Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.03 - Montaż, uruchamianie i konserwacja urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 28 stycznia 2026 17:54
  • Data zakończenia: 28 stycznia 2026 18:18

Egzamin zdany!

Wynik: 28/40 punktów (70,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Zespół tokarki pociągowej zwany konikiem, jest przedstawiony na rysunku

Ilustracja do pytania
A. D.
B. C.
C. B.
D. A.
Odpowiedź D jest prawidłowa, ponieważ konik tokarski to kluczowy element tokarki pociągowej, który odgrywa istotną rolę w procesie obróbki skrawaniem. Jego podstawowym zadaniem jest podpieranie obrabianego przedmiotu, co ma na celu zwiększenie stabilności i dokładności obróbki. W praktyce, konik jest szczególnie ważny podczas pracy z długimi elementami, które mogą mieć tendencję do wyginania się pod wpływem sił skrawania. Użycie konika pozwala na utrzymanie odpowiedniej pozycji obrabianego przedmiotu, co redukuje ryzyko błędów i poprawia jakość wykończenia. W kontekście standardów przemysłowych, zastosowanie konika zgodnie z zaleceniami producenta gwarantuje bezpieczeństwo pracy oraz efektywność produkcji. Warto również zauważyć, że konik tokarski może być regulowany, co umożliwia dostosowanie go do różnych długości i średnic obrabianych elementów, co jest niezbędne w elastycznej produkcji.

Pytanie 2

Na płytce drukowanej w miejscach oznaczonych cyframi 1, 2, 3 należy zamontować

Ilustracja do pytania
A. 1 - kondensator elektrolityczny, 2 - rezystor, 3 - diodę prostowniczą.
B. 1 - diodę prostowniczą, 2 - rezystor, 3 - kondensator elektrolityczny.
C. 1 - kondensator elektrolityczny, 2 - diodę prostowniczą, 3 - rezystor.
D. 1 - diodę prostowniczą, 2 - kondensator elektrolityczny, 3 - rezystor.
Wybór niewłaściwych komponentów do montażu na płytce drukowanej może prowadzić do wielu problemów w działaniu układu. Na przykład, umieszczenie diody prostowniczej w miejscu przeznaczonym dla kondensatora elektrolitycznego jest błędem, ponieważ diody mają zupełnie inną funkcję. Dioda prostownicza jest stosowana do kierowania przepływu prądu, co jest kluczowe w procesie prostowania, natomiast kondensator elektrolityczny gromadzi ładunek i stabilizuje napięcie. Jeśli dioda zostanie zamontowana tam, gdzie powinien być kondensator, może dojść do zwarcia lub niewłaściwego działania obwodu. Kolejnym błędem jest mylenie rezystora z diodą. Rezystor ogranicza przepływ prądu, a jego umiejscowienie w obwodzie jest kluczowe dla zapewnienia, że inne komponenty nie będą narażone na zbyt wysokie napięcie lub prąd. W przypadku zamontowania rezystora tam, gdzie powinien znajdować się kondensator, może to prowadzić do braku filtracji w zasilaczu, co z kolei może skutkować niestabilnym działaniem urządzenia. Tego rodzaju błędy zwykle wynikają z niedostatecznego zrozumienia funkcji podstawowych komponentów elektronicznych oraz ich oznaczeń na płytkach drukowanych. Kluczowe w pracy z elektroniką jest zrozumienie, jak różne elementy współdziałają ze sobą oraz jakie są ich role w obwodzie. Dlatego ważne jest, aby przed przystąpieniem do montażu dokładnie analizować schematy oraz oznaczenia na płytkach.

Pytanie 3

Na obudowie urządzenia wystąpiło niebezpieczne napięcie dotykowe. Który wyłącznik zredukowałby zasilanie urządzenia, gdy ktoś dotknie jego obudowy?

A. Różnicowoprądowy
B. Termiczny
C. Nadprądowy
D. Silnikowy
Wyłącznik termiczny, silnikowy oraz nadprądowy nie są odpowiednimi rozwiązaniami w sytuacji, gdy na obudowie urządzenia pojawia się niebezpieczne napięcie dotykowe. Wyłącznik termiczny jest przeznaczony głównie do ochrony przed przegrzaniem obwodów, co wiąże się z nadmiernym wydzielaniem ciepła, a nie bezpośrednio z zagrożeniem porażeniem prądem. Działa on na zasadzie odcinania zasilania w sytuacji, gdy prąd przekracza określoną wartość przez określony czas, co może nie zadziałać w przypadku nagłego upływu prądu do ziemi. Wyłącznik silnikowy, z drugiej strony, jest zaprojektowany do ochrony silników elektrycznych przed przeciążeniem oraz zwarciami, a nie do reagowania na niebezpieczne napięcie dotykowe. Jego funkcjonalność jest ograniczona do konkretnego zastosowania w silnikach, co sprawia, że nie nadaje się do ochrony osób przed porażeniem. Wyłącznik nadprądowy, choć jest istotnym elementem zabezpieczeń elektrycznych, również działa na zasadzie detekcji nadmiernego prądu i nie jest w stanie wykryć niewielkich upływów prądowych, które mogą wystąpić w przypadku kontaktu z obudową urządzenia. Tego typu podejście do zabezpieczeń często prowadzi do błędnych wniosków, gdzie myli się, że jakiekolwiek odcięcie zasilania w przypadku przeciążeń jest wystarczające dla ochrony przed porażeniem, co jest nieprawdziwe. Właściwe zabezpieczenie przed porażeniem prądem wymaga zastosowania odpowiednich technologii, takich jak RCD, które są zaprojektowane do szybkiej reakcji na sytuacje zagrażające zdrowiu użytkowników.

Pytanie 4

W maszynach wirujących można zdiagnozować nieosiowe położenie wałów, niewyważenie mas wirujących lub ugięcie wałów

A. testerem izolacji
B. tachometrem
C. rejestratorem prądu
D. analizatorem drgań
Analizator drgań jest kluczowym narzędziem w diagnostyce maszyn wirujących, ponieważ umożliwia szczegółową analizę drgań generowanych przez maszyny, co pozwala na wykrycie nieprawidłowości związanych z ich ustawieniem, wyważeniem czy ugięciem wałów. Pomiar drgań jest istotnym elementem monitorowania stanu technicznego maszyn, zgodnie z normami ISO 10816 dotyczącymi oceny stanu maszyn na podstawie pomiarów drgań. Analizator drgań może wykryć różne rodzaje nieprawidłowości, takie jak niewyważenie, które prowadzi do nadmiernych drgań i może skutkować uszkodzeniami łożysk czy innych komponentów. Przykładowo, w przypadku silników elektrycznych, analiza drgań może pomóc w ocenie ich wyważenia oraz identyfikacji problemów z łożyskami, co pozwala na wczesne podjęcie działań serwisowych. W praktyce, regularne monitorowanie drgań może znacznie wydłużyć żywotność maszyn, a także zredukować koszty związane z nieplanowanymi przestojami i naprawami.

Pytanie 5

Który symbol graficzny oznacza sterowanie ręczne dźwignią?

Ilustracja do pytania
A. A.
B. D.
C. C.
D. B.
Wybór niewłaściwego symbolu do oznaczenia sterowania ręcznego dźwignią może prowadzić do poważnych konsekwencji w zakresie bezpieczeństwa i efektywności operacyjnej. Symbol graficzny, który nie przedstawia dźwigni z rękojeścią, może sugerować inne mechanizmy lub metody sterowania, takie jak automatyczne lub zdalne sterowanie, co może wprowadzać w błąd operatorów. Takie zamieszanie nie tylko utrudnia prawidłową obsługę maszyn, ale także zwiększa ryzyko wypadków w miejscu pracy. Operatorzy, którzy nie rozumieją różnicy między tymi symbolami, mogą nieświadomie używać niewłaściwych procedur, co prowadzi do nieefektywnego wykorzystania sprzętu. W przemyśle, gdzie precyzyjne działanie jest kluczowe, każdy błąd w identyfikacji symboli może skutkować nieprawidłowym działaniem urządzeń, co w konsekwencji wpłynie na wydajność produkcji. Dlatego istotne jest, aby pracownicy byli odpowiednio przeszkoleni w zakresie rozpoznawania i interpretacji symboli graficznych, co jest częścią standardów bezpieczeństwa i jakości, takich jak normy ISO. Opanowanie tych umiejętności jest niezbędne dla zapewnienia bezpiecznego i efektywnego środowiska pracy.

Pytanie 6

Na rysunku przedstawione zostały fragmenty dwóch elementów, które należy połączyć techniką połączenia wciskowego wtłaczanego. Jaka powinna być zależność pomiędzy wymiarami d1 i d2?

Ilustracja do pytania
A. d1 = d2
B. d1 > d2
C. d1 ≤ d2
D. d1 < d2
Odpowiedź, w której d1 jest większe od d2, jest poprawna, ponieważ technika połączenia wciskowego wtłaczanego wymaga, aby średnica elementu wciskanego (d1) była większa od średnicy otworu (d2) w elemencie, do którego jest on wciśnięty. Taki układ zapewnia odpowiednie naprężenia, które są kluczowe dla trwałości i stabilności połączenia. W praktyce, podczas projektowania takich połączeń, inżynierowie stosują zasady dobrych praktyk, które obejmują uwzględnienie tolerancji wymiarowych oraz materiałów użytych do produkcji elementów. Na przykład, w przemyśle motoryzacyjnym lub elektronice, zastosowanie połączeń wciskowych ma na celu nie tylko montaż, ale także umożliwienie szybkiej wymiany części, co jest istotne w kontekście serwisowania. Dobrze zaprojektowane połączenie wciskowe powinno również uwzględniać aspekty takie jak odporność na wibracje czy zmiany temperatury, co dodatkowo potwierdza, że d1 musi być większe od d2, aby połączenie pozostało stabilne w różnych warunkach użytkowania.

Pytanie 7

Symbol podany na rysunku umieszczony w polu odczytowym miernika analogowego, oznacza

Ilustracja do pytania
A. ilość podziałek.
B. napięcie probiercze izolacji 3 V.
C. napięcie probiercze izolacji 3 kV.
D. trójfunkcyjność miernika.
Symbol na rysunku to dość znane oznaczenie napięcia probierczego izolacji. Mówiąc dokładniej, 3 kV oznacza, że izolacja urządzenia musi wytrzymać napięcie 3000 V podczas testów. Takie testy są super ważne dla bezpieczeństwa elektrycznego, bo izolacja naprawdę musi nie tylko działać w normalnych warunkach, ale też w przypadku jakiejś awarii. Z mojego doświadczenia, szczególnie przy instalacjach elektrycznych, odpowiednia izolacja to podstawa, żeby chronić zarówno sprzęt, jak i ludzi. W elektrotechnice, według norm jak IEC 61010, przeprowadzanie testów napięciowych izolacji to standardowa praktyka w kontroli jakości. Używanie właściwych wartości napięcia probierczego jest kluczowe, żeby wszystko działało bezpiecznie i nie było uszkodzeń sprzętu.

Pytanie 8

Jaki zawór powinien być użyty, aby umożliwić przepływ czynnika wyłącznie w jednym kierunku?

A. Rozdzielający
B. Dławiący
C. Zwrotny
D. Regulacyjny
Zawór zwrotny to kluczowy element w systemach hydraulicznych i pneumatycznych, który pozwala na przepływ czynnika roboczego tylko w jednym kierunku. Jego zasadniczą funkcją jest zapobieganie cofaniu się medium, co jest niezbędne w wielu zastosowaniach, takich jak instalacje wodociągowe, systemy grzewcze czy układy smarowania. Przykładowo, w instalacji rur do transportu wody, zawór zwrotny chroni przed cofaniem się wody, co mogłoby prowadzić do uszkodzeń lub nieefektywności systemu. Zawory te mogą być wykonane z różnych materiałów, w tym stali nierdzewnej, mosiądzu czy tworzyw sztucznych, w zależności od medium, jakie mają kontrolować. Standardy branżowe, jak PN-EN 12345, określają wymagania dla zaworów zwrotnych, w tym ich wydajność i trwałość. W praktyce, ich zastosowanie zapewnia nie tylko bezpieczeństwo, ale także efektywność energetyczną systemów, co jest istotne w kontekście nowoczesnych rozwiązań inżynieryjnych.

Pytanie 9

Którą z wymienionych wielkości można zmierzyć za pomocą miernika przedstawionego na zdjęciu?

Ilustracja do pytania
A. Temperaturę.
B. Natężenie prądu przemiennego.
C. Rezystancję izolacji.
D. Napięcie przemienne.
Pomiar napięcia przemiennego za pomocą miernika uniwersalnego, jak ten przedstawiony na zdjęciu, jest fundamentalną funkcją, która znajduje zastosowanie w wielu dziedzinach inżynierii elektrycznej. Użycie skali oznaczonej "ACV" wskazuje, że urządzenie jest przystosowane do pomiarów napięcia w obwodach prądu zmiennego. Napięcie przemienne jest powszechnie spotykane w instalacjach elektrycznych, gdzie dostarczana energia elektryczna ma formę sinusoidalną. Zrozumienie wartości napięcia jest kluczowe dla zapewnienia bezpieczeństwa i efektywności systemów zasilających. Stosując ten miernik, inżynierowie mogą szybko ocenić, czy napięcie w obwodzie jest zgodne z wymaganiami technicznymi, co jest niezbędne przy projektowaniu i konserwacji instalacji. Standardy takie jak IEC 61010 wskazują na konieczność stosowania odpowiednich narzędzi pomiarowych do pracy w różnych warunkach, co czyni pomiar napięcia przemiennego kluczowym elementem pracy elektryka. Używanie miernika uniwersalnego nie tylko wspiera techniczną dokładność, ale również zmniejsza ryzyko uszkodzeń urządzeń oraz potencjalnych zagrożeń dla użytkownika.

Pytanie 10

Jaką funkcję pełnią diody Zenera w elektronice?

A. Ograniczają prąd
B. Stabilizują napięcie
C. Prostują napięcie
D. Modulują częstotliwość
Odpowiedzi dotyczące ograniczania prądu, modulacji częstotliwości i prostowania napięcia są nieprawidłowe w kontekście roli, jaką pełnią diody Zenera w układach elektronicznych. Ograniczanie prądu to funkcja diod szeregowych lub oporników, które są wykorzystywane do kontrolowania przepływu prądu w obwodzie. Diody Zenera, w przeciwieństwie do tych elementów, nie są zaprojektowane do ograniczania prądu, lecz do stabilizacji napięcia. Niepoprawne jest również twierdzenie, że diody Zenera modulują częstotliwość. Modulacja częstotliwości to proces zmieniający częstotliwość sygnału, co jest domeną specjalistycznych układów, takich jak modulatory, a nie diod Zenera. Ostatnim błędnym stwierdzeniem jest prostowanie napięcia. Prostowanie, które polega na przekształceniu prądu zmiennego na stały, realizowane jest zazwyczaj za pomocą prostowników, a nie diod Zenera. Typowe błędy myślowe, które prowadzą do tych nieprawidłowych wniosków, wynikają często z niepełnego zrozumienia podstawowych funkcji różnych typów diod. Wiedza na temat zastosowań diod jest kluczowa w projektowaniu układów elektronicznych, a ich niewłaściwe użycie może prowadzić do nieefektywnych i awaryjnych konstrukcji. Dlatego ważne jest, aby odpowiednio dobierać elementy elektroniczne zgodnie z ich funkcjami oraz charakterystyką, co jest fundamentem dobrych praktyk inżynieryjnych.

Pytanie 11

Jakiego rodzaju sprzęgła należy użyć do połączenia dwóch wałów przedstawionych na rysunku?

Ilustracja do pytania
A. Tulejowego.
B. Łubkowego.
C. Oldhama.
D. Kołnierzowego.
Użycie sprzęgieł łubkowych, kołnierzowych czy tulejowych w sytuacji przedstawionej w pytaniu nie jest zalecane z kilku powodów. Sprzęgła łubkowe, mimo że są popularne w wielu aplikacjach, nie są w stanie skutecznie kompensować przesunięcia osiowego między wałami. Oznacza to, że w przypadku wystąpienia takiego przesunięcia, mogą one ulegać szybkiemu zużyciu lub nawet uszkodzeniu. Kołnierzowe sprzęgła są bardziej odpowiednie do sztywnych połączeń, gdzie elementy są dokładnie wyrównane. W przeciwnym razie, niewłaściwe użycie może prowadzić do problemów z przenoszeniem momentu obrotowego oraz zwiększeniem wibracji. Sprzęgła tulejowe, choć mogą być stosowane w pewnych aplikacjach, również nie oferują elastyczności wymaganej w kontekście przesunięć osiowych. Użytkownicy często popełniają błąd, zakładając, że różne typy sprzęgieł są wymienne w każdej sytuacji, co prowadzi do niewłaściwych wyborów konstrukcyjnych. Istotne jest, aby dobierać sprzęgła zgodnie z wymaganiami aplikacji oraz charakterystyką wałów, co stanowi podstawę dobrej praktyki inżynieryjnej.

Pytanie 12

Osoba pracująca z urządzeniami pneumatycznymi emitującymi głośny dźwięk jest narażona na

A. uszkodzenie skóry dłoni
B. zmiany w układzie kostnym
C. uszkodzenie narządu słuchu
D. porażenie prądem elektrycznym
Uszkodzenie narządu słuchu w wyniku narażenia na wysokie natężenie dźwięku w miejscu pracy jest poważnym zagrożeniem zdrowotnym, które można zminimalizować poprzez wdrożenie odpowiednich środków ochrony. Zgodnie z normami, takimi jak ISO 9612, ocena ryzyka hałasu powinna być regularnie przeprowadzana, a pracownicy powinni być informowani o potencjalnych zagrożeniach. Stosowanie ochronników słuchu, takich jak nauszniki lub wkładki, jest kluczowym elementem strategii redukcji ekspozycji na hałas. Przykładowo, pracownik obsługujący kompresory powietrzne, które generują dźwięk o poziomie przekraczającym 85 dB, powinien zawsze korzystać z odpowiedniego sprzętu ochronnego. Dodatkowo, regularne kontrole słuchu mogą pomóc w wczesnym wykryciu ewentualnych uszkodzeń, co jest zgodne z najlepszymi praktykami w zarządzaniu bezpieczeństwem pracy.

Pytanie 13

Którego klucza należy użyć do odkręcenia przedstawionej na rysunku śruby?

Ilustracja do pytania
A. Z gniazdem sześciokątnym.
B. Oczkowego sześciokątnego.
C. Płaskiego szczękowego.
D. Trzpieniowego sześciokątnego.
Klucz trzpieniowy sześciokątny jest narzędziem zaprojektowanym specjalnie do odkręcania śrub z gniazdem sześciokątnym wewnętrznym, które znajduje się na ich końcach. To gniazdo ma specyficzny kształt, który wymaga zastosowania odpowiedniego klucza, aby zapewnić maksymalny kontakt oraz minimalizację ryzyka uszkodzenia elementu. Klucze trzpieniowe sześciokątne są dostępne w różnych rozmiarach, co pozwala na ich szerokie zastosowanie w mechanice oraz inżynierii. W praktyce, gdy pracujemy ze złożonymi maszynami lub konstrukcjami, często spotykamy się z śrubami tego typu, co czyni klucz trzpieniowy niezbędnym narzędziem w warsztacie. Użycie niewłaściwego klucza, takiego jak klucz oczkowy, może prowadzić do poślizgu lub zniszczenia gniazda, co w efekcie skutkuje trudnościami w demontażu lub wymianie śruby. W standardach mechanicznych przyjmuje się, że klucz trzpieniowy powinien być używany zawsze wtedy, gdy śruba jest dostosowana do takiego typu narzędzia, co zapewnia bezpieczeństwo i efektywność pracy.

Pytanie 14

Na rysunku przedstawiono m.in.

Ilustracja do pytania
A. imadło.
B. suport poprzeczny.
C. wałek pociągowy.
D. uchwyt tokarski.
Uchwyt tokarski jest kluczowym elementem wyposażenia tokarni, który umożliwia precyzyjne mocowanie obrabianych przedmiotów. Jego konstrukcja składa się z dwóch lub więcej szczęk, które mogą być regulowane za pomocą kluczy. Dzięki temu uchwyt jest w stanie zacisnąć różne średnice elementów, co czyni go niezwykle wszechstronnym i niezbędnym w procesach obróbczych. W praktyce, uchwyty tokarskie występują w różnych rozmiarach i kształtach, co pozwala na ich zastosowanie w zależności od typu obrabianego materiału oraz specyfiki pracy na tokarce. Użycie uchwytu tokarskiego zgodnie z dobrą praktyką obróbcza nie tylko zwiększa efektywność pracy, ale również zapewnia bezpieczeństwo operatora, ponieważ odpowiednie mocowanie elementu minimalizuje ryzyko jego usunięcia lub uszkodzenia podczas obróbki. Warto pamiętać, że uchwyty tokarskie są projektowane zgodnie z normami, takimi jak ISO 9001, co gwarantuje ich wysoką jakość i niezawodność w zastosowaniach przemysłowych.

Pytanie 15

Trójfazowy silnik elektryczny o podanych parametrach zasilany jest z sieci.
Silnik elektryczny: moc P = 4 kW i cosφ = 0,75
Zasilany z sieci: 400 V; 3/PE ~, 50 Hz.
Prąd pobierany przez silnik z sieci jest równy

A. 5,77 A
B. 10,00 A
C. 13,33 A
D. 7,70 A
Poprawna odpowiedź wynika z obliczeń mocy dla trójfazowego silnika elektrycznego. Moc czynna (P) silnika można obliczyć za pomocą wzoru P = √3 × U × I × cos(φ), gdzie U to napięcie zasilania, I to prąd, a cos(φ) to współczynnik mocy. W tym przypadku mamy 4 kW mocy, współczynnik mocy 0,75 oraz napięcie 400 V. Obliczając prąd, przekształcamy wzór do postaci I = P / (√3 × U × cos(φ)). Podstawiając wartości, otrzymujemy I = 4000 W / (√3 × 400 V × 0,75) co daje około 7,70 A. Dzięki tym obliczeniom możemy zrozumieć, jak ważne jest uwzględnienie wszystkich parametrów w obliczeniach elektrycznych. Praktyczne zastosowanie tej wiedzy ma miejsce przy projektowaniu instalacji elektrycznych oraz doborze zabezpieczeń, które muszą być odpowiednio dobrane do wartości prądu znamionowego urządzeń. W branży elektrycznej standardy dotyczące doboru mocy i prądu są kluczowe dla zapewnienia bezpieczeństwa oraz efektywności energetycznej.

Pytanie 16

Który z programów przekształca kod napisany w danym języku programowania na kod maszynowy stosowany przez mikrokontroler?

A. Emulator
B. Debugger
C. Kompilator
D. Deasembler
Odpowiedzi, które wybrałeś, nie są związane z procesem tłumaczenia kodu źródłowego na kod maszynowy. Symulator to narzędzie, które imituje działanie mikrokontrolera, pozwalając na testowanie programów bez potrzeby fizycznego wgrania ich do urządzenia. Jego rola polega na umożliwieniu deweloperom analizy działania ich kodu w bezpiecznym środowisku, ale nie wykonuje ono konwersji kodu. Deasembler, z drugiej strony, to narzędzie, które przekształca kod maszynowy z powrotem na formę bardziej zrozumiałą dla ludzi, ale nie generuje kodu maszynowego z kodu źródłowego. Właściwie używa się go w kontekście analizy istniejącego kodu, a nie w procesie tworzenia oprogramowania. Debugger to narzędzie używane do identyfikacji i naprawy błędów w kodzie. Choć jest kluczowe w procesie programowania, jego zadaniem nie jest tłumaczenie kodu, lecz raczej monitorowanie działania programu w czasie rzeczywistym i umożliwienie analizy stanów oraz wartości zmiennych. Zrozumienie różnicy pomiędzy tymi narzędziami jest kluczowe dla każdego programisty, aby stosować odpowiednie podejścia i narzędzia w procesie tworzenia oprogramowania.

Pytanie 17

W jakim urządzeniu dochodzi do przemiany energii promieniowania słonecznego na energię elektryczną?

A. Fototranzystorze
B. Fotoogniwie
C. Fotorezystorze
D. Fotodiodzie
Fotoogniwo jest urządzeniem, które przekształca energię promieniowania słonecznego na energię elektryczną poprzez zjawisko fotowoltaiczne. Proces ten polega na generowaniu par elektron-dziura w materiale półprzewodnikowym, takim jak krzem, w wyniku absorpcji fotonów. Kiedy foton uderza w atom w strukturze półprzewodnika, przekazuje swoją energię elektronowi, co prowadzi do jego wzbudzenia i możliwości swobodnego poruszania się w strukturze materiału. W rezultacie tego procesu powstaje prąd elektryczny. Fotoogniwa są szeroko stosowane w systemach energii odnawialnej, takich jak panele słoneczne montowane na dachach budynków czy farmach fotowoltaicznych, przyczyniając się do zrównoważonego rozwoju i redukcji emisji CO2. W branży energetycznej fotoogniwa zgodne są z normami IEC 61215 i IEC 61730, które dotyczą testowania modułów słonecznych, zapewniając ich jakość i bezpieczeństwo w eksploatacji.

Pytanie 18

Którego typu końcówki klucza należy użyć do wkręcenia śruby przedstawionej na rysunku?

Ilustracja do pytania
A. A.
B. C.
C. B.
D. D.
Odpowiedź A jest poprawna, ponieważ śruba przedstawiona na rysunku posiada głowicę typu Phillips, co można zauważyć dzięki charakterystycznemu krzyżowemu nacięciu. Końcówka klucza oznaczona jako A jest dostosowana do tego typu śrub, co jest zgodne z międzynarodowymi standardami narzędziowymi. W praktyce, stosując odpowiednią końcówkę podczas wkręcania śrub Phillips, zapewniamy lepsze dopasowanie i zmniejszamy ryzyko uszkodzenia zarówno śruby, jak i narzędzia. Ponadto, zastosowanie odpowiednich narzędzi wspiera efektywność pracy oraz bezpieczeństwo, minimalizując ryzyko wyślizgnięcia się końcówki podczas użycia. Warto pamiętać, że nieodpowiedni dobór końcówki, jak w przypadku innych opcji, może prowadzić do uszkodzenia nacięcia śruby lub narzędzia. Użycie końcówki A w praktyce jest kluczowe do osiągnięcia właściwego momentu obrotowego oraz pewności połączenia, co jest zgodne z najlepszymi praktykami w zakresie montażu przemysłowego.

Pytanie 19

Jeśli na tłok siłownika o powierzchni S = 0,003 m2 działa ciśnienie czynnika wynoszące 2 MPa, to jaka jest siła działająca na tłok?

A. 6 kN
B. 12 kN
C. 2 kN
D. 9 kN
Aby obliczyć siłę naporu działającą na tłok siłownika, należy skorzystać ze wzoru F = p * S, gdzie F to siła, p to ciśnienie, a S to powierzchnia przekroju tłoka. W naszym przypadku ciśnienie p wynosi 2 MPa, co należy przeliczyć na pascale: 2 MPa = 2 * 10^6 Pa. Powierzchnia S wynosi 0,003 m². Podstawiając wartości do wzoru, otrzymujemy F = 2 * 10^6 Pa * 0,003 m² = 6000 N, co jest równoważne 6 kN. Zrozumienie tego działania ma fundamentalne znaczenie w hydraulice, gdzie siły generowane przez ciśnienie są kluczowe dla działania maszyn i systemów. Na przykład w układach hydraulicznych w samochodach, takich jak hamulce czy podnośniki, prawidłowe obliczenie siły pozwala na efektywne i bezpieczne działanie tych mechanizmów. Zastosowanie ciśnienia i przekroju tłoka jest również istotne przy projektowaniu urządzeń takich jak prasy hydrauliczne czy siłowniki, gdzie precyzyjna manipulacja siłą jest niezbędna.

Pytanie 20

Przekładnie, które umożliwiają ruch posuwowy w tokarkach CNC, to

A. śrubowe toczne
B. korbowe
C. cierne pośrednie
D. jarzmowe
Wybór odpowiedzi związanych z przekładniami korbowymi, jarzmowymi oraz ciernymi pośrednimi wskazuje na pewne nieporozumienia dotyczące mechanizmów stosowanych w tokarkach CNC. Przekładnie korbowe, choć używane w niektórych maszynach, nie są odpowiednie do precyzyjnego ruchu posuwowego, ponieważ charakteryzują się większymi luzami i mniejszą powtarzalnością, co prowadzi do niedokładności w obróbce. Z kolei przekładnie jarzmowe są zazwyczaj stosowane w mechanizmach przekształcających ruch obrotowy w ruch liniowy, ale ich skomplikowana budowa i większe opory tarcia sprawiają, że nie są one efektywne w kontekście tokarek CNC, gdzie kluczowa jest szybkość i dokładność. Przekładnie cierne pośrednie, choć mogą być stosowane w różnych aplikacjach, nie oferują odpowiedniego poziomu precyzji wymaganej w obróbce skrawaniem. Wymagane parametry obróbcze, takie jak dokładność wymiarowa, są trudne do osiągnięcia przy użyciu tych mechanizmów, co może prowadzić do błędów i odchyleń w finalnym produkcie. Kluczowym aspektem jest to, że w technice CNC, każdy ruch musi być ściśle kontrolowany, a wybór odpowiednich mechanizmów jest niezbędny do zapewnienia wysokiej jakości produkcji. Wybór niewłaściwego typu przekładni może prowadzić do zwiększonej awaryjności maszyn oraz wyższych kosztów eksploatacji.

Pytanie 21

Silnik elektryczny generuje hałas z powodu kontaktu wentylatora z osłoną wentylacyjną. Aby obniżyć poziom hałasu, należy

A. dokręcić śruby mocujące osłonę wentylatora
B. wycentrować wirnik w stojanie
C. wymienić łożyska silnika
D. wyprostować skrzywiony wentylator lub osłonę
Wymiana łożysk silnika, wycentrowanie wirnika w stojanie i dokręcanie śrub mocujących osłonę wentylatora to pomysły, które mogą wydawać się OK, ale nie rozwiążą problemu ocierania się wentylatora o osłonę. Zazwyczaj wymiana łożysk jest potrzebna, jak zaczynają się inne objawy, jak wibracje, a niekoniecznie hałas z ocierania. Wycentrowanie wirnika też jest istotne, ale jeżeli wentylator już jest uszkodzony, to centracja to tylko plasterek na ranę. Dokręcanie śrub nie pomoże, jeśli wentylator jest krzywy, bo osłona nie zmieni jego pozycji. Ignorowanie rzeczywistych przyczyn hałasu, jak uszkodzenia, może prowadzić do większych problemów w przyszłości, o czym mówią zasady dotyczące konserwacji urządzeń. Dobrze jest robić regularne przeglądy i podejść do sprawy analitycznie, żeby skutecznie rozwiązywać problemy z hałasem w elektrycznych silnikach.

Pytanie 22

W systemie przygotowania sprężonego powietrza elementy są instalowane w następującej kolejności:

A. filtr powietrza, reduktor, smarownica
B. reduktor, smarownica, filtr powietrza
C. smarownica, filtr powietrza, reduktor
D. reduktor, filtr powietrza, smarownica
Odpowiedź "filtr powietrza, reduktor, smarownica" jest poprawna, ponieważ kolejność montażu tych elementów ma kluczowe znaczenie dla efektywności oraz żywotności układu sprężonego powietrza. Filtr powietrza jest pierwszym elementem, który powinien być zainstalowany, ponieważ jego zadaniem jest usunięcie zanieczyszczeń i wilgoci z powietrza atmosferycznego, co zapobiega uszkodzeniom pozostałych komponentów systemu. Następnie montowany jest reduktor ciśnienia, który reguluje ciśnienie powietrza dostarczanego do urządzeń roboczych, zapewniając optymalne warunki pracy. Na końcu montowana jest smarownica, która dostarcza odpowiednią ilość oleju do narzędzi pneumatycznych, co wpływa na ich skuteczność oraz wydajność. Zgodnie z normami branżowymi, takimi jak ISO 8573, zachowanie tej kolejności pozwala na utrzymanie wysokiej jakości powietrza oraz minimalizację kosztów eksploatacji, co jest kluczowe w wielu zastosowaniach przemysłowych.

Pytanie 23

Toczenie powierzchni czołowej przedstawia rysunek

Ilustracja do pytania
A. D.
B. B.
C. C.
D. A.
Toczenie powierzchni czołowej jest kluczowym procesem w obróbce skrawaniem, gdzie narzędzie toczenia przesuwa się w kierunku prostopadłym do osi obrotu obrabianego przedmiotu. W przypadku rysunku C, możemy zauważyć, że narzędzie jest poprawnie ustawione, co umożliwia efektywne skrawanie i uzyskiwanie pożądanej powierzchni. W praktyce toczenie powierzchni czołowej stosuje się w produkcji elementów, które wymagają precyzyjnego wykończenia, takich jak wały czy tuleje. Proces ten pozwala na uzyskanie dokładnych wymiarów oraz wysokiej jakości powierzchni, co jest zgodne z najlepszymi praktykami branżowymi. Dodatkowo, toczenie powierzchni czołowej można optymalizować poprzez odpowiedni dobór parametrów technologicznych, takich jak prędkość skrawania czy posuw, co wpływa na żywotność narzędzi i jakość obróbki. W związku z tym, poprawne zrozumienie ustawienia narzędzia toczenia oraz zasad działania tego procesu jest kluczowe dla każdego inżyniera czy technika w branży mechanicznej.

Pytanie 24

W jaki sposób należy podłączyć przewody do złącz przedstawionych na fotografii?

Ilustracja do pytania
A. Poprzez skręcenie kluczem oczkowym.
B. Za pomocą lutowania.
C. Za pomocą klejenia.
D. Wtykowo bez użycia narzędzi.
Dobra robota, odpowiedź "Wtykowo bez użycia narzędzi" jest właściwa. Złącza, które widzisz na zdjęciu, są śrubowe, a to oznacza, że możesz podłączyć przewody w dość prosty sposób, po prostu je wsuwając. Włożenie odizolowanego końca przewodu do otworu w złączu i przykręcenie śruby nie wymaga żadnych narzędzi, co jest sporym ułatwieniem. W praktyce dzięki temu łatwiej wymienia się przewody i robi konserwację, bez obaw o uszkodzenie złącza. Pamiętaj tylko, że ważne jest, żeby zachować odpowiednią kolejność i sposób podłączania – solidne połączenie to podstawa, żeby nie było problemów z przewodnością. Połączenia wtykowe są też estetyczne i zwiększają bezpieczeństwo, dlatego są tak popularne w różnych zastosowaniach.

Pytanie 25

Jakie jest przeznaczenie przedstawionego na rysunku zbiornika rozdzielonego elastyczną membraną, w którym jedna komora przeznaczona jest na ciecz pod ciśnieniem, a druga na gaz?

Ilustracja do pytania
A. Naolejanie powietrza.
B. Gromadzenie oleju transformatorowego.
C. Chłodzenie cieczy.
D. Magazynowanie energii hydraulicznej.
Zbiornik rozdzielony elastyczną membraną, w którym jedna komora przeznaczona jest na ciecz pod ciśnieniem, a druga na gaz, pełni rolę akumulatora hydraulicznego. Jego głównym przeznaczeniem jest magazynowanie energii hydraulicznej, co jest kluczowe w systemach hydraulicznych, gdzie stabilizacja ciśnienia oraz odpowiedź na zmieniające się zapotrzebowanie na moc są niezbędne. Systemy te są powszechnie stosowane w przemyśle, zwłaszcza w maszynach roboczych, takich jak prasy hydrauliczne czy układy hamulcowe. Zbiorniki te umożliwiają gromadzenie energii w momencie, gdy zapotrzebowanie na moc jest niskie, a następnie uwalnianie jej w momentach wzmożonego zapotrzebowania, co zwiększa efektywność energetyczną systemu. Oprócz tego, akumulatory hydrauliczne pozwalają na tłumienie drgań i szoków hydraulicznych, co przyczynia się do zwiększenia trwałości komponentów systemu. W praktyce stosowanie akumulatorów hydraulicznych jest zgodne z najlepszymi praktykami w inżynierii hydraulicznej, co potwierdzają normy ISO oraz SAE.

Pytanie 26

Który z przedstawionych na rysunkach podzespołów urządzenia pneumatycznego zapewnia redukcję ciśnienia i zatrzymanie cząstek stałych w układzie zasilania sprężonym powietrzem?

Ilustracja do pytania
A. B.
B. D.
C. C.
D. A.
Odpowiedź B jest poprawna, ponieważ filtr z regulatorem ciśnienia pełni kluczową rolę w układzie zasilania sprężonym powietrzem. Filtr usuwa zanieczyszczenia, takie jak cząstki stałe, krople wody i oleju, co jest istotne dla zachowania prawidłowego funkcjonowania urządzeń pneumatycznych. Regulacja ciśnienia jest niezbędna, aby uniknąć uszkodzeń systemu spowodowanych nadmiernym ciśnieniem. Przykładem praktycznego zastosowania jest przemysł motoryzacyjny, gdzie sprężone powietrze wykorzystuje się do zasilania narzędzi pneumatycznych. W tym kontekście, filtr z regulatorem ciśnienia zapewnia nie tylko bezpieczeństwo, ale także efektywność operacyjną, redukując ryzyko awarii sprzętu. Normy takie jak ISO 8573-1 definiują wymagania jakości powietrza sprężonego, co potwierdza znaczenie filtracji i regulacji w każdym systemie pneumatycznym. Przestrzeganie dobrych praktyk w zakresie konserwacji tych elementów pozwala na dłuższą żywotność i niezawodność urządzeń.

Pytanie 27

Na rysunku przedstawiono wykonywanie połączenia metodą

Ilustracja do pytania
A. garbową.
B. punktową.
C. doczołową.
D. liniową.
Odpowiedź oznaczona jako liniowa jest prawidłowa, ponieważ na przedstawionym rysunku ukazany jest proces spawania, w którym elementy są łączone wzdłuż jednej linii. Spawanie liniowe jest jedną z najczęściej stosowanych metod w przemyśle, szczególnie w konstrukcjach stalowych, gdzie wymagana jest wysoka wytrzymałość połączeń. Ta technika jest szeroko stosowana w budowie mostów, konstrukcji przemysłowych oraz w przemyśle motoryzacyjnym, gdzie spawane są elementy nośne. W praktyce spawanie liniowe wykonuje się z użyciem różnych technologii, takich jak MIG/MAG, TIG czy spawanie elektrodą otuloną. Zastosowanie prawidłowej techniki spawania ma kluczowe znaczenie dla zapewnienia integralności strukturalnej i bezpieczeństwa finalnych produktów. Warto również pamiętać, że spawanie liniowe powinno być realizowane zgodnie z odpowiednimi normami, takimi jak PN-EN ISO 3834, co zapewnia wysoką jakość połączeń oraz minimalizuje ryzyko wad materiałowych.

Pytanie 28

Przy jakiej temperaturze nastąpi wyłączenie grzałki w układzie dwustanowej regulacji temperatury, jeśli wartość zadana To wynosi 100 oC, a szerokość pętli histerezy H = 5 oC?

Ilustracja do pytania
A. 105,0 oC
B. 102,5 oC
C. 97,5 oC
D. 95,0 oC
W układzie z dwustanową regulacją temperatury grzałka wyłącza się, kiedy temperatura osiągnie wartość zadana powiększoną o połowę szerokości histerezy. Tu, mamy temperaturę zadaną równą 100 oC, a szerokość pętli histerezy to 5 oC, więc połowa to 2,5 oC. W praktyce to oznacza, że grzałka się wyłączy przy 102,5 oC, co obliczamy jak 100 oC + 2,5 oC. To mega ważne w automatyce, bo precyzyjne kontrolowanie temperatury wpływa na bezpieczeństwo i efektywność naszych procesów. Jak przekroczymy te 102,5 oC, to grzałka sama się wyłączy, co chroni sprzęt przed przegrzaniem. Takie regulacje spotykamy w piecach, podgrzewaczach i innych systemach przemysłowych, gdzie temperatura jest kluczowa dla jakości końcowego produktu oraz bezpieczeństwa pracy. Histereza w regulacji pomaga nam uniknąć niepotrzebnych wahań temperatury, co jest istotne w sytuacjach, gdzie stabilność jest potrzebna.

Pytanie 29

Jakie urządzenie chroni silnik przed zwarciem i przeciążeniem?

A. odgromnik
B. przekaźnik termiczny
C. termistor
D. wyłącznik silnikowy
Choć przekaźnik termiczny, odgromnik i termistor są ważnymi elementami w systemach elektrycznych, nie pełnią one roli zabezpieczenia silników przed zwarciem i przeciążeniem. Przekaźnik termiczny działa na zasadzie detekcji wzrostu temperatury, co może być stosowane w zabezpieczeniach różnych obwodów, ale nie jest bezpośrednim zabezpieczeniem silnika. Jego zastosowanie ogranicza się do obwodów, w których przyczyny przegrzania są inne niż przeciążenie lub zwarcie. Odgromnik, z drugiej strony, jest urządzeniem ochronnym zapobiegającym skutkom przepięć, ale nie zabezpiecza przed problemami związanymi z przeciążeniem silników. Jego rola koncentruje się na ochronie instalacji przed wyładowaniami atmosferycznymi. Termistor, jako element elektroniczny, również nie jest praktycznym rozwiązaniem do zabezpieczania silników, gdyż jego zastosowanie ogranicza się do pomiarów temperatury, a nie do bezpośredniego odcięcia zasilania w przypadku awarii. W praktyce, przy projektowaniu systemów elektrycznych i automatyki, kluczowe jest stosowanie wyłączników silnikowych, które oferują odpowiednią reakcję na zmiany warunków pracy silnika, co gwarantuje jego dłuższą żywotność i bezawaryjność.

Pytanie 30

Zgodnie z normą PN-M-85002 na wale o średnicy 12 mm można osadzić wpust pryzmatyczny o wymiarach

Wpis z normy PN-M-85002
Wałek — d mmWpust
ponaddob×h mm
682×2
8103×3
10124×4
12175×5
17226×6
22308×7
A. 6x6 mm
B. 5x5 mm
C. 3x3 mm
D. 4x4mm
Odpowiedź 4x4 mm jest poprawna, ponieważ zgodnie z normą PN-M-85002 dla wałów o średnicy od 10 do 12 mm, przewidziano wpust pryzmatyczny o wymiarach 4x4 mm. Wpust pryzmatyczny jest kluczowym elementem w mechanice, który zapewnia efektywne przenoszenie momentu obrotowego między wałem a piastą. W praktyce, stosowanie odpowiednich wymiarów wpustów jest niezbędne dla zapewnienia stabilności i trwałości połączeń mechanicznych. W przypadku zastosowań w przemyśle, niewłaściwy dobór wymiarów wpustu może prowadzić do problemów z przenoszeniem momentu, co skutkuje zwiększeniem zużycia elementów oraz ryzykiem awarii. Przykładowo, w układach napędowych maszyn, zastosowanie wpustu o niewłaściwych wymiarach może skutkować poślizgiem, co negatywnie wpływa na wydajność całego systemu. Dlatego znajomość norm oraz precyzyjne dobieranie wymiarów wpustów pryzmatycznych jest kluczowe dla inżynierów mechaników oraz technologów.

Pytanie 31

W układzie zasilającym napęd pneumatyczny urządzenia mechatronicznego zamontowano zespół przygotowania powietrza złożony z 4 elementów. Którą z wymienionych funkcji realizuje element, którego symbol graficzny wskazuje strzałka?

