Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.05 - Eksploatacja maszyn, urządzeń i instalacji elektrycznych
  • Data rozpoczęcia: 19 grudnia 2025 06:09
  • Data zakończenia: 19 grudnia 2025 06:39

Egzamin zdany!

Wynik: 21/40 punktów (52,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 2

Jakie będą konsekwencje zasilenia silnika asynchronicznego, którego znamionowa częstotliwość napięcia stojana wynosi 50 Hz, z sieci o częstotliwości 60 Hz?

A. Zwiększenie prędkości obrotowej wirnika silnika
B. Zmniejszenie prędkości obrotowej wirnika silnika
C. Uszkodzenie wirnika silnika
D. Nawrót wirnika silnika
Analizując inne odpowiedzi, trzeba zauważyć, że zmniejszenie prędkości obrotowej wirnika silnika nie jest możliwe w kontekście zasilania go z wyższej częstotliwości. Gdyby silnik asynchroniczny był zasilany napięciem o częstotliwości 60 Hz, a jego konstrukcja zakładała 50 Hz, prędkość obrotowa wirnika z pewnością by wzrosła, co jest podstawowym zjawiskiem związanym z działaniem silników asynchronicznych. Zatem koncepcja zmniejszenia prędkości obrotowej wirnika jest błędna, ponieważ nie uwzględnia zasady, że prędkość synchroniczna rośnie w proporcji do częstotliwości zasilania. Z kolei stwierdzenie o uszkodzeniu wirnika również może wynikać z błędnego zrozumienia działania silnika. Chociaż zasilanie z wyższej częstotliwości może prowadzić do podwyższenia temperatury silnika z uwagi na zwiększone straty, nie można jednoznacznie stwierdzić, że dojdzie do uszkodzenia wirnika. Silnik może pracować w takich warunkach, ale jego żywotność zostanie skrócona. Wreszcie, nawrót wirnika to termin, który nie ma zastosowania w kontekście zasilania silnika asynchronicznego; wirnik nie „nawraca” w sensie jego prędkości obrotowej, a jedynie może zmienić kierunek obrotów po zmianie faz w zasilaniu. Dlatego istotne jest zrozumienie podstawowych zasad działania silników asynchronicznych i ich odpowiedzi na różne parametry zasilania.

Pytanie 3

W trakcie naprawy części instalacji elektrycznej zasilającej silnik indukcyjny, uszkodzone przewody aluminiowe zamieniono na przewody H07V-R o przekroju żyły 50 mm2. Jaki powinien być minimalny przekrój przewodu PE, aby warunek samoczynnego wyłączenia zasilania został spełniony?

A. 20 mm2
B. 50 mm2
C. 35 mm2
D. 25 mm2
Odpowiedź 25 mm2 jest poprawna, ponieważ zgodnie z normami PN-IEC 60364-5-54, minimalny przekrój przewodu ochronnego (PE) powinien być co najmniej równy 1,5 mm2 dla instalacji o maksymalnym prądzie znamionowym do 32 A. W przypadku instalacji z przewodami zasilającymi o znacznych przekrojach, takich jak 50 mm2 w przypadku przewodów H07V-R, wymagana jest zasada, że przekrój przewodu PE powinien wynosić co najmniej 50% przekroju przewodu fazowego w przypadku aluminium lub 25% w przypadku miedzi. Tutaj mamy do czynienia z przewodami aluminiowymi, więc obliczając 50% z 50 mm2, otrzymujemy 25 mm2. Taki przekrój zapewnia odpowiednią zdolność przewodu PE do przewodzenia prądu w przypadku awarii, co jest kluczowe dla ochrony ludzi oraz urządzeń. Przykładem zastosowania tej zasady może być instalacja elektryczna w przemyśle, gdzie wymagania bezpieczeństwa są szczególnie restrykcyjne.

Pytanie 4

Przy eksploatacji odbiornika, oznaczonego przedstawionym symbolem, przewód zasilający

Ilustracja do pytania
A. nie musi mieć żyły PE.
B. powinien mieć żyłę PE.
C. musi mieć wtyczkę ze stykiem ochronnym.
D. musi mieć żyły ekranowane.
Odpowiedź "nie musi mieć żyły PE" jest poprawna, ponieważ urządzenia elektryczne oznaczone symbolem klasy ochronności II są zaprojektowane tak, aby nie wymagały połączenia z przewodem ochronnym PE (Protective Earth). Urządzenia te posiadają podwójną izolację lub izolację wzmocnioną, co eliminuje potrzebę stosowania uziemienia. Zastosowanie takich urządzeń jest powszechne w przypadku sprzętu, który może być narażony na kontakt z użytkownikiem, jak na przykład sprzęt AGD, narzędzia elektryczne czy lampy. W praktyce oznacza to, że nie musimy martwić się o dodatkowe podłączenia uziemiające, co zwiększa wygodę w użytkowaniu. Warto zatem zwrócić uwagę na oznaczenia na urządzeniach oraz stosować zalecenia w zakresie instalacji elektrycznych, aby zapewnić bezpieczeństwo ich eksploatacji. Przykładowo, w instalacjach domowych urządzenia klasy II mogą być stosowane bez obaw o pojawienie się niepożądanych efektów związanych z brakiem uziemienia.

Pytanie 5

Jakie oznaczenie stopnia ochrony powinna mieć obudowa urządzenia elektrycznego, które jest zainstalowane w pomieszczeniach o dużej wilgotności?

A. IP44
B. IP32
C. IP11
D. IP22
Oznaczenie stopnia ochrony IP44 wskazuje, że urządzenie elektryczne jest chronione przed ciałami stałymi o średnicy 1 mm oraz przed wodą, która może padać w dowolnym kierunku. To czyni je odpowiednim rozwiązaniem do stosowania w pomieszczeniach wilgotnych, takich jak łazienki czy kuchnie, gdzie występuje ryzyko kontaktu z wodą i wilgocią. Zgodnie z normą IEC 60529, IP44 zapewnia odpowiedni poziom ochrony, który minimalizuje ryzyko uszkodzeń związanych z wilgocią, co jest kluczowe dla zapewnienia bezpieczeństwa użytkowników. W praktyce, urządzenia takie jak oświetlenie zewnętrzne, gniazda elektryczne czy wyłączniki umieszczone w wilgotnych pomieszczeniach powinny posiadać tę klasę ochrony, aby zminimalizować ryzyko zwarcia elektrycznego oraz wypadków. Dobrą praktyką jest również regularne sprawdzanie stanu obudów i uszczelek, aby zapewnić ich ciągłą skuteczność ochrony przed wodą i zanieczyszczeniami.

Pytanie 6

Jakiego składnika nie powinien mieć kabel zasilający do głównej rozdzielnicy w strefie przemysłowej, która jest klasyfikowana jako niebezpieczna pod względem pożaru?

A. Obudowy stalowej.
B. Pokrywy polietylenowej.
C. Zewnętrznego splotu włóknistego.
D. Żył z aluminium.
Pomieszczenia przemysłowe o podwyższonym ryzyku pożarowym wymagają zastosowania odpowiednich materiałów w konstrukcji kabli zasilających. Pancerz stalowy stanowi skuteczną barierę przed mechanicznymi uszkodzeniami, co jest szczególnie istotne w środowiskach, gdzie mogą występować różne czynniki ryzyka. Powłoka polietylenowa natomiast zapewnia nie tylko izolację, ale również odporność na działanie wysokich temperatur. W świetle obowiązujących norm, takie jak PN-EN 50575, istotne jest, aby używane materiały charakteryzowały się niskim poziomem wydzielania dymu oraz niską toksycznością, co ma kluczowe znaczenie w przypadku pożaru. Wybór żył aluminiowych może wydawać się atrakcyjny ze względu na ich niższą wagę i koszt, jednak w kontekście bezpieczeństwa i przewodnictwa elektrycznego, stalowe żyły są preferowane, zwłaszcza w trudnych warunkach eksploatacyjnych. Zastosowanie zewnętrznego oplotu włóknistego w kablach zasilających w takich miejscach jest nieodpowiednie, ponieważ nie spełnia wymogów odporności na ogień. Oploty te nie tylko mogą ulegać uszkodzeniu w wysokich temperaturach, ale również przyczyniać się do szybszego rozprzestrzeniania się ognia. Podejmując decyzję o wyborze odpowiednich materiałów w konstrukcji kabli, kluczowe jest zrozumienie ich właściwości oraz dostosowanie ich do specyfiki środowiska pracy.

Pytanie 7

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 8

Jakie styczniki z podanych kategorii należy zainstalować przy modernizacji szafy sterowniczej, która zasila maszyny napędzane silnikami indukcyjnymi klatkowym?

A. AC-3
B. DC-2
C. AC-1
D. DC-4
Styczniki klasy AC-3 są odpowiednie do pracy z silnikami indukcyjnymi klatkowym, ponieważ są zaprojektowane do częstości załączania i rozłączania tych urządzeń. Klasa AC-3 pozwala na obsługę prądu rozruchowego silnika, który w momencie uruchomienia może być od 5 do 7 razy wyższy od nominalnego prądu roboczego. Styczniki te zapewniają również odpowiednie zabezpieczenie przed przeciążeniem oraz zwarciami, co jest niezwykle istotne w kontekście bezpieczeństwa i niezawodności pracy maszyn. W praktyce, w modernizowanych szafach sterowniczych stosuje się styczniki AC-3 do wyłączania i włączania silników, co pozwala na efektywne zarządzanie ich pracą oraz minimalizację ryzyka uszkodzeń. Dobrą praktyką jest również stosowanie dodatkowych zabezpieczeń, takich jak termiczne i elektromagnetyczne, które można zintegrować z systemem sterowania, aby zwiększyć poziom ochrony urządzeń. Zgodność ze standardami IEC 60947-4-1 potwierdza, że styczniki AC-3 są odpowiednie do aplikacji związanych z silnikami indukcyjnymi.

Pytanie 9

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 10

Której z poniżej wymienionych czynności nie da się wykonać podczas próbnego uruchomienia zgrzewarki oporowej?

A. Weryfikacji stanu i poprawności ustawienia elektrod
B. Pomiaru rezystancji izolacji między uzwojeniem pierwotnym transformatora a obudową
C. Mierzenia czasu poszczególnych etapów zgrzewania: docisku oraz przerwy
D. Sprawdzenia funkcjonowania przełącznika do zgrzewania pojedynczego oraz ciągłego
Odpowiedzi dotyczące sprawdzenia stanu i prawidłowości ustawienia elektrod, pomiaru czasu zgrzewania oraz działania przełącznika do zgrzewania pojedynczego i ciągłego są praktykami, które w rzeczywistości powinny być częścią procesu próbnego uruchamiania zgrzewarki oporowej. Podczas próbnego uruchamiania kluczowe jest zweryfikowanie, czy elektrody są odpowiednio ustawione, aby zapewnić właściwe i efektywne zgrzewanie. Niewłaściwe ustawienie elektrod może prowadzić do nieefektywnego zgrzewania, co skutkuje słabymi połączeniami i potencjalnymi uszkodzeniami materiałów. Równocześnie, pomiar czasu poszczególnych faz zgrzewania jest niezbędny, aby dostosować parametry procesu do specyfiki używanych materiałów. Z kolei, sprawdzenie przełącznika zgrzewania, zarówno pojedynczego, jak i ciągłego, jest istotne dla upewnienia się, że urządzenie działa zgodnie z oczekiwaniami i że operator ma pełną kontrolę nad procesem. Zapominając o tych czynnościach, użytkownicy mogą narazić się na ryzyko nieprawidłowego działania maszyny, co może prowadzić do awarii sprzętu, a w ekstremalnych przypadkach nawet do wypadków. Właściwe podejście do próbnego uruchamiania zgrzewarki oporowej zgodne jest z normami i standardami bezpieczeństwa, które wymagają dokładnych testów i kontroli przed rozpoczęciem pracy. Dlatego ważne jest, aby nie lekceważyć tych czynności, które mają kluczowe znaczenie dla bezpieczeństwa i efektywności procesu zgrzewania.

Pytanie 11

Jakiego przewodu należy użyć, aby zastąpić uszkodzony kabel zasilający silnik trójfazowy zainstalowany w urządzeniu mobilnym?

A. YDY 4x2,5 mm2
B. YLY 3x2,5 mm2
C. SM 3x2,5 mm2
D. OP 4x2,5 mm2
Wybór innych typów przewodów na zasilanie silnika trójfazowego, jak YDY 4x2,5 mm2, SM 3x2,5 mm2 czy YLY 3x2,5 mm2, może prowadzić do różnych problemów technicznych. Przewód YDY jest przeznaczony głównie do instalacji stałych, co ogranicza jego zastosowanie w odbiornikach ruchomych, w których przewód narażony jest na zginanie i ruch. Z kolei SM, będący przewodem w izolacji gumowej, nie jest odpowiednio chroniony przed czynnikami mechanicznymi, co czyni go mało trwałym w dynamicznych aplikacjach. Przewód YLY, mimo że jest elastyczny, nie ma wystarczającej ochrony przed uszkodzeniami mechanicznymi w porównaniu do przewodów OP. Typowe błędy myślowe przy wyborze przewodu mogą obejmować pomijanie specyfikacji odnośnie do warunków pracy, co prowadzi do użycia niewłaściwego materiału, który nie wytrzyma obciążeń mechanicznych lub elektrycznych. Kluczowe jest, aby wybierać przewody zgodnie z ich przeznaczeniem oraz przewidywanymi warunkami, co jest zgodne z dobrą praktyką branżową oraz normami elektrycznymi, aby zapobiegać awariom oraz zapewnić bezpieczeństwo użytkowania.

Pytanie 12

Który z poniższych środków zabezpieczających przed porażeniem prądem elektrycznym nie jest właściwy do użycia w pomieszczeniach z zamontowaną wanną lub prysznicem?

A. Separacja elektryczna
B. Obwody PELV
C. Izolowanie stanowiska
D. Obwody SELV
Izolowanie stanowiska jako środek ochrony przed porażeniem prądem elektrycznym nie jest zalecane w pomieszczeniach z zainstalowaną wanną lub prysznicem, ponieważ takie miejsca są szczególnie narażone na kontakt z wodą, a tym samym zwiększone ryzyko porażenia. Praktyka izolowania stanowiska polega na tworzeniu fizycznych barier, które mają na celu zminimalizowanie ryzyka kontaktu z żywymi częściami. W kontekście pomieszczeń mokrych, jednak, kluczowe jest stosowanie bardziej zaawansowanych środków ochrony, które są zgodne z przepisami zawartymi w normach IEC 60364 oraz PN-EN 61140. Przykładem zabezpieczenia, które może być stosowane w takich warunkach, są obwody SELV, które zapewniają niskie napięcie bezpieczeństwa. W takich miejscach, gdzie ryzyko kontaktu z wodą jest wysokie, istotne jest również, aby instalacje były odpowiednio zabezpieczone i aby stosować osprzęt o podwyższonym stopniu ochrony, na przykład z klasą IP44 lub wyższą.

Pytanie 13

Jakim kolorem należy oznaczać nieizolowany przewód uziemiający punkt gwiazdowy transformatora SN/nn, który zasilają sieć TN-C, gdy jest wykonany w formie taśmy?

A. Zielony
B. Czarny
C. Żółto-zielony
D. Jasnoniebieski
Barwa żółto-zielona jest standardowym oznaczeniem przewodów uziemiających oraz przewodów ochronnych w systemach elektroenergetycznych. Zgodnie z normą PN-EN 60446, która reguluje oznaczenia kolorystyczne przewodów elektrycznych, żółto-zielony kolor jednoznacznie wskazuje na przewody uziemiające, co ma na celu zwiększenie bezpieczeństwa użytkowników oraz minimalizację ryzyka błędów związanych z nieprawidłowym podłączeniem przewodów. W przypadku punktu gwiazdowego transformatora SN/nn, zastosowanie przewodu uziemiającego w barwie żółto-zielonej jest kluczowe dla zapewnienia skutecznej ochrony przed porażeniem elektrycznym oraz dla prawidłowego funkcjonowania systemów zabezpieczeń. Praktyczne zastosowanie tej wiedzy obejmuje nie tylko instalacje elektryczne w budynkach, ale także w infrastrukturze przemysłowej, gdzie bezpieczeństwo urządzeń i ludzi jest priorytetem. Warto pamiętać, że stosowanie właściwych barw przewodów jest istotnym elementem bezpieczeństwa, a ich niewłaściwe oznaczenie może prowadzić do poważnych konsekwencji.

Pytanie 14

Co należy zrobić przed przystąpieniem do pomiaru rezystancji izolacji za pomocą megomierza?

A. Podłączyć urządzenie do sieci
B. Uziemić megomierz
C. Zmierzyć napięcie zasilania
D. Odłączyć zasilanie
Przed pomiarem rezystancji izolacji za pomocą megomierza należy bezwzględnie odłączyć zasilanie badanego obwodu. To kluczowy krok, który zapewnia bezpieczeństwo zarówno osoby wykonującej pomiar, jak i chroni sprzęt przed uszkodzeniem. Megomierz generuje wysokie napięcie, które w połączeniu z istniejącym zasilaniem mogłoby spowodować porażenie elektryczne lub uszkodzenie izolacji. Dodatkowo, odłączenie zasilania pozwala na uzyskanie dokładnych wyników, ponieważ eliminuje wpływ napięcia zasilającego na pomiar. W praktyce, przed rozpoczęciem pomiarów, należy również upewnić się, że obwód nie jest pod napięciem za pomocą odpowiednich narzędzi, takich jak wskaźnik napięcia. Przestrzeganie tych zasad jest zgodne z normami bezpieczeństwa pracy z urządzeniami elektrycznymi, które podkreślają znaczenie odłączenia zasilania przed jakimikolwiek pracami serwisowymi czy pomiarowymi.

Pytanie 15

W obwodzie gniazd w przedpokoju zainstalowano przewód YDYt 3×2,5 mm2. Podczas wiercenia w ścianie pracownik przypadkowo uszkodził przewód, przecinając dwie jego żyły. Jak należy prawidłowo naprawić powstałą usterkę?

A. Zdemontować tynk w miejscu uszkodzenia, połączyć przewody, zaizolować taśmą i zatynkować ścianę.
B. Przeciągnąć wyłącznie uszkodzone żyły, zastępując każdą przewodem jednodrutowym.
C. Zdemontować tynk w miejscu uszkodzenia, zainstalować dodatkową puszkę i w niej połączyć żyły.
D. Przeciągnąć nowy przewód pomiędzy najbliższymi puszkami, używając pilota.
Poprawna odpowiedź wskazuje na konieczność rozebrania tynku w miejscu uszkodzenia, co pozwala na dostęp do przewodów. Instalacja dodatkowej puszki jest zgodna z normami bezpieczeństwa, ponieważ umożliwia bezpieczne połączenie uszkodzonych żył oraz ewentualne wprowadzenie dodatkowych elementów zabezpieczających. Połączenie żył powinno być wykonane za pomocą odpowiednich złączek, które zapewniają ich trwałość i bezpieczeństwo. Takie rozwiązanie jest zgodne z praktykami branżowymi, które zalecają unikanie izolowania przewodów taśmą w miejscu uszkodzenia, co może prowadzić do ryzyka przepięć lub zwarć. Przykładem zastosowania tej metody może być sytuacja, gdy w ramach modernizacji instalacji elektrycznej, pracownik stwierdza, że przewody zostały uszkodzone, a jednocześnie potrzebuje zainstalować nowe gniazda. Wówczas montaż puszki zapewnia łatwy dostęp do przewodów w przyszłości, co ułatwia konserwację i ewentualne naprawy. Działanie to jest zgodne z zasadami BHP oraz ochroną przed pożarami, co czyni je najlepszym wyborem w tej sytuacji.

Pytanie 16

W instalacji elektrycznej obwodu gniazd w przedpokoju wykorzystano przewód YDYt 3×2,5 mm². Podczas wiercenia w murze pracownik przypadkowo przeciął przewód, uszkadzając jego dwie żyły. Jak należy prawidłowo usunąć tę usterkę?

A. Rozkuć tynk w miejscu uszkodzenia, zamontować dodatkową puszkę i w niej połączyć żyły.
B. Wyciągnąć jedynie uszkodzone żyły, zastępując je przewodem jednodrutowym.
C. Prowadzić nowy przewód pomiędzy najbliższymi puszkami, stosując pilota.
D. Rozkuć tynk w miejscu uszkodzenia, połączyć przewody, zaizolować taśmą, a następnie zatynkować ścianę.
Wybór odpowiedzi polegającej na rozkuwaniu tynku w miejscu uszkodzenia, zamontowaniu dodatkowej puszki oraz połączeniu żył jest najbardziej zalecanym sposobem naprawy uszkodzonego przewodu elektrycznego. Tego rodzaju działania są zgodne z obowiązującymi normami oraz najlepszymi praktykami w branży elektrycznej. W sytuacji, gdy przewód został uszkodzony, niezbędne jest zapewnienie odpowiednich warunków do naprawy, co może wiązać się z otwarciem ściany. Instalując dodatkową puszkę, zwiększamy bezpieczeństwo i ułatwiamy przyszłe prace serwisowe. Połączenie żył w puszce umożliwia także zastosowanie złączek, co jest rekomendowane w przypadku napraw elektrycznych. Dzięki temu połączenia są bardziej trwałe i estetyczne, a ryzyko ich przypadkowego usunięcia bądź zwarcia zostaje zminimalizowane. Takie podejście jest zgodne z europejskimi normami instalacji elektrycznych, które nakładają obowiązek używania osprzętu instalacyjnego w celu zwiększenia bezpieczeństwa użytkowania instalacji elektrycznych. W praktyce, zastosowanie dodatkowej puszki stanowi również zabezpieczenie przed przyszłymi uszkodzeniami mechanicznymi. Już na etapie projektowania, warto uwzględnić takie rozwiązania, by minimalizować ryzyko nieprzewidzianych awarii.

Pytanie 17

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 18

Jakie jest najwyższe dozwolone różnicowe natężenie prądu znamionowego wyłącznika różnicowoprądowego w celu zapewnienia ochrony przeciwpożarowej?

A. 10 mA
B. 100 mA
C. 30 mA
D. 300 mA
Wybór wartości 30 mA, 100 mA lub 10 mA jako maksymalnego dopuszczalnego różnicowego prądu znamionowego dla wyłącznika różnicowoprądowego w kontekście ochrony przeciwpożarowej jest błędny. Prąd różnicowy 30 mA jest najczęściej stosowany w instalacjach do ochrony przed porażeniem elektrycznym ludzi, natomiast jego zastosowanie w kontekście ochrony przeciwpożarowej jest niewłaściwe. W tego typu sytuacjach, wyłączniki o wartości 30 mA mogą być niewystarczające, gdyż ich czułość nie jest zaprojektowana do detekcji prądów, które mogą prowadzić do zapłonu. Podobnie, wartości 100 mA i 10 mA również nie są adekwatne w kontekście ochrony przeciwpożarowej. Wyłączniki 100 mA mogą być stosowane w instalacjach przemysłowych, ale ich zastosowanie również nie zapewnia odpowiedniego poziomu ochrony przed ryzykiem pożaru, ponieważ nie są przeznaczone do wykrywania niewielkich prądów upływowych, które mogą być początkiem pożaru. Ponadto, wyłącznik 10 mA, choć oferuje wysoką czułość dla ochrony ludzi, nie jest rekomendowany dla ogólnej ochrony przeciwpożarowej, ponieważ jego zastosowanie w instalacjach elektrycznych o dużym obciążeniu może prowadzić do częstych fałszywych alarmów. W praktyce, właściwy dobór wyłączników różnicowoprądowych powinien opierać się na analizie ryzyk i zgodności z odpowiednimi normami, takimi jak normy IEC 61008 oraz IEC 60947, które definiują wymagania dotyczące bezpieczeństwa urządzeń elektrycznych. Właściwy dobór wartości prądu gwarantuje nie tylko bezpieczeństwo ludzi, ale również minimalizuje ryzyko strat materialnych związanych z pożarami wywołanymi przez instalacje elektryczne.

Pytanie 19

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 20

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 21

Który z poniższych sposobów łączenia uzwojeń transformatora zapewnia jednoczesne zasilanie wszystkich faz?

A. Układ trójkąt-gwiazda
B. Układ szeregowy
C. Układ równoległy
D. Układ gwiazda-trójkąt
Układ trójkąt-gwiazda, choć podobny do układu gwiazda-trójkąt, działa na odwrót – uzwojenie pierwotne jest połączone w trójkąt, a wtórne w gwiazdę. Taki układ nie jest typowo stosowany do jednoczesnego zasilania wszystkich faz, ponieważ ma inne zastosowania, takie jak redukcja prądu rozruchowego w silnikach trójfazowych. Układ równoległy odnosi się do połączenia równoległego, które nie jest stosowane w przypadku uzwojeń transformatorów trójfazowych. Transformator działa na zasadzie indukcji elektromagnetycznej, a nie przepływu prądu jak w połączeniu równoległym, co czyni tę koncepcję nieodpowiednią. Układ szeregowy odnosi się do połączenia szeregowego, które również nie jest stosowane w transformatorach trójfazowych do zasilania wszystkich faz jednocześnie. W szeregowych połączeniach uzwojeń, napięcie się sumuje, co jest przydatne w innych kontekstach, ale nie w przypadku zasilania trójfazowego. Typowym błędem jest myślenie, że wszystkie te układy mogą być stosowane zamiennie w transformatorach, co nie jest prawdą. Każdy z nich ma swoje specyficzne zastosowania i nie można ich stosować zamiennie bez zrozumienia ich funkcji oraz wpływu na działanie całego systemu zasilającego.

Pytanie 22

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 23

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 24

Urządzenia elektryczne o klasie ochrony 0 mogą być stosowane wyłącznie w sytuacji

A. wcześniejszego zweryfikowania efektywności ochrony w instalacji
B. zasilania ich z gniazd z ochronnym bolcem uziemiającym
C. korzystania z nich pod nadzorem technicznym ze strony dostawcy energii elektrycznej
D. wdrożenia ochrony przed porażeniem w formie separacji elektrycznej lub izolacji miejsca wykonywania pracy
Urządzenia elektryczne klasy ochronności 0 są projektowane w sposób, który nie zapewnia żadnej formy ochrony przed porażeniem elektrycznym. W związku z tym ich stosowanie wymaga zastosowania dodatkowych środków ochrony, takich jak separacja elektryczna lub izolacja stanowiska pracy. Zgodnie z normą PN-IEC 61140, urządzenia tej klasy powinny być wykorzystywane w środowiskach, gdzie ryzyko porażenia jest minimalizowane poprzez odpowiednie techniki zabezpieczające. Przykładem może być stosowanie tych urządzeń w pomieszczeniach suchych, gdzie nie ma ryzyka kontaktu z wodą, oraz w sytuacjach, gdzie pracownicy są odpowiednio przeszkoleni w zakresie bezpieczeństwa. W praktyce, można zastosować również urządzenia ochronne, które odcinają zasilanie w przypadku wykrycia upływu prądu, co dodatkowo zwiększa bezpieczeństwo. Dlatego kluczowe jest, aby przed użyciem takich urządzeń, upewnić się, że są spełnione wszystkie warunki ochrony przeciwporażeniowej oraz że urządzenia są wykorzystywane zgodnie z ich przeznaczeniem.

Pytanie 25

Jakie mogą być przyczyny nadmiernego iskrzenia szczotek na pierścieniach w silniku pierścieniowym?

A. Nieprawidłową kolejnością faz.
B. Zbyt wysoką temperaturą otoczenia.
C. Zbyt słabym dociskiem szczotek do pierścieni
D. Brakiem symetrii napięć zasilających.
Zbyt słaby docisk szczotek do pierścieni jest kluczowym czynnikiem, który może prowadzić do nadmiernego iskrzenia w silniku pierścieniowym. Właściwy docisk szczotek zapewnia odpowiedni kontakt elektryczny między szczotkami a pierścieniami, co jest niezbędne do prawidłowego działania silnika. Niewystarczający docisk skutkuje nieregularnym przewodnictwem i zwiększonym oporem, co prowadzi do miejscowego przegrzewania się i iskrzenia. Praktyczne przykłady z przemysłu pokazują, że regularne kontrole i właściwa konserwacja komponentów silnika, w tym szczotek i pierścieni, są kluczowe dla utrzymania efektywności pracy oraz minimalizacji uszkodzeń. W branży stosuje się standardy takie jak ISO 9001, które kładą nacisk na ciągłe doskonalenie procesów produkcyjnych, w tym również na monitorowanie stanu technicznego urządzeń. Dbałość o odpowiedni docisk szczotek może znacznie wydłużyć żywotność silnika oraz zminimalizować koszty eksploatacji.

Pytanie 26

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 27

Jaki rodzaj wyłącznika nadprądowego powinno się użyć do ochrony kuchenki elektrycznej z trzema jednofazowymi grzałkami, których łączna moc wynosi 8,4 kW, zasilanych w fazach L1, L2, L3 w systemie trójfazowym o napięciu 230/400 V?

A. C6
B. B16
C. B10
D. C10
Odpowiedź B16 jest poprawna, ponieważ przy obliczaniu wymaganego wyłącznika nadprądowego dla kuchenki elektrycznej należy uwzględnić ogólną moc grzałek oraz charakterystykę używanego wyłącznika. Kuchenka ma moc 8,4 kW, co przy napięciu 400 V daje maksymalny prąd wynoszący około 12 A. Jednakże, przy wyborze wyłącznika nadprądowego warto uwzględnić dodatkowy margines bezpieczeństwa oraz obciążenie rozruchowe, które może być wyższe. Wyłącznik B16, który ma prąd znamionowy 16 A, będzie w stanie zabezpieczyć urządzenie przed przeciążeniem i zwarciem, jednocześnie nie wyzwalając się w przypadku chwilowych wzrostów prądu. Zgodnie z normą PN-IEC 60947-2, dla tego typu aplikacji zaleca się dobór wyłączników zabezpieczających z odpowiednim marginesem, co czyni B16 odpowiednim rozwiązaniem. Przykładem praktycznym zastosowania wyłącznika B16 mogą być instalacje w kuchniach przemysłowych, gdzie urządzenia o dużej mocy są powszechne i wymagają odpowiedniego zabezpieczenia.

Pytanie 28

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 29

Która z podanych okoliczności powoduje obniżenie prędkości obrotowej silnika trójfazowego z pierścieniami w trakcie jego działania?

A. Przerwa w zasilaniu jednej fazy
B. Zwiększenie napięcia zasilającego
C. Zmniejszenie obciążenia silnika
D. Zwarcie pierścieni ślizgowych
Przerwa w zasilaniu jednej fazy w trójfazowym silniku pierścieniowym powoduje, że silnik zaczyna pracować w trybie niesymetrycznym. W takim przypadku moment obrotowy generowany przez silnik ulega znacznemu osłabieniu, co prowadzi do zmniejszenia prędkości obrotowej. Silniki te są zaprojektowane do pracy z równomiernym rozkładem napięcia w wszystkich trzech fazach. Kiedy jedna z faz jest przerwana, silnik nie jest w stanie uzyskać maksymalnej mocy, co skutkuje spadkiem prędkości obrotowej. W praktyce, może to prowadzić do przegrzewania się silnika, a w skrajnych przypadkach nawet do uszkodzenia wirnika lub stojana. Z tego powodu, monitorowanie zasilania i jego stabilności jest kluczowe w zastosowaniach przemysłowych. W branżowych standardach, takich jak IEC 60034, zwraca się uwagę na konieczność stosowania urządzeń zabezpieczających przed utratą jednego z faz, aby zapewnić ciągłość pracy silników oraz minimalizować ryzyko awarii.

Pytanie 30

Jakie czynności oraz w jakiej kolejności powinny zostać dokonane podczas wymiany uszkodzonego łącznika elektrycznego?

A. Wymontować uszkodzony łącznik, odłączyć zasilanie, sprawdzić ciągłość połączeń
B. Odłączyć zasilanie, wymontować uszkodzony łącznik, sprawdzić ciągłość połączeń
C. Załączyć zasilanie, sprawdzić ciągłość połączeń, wymontować uszkodzony łącznik
D. Odłączyć zasilanie, sprawdzić brak napięcia, wymontować uszkodzony łącznik
Odpowiedź "Odłączyć napięcie, sprawdzić brak napięcia, wymontować uszkodzony łącznik" jest prawidłowa, ponieważ obejmuje kluczowe kroki niezbędne do bezpiecznej wymiany łącznika elektrycznego. Pierwszym krokiem jest odłączenie napięcia, co jest absolutnie konieczne, aby zapobiec porażeniu prądem. Takie działanie jest zgodne z zasadą bezpieczeństwa elektrycznego, zgodnej z normą PN-IEC 60364. Następnie, sprawdzenie braku napięcia za pomocą odpowiednich narzędzi, takich jak wskaźnik napięcia, pozwala upewnić się, że instalacja jest całkowicie bezpieczna do pracy. To kluczowy krok, który chroni technika przed niebezpieczeństwem. Po potwierdzeniu braku napięcia można przystąpić do demontażu uszkodzonego łącznika. Dobrą praktyką jest również sprawdzenie stanu przewodów, co zapewnia, że nowy łącznik będzie poprawnie funkcjonować. Przykład zastosowania tej procedury można zaobserwować podczas serwisów i konserwacji instalacji elektrycznych w domach i biurach, gdzie przestrzeganie zasad bezpieczeństwa może zapobiec poważnym wypadkom.

Pytanie 31

W ramce zamieszczono wybrane parametry silnika trójfazowego. Jakie zakresy cewek prądowych i napięciowych watomierzy należy wybrać, aby w układzie Arona zmierzyć moc pobieraną przez silnik zasilany napięciem 3×400 V, 50 Hz i obciążony znamionowo przy połączeniu w gwiazdę?

Silnik 3~   Typ 1E2-90S-4 S1
1,1 kW   3,2/1,8 A   Izol. F
IP55   1420 obr/min   cosφ 0,75
230/400 V   50 Hz
A. In = 2 A, Un = 200 V
B. In = 1 A, Un = 400 V
C. In = 2 A, Un = 400 V
D. In = 1 A, Un = 200 V
Wybór zakresu cewek prądowych i napięciowych watomierza w układzie Arona jest kluczowy dla dokładnych pomiarów mocy silnika trójfazowego. W tym przypadku, znamionowy prąd silnika wynosi 1,8 A, co oznacza, że cecha cewki prądowej powinna być dostosowana do wyższej wartości, aby zminimalizować ryzyko przeciążenia. Dlatego wybór 2 A dla cewek prądowych jest uzasadniony. Co więcej, napięcie znamionowe silnika wynosi 400 V w układzie gwiazda, co odpowiada napięciu międzyfazowemu. Zastosowanie cewki napięciowej o wartości 400 V zapewnia, że pomiar będzie dokonany w odpowiednim zakresie, co jest zgodne z najlepszymi praktykami branżowymi. Takie podejście nie tylko zapewnia precyzyjność, ale również bezpieczeństwo operacyjne, gdyż pozwala na uniknięcie przeciążeń, które mogą prowadzić do uszkodzeń sprzętu. W praktyce, dobór odpowiednich zakresów cewek prądowych i napięciowych jest kluczowy dla prawidłowego monitorowania i zarządzania pracą silników trójfazowych, co jest istotne dla efektywności energetycznej i długowieczności urządzeń. Dobrze dobrany sprzęt pomiarowy może również przyczynić się do zmniejszenia kosztów operacyjnych, co jest istotne w obszarze przemysłowym.

Pytanie 32

Badania instalacji odgromowej w obiekcie budowlanym ujawniły rezystancję uziomu równą 35 Ω. Aby uzyskać zalecaną rezystancję uziomu na poziomie 10 Ω, należy

A. powiększyć średnicę przewodu odgromowego
B. wydłużyć uziom szpilkowy
C. usunąć zaciski probiercze
D. zwiększyć średnicę zwodów w instalacji odgromowej
Wydłużenie uziomu szpilkowego jest kluczowym działaniem zmierzającym do obniżenia rezystancji uziomu do zalecanych 10 Ω. Uziom szpilkowy, umieszczony w gruncie, działa jako przewodnik, który odprowadza prąd do ziemi. Jego efektywność zależy od długości, średnicy oraz rodzaju gruntu. Zwiększenie długości uziomu pozwala na większy kontakt z różnymi warstwami gleby, co zmniejsza opór elektryczny. Zgodnie z normą PN-EN 62305, zaleca się, aby długość uziomów wynosiła co najmniej 2 m, a w przypadku odporności na wyładowania atmosferyczne długość uziomu powinna być jeszcze większa. W praktyce, jeśli standardowa szpilka ma długość 1,5 m, przedłużenie jej o kolejne 1,5 m lub zastosowanie kilku szpilek połączonych ze sobą w odpowiednich miejscach przyczynia się do znaczącego obniżenia rezystancji. Warto również pamiętać, że jakość uziomu wpływa na bezpieczeństwo instalacji odgromowej, a jego odpowiednia rezystancja jest kluczowa dla skutecznego działania całego systemu ochrony przed wyładowaniami atmosferycznymi.

Pytanie 33

Jakie z wymienionych działań należy do inspekcji urządzenia napędowego z elektrycznym silnikiem podczas jego pracy?

A. Weryfikacja czystości obudowy
B. Sprawdzenie urządzeń ochronnych
C. Kontrola stanu zamocowania osłony wentylatora
D. Zbadanie poziomu nagrzewania obudowy i łożysk
Sprawdzanie stopnia nagrzewania obudowy i łożysk jest kluczową czynnością w oględzinach urządzenia napędowego z silnikiem elektrycznym podczas ruchu. Nagrzewanie tych elementów może wskazywać na potencjalne problemy, takie jak niewłaściwe smarowanie, nadmierne obciążenie lub awarię komponentów. Przykładowo, jeśli łożyska są zbyt gorące, może to oznaczać, że w systemie występuje zbyt duży opór lub że smarowanie jest niewystarczające, co może prowadzić do ich zatarcia. Zgodnie z normami branżowymi, regularne monitorowanie temperatury łożysk i obudowy jest zalecane w celu wykrywania usterek zanim dojdzie do poważniejszej awarii. Użytkownicy powinni korzystać z odpowiednich narzędzi, takich jak kamery termograficzne lub czujniki temperatury, aby dokładnie ocenić stan urządzenia. Wykrycie podwyższonej temperatury może skłonić do przeprowadzenia dalszych analiz i działań prewencyjnych, co jest zgodne z podejściem proaktywnym w zarządzaniu utrzymaniem ruchu.

Pytanie 34

Który przekrój kabla najczęściej używa się do tworzenia obwodów gniazdek w instalacjach domowych podtynkowych?

A. 1,5 mm²
B. 1 mm²
C. 2,5 mm²
D. 4 mm²
Przekrój przewodu 2,5 mm² jest najczęściej stosowany do wykonywania obwodów gniazd wtyczkowych w instalacjach mieszkaniowych podtynkowych, ponieważ zapewnia odpowiednią nośność prądową oraz minimalizuje ryzyko przegrzewania się przewodów. Zgodnie z normą PN-IEC 60364, obwody gniazd wtyczkowych powinny być projektowane z uwzględnieniem maksymalnych obciążeń, które mogą wystąpić w gospodarstwie domowym. Obwody z przekrojem 2,5 mm² są w stanie obsłużyć obciążenie do 16A, co jest wystarczające dla większości sprzętu AGD oraz elektroniki. Przykładowo, standardowa pralka, zmywarka czy kuchenka elektryczna wymagają takiego przekroju, aby zapewnić ich prawidłowe działanie. Użycie mniejszych przekrojów, takich jak 1 mm² czy 1,5 mm², może prowadzić do nadmiernego nagrzewania się przewodów, co zwiększa ryzyko pożaru. Dlatego stosowanie przewodów o przekroju 2,5 mm² w gniazdach wtyczkowych jest zgodne z zasadami bezpieczeństwa oraz dobrymi praktykami w zakresie instalacji elektrycznych.

Pytanie 35

Jaką minimalną wartość rezystancji powinna mieć podłoga i ściany w izolowanym miejscu pracy z urządzeniami pracującymi na napięciu 400 V, aby zapewnić efektywną ochronę przeciwporażeniową przed dotykiem pośrednim?

A. 25kΩ
B. 50kΩ
C. 75kΩ
D. 10kΩ
Rezystancja ścian i podłogi w izolowanym stanowisku pracy z urządzeniami o napięciu 400 V powinna wynosić co najmniej 50 kΩ, aby zapewnić skuteczną ochronę przed dotykiem pośrednim. Wysoka wartość rezystancji jest kluczowa, ponieważ zmniejsza ryzyko przepływu prądu przez ciało człowieka w przypadku awarii izolacji. Zgodnie z normami IEC 60364 oraz PN-EN 61140, minimalna rezystancja ochronna dla urządzeń elektrycznych w takich warunkach powinna wynosić 50 kΩ. W praktyce, stosowanie takiej wartości rezystancji wpływa na zwiększenie bezpieczeństwa operatorów, zwłaszcza w środowiskach przemysłowych, gdzie ryzyko porażenia prądem jest wyższe. Przykładem może być zakład produkcyjny, w którym regularnie stosuje się urządzenia do pomiarów rezystancji w celu zapewnienia, że izolacja jest odpowiednia i nie zagraża pracownikom. Dobre praktyki obejmują także okresowe przeglądy instalacji elektrycznych oraz testowanie zabezpieczeń, co dodatkowo minimalizuje ryzyko awarii.

Pytanie 36

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 37

W tabeli przedstawiono parametry znamionowe silnika. Do jakiego rodzaju pracy jest on przeznaczony?

Typ silnikaSEh 80-4CF
Moc1,1 kW
Prędkość obrotowa1400 obr/min
ObudowaAluminium
Napięcie zasilania230 V, 50 Hz
Stopień ochronyIP 54
Rodzaj pracyS2
Sprawność74%
Pojemność kondensatora pracy30 μF
Pojemność kondensatora rozruchowego75 μF
A. Ciągłej.
B. Przerywanej z rozruchem.
C. Przerywanej z hamowaniem elektrycznym.
D. Dorywczej.
Wybór odpowiedzi wskazującej na inne klasy pracy, takie jak praca przerywana z hamowaniem elektrycznym, ciągła czy przerywana z rozruchem, wprowadza w błąd co do funkcji i zastosowania silnika. Praca przerywana z hamowaniem elektrycznym polega na okresowym zatrzymywaniu silnika, co nie jest zgodne z charakterystyką dorywczej pracy, gdzie silnik działa przez ustalony czas, a następnie wymaga okresu odpoczynku. Z kolei praca ciągła oznacza, że silnik jest przystosowany do ciągłej eksploatacji, co w przypadku silników oznaczonych jako S2 jest niewłaściwe, gdyż te silniki nie mogą pracować bez przerwy bez ryzyka przegrzania. Wprowadzenie w błąd może również wynikać z mylnego rozumienia cykli pracy maszyn i ich odpowiedniego dostosowania do obciążenia. W praktyce, niewłaściwy dobór silnika do aplikacji może prowadzić do uszkodzeń, zwiększenia kosztów serwisowania oraz obniżenia efektywności energetycznej. Kluczowe jest zrozumienie, że różne klasy pracy silników mają swoje specyficzne zastosowania, a ich oznaczenie powinno być podstawą do podejmowania decyzji w inżynierii mechanicznej i elektrycznej.

Pytanie 38

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 39

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 40

Jakie są maksymalne dopuszczalne odchylenia napięcia zasilającego dla elektrycznych urządzeń napędowych?

A. 10,0% Un
B. 7,5% Un
C. 5,0% Un
D. 2,5% Un
Maksymalne dopuszczalne odchylenia napięcia zasilającego elektryczne urządzenia napędowe wynoszą 5,0% Un, zgodnie z obowiązującymi normami i standardami branżowymi, takimi jak IEC 60038. Utrzymanie napięcia w tym zakresie jest istotne dla zapewnienia prawidłowego działania urządzeń, ich wydajności oraz bezpieczeństwa. Przykładowo, w przypadku silników elektrycznych, zbyt duże odchylenie napięcia może prowadzić do ich przegrzewania, spadku momentu obrotowego oraz obniżenia żywotności. Dopuszczalne odchylenie 5,0% jest uznawane za optymalne, ponieważ zapewnia równocześnie elastyczność w przyłączeniach do różnych źródeł zasilania oraz minimalizuje ryzyko uszkodzeń i awarii. W praktyce, na przykład w dużych zakładach przemysłowych, kontrolowanie napięcia zasilającego i jego odchyleń jest kluczowe dla zapewnienia ciągłości produkcji oraz efektywności energetycznej. Zastosowanie odpowiednich zabezpieczeń oraz monitorowanie parametrów zasilania pozwala na uniknięcie niekorzystnych skutków, co jest zgodne z najlepszymi praktykami inżynieryjnymi.