Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektronik
  • Kwalifikacja: ELM.05 - Eksploatacja urządzeń elektronicznych
  • Data rozpoczęcia: 7 kwietnia 2025 13:16
  • Data zakończenia: 7 kwietnia 2025 13:49

Egzamin niezdany

Wynik: 19/40 punktów (47,5%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Przedstawiony na zdjęciