jest również zgodne z normami branżowymi, co podkreśla znaczenie tego procesu w zapewnieniu dokładności i wiarygodności wyników. Pamiętaj, że pomiar bez wcześniejszego wyzerowania może prowadzić do nieprecyzyjnych odczytów, co w kontekście pracy inżynierskiej lub domowego majsterkowania ma istotne znaczenie.

Pytanie 37

Wybierz zestaw narzędzi koniecznych do zamocowania listew instalacyjnych w natynkowej instalacji elektrycznej z użyciem kołków szybkiego montażu?

A. Wiertarka z zestawem wierteł, młotek, piła
B. Osadzak gazowy, wkrętak, obcinaczki
C. Wiertarka z zestawem wierteł, szczypce płaskie, piła
D. Osadzak gazowy, młotek, obcinaczki
Analizując błędne odpowiedzi, można zauważyć, że nie wszystkie narzędzia wymienione w odpowiedziach są odpowiednie do zamocowania listew instalacyjnych natynkowej instalacji elektrycznej. Na przykład, osadzak gazowy jest narzędziem przeznaczonym do wykonywania otworów w materiałach budowlanych, jednak jego użycie w kontekście kołków szybkiego montażu może być zbędne, a w niektórych przypadkach nawet niebezpieczne, zwłaszcza gdy jest stosowany przez osoby niedoświadczone. Wkrętaki i obcinaczki, choć przydatne w wielu sytuacjach, nie są kluczowymi narzędziami do montażu listew, a ich obecność w zestawie może wprowadzać w błąd co do właściwego doboru narzędzi. Ponadto, piła jako narzędzie tnące, choć może być użyteczna w przypadku przycinania listew, nie jest kluczowym narzędziem dla montażu kołków, co sugeruje, że odpowiedzi te nie uwzględniają wszystkich aspektów procesu instalacyjnego. Typowym błędem myślowym jest zakładanie, że każde narzędzie może być użyte do wielu zadań, co nie zawsze jest prawdą i może prowadzić do nieefektywności oraz zwiększonego ryzyka uszkodzeń. Zrozumienie specyfiki narzędzi i ich zastosowań jest kluczowe w pracy instalatora, a wybór odpowiednich narzędzi powinien opierać się na praktycznym doświadczeniu oraz znajomości standardów branżowych.

Pytanie 38

Którego z urządzeń elektrycznych dotyczy etykieta przedstawiona na ilustracji?

Ilustracja do pytania
A. Automatu schodowego.
B. Czujnika ruchu.
C. Aparatu zmierzchowego.
D. Źródła światła.
Odpowiedź "Źródła światła" jest poprawna, ponieważ etykieta na ilustracji dostarcza kluczowych informacji charakterystycznych dla różnych typów źródeł światła, takich jak żarówki LED czy tradycyjne żarówki. Warto zwrócić uwagę na podaną moc, która wynosi 14.5W, co jest typowe dla nowoczesnych źródeł światła. Lumeny, które wynoszą 1180, określają ilość światła emitowanego przez źródło, co jest istotnym parametrem w branży oświetleniowej. Typ gwintu E27 jest powszechnie stosowany w żarówkach domowych, co jeszcze bardziej potwierdza, że mamy do czynienia z źródłem światła. Ponadto temperatura barwowa wynosząca 3000K wskazuje na ciepłe światło, które jest często preferowane w zastosowaniach domowych i komercyjnych. Wiedza na temat klasyfikacji źródeł światła jest kluczowa dla specjalistów zajmujących się projektowaniem oświetlenia, gdyż pozwala na dobór odpowiednich produktów do konkretnych zastosowań zgodnie z obowiązującymi normami i standardami branżowymi.

Pytanie 39

Jakie dane powinny być zawarte w protokole po przeprowadzeniu badań po modernizacji sieci?

A. Rodzaje mierników, nazwisko i uprawnienia osoby wykonującej prace.
B. Nazwa przedsiębiorstwa energetycznego, do którego podłączono sieć, nazwisko zleceniodawcy.
C. Nazwa przedsiębiorstwa energetycznego, do którego podłączono sieć, nazwisko wykonawcy.
D. Nazwisko zleceniodawcy, nazwisko wykonawcy, czas przeprowadzania pomiarów.
Protokół z badań po modernizacji sieci musi zawierać kluczowe informacje, takie jak nazwisko zleceniodawcy, nazwisko wykonawcy oraz czas wykonywania pomiarów. Te elementy są niezbędne, aby zapewnić pełną przejrzystość i odpowiedzialność w procesie pomiarów. Zleceniodawca, jako osoba zlecająca prace, powinien być wymieniony, aby można było w razie potrzeby zidentyfikować odpowiednie osoby odpowiedzialne za projekt. Nazwisko wykonawcy jest istotne, ponieważ odpowiada on za prawidłowe wykonanie badań, co jest kluczowe dla zapewnienia bezpieczeństwa i jakości sieci. Czas wykonywania pomiarów także ma znaczenie, ponieważ umożliwia śledzenie postępu prac oraz weryfikację, czy pomiary zostały przeprowadzone zgodnie z harmonogramem. Wszystkie te dane są zgodne z najlepszymi praktykami w branży oraz standardami, które zalecają dokumentowanie szczegółowych informacji o przebiegu prac oraz wynikach badań.

Pytanie 40

Podczas wymiany uszkodzonego mechanicznie gniazda wtykowego w podtynkowej instalacji elektrycznej działającej w systemie TN-S, jakie czynności należy podjąć?

A. podłączyć poszczególne przewody do odpowiednich zacisków gniazda
B. zasilić przewody o większym przekroju żył do najbliższej puszki łączeniowej
C. nałożyć warstwę cyny na końcówki przewodów
D. wybrać gniazdo o wyższym prądzie znamionowym niż to uszkodzone
Wymienione odpowiedzi, które sugerują zastosowanie gniazda o większym prądzie znamionowym lub naniesienie warstwy cyny na końcówki przewodów, są nieprawidłowe i mogą prowadzić do poważnych błędów w instalacji elektrycznej. Użycie gniazda o większym prądzie znamionowym może wydawać się korzystne, jednak nie uwzględnia to możliwości przewodów oraz ich obciążalności prądowej. Każdy element instalacji elektrycznej powinien być dobrany zgodnie z jego przeznaczeniem oraz obciążeniem, do którego jest zaprojektowany. Zastosowanie gniazda o wyższej wartości niż przewody prowadzi do sytuacji, w której przewody mogą ulegać przegrzaniu, co w konsekwencji stwarza ryzyko pożaru. Co więcej, nanoszenie cyny na końcówki przewodów jest praktyką, która nie tylko może wprowadzać dodatkowe opory w połączeniu, ale także stwarza ryzyko korozji oraz osłabienia połączenia w dłuższym okresie użytkowania. W instalacjach elektrycznych kluczową rolę odgrywa jakość połączeń, które powinny być pewne i stabilne, aby uniknąć awarii. Niezależnie od tego, jak zaawansowane są technologie stosowane w instalacji, kluczowe jest przestrzeganie zasad dotyczących podłączania przewodów do właściwych zacisków oraz wykorzystanie odpowiednich materiałów i produktów w zgodzie z normami branżowymi, aby zapewnić bezpieczeństwo i funkcjonalność całej instalacji.