Ilustracja do pytania
A. Filtruje powietrze dostarczane ze sprężarki.
B. Reguluje poziom ciśnienia w układzie.
C. Osusza powietrze dostarczane z sprężarki.
D. Wprowadza mgłę olejową do układu.
Twoja odpowiedź jest prawidłowa, ponieważ element, którego symbol graficzny wskazuje strzałka, to filtr powietrza. Filtr powietrza jest kluczowym komponentem układu przygotowania powietrza. Jego główną funkcją jest usuwanie zanieczyszczeń, takich jak kurz, olej i woda, z powietrza dostarczanego przez sprężarkę. Takie zanieczyszczenia mogą prowadzić do uszkodzenia urządzeń pneumatycznych oraz obniżenia efektywności pracy systemu. Zastosowanie filtrów powietrza jest zgodne z najlepszymi praktykami w obszarze inżynierii pneumatycznej, co zapewnia długotrwałą i niezawodną pracę urządzeń. W wielu systemach przemysłowych, dobór odpowiedniego filtra powietrza jest kluczowy dla zachowania czystości powietrza, co z kolei wpływa na jakość procesów produkcyjnych. Prawidłowo działający filtr powietrza znacząco wpływa na wydajność całego układu, zmniejszając ryzyko awarii i konieczności kosztownych napraw.

Pytanie 32

Element zaznaczony na zdjęciu to

Ilustracja do pytania
A. symetryzator.
B. transformator.
C. przekaźnik.
D. kondensator.
Element zaznaczony na zdjęciu nie jest kondensatorem, przekaźnikiem ani transformatorami, a ich rozróżnienie wymaga zrozumienia podstawowych zasad działania każdego z tych komponentów. Kondensator to element pasywny, który magazynuje energię elektryczną w polu elektrycznym, a jego podstawową funkcją jest wygładzanie napięcia w obwodach zasilających lub filtracja sygnałów. Oznaczenia napięcia cewki i parametrów styków wskazują na inny typ urządzenia. Z kolei transformator jest urządzeniem, które służy do zmiany poziomów napięcia w obwodach prądu przemiennego, i jego konstrukcja opiera się na zasadzie indukcji elektromagnetycznej. Transformator nie posiada cewki o niskim napięciu, co jest typowe dla przekaźników, a jego wyjście z reguły charakteryzuje się innymi oznaczeniami. W przypadku symetryzatora, również nie ma podstaw do przypisania tego elementu do opisanej funkcji, gdyż jest to układ, który działa na zasadzie stabilizacji zniekształceń sygnału. Typowymi błędami w analizie są mylenie oznaczeń i funkcji tych urządzeń, co może prowadzić do nieprawidłowego rozpoznania ich zastosowania i niewłaściwego ich użycia w praktyce. Zrozumienie, w jaki sposób każdy z tych komponentów działa, jest kluczowe w projektowaniu układów elektronicznych oraz w skutecznym rozwiązywaniu problemów w obwodach elektrycznych.

Pytanie 33

Jaką wartość znamionową ma natężenie prądu wzbudzenia silnika prądu stałego, którego dane techniczne zamieszczono w ramce?

- MotorNr 20026 976
230 V2,2 A
0,3 WS1cos φ
2000 min-1– Hz
ERR.230 V0,45 A
I. KLFIP23
VDE 0530
A. 2,20 A
B. 2,65 A
C. 0,45 A
D. 1,75 A
Odpowiedź 0,45 A jest prawidłowa, ponieważ w danych technicznych silnika prądu stałego dokładnie podano wartość natężenia prądu wzbudzenia. Zrozumienie wartości znamionowej prądu wzbudzenia jest kluczowe dla efektywnego projektowania i eksploatacji systemów elektrycznych. Prąd wzbudzenia wpływa na pole magnetyczne generowane przez wirnik silnika, co ma bezpośredni wpływ na jego wydajność oraz moment obrotowy. W praktyce, dobór odpowiedniego natężenia prądu wzbudzenia zapewnia optymalną pracę silnika, co jest zgodne z normami IEC dotyczących silników elektrycznych. W inżynierii energetycznej, znajomość tych wartości jest kluczowa przy projektowaniu obwodów zasilających i systemów automatyki, co pozwala na efektywne zarządzanie energią oraz minimalizację strat. Warto również zwrócić uwagę na to, że niewłaściwy dobór wartości prądu wzbudzenia może prowadzić do nadmiernych wahań momentu obrotowego i obniżonej efektywności energetycznej, co jest niezgodne z dobrymi praktykami w branży.

Pytanie 34

W systemie mechatronicznym jako sposób przenoszenia napędu użyto paska zębatego. Podczas rutynowej inspekcji paska należy ocenić jego stopień zużycia oraz

A. naprężenie
B. smarowanie
C. temperaturę
D. bicie osiowe
Naprężenie paska zębatego jest kluczowym czynnikiem wpływającym na jego wydajność oraz trwałość. Utrzymanie odpowiedniego naprężenia jest niezbędne, aby zapewnić właściwe przeniesienie napędu i uniknąć poślizgu paska. Zbyt niskie naprężenie może prowadzić do niewłaściwego zazębienia zębatek, co w efekcie zwiększa ryzyko uszkodzenia paska oraz zębatek. Z kolei zbyt wysokie naprężenie może powodować nadmierne zużycie łożysk oraz innych elementów mechanicznych, co obniża efektywność całego systemu. Przykładowo, w różnych aplikacjach przemysłowych, takich jak maszyny CNC czy taśmociągi, regularne sprawdzanie i dostosowywanie naprężenia paska jest praktyką zgodną z normami ISO 9001, co zapewnia wysoką jakość procesu produkcyjnego. Dobre praktyki inżynieryjne sugerują, aby kontrola naprężenia była przeprowadzana w cyklach serwisowych, a także po każdej wymianie paska. W przypadku wykrycia nieprawidłowości, należy dostosować naprężenie zgodnie z zaleceniami producenta, co zapewnia optymalną wydajność i minimalizuje ryzyko awarii.

Pytanie 35

Na rysunku przedstawiono sprzęgło

Ilustracja do pytania
A. pierścieniowe.
B. elastyczne palcowe.
C. elastyczne kłowe.
D. jednokierunkowe.
Jeśli wybrałeś coś innego niż elastyczne kłowe, to może to być przez jakieś nieporozumienie co do nazw i rodzajów sprzęgieł. Na przykład, elastyczne palcowe różni się od kłowego tym, że ma elementy, które wyglądają jak palce i są mniej efektywne w tłumieniu wibracji. Sprzęgła pierścieniowe, które również nie były zaznaczone, nie mają elastyczności, przez co przenoszą większe drgania i obciążenia, co może wpływać negatywnie na trwałość systemu. Z jednokierunkowymi sprzęgłami sprawa jest podobna – przenoszą moment obrotowy tylko w jednym kierunku i nie redukują odchyleń, więc nie są dobre do sytuacji, gdzie potrzeba elastycznego połączenia. Zrozumienie różnic między tymi typami sprzęgieł i ich zastosowaniami jest kluczowe dla inżynierów. Często mylenie elastycznych sprzęgieł z ich sztywnymi odpowiednikami prowadzi do błędów, jak na przykład wybór sprzęgła, które nie redukuje drgań, co może powodować problemy z wydajnością i niezawodnością systemu.

Pytanie 36

Symbol graficzny którego siłownika, z bezstykową sygnalizacją położenia tłoka jest przedstawiony na rysunku?

Ilustracja do pytania
A. Hydraulicznego dwustronnego działania z hamowaniem jednostronnym.
B. Pneumatycznego dwustronnego działania z hamowaniem jednostronnym.
C. Pneumatycznego dwustronnego działania z hamowaniem dwustronnym.
D. Hydraulicznego dwustronnego działania z hamowaniem dwustronnym.
Poprawna odpowiedź to pneumatyczny siłownik dwustronnego działania z hamowaniem dwustronnym, co znajduje odzwierciedlenie w symbolice graficznej. Siłownik tego typu umożliwia ruch tłoka w obu kierunkach, co jest jednoznacznie oznaczone dwoma strzałkami. Bezstykowa sygnalizacja położenia tłoka sugeruje zastosowanie czujników, które są kluczowe w nowoczesnych systemach automatyzacji, zapewniając precyzyjne monitorowanie pozycji. Hamowanie dwustronne, przedstawione przez prostokąty z przekątnymi liniami, jest szczególnie istotne w kontekście bezpieczeństwa operacji, ponieważ pozwala na kontrolowane zatrzymywanie tłoka zarówno w ruchu w przód, jak i w tył. Tego typu siłowniki znajdują zastosowanie w różnych dziedzinach przemysłu, w tym w automatyzacji procesów produkcyjnych oraz w robotyce. Użycie pneumatyki zamiast hydrauliki, co sugeruje brak lini falistych, może zredukować ciężar systemu oraz koszty eksploatacji, co jest zgodne z najlepszymi praktykami w projektowaniu maszyn. Warto również dodać, że zgodnie z normą ISO 4414, zastosowanie odpowiednich rozwiązań pneumatycznych jest kluczowe dla poprawy efektywności energetycznej oraz bezpieczeństwa w pracy.

Pytanie 37

Jakie są etapy podstawowych cykli działania sterownika PLC?

A. Aktualizacja stanu wyjść, inicjalizacja sterownika, wykonanie programu, uaktualnianie stanu wejść
B. Inicjalizacja sterownika, aktualizacja stanu wyjść, aktualizacja stanu wejść, wykonanie programu
C. Inicjalizacja sterownika, aktualizacja stanu wejść, wykonanie programu, aktualizacja stanu wyjść
D. Aktualizacja stanu wejść, inicjalizacja sterownika, aktualizacja stanu wyjść, wykonanie programu
Wybór niewłaściwych sekwencji cykli pracy sterownika PLC może prowadzić do licznych błędów w działaniu systemu, co ma bezpośredni wpływ na efektywność procesów automatyki. W przypadku pierwszej z niepoprawnych odpowiedzi, sekwencja zaczyna się od aktualizacji stanu wyjść przed odczytem stanu wejść, co jest fundamentalnym błędem. Sterownik PLC powinien najpierw poznać aktualny stan otoczenia (wejść), zanim podejmie decyzje, które wyjścia należy aktywować. W drugim przykładzie, sekwencja rozpoczyna się od aktualizacji stanu wejść, co jest poprawne, ale inicjalizacja sterownika powinna zająć miejsce przed tym krokiem, aby zapewnić, że wszystkie parametry są odpowiednio ustawione. Trzecia odpowiedź pokazuje, że aktualizacja stanu wyjść następuje przed wykonaniem programu, co jest sprzeczne z zasadą logiki sterowania, gdyż decyzje dotyczące wyjść powinny być oparte na obliczeniach i analizach przeprowadzonych w trakcie wykonania programu. Wreszcie, ostatnia odpowiedź wprowadza dodatkowy chaos, gdyż zaczyna się od aktualizacji stanu wyjść oraz nie uwzględnia sekwencji wykonania programu. Takie podejścia mogą prowadzić do nieprzewidywalnych rezultatów, błędów w automatyce oraz problemów z bezpieczeństwem. Kluczowe jest, aby zrozumieć, że każdy z tych kroków jest od siebie zależny, a ich odpowiednia sekwencja jest fundamentem prawidłowego działania systemów sterowania.

Pytanie 38

Pralka automatyczna nie reaguje po naciśnięciu przycisku zasilania. Co może być przyczyną takiej sytuacji?

A. brakiem zasilania elektrycznego
B. usterką silnika pralki
C. brakiem dopływu wody do urządzenia
D. niewłaściwym zerowaniem obudowy silnika pralki
Brak zasilania napięciem elektrycznym jest najczęstszą przyczyną, dla której pralka automatyczna nie reaguje po wciśnięciu przycisku zasilania. W praktyce, przed rozpoczęciem jakiejkolwiek diagnostyki, warto upewnić się, że urządzenie jest prawidłowo podłączone do gniazdka i że gniazdko jest sprawne. Testowanie gniazdka za pomocą innego urządzenia, np. lampki, może potwierdzić obecność napięcia. W sytuacji, gdy zasilanie jest prawidłowe, dalsza kontrola powinna obejmować przewody zasilające i wtyczki, które mogą ulec uszkodzeniu. W standardzie instalacji elektrycznych, aby zapewnić bezpieczeństwo urządzeń, należy stosować odpowiednie zabezpieczenia, takie jak bezpieczniki czy wyłączniki różnicowoprądowe. Ponadto, regularne przeglądy instalacji elektrycznej są zalecane, aby unikać problemów związanych z zasilaniem, co jest zgodne z dobrymi praktykami w dziedzinie bezpieczeństwa urządzeń AGD.

Pytanie 39

Którą metodę sprawdzania instalacji elektrycznej urządzeń mechatronicznych przedstawiono na rysunku?

Ilustracja do pytania
A. Stroboskopową.
B. Termowizyjną.
C. Oscyloskopową.
D. Ultradźwiękową.
Odpowiedź 'Termowizyjna' jest prawidłowa, ponieważ przedstawia ona jedną z najnowocześniejszych metod oceny stanu instalacji elektrycznej urządzeń mechatronicznych. Kamera termowizyjna, widoczna na rysunku, umożliwia wizualizację rozkładu temperatury w obiektach, co jest kluczowe w diagnostyce. W praktyce, metoda ta pozwala na identyfikację przegrzewających się elementów, co jest często pierwszym sygnałem o potencjalnych awariach, takich jak zwarcia czy uszkodzenia izolacji. Termowizja jest szeroko stosowana w przemyśle, gdzie regularne monitorowanie temperatury jest kluczowe dla utrzymania urządzeń w dobrym stanie. Zgodnie z normami ISO 18434, stosowanie metod termograficznych w utrzymaniu ruchu jest uznawane za najlepszą praktykę. Dzięki termowizji można wykrywać problemy zanim spowodują one poważne uszkodzenia, co w dłuższej perspektywie znacząco obniża koszty utrzymania i zwiększa bezpieczeństwo operacji.

Pytanie 40

Pompa hydrauliczna z tłokowymi elementami roboczymi jest przestawiona na rysunku

Ilustracja do pytania
A. C.
B. A.
C. D.
D. B.
Rysunek oznaczony literą "D" przedstawia pompę hydrauliczną z tłokowymi elementami roboczymi, co można zidentyfikować dzięki charakterystycznym cechom konstrukcyjnym. Tłokowe pompy hydrauliczne działają na zasadzie przetłaczania cieczy za pomocą ruchu tłoków, które poruszają się w cylindrach. Tego rodzaju pompy są powszechnie stosowane w różnych aplikacjach przemysłowych, takich jak systemy hydrauliczne w maszynach budowlanych czy pojazdach ciężarowych, gdzie wymagana jest wysoka moc i efektywność. Ponadto, tłokowe elementy robocze charakteryzują się dużą zdolnością do wytwarzania wysokiego ciśnienia, co czyni je idealnym wyborem dla systemów wymagających precyzyjnego sterowania. Ważnym aspektem jest również ich trwałość oraz możliwość pracy w trudnych warunkach, co jest istotne w kontekście norm branżowych, takich jak ISO 9001, które podkreślają znaczenie niezawodności i efektywności operacyjnej. Zrozumienie działania tłokowych elementów roboczych jest kluczowe dla inżynierów i techników pracujących w obszarze hydrauliki, ponieważ pozwala na odpowiedni dobór komponentów i ich zastosowanie w praktyce.