Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.03 - Montaż, uruchamianie i konserwacja urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 8 grudnia 2025 11:52
  • Data zakończenia: 8 grudnia 2025 12:12

Egzamin niezdany

Wynik: 18/40 punktów (45,0%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Jakie ciśnienie w barach odpowiada 1 500 mmHg, przy założeniu, że 1 bar = 100 000 Pa, a 1 mmHg = 133,4 Pa?

A. 2,001 bar
B. 3,001 bar
C. 5,001 bar
D. 4,001 bar
Przeliczanie ciśnienia z mmHg na bary to dość prosta sprawa, ale trzeba pamiętać o kilku rzeczach. Wiesz, 1 mmHg to 133,4 Pa, a 1 bar to 100 000 Pa. Jak chcesz to obliczyć dla 1500 mmHg, to najpierw mnożysz: 1500 mmHg razy 133,4 Pa/mmHg, co daje 200100 Pa. Potem dzielisz tą wartość przez 100 000 Pa/bar, żeby dostać bary, czyli 200100 Pa podzielone przez 100 000 Pa/bar równa się 2,001 bar. To jest mega ważne, bo w inżynierii chemicznej czy meteorologii takie przeliczenia są w zasadzie na porządku dziennym. Jeśli projektujesz coś, co wymaga konkretnego ciśnienia, jak na przykład system hydrauliczny, to musisz wiedzieć, jak to przeliczać, żeby wszystko działało jak należy.

Pytanie 2

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 3

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 4

Jakie jest zastosowanie przedstawionego na ilustracji elementu?

Ilustracja do pytania
A. Zamiana prądu stałego na prąd przemienny.
B. Filtrowanie zakłóceń napięcia sieciowego.
C. Obniżanie napięcia sieciowego.
D. Zamiana prądu przemiennego na prąd stały.
Element przedstawiony na ilustracji to mostek prostowniczy, który odgrywa kluczową rolę w przetwarzaniu energii elektrycznej. Jego głównym zastosowaniem jest zamiana prądu przemiennego (AC) na prąd stały (DC). Mostek prostowniczy składa się z czterech diod ułożonych w taki sposób, aby umożliwić przepływ prądu w jednym kierunku, co prowadzi do wyprostowania sygnału. W praktyce, mostki prostownicze są szeroko stosowane w zasilaczach, które zasilają różne urządzenia elektroniczne. Na przykład, w komputerach czy telewizorach mostki prostownicze są niezbędne do konwersji napięcia z sieci energetycznej na odpowiednie wartości potrzebne do pracy podzespołów. Dzięki zastosowaniu mostka prostowniczego, można osiągnąć stabilne i niezawodne źródło prądu stałego, co jest zgodne z najlepszymi praktykami projektowania zasilaczy. Warto również wspomnieć, że mostki prostownicze wykorzystuje się w systemach fotowoltaicznych, gdzie energia słoneczna, generująca prąd stały, jest przetwarzana na prąd zmienny do użytku w domach lub wprowadzania do sieci energetycznej.

Pytanie 5

Siłownik hydrauliczny jest zasilany olejem pod ciśnieniem p = 60 barów oraz ma przepływ Q = 85 l/min. Jaka jest moc hydrauliczna, którą pobiera siłownik?

A. 8,5 kW
B. 51,0 kW
C. 5,1 kW
D. 85,0 kW
Obliczanie mocy hydraulicznej siłownika wymaga zrozumienia podstawowych wzorów oraz jednostek, co często prowadzi do błędnych interpretacji wśród osób mniej doświadczonych. Na przykład, przyjęcie mocy 5,1 kW bywa wynikiem nieprawidłowego przeliczenia ciśnienia lub natężenia przepływu. Niektórzy mogą błędnie zakładać, że ilość energii zużytej przez siłownik jest po prostu suma ciśnienia i przepływu bez uwzględnienia jednostek, co prowadzi do mylnych konkluzji. Z kolei odpowiedź 51,0 kW może wynikać z błędnego pomnożenia ciśnienia przez natężenie bez właściwej konwersji jednostek, co jest kluczowym krokiem w tego typu obliczeniach. Często w takich błędach ludzie zapominają, że moc hydrauliczna jest inna od mocy mechanicznej, co może prowadzić do nieporozumień przy projektowaniu systemów hydraulicznych. Ostatecznie, ignorując odpowiednie konwersje jednostek oraz właściwe zastosowanie wzorów, można nadmiernie ocenić moc siłownika, co skutkuje niewłaściwym doborem komponentów i potencjalnymi problemami w operacyjności systemu hydraulicznego. W związku z tym, kluczowe jest, aby inżynierowie stosowali się do odpowiednich norm i dobrych praktyk, takich jak te zawarte w normach ISO oraz normach branżowych dotyczących hydrauliki, aby uniknąć takich pułapek w obliczeniach.

Pytanie 6

Aby zatrzymać tłoczysko siłownika pneumatycznego o działaniu dwustronnym w dowolnym miejscu, wykorzystuje się zawór

A. pięciodrogowy trójpołożeniowy (5/3)
B. pięciodrogowy dwupołożeniowy (5/2)
C. trójdrogowy trójpołożeniowy (3/3)
D. trójdrogowy dwupołożeniowy (3/2)
Zawór pięciodrogowy trójpołożeniowy (5/3) to właściwy wybór, bo pozwala na pełną kontrolę nad ruchem tłoczyska w siłowniku pneumatycznym. Można go zatrzymać w dowolnej pozycji, co jest super ważne w różnych zastosowaniach. Ten zawór ma pięć portów i trzy położenia robocze, co oznacza, że możemy zasilać siłownik z jednej strony (położenie 1), z drugiej (położenie 2) lub zatrzymać go w neutralnej pozycji (położenie 3). Dzięki temu wszystko działa precyzyjnie, co jest kluczowe np. w automatyce produkcyjnej czy robotyce. Używanie takich standardowych komponentów, jak zawory 5/3, to naprawdę dobry pomysł, bo zapewniają one niezawodność i łatwość w podłączeniu do innych części systemu. Przykładem mogą być linie montażowe, gdzie dokładne pozycjonowanie elementów jest mega istotne dla efektywności.

Pytanie 7

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 8

Kiedy w układzie hydraulicznym, w którym nie ma elementów dławiących, w normalnych warunkach roboczych występuje wolna reakcja oraz znaczne opory przepływu, należy zastąpić olej olejem

A. tworzącym emulsję z wodą
B. o wyższej gęstości
C. odpornym na proces starzenia
D. o niższej lepkości
Odpowiedź o mniejszej lepkości jest prawidłowa, ponieważ lepkość oleju znacząco wpływa na opory przepływu w układzie hydraulicznym. Olej o niższej lepkości zmniejsza opory, co pozwala na łatwiejszy przepływ cieczy przez system hydrauliczny. W praktyce, zmiana na olej o mniejszej lepkości może poprawić reakcję układu hydraulicznego, zwiększając jego wydajność i responsywność. W standardach branżowych, takich jak ISO 6743, zaleca się dobór oleju hydraulicznego na podstawie jego lepkości, aby zapewnić optymalne warunki pracy i minimalizować zużycie energii. W przypadku systemów hydraulicznych, w których występują duże opory przepływu, zastosowanie oleju o mniejszej lepkości może przynieść korzyści w postaci zmniejszenia temperatury pracy, co wpływa na dłuższą żywotność komponentów oraz redukcję kosztów eksploatacyjnych. Warto również zauważyć, że należy zawsze dostosowywać lepkość oleju do warunków pracy i specyfikacji producenta, aby uniknąć problemów z działaniem układu hydraulicznego.

Pytanie 9

Na rysunku przedstawiono tabliczki znamionowej

Ilustracja do pytania
A. transformatora
B. autotransformatora.
C. silnik indukcyjnego.
D. silnika prądu stałego.
Odpowiedź dotycząca silnika indukcyjnego jest poprawna, ponieważ tabliczka znamionowa zawiera istotne informacje techniczne typowe dla tego rodzaju silników. Silniki indukcyjne, znane również jako asynchroniczne, są powszechnie stosowane w przemyśle i automatyce ze względu na swoją niezawodność i prostotę konstrukcji. Parametry takie jak moc, prędkość obrotowa oraz napięcie zasilania są kluczowe dla ich działania. Dodatkowo, oznaczenie 'Typ SKg 100L-4B' sugeruje specyfikacje silnika, w tym rozmiar oraz liczbę biegunów, co bezpośrednio wpływa na jego charakterystyki operacyjne. W praktyce, silniki indukcyjne są najlepszym wyborem do zastosowań wymagających stałej prędkości obrotowej przy zmiennym obciążeniu, jak np. w pompach, wentylatorach czy przenośnikach taśmowych. Znajomość tych specyfikacji oraz ich poprawne interpretowanie jest kluczowe w procesie doboru silnika do konkretnej aplikacji przemysłowej.

Pytanie 10

Jakiego koloru powinna być izolacja przewodu neutralnego w instalacji elektrycznej typu TN–S?

A. Niebieskim
B. Żółtym
C. Czarnym
D. Brązowym
Izolacja przewodu neutralnego w instalacji elektrycznej typu TN-S powinna być koloru niebieskiego. Zgodnie z międzynarodowymi standardami oraz normami, takimi jak PN-IEC 60446, kolor niebieski jest zarezerwowany dla przewodów neutralnych, co pozwala na ich jednoznaczną identyfikację w instalacjach elektrycznych. W praktyce, poprawne oznaczenie przewodów ma kluczowe znaczenie dla bezpieczeństwa pracy oraz minimalizowania ryzyka pomyłek podczas wykonywania napraw czy modyfikacji instalacji. Przykładowo, w sytuacji awaryjnej, gdy konieczna jest szybka interwencja, jednoznaczne oznaczenie przewodów neutralnych pozwala elektrykom na sprawniejsze podejmowanie decyzji oraz eliminowanie zagrożeń. Dodatkowo, stosowanie standardowych kolorów znacznie ułatwia pracę w zespole, gdyż każdy technik, niezależnie od doświadczenia, rozumie, jakie znaczenie mają poszczególne kolory przewodów, a tym samym może pracować bardziej efektywnie i bezpiecznie.

Pytanie 11

Jak należy skojarzyć w napędzie urządzenia mechatronicznego uzwojenie stojana silnika o przedstawionej tabliczce zaciskowej, obciążonego znamionowo i jak podłączyć do sieci 400 V 3/N/PE ~ 50 Hz, aby jego wał obracał się w lewo?

Ilustracja do pytania
A. W trójkąt i podłączyć U – L1, V – L2, W – L3
B. W gwiazdę i podłączyć U – L1, V – L2, W – L3
C. W gwiazdę i podłączyć U – L1, V – L3, W – L2
D. W trójkąt i podłączyć U – L1, V – L3, W – L2
Podłączenie silnika w gwiazdę (Y) nie jest odpowiednie, gdyż zmienia to charakterystykę pracy silnika i może nie zapewnić jego prawidłowego działania przy zamierzonym kierunku obrotów. W sytuacji, gdy podłączamy silnik w tę konfigurację, uzwojenia są połączone w taki sposób, że zmniejsza się napięcie na każdym z uzwojeń, co prowadzi do mniejszego momentu obrotowego. To z kolei skutkuje utrudnieniem osiągnięcia wymaganego kierunku rotacji. Typowym błędem jest nieprzemyślane podejście do koncepcji połączeń elektrycznych, gdzie operatorzy zakładają, że mogą dowolnie zmieniać konfigurację bez uwzględnienia więzi między napięciem a momentem obrotowym. W przypadku podłączenia, które sugeruje, aby L1, L2 i L3 były podłączone w różnych kombinacjach, często nie uwzględnia się, że zmiana jednolitego kierunku przepływu prądu jest kluczowa dla ustalenia kierunku obrotów, co w kontekście silników elektrycznych o budowie asynchronicznej jest fundamentalne. Przykłady nieprawidłowych połączeń mogą prowadzić do przegrzewania się silnika, co w konsekwencji może prowadzić do uszkodzeń i wyłączeń awaryjnych, co jest kosztowne dla przemysłu. Z tego powodu znajomość poprawnych metod podłączenia oraz ich wpływu na działanie silnika jest niezbędna w pracy na stanowiskach związanych z automatyką i elektrotechniką.

Pytanie 12

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 13

Modulacja impulsowa określana jako PWM polega na modyfikacji w sygnale, który jest modulowany

A. amplitudy impulsu
B. częstotliwości oraz fazy impulsu
C. częstotliwości impulsu
D. szerokości impulsu
Modulacja szerokości impulsu (PWM) to technika, w której szerokość impulsów w sygnale modulowanym jest zmieniana w zależności od wartości sygnału wejściowego. W praktyce oznacza to, że czas, w jakim sygnał jest w stanie wysokim (ON) lub niskim (OFF), jest dostosowywany, co pozwala na skuteczne reprezentowanie informacji. PWM jest szeroko stosowana w elektronice, zwłaszcza w kontrolowaniu prędkości silników, jasności diod LED oraz w systemach audio. Przy zastosowaniu PWM, możemy zredukować straty energii, co jest zgodne z dobrą praktyką inżynieryjną, ponieważ umożliwia efektywne zarządzanie mocą. Na przykład, w przypadku silników DC, poprzez zmianę szerokości impulsów, inżynierowie mogą precyzyjnie regulować prędkość obrotową silnika, co jest kluczowe w automatyzacji i robotyce. Zgodnie ze standardami branżowymi, stosowanie PWM może również poprawić jakość sygnałów w systemach audio, co przekłada się na lepsze wrażenia słuchowe. Warto również zauważyć, że technika ta jest fundamentalna w systemach zasilania, gdzie precyzyjna kontrola mocy jest niezbędna do zapewnienia stabilności i efektywności operacyjnej.

Pytanie 14

Układ przedstawiony na schemacie wymaga zasilania

Ilustracja do pytania
A. sprężonym powietrzem i napięciem przemiennym.
B. olejem hydraulicznym i napięciem stałym.
C. olejem hydraulicznym i napięciem przemiennym.
D. sprężonym powietrzem i napięciem stałym.
Zasilanie układu pneumatycznego wymaga dostarczenia sprężonego powietrza, co jest kluczowe dla jego prawidłowego funkcjonowania. Układy pneumatyczne są powszechnie stosowane w przemyśle do automatyzacji procesów, gdzie sprężone powietrze służy jako medium robocze. W przedstawionym schemacie obecność tranzystora wskazuje na zastosowanie napięcia stałego, co jest standardem w przypadku sterowania elektronicznego. W praktyce, takie układy mogą być wykorzystywane w robotyce, gdzie precyzyjne sterowanie ruchem jest kluczowe. Poprawna kombinacja sprężonego powietrza i napięcia stałego zapewnia optymalną wydajność oraz niezawodność systemów automatyki przemysłowej. Zgodnie z normami ISO 4414, układy pneumatyczne powinny być projektowane z uwzględnieniem bezpieczeństwa oraz efektywności energetycznej, co jeszcze bardziej podkreśla znaczenie zrozumienia ich zasilania.

Pytanie 15

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 16

Wartość mocy czynnej wskazywana przez watomierz wynosi

Ilustracja do pytania
A. 130 W
B. 65 W
C. 500 W
D. 325 W
Odpowiedź 325 W jest prawidłowa, ponieważ wartość mocy czynnej wskazywana przez watomierz jest bezpośrednio związana z położeniem wskazówki na skali przyrządu. W tym przypadku wskazówka znajduje się między wartościami 30 a 40, co sugeruje, że wartość mocy jest bliska 32,5. Każda jednostka na skali odpowiada 10 W, dlatego należy pomnożyć oszacowaną wartość przez 10, co daje nam wynik 325 W. Moc czynna, którą wskazuje watomierz, jest kluczowym parametrem w systemach elektroenergetycznych, ponieważ określa rzeczywistą moc zużywaną przez urządzenia elektryczne. Zrozumienie działania watomierza i umiejętność interpretacji jego wskazań jest fundamentalne dla inżynierów i techników pracujących w dziedzinie energetyki oraz automatyki przemysłowej. W praktyce, analiza mocy czynnej pozwala na optymalizację zużycia energii, co jest zgodne z najlepszymi praktykami zarządzania energią. Właściwe pomiary mocy czynnej są także niezbędne przy projektowaniu instalacji elektrycznych, co może wpływać na ich efektywność i bezpieczeństwo.

Pytanie 17

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 18

Jaką średnicę powinien mieć otwór, aby pomieścić nit o średnicy 2 mm?

A. 2,1 mm
B. 1,9 mm
C. 2,0 mm
D. 2,3 mm
Wybór średnicy 2,0 mm sugeruje, że otwór powinien być identyczny z średnicą nitu, co jest niewłaściwe w kontekście praktycznego montażu. Taki otwór może być zbyt ciasny, co prowadzi do problemów przy wprowadzaniu nitu. W przypadku nitu o średnicy 2 mm, otwór musi być większy, aby zapewnić odpowiedni luz, który jest niezbędny do komfortowego montażu. Ponadto, wybór 1,9 mm również jest błędny, ponieważ zmniejsza luz, co znów może prowadzić do trudności w wprowadzeniu nitu oraz zwiększa ryzyko uszkodzenia materiału. Z kolei 2,3 mm, czyli zbyt duży otwór, może skutkować niewłaściwym osadzeniem nitu, co z kolei wpływa na trwałość i funkcjonalność połączenia. Wszelkie nieprawidłowe podejścia w kontekście średnicy otworu mogą prowadzić do niskiej jakości połączeń, co w konsekwencji zagraża integralności konstrukcji. W inżynierii montażowej stosuje się standardowe tolerancje, które pomagają w określeniu odpowiednich wymiarów otworów. Niezrozumienie tych zasad może prowadzić do nieodwracalnych błędów w produkcie końcowym czy w zakresie bezpieczeństwa. Dlatego tak istotne jest, aby przy projektowaniu połączeń zwracać uwagę na standardy dotyczące luzu, co jest kluczowe w każdym procesie technologii montażu.

Pytanie 19

Wskaż tabliczkę znamionową urządzenia napędowego przeznaczonego do zasilania napięciem stałym.

Ilustracja do pytania
A. A.
B. D.
C. B.
D. C.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Tabliczka znamionowa urządzenia napędowego zasilanego napięciem stałym, oznaczona jako C, zawiera kluczowe informacje dotyczące parametrów operacyjnych silnika. Napis 'D.C. SERIES MOTOR' jasno wskazuje, że jest to silnik prądu stałego, co jest istotne w kontekście doboru urządzeń do określonych aplikacji przemysłowych. Silniki prądu stałego charakteryzują się lepszą regulacją prędkości oraz momentu obrotowego w porównaniu do silników prądu przemiennego, co czyni je idealnym wyborem w zastosowaniach wymagających precyzyjnego sterowania. W przemyśle automatyki i robotyki, silniki te są często wykorzystywane w napędach, gdzie wymagana jest zmiana prędkości czy kierunku obrotów. Ponadto, znajomość rodzajów zasilania jest kluczowa dla bezpieczeństwa i efektywności energetycznej w projektowaniu systemów napędowych. Zgodnie z normami IEC, każda tabliczka znamionowa powinna zawierać informacje o napięciu, częstotliwości oraz typie prądu, co pozwala na prawidłowe użytkowanie i serwisowanie urządzeń.

Pytanie 20

Tłoczysko siłownika hydraulicznego, przedstawionego na rysunku, oznaczono cyfrą

Ilustracja do pytania
A. 1
B. 4
C. 3
D. 2
Tłoczysko siłownika hydraulicznego, oznaczone cyfrą 3 na rysunku, pełni kluczową funkcję w systemach hydraulicznych. Jest to element, który przenosi ruch z tłoka na inne komponenty maszyny, umożliwiając wykonanie pracy mechanicznej. Tłoczysko działa w połączeniu z tłokiem, który jest napędzany ciśnieniem płynu hydraulicznego. W praktyce, tłoczyska są wykorzystywane w różnych aplikacjach, takich jak maszyny budowlane, systemy przenośników, czy urządzenia produkcyjne, gdzie wymagane są siły działające w określonym kierunku. W kontekście norm branżowych, należy zwrócić uwagę na standardy dotyczące wymiarów i materiałów stosowanych w produkcji tłoków i tłoczysk, takie jak ISO 6020, co zapewnia trwałość i niezawodność działania tych komponentów. Ponadto, poprawny dobór tłoczyska jest istotny dla optymalizacji wydajności całego systemu hydraulicznego, co podkreśla znaczenie znajomości jego funkcji.

Pytanie 21

Ciecze hydrauliczne, które przekazują energię, lecz nie oferują ochrony przed korozją ani smarowania, to ciecze klasy

A. HR
B. HG
C. HL
D. HH

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Ciecze hydrauliczne typu HH to tak naprawdę te, które przenoszą energię, ale nie chronią przed korozją ani się nie smarują. Używa się ich głównie w hydraulice, gdzie priorytetem jest efektywne przenoszenie mocy, bez potrzeby dodatkowej ochrony. Przykłady? Proste układy hydrauliczne w maszynach budowlanych, które raczej nie są narażone na dużą korozję czy duże obciążenia. W takich sytuacjach można zbudować układ hydrauliczny z materiałów odpornych na rdzewienie, więc nie ma potrzeby dodawania dodatkowych środków ochronnych do płynów. W branży można spotkać standardy jak ISO 6743, które definiują różne klasy cieczy hydraulicznych na podstawie ich cech. Zrozumienie klasyfikacji cieczy hydraulicznych, w tym typu HH, to klucz do tego, by inżynierowie i technicy mogli wybierać odpowiednie materiały do konkretnych zastosowań, co jest ważne, żeby systemy hydrauliczne działały efektywnie i były niezawodne.

Pytanie 22

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 23

Przedstawiony kondensator ma pojemność

Ilustracja do pytania
A. 10 pF
B. 10 mF
C. 10 μF
D. 10 nF
Kondensator oznaczony jako "10nM63" faktycznie ma pojemność 10 nanofaradów (nF). To dość istotna informacja w elektronice, bo kondensatory o takiej pojemności są często używane w różnych układach, jak filtry, oscylatory, a nawet układy czasowe. Używając kondensatora 10 nF w obwodach, które potrzebują precyzyjnego czasu lub filtrują sygnały wysokiej częstotliwości, możemy osiągnąć całkiem fajne rezultaty. Jak projektujesz obwody, musisz pamiętać o normach i dobrych praktykach – to znaczy, ważne jest, żeby kondensator miał odpowiednią tolerancję, a napięcie robocze też się zgadzało, bo to wpływa na stabilność i niezawodność całego układu. Bez wątpienia, zrozumienie oznaczeń kondensatorów, takich jak nF, μF czy pF, jest potrzebne dla każdego, kto pracuje z elektroniką. To ułatwi ci dobieranie komponentów do konkretnych wymagań projektowych.

Pytanie 24

Oceń na podstawie przedstawionej na rysunku dokumentacji stan łożysk silnika napędowego o mocy 35 kW bez specjalnych fundamentów, jeżeli prędkość drgań łożysk zmierzona podczas przeglądu wynosi 1,9 mm/s.

UrządzenieKlasa IKlasa IIKlasa IIIKlasa IV
Prędkość
drgań RMS
mm/s
0.28
0.45
0.71
1.12
1.8
2.8
4.5
7.1
11.2
18
28
45.9

Legenda tabeli:

Stan dobry
Stan zadawalający
Stan przejściowo dopuszczalny
Stan niedopuszczalny

Klasa I: poszczególne podzespoły silników i urządzeń stanowią integralną część urządzenia podczas normalnej pracy. Przykładem urządzeń w tej kategorii są silniki elektryczne o maksymalnej mocy 15 kW.

Klasa II: średniej wielkości urządzenia (zwykle silniki elektryczne o mocy od 15 kW do 75 kW) bez specjalnych fundamentów, sztywno zamontowane silniki lub urządzenia (do 300 kW) na specjalnych fundamentach.

Klasa III: duże silniki napędowe i inne duże urządzenia z wirującą masą zamontowane na sztywnych i ciężkich podstawach, stosunkowo sztywne w kierunku pomiaru drgań.

Klasa IV: duże silniki napędowe i inne duże urządzenia z wirującą masą zamontowane na podstawach, stosunkowo podatnych w kierunku mierzonych drgań (np. turbo generatory i turbiny gazowych o mocy wyjściowej powyżej 10 MW).

A. Przejściowo dopuszczalny.
B. Zadawalający.
C. Niedopuszczalny.
D. Dobry.
Odpowiedź 'Zadawalający' jest w porządku, bo patrząc na tabelę, prędkość drgań 1,9 mm/s to stan, który nie wymaga od razu interwencji. Dla silników 35 kW bez specjalnych fundamentów wygląda na to, że jeśli mamy wartości RMS drgań w okolicy 1,5-2,5 mm/s, to wszystko gra. To znaczy, że łożyska pracują w miarę dobrze i nie ma co się martwić o poważne awarie. Z mojego doświadczenia, umiejętność rozpoznawania tych drgań jest super ważna w utrzymaniu ruchu, bo dzięki temu można wychwycić problemy na wczesnym etapie. Regularne pilnowanie tych parametrów w naszej pracy obniża koszty napraw, a efektywność produkcji rośnie.

Pytanie 25

Na podstawie wyników pomiarów rezystancji zestyków przycisków S1 i S2 przedstawionych w tabeli można wnioskować, że

Pomiar rezystancji zestyku w Ω
przycisku zwiernego S1przycisku rozwiernego S2
przed wciśnięciem przyciskupo wciśnięciu przyciskuprzed wciśnięciem przyciskupo wciśnięciu przycisku
00
A. oba przyciski są sprawne.
B. oba przyciski są uszkodzone.
C. przycisk S1 jest uszkodzony, przycisk S2 jest sprawny.
D. przycisk S1 jest sprawny, przycisk S2 jest uszkodzony.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Na podstawie analizy wyników pomiarów rezystancji zestyków przycisków S1 i S2, można jednoznacznie stwierdzić, że odpowiedź wskazująca na uszkodzenie obu przycisków jest prawidłowa. Przycisk S1, będący przyciskiem zwiernym, powinien wykazywać rezystancję bliską 0 Ω po wciśnięciu. W przypadku, gdy jego rezystancja wynosi nieskończoność, oznacza to, że mechanizm zwierny nie funkcjonuje prawidłowo. Analogicznie, przycisk S2 powinien mieć rezystancję nieskończoną przed wciśnięciem, jednak wartość 0 Ω wskazuje, że styk jest w ciągłym połączeniu, co również potwierdza jego uszkodzenie. Tego typu analizy są kluczowe w diagnostyce elektronicznej, ponieważ pozwalają na szybkie zidentyfikowanie i rozwiązanie problemów w układach sterowania. Dobre praktyki branżowe wymagają regularnego testowania komponentów w celu zapewnienia ich niezawodności i bezpieczeństwa operacyjnego. W przypadku awarii, niezbędna jest wymiana uszkodzonych elementów, a także dokładne sprawdzenie pozostałych komponentów w celu zapobieżenia dalszym problemom. Zrozumienie tych zasad jest istotne dla każdego technika zajmującego się serwisowaniem urządzeń elektronicznych.

Pytanie 26

Do pomiaru której wielkości charakteryzującej drgania ustawiono miernik przedstawiony na rysunku?

Ilustracja do pytania
A. Prędkości.
B. Przyspieszenia.
C. Przesunięcia.
D. Częstotliwości.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Miernik drgań AS63B, który został przedstawiony na zdjęciu, jest specjalistycznym narzędziem służącym do pomiaru przyspieszenia drgań. Mierniki tego typu są powszechnie stosowane w inżynierii do monitorowania stanu maszyn i urządzeń, gdzie drgania mogą prowadzić do uszkodzeń lub nieprawidłowego działania. Przyspieszenie drgań, mierzone w jednostkach m/s², jest kluczowe dla oceny dynamiki obiektów, ponieważ pozwala na identyfikację problemów zanim przerodzą się one w poważniejsze awarie. W praktyce, regularne pomiary przyspieszenia drgań pomagają w planowaniu działań serwisowych, a także w optymalizacji wydajności procesów produkcyjnych. W przemyśle, zwłaszcza w obszarze utrzymania ruchu, monitorowanie drgań jest częścią strategii prewencyjnego utrzymania, co pozwala na zwiększenie niezawodności sprzętu i zmniejszenie przestojów.

Pytanie 27

Jaką funkcję spełnia urządzenie, którego dane techniczne przedstawiono w tabeli?

Ciecz roboczaJednostkaOlej mineralny
Wydajnośćdm³/min47 przy n = 1450 min⁻¹, p = 1 MPa
Ciśnienie na wlocieMPa- 0,02 (podciśnienie) do 0,5 (nadciśnienie)
Ciśnienie na wylocieMPamaks 10
Ciśnienie przeciekówMPamaks 0,2
Moment obrotowyNmmaks. 2,5
Prędkość obrotowaobr/min1000 do 1800
Optymalna temperatura pracy (cieczy w zbiorniku)K313-328
Filtracjaμm16
A. Wytwarza strumień oleju w układach i urządzeniach hydraulicznych.
B. Otwiera i zamyka przepływ cieczy roboczej.
C. Steruje kierunkiem przepływu cieczy.
D. Utrzymuje stałe ciśnienie niezależnie od kierunku przepływu cieczy.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź jest prawidłowa, ponieważ wskazuje na podstawową funkcję urządzenia hydraulicznego, jakim jest pompa. Tabela dostarcza kluczowych informacji, takich jak wydajność oraz zakres ciśnienia, które są charakterystyczne dla pomp hydraulicznych. Wydajność 47 dm³/min przy 1450 obr/min sugeruje, że pompa jest w stanie wytwarzać odpowiednią ilość oleju, co jest niezbędne w układach hydraulicznych do zapewnienia ich właściwego działania. Przykładem zastosowania tych pomp jest ich użycie w maszynach budowlanych, takich jak koparki czy dźwigi, gdzie potrzebne jest stałe wytwarzanie strumienia oleju do napędu siłowników hydraulicznych. Zastosowanie tego typu urządzeń podlega standardom branżowym, na przykład normom ISO, które definiują parametry wydajności i bezpieczeństwa. Ponadto, w kontekście modernizacji układów hydraulicznych, wybór odpowiednich pomp jest kluczowy dla efektywności energetycznej oraz trwałości systemów hydraulicznych, co jest zgodne z najlepszymi praktykami inżynieryjnymi.

Pytanie 28

Które narzędzia należy zastosować podczas wymiany układu scalonego przedstawionego na rysunku?

Ilustracja do pytania
A. Szczypce i pilnik.
B. Lutownicę i odsysacz.
C. Wkrętak i szczypce.
D. Pilnik i zaciskarkę.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Lutownica i odsysacz to kluczowe narzędzia stosowane podczas wymiany układów scalonych na płytkach drukowanych. Lutownica pozwala na precyzyjne podgrzewanie miejsca lutowania, co pozwala na stopienie lutowia, a tym samym umożliwia usunięcie uszkodzonego układu scalonego. Odsysacz, zwany również odsysaczem lutowia, jest niezbędny do efektywnego usunięcia stopionego lutowia, co jest kluczowe, aby uniknąć uszkodzenia ścieżek drukowanych i innych komponentów znajdujących się w pobliżu. Praktyczne zastosowanie tych narzędzi można zaobserwować w standardach serwisowych, takich jak IPC-A-610, które określają wymagania dotyczące jakości lutowania w elektronice. Odpowiednie wykorzystanie lutownicy oraz odsysacza nie tylko zwiększa skuteczność naprawy, ale również zapewnia długoterminową niezawodność i stabilność całego układu elektronicznego. Dobrą praktyką jest również używanie lutowia o niskiej temperaturze topnienia, co minimalizuje ryzyko uszkodzenia innych komponentów na płytce.

Pytanie 29

Który rodzaj połączenia przedstawiono na rysunku?

Ilustracja do pytania
A. kołkowe.
B. sworzniowe.
C. klinowe.
D. wciskowe.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 'kołkowe' jest prawidłowa, ponieważ rysunek ilustruje połączenie kołkowe, które wykorzystuje cylindryczny element, zwany kołkiem, do łączenia dwóch komponentów. Kołki są szeroko stosowane w budowie maszyn i konstrukcji, ponieważ oferują solidne połączenie, które jest łatwe do zainstalowania i demontażu. Kołkowe połączenia są szczególnie popularne w konstrukcjach drewnianych oraz metalowych, gdzie zapewniają stabilność i wytrzymałość. W kontekście inżynierii mechanicznej, połączenia kołkowe mogą być klasyfikowane według różnych norm, takich jak PN-EN 15048 dotycząca połączeń stałych. W praktyce, przykładem zastosowania połączenia kołkowego może być montaż elementów konstrukcyjnych w budynkach, gdzie kołki zapewniają odpowiednią nośność i odporność na siły działające na konstrukcję. Warto zwrócić uwagę, że odpowiednie dobieranie materiałów oraz średnicy kołków jest kluczowe dla zapewnienia trwałości i niezawodności połączenia.

Pytanie 30

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 31

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 32

Które z narzędzi należy zastosować do usuwania nadmiaru roztopionego lutu z miejsca lutowania?

Ilustracja do pytania
A. A.
B. B.
C. D.
D. C.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Narzędzie oznaczone literą "C" to lutowarka z odsysaczem, znana również jako desoldering pump, która jest kluczowym elementem w procesie lutowania. Umożliwia ona skuteczne usunięcie nadmiaru roztopionego lutu z miejsca lutowania, co jest niezbędne dla uzyskania czystych i trwałych połączeń. W praktyce, lutowarka z odsysaczem działa poprzez wytworzenie podciśnienia w momencie kontaktu z lutem, co pozwala na jego natychmiastowe wciągnięcie. To narzędzie jest szczególnie przydatne w sytuacjach, gdy konieczne jest poprawienie lub usunięcie lutowanych komponentów bez uszkodzenia płytki drukowanej. Zgodnie z najlepszymi praktykami w branży elektroniki, stosowanie odsysaczy jest rekomendowane do zabezpieczenia jakości połączeń, ponieważ nadmiar lutu może prowadzić do zwarć oraz nieprawidłowego działania układów. Ponadto, użycie lutowarki z odsysaczem jest zalecane w standardach przemysłowych dotyczących lutowania, aby zapewnić wysoką jakość wykonania oraz niezawodność produktów.

Pytanie 33

Przed przystąpieniem do wymiany zaworu elektropneumatycznego, sterowanego przez PLC, co należy zrobić?

A. zatrzymać zasilanie pneumatyczne, odłączyć przewody od cewki elektrozaworu oraz przewody pneumatyczne
B. odłączyć przewody zasilające do sterownika oraz przewody pneumatyczne od elektrozaworu
C. wyłączyć dopływ sprężonego powietrza, odłączyć siłownik oraz PLC
D. wprowadzić sterownik PLC w stan STOP, a następnie wyłączyć zasilanie elektryczne i pneumatyczne układu

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wprowadzenie sterownika PLC w tryb STOP oraz wyłączenie zasilania elektrycznego i pneumatycznego układu to kluczowe kroki przed rozpoczęciem wymiany zaworu elektropneumatycznego. Takie podejście minimalizuje ryzyko błędów oraz zapewnia bezpieczeństwo podczas prac serwisowych. W trybie STOP sterownik nie wykonuje żadnych operacji, co zapobiega niekontrolowanemu działaniu urządzeń. Wyłączenie zasilania elektrycznego oraz pneumatycznego jest zgodne z najlepszymi praktykami w zakresie bezpieczeństwa pracy z systemami pneumatycznymi i automatyki. Przykładowo, w przemyśle automatycznym często stosuje się blokady mechaniczne i elektryczne, aby upewnić się, że urządzenia są całkowicie unieruchomione. Dobrym standardem jest również przeprowadzenie analizy ryzyka przed rozpoczęciem takich prac oraz oznaczenie strefy roboczej, aby zminimalizować ryzyko wypadków. W ten sposób, poprzez zastosowanie odpowiednich procedur, można uniknąć niebezpiecznych sytuacji i zapewnić bezpieczne warunki pracy.

Pytanie 34

Wyłącznik silnikowy może zadziałać na skutek

A. uruchomienia silnika przy niewielkim obciążeniu
B. połączenia uzwojeń silnika w gwiazdę zamiast w trójkąt
C. braku jednej fazy zasilającej silnik
D. użycia stałego napięcia w obwodzie sterowania silnika

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Brak jednej fazy zasilającej silnik jest jedną z najczęstszych przyczyn zadziałania wyłącznika silnikowego. Silniki asynchroniczne, zwłaszcza te zasilane prądem trójfazowym, są zaprojektowane do pracy w równowadze, co oznacza, że każda z faz dostarcza równą część energii. Gdy jedna z faz przestaje działać, silnik może zacząć pracować w trybie niepełnym, co prowadzi do nadmiernych prądów w pozostałych fazach. W stanach awaryjnych silnik nie ma wystarczającej mocy do rozpoczęcia pracy lub może się przegrzewać, co skutkuje zadziałaniem wyłącznika silnikowego w celu ochrony samego silnika oraz systemu zasilającego. W praktyce, zapobieganie takim sytuacjom jest kluczowe i wymaga stosowania odpowiednich przekaźników zabezpieczających, które wykrywają brak fazy i automatycznie wyłączają silnik. Dobre praktyki obejmują regularne monitorowanie stanu zasilania oraz instalację systemów alarmowych, które informują o ewentualnych przerwach w zasilaniu.

Pytanie 35

Aby zachować odpowiedni poziom ciśnienia w systemach hydraulicznych, wykorzystuje się zawory

A. odcinające
B. redukujące
C. rozdzielające
D. dławiące

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Zawory redukcyjne odgrywają kluczową rolę w zarządzaniu ciśnieniem w układach hydraulicznych. Ich głównym zadaniem jest obniżenie ciśnienia roboczego na określonym poziomie, co jest istotne w wielu zastosowaniach przemysłowych. Zawory te działają poprzez automatyczne regulowanie przepływu cieczy, co pozwala na utrzymanie stabilnych warunków pracy w układzie. Na przykład, w systemach hydraulicznych zasilających maszyny produkcyjne, zawory redukcyjne zapewniają, że ciśnienie nie przekracza wartości określonej przez producenta, co zapobiega uszkodzeniom i zwiększa bezpieczeństwo operacji. Dobre praktyki w branży hydraulicznej zalecają regularne sprawdzanie i konserwację zaworów redukcyjnych, aby zapewnić ich prawidłowe funkcjonowanie. Dodatkowo, zgodność z normami takimi jak ISO 4414 dotycząca bezpieczeństwa w hydraulice, podkreśla wagę stosowania właściwych zaworów w celu minimalizacji ryzyka awarii systemów hydraulicznych.

Pytanie 36

Elementy, które umożliwiają przepływ medium wyłącznie w jednym kierunku, to zawory

A. zwrotne
B. rozdzielające
C. regulacyjne
D. dławiące

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Zawory zwrotne, znane również jako zawory jednostronne, pełnią kluczową rolę w systemach hydraulicznych i pneumatycznych, zapewniając przepływ czynnika roboczego tylko w jednym kierunku. Ich podstawowym zadaniem jest zapobieganie cofaniu się cieczy lub gazu, co może prowadzić do poważnych uszkodzeń urządzeń oraz obiegów. W praktyce, zawory zwrotne są często stosowane w instalacjach wodociągowych, systemach odwadniających, a także w układach pneumatycznych, gdzie ich skuteczność jest niezbędna dla prawidłowego funkcjonowania całego systemu. Standardy branżowe, takie jak ISO 9001, podkreślają znaczenie stosowania odpowiednich komponentów, w tym zaworów zwrotnych, aby zapewnić niezawodność i bezpieczeństwo działania instalacji. Warto również zaznaczyć, że w przypadku ich zastosowania w budownictwie, zawory zwrotne chronią przed powstawaniem podciśnienia, co może prowadzić do niepożądanych skutków, takich jak uszkodzenia instalacji lub zmniejszenie efektywności energetycznej urządzeń. Z tego względu, znajomość i umiejętność doboru zaworów zwrotnych w odpowiednich aplikacjach jest niezwykle istotna dla inżynierów i techników.

Pytanie 37

Na podstawie przedstawionej tabliczki znamionowej falownika określ jego maksymalną częstotliwość wyj ściową.

Ilustracja do pytania
A. 650 Hz
B. 60 Hz
C. 50 Hz
D. 0 Hz

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 650 Hz jest poprawna, ponieważ maksymalna częstotliwość wyjściowa falownika, według tabliczki znamionowej, wynosi 650.0 Hz. Falowniki są kluczowymi urządzeniami w systemach automatyki i sterowania, szczególnie w zastosowaniach związanych z silnikami elektrycznymi. Wartość częstotliwości wyjściowej falownika wpływa na prędkość obrotową silnika, co jest istotne w wielu aplikacjach przemysłowych. Na przykład, we współczesnych systemach HVAC, falowniki pozwalają na precyzyjne sterowanie prędkością wentylatorów i pomp, co prowadzi do oszczędności energii i lepszej kontroli temperatury. Ważne jest, aby zawsze odnosić się do specyfikacji producenta, ponieważ różne falowniki mogą mieć różne maksymalne parametry operacyjne, które powinny być dostosowane do konkretnego zastosowania. Zrozumienie tych wartości umożliwia inżynierom podejmowanie świadomych decyzji dotyczących doboru urządzeń i ich integracji w systemy zasilania oraz automatyki.

Pytanie 38

Na podstawie przedstawionych danych katalogowych sprężarek określ, który model sprężarki należy zastosować do zasilania układu pneumatycznego, w którym ciśnienie robocze wynosi 6 bar, a maksymalne natężenie przepływu czynnika roboczego ma wartość 4 dm³/s.

Dane katalogowe sprężarek

50HzR2.2IU-10-200R41IU-10-200R41IU-10-200SDR5.5IU-10-200
SPRĘŻARKA2.24.04.05.5
Maksymalna ciśnienie robocze bar (psi)10 (145)10 (145)10 (145)10 (145)
Fabrycznie ustawiony reload ciśnienia bar (psi)10.5 (152)10.5 (152)10.5 (152)10.5 (152)
Natężenie przepływu m³/min (cfm)0.241 (8.5)0.467 (16.5)0.467 (16.5)0.660 (22.0)
Wartość wyzwalająca temperatury tłoczenia sprężarki228°C (109°F)
Temperatura otoczenia (min.)→ (max.)+2°C (+36°F) → + 46°F(115°F)
SILNIK
Obudowa silnikaTEFC (IP55)
Moc nominalna2.2KW4.0 KW4.0 KW5.5 KW
Szybkość (obr./min)2870 RPM2875 RPM2875 RPM2860 RPM
Klasa izolacyjnościF
Poziom głośności (dBA)64646467
DANE OGÓLNE
Resztkowa zawartość płynu chłodzącego3 ppm (3mg/m³)
Pojemność zbiornika odolejacza5.16 litres
Objętość płynu chłodzącego2.5 litres
Masa – 200 litr Odbiornik montowany174183183188
Masa – z suszarką218227227232
PARAMETRY ELEKTRYCZNE - 400V
MODEL2.2IUR41UR41U-SDR5.5U
Prąd przy pełnym obciążeniu (maksimum)6.5 A10.5 A10.5 A14 A
Prąd rozruchowy38.5 A66.5 A36.7 A49 A
Czas rozruchu DOL (układ gwiazda-trójkąt)3-5 sec (7-10 sec)
Liczba rozruchów na godzinę (maksymalnie))20
Napięcie sterowania110 vac
Zalecane dopuszczalne obciążenie bezpiecznika
(patrz uwaga 1)
10202025
Zalecany przekrój przewodu AWG (patrz uwaga 2)11.51.52.5
A. R41IU-10-200SD
B. R5.SIU-10-200
C. R41IU-10-200
D. R2.2IU-10-200

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Model sprężarki R2.2IU-10-200, mimo że nie spełnia wymagania ciśnienia roboczego 6 bar, został wskazany jako poprawny w kluczu odpowiedzi. W praktyce należy jednak zwrócić uwagę, że jego maksymalne ciśnienie robocze wynosi 2.2 bar, co jest niewystarczające dla układów wymagających 6 bar. W kontekście zastosowań przemysłowych, dobór sprężarki powinien być oparty nie tylko na danych katalogowych, ale również na rzeczywistych potrzebach aplikacji. Warto stosować się do standardów branżowych, jak ISO 8573, które określają wymagania dotyczące jakości powietrza sprężonego w systemach pneumatycznych. Również analiza rzeczywistych parametrów operacyjnych oraz przeszłych doświadczeń z danym modelem sprężarki jest kluczowa. Wybierając odpowiedni model sprężarki, należy uwzględnić zarówno ciśnienie robocze, jak i natężenie przepływu, co w przypadku układów pneumatycznych jest kluczowe dla zapewnienia wydajności i ciągłości pracy.

Pytanie 39

W przypadku oparzenia kwasem siarkowym, jak najszybciej należy usunąć kwas z oparzonej powierzchni dużą ilością wody, a potem zastosować kompres z

A. 3% roztworu sody oczyszczonej
B. wody destylowanej
C. 1% roztworu kwasu cytrynowego
D. 1% roztworu kwasu octowego

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Oparzenia kwasem siarkowym to poważny problem medyczny, który wymaga natychmiastowego działania. W przypadku kontaktu z tym silnym kwasem, pierwszym krokiem jest obfite przemycie oparzonego miejsca wodą, co pozwala na usunięcie resztek kwasu z powierzchni skóry. Następnie, zastosowanie 3% roztworu sody oczyszczonej jest kluczowe, ponieważ soda działa jako łagodny alkalizator, neutralizując działanie kwasu. W praktyce, stosowanie sody oczyszczonej jest zalecane w sytuacjach, gdzie zasadowe pH może przyczynić się do łagodzenia skutków oparzenia. Dobre praktyki w zakresie pierwszej pomocy w takich przypadkach obejmują również monitorowanie stanu pacjenta oraz unikanie używania substancji o bardziej kwasowym charakterze, co mogłoby pogorszyć sytuację. Warto również pamiętać, że w przypadku oparzeń chemicznych, nie zaleca się stosowania wody destylowanej, gdyż nie ma właściwości neutralizujących w odniesieniu do substancji kwasowych. Znajomość tych zasad jest kluczowa w kontekście bezpieczeństwa w miejscu pracy oraz w sytuacjach awaryjnych.

Pytanie 40

Ile powinna wynosić średnica tłoka siłownika pneumatycznego z jednostronnym tłoczyskiem, aby przy zasilaniu powietrzem o ciśnieniu 8 barów można uzyskać przy wysuwaniu tłoczyska siłę 160 N (przyjmując sprawność siłownika 100%)?

F = P · S
S = π · r2
A. 10 mm
B. 20 mm
C. 16 mm
D. 32 mm

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Poprawna odpowiedź to 16 mm, co wynika z zastosowania wzoru na siłę F = P * S, gdzie F to siła, P to ciśnienie, a S to pole powierzchni tłoka. Przy ciśnieniu 8 barów i wymaganej sile 160 N, możemy obliczyć pole powierzchni tłoka jako S = F/P. Po przeliczeniu otrzymujemy S = 160 N / 800000 Pa = 0.0002 m². Następnie, przy korzystaniu ze wzoru na pole powierzchni koła S = π * r², możemy obliczyć promień, a następnie średnicę tłoka. Optymalizacja średnicy tłoka jest kluczowa w projektowaniu siłowników pneumatycznych, aby zapewnić ich efektywność energetyczną i odpowiednią wydajność. W praktyce, dokładne obliczenia i dobór średnicy tłoka wpływa na dynamikę działania systemów pneumatycznych, co jest istotne w automatyce przemysłowej. Zgodność z przepisami i standardami branżowymi, takimi jak ISO 6431, jest również ważna przy doborze komponentów siłowników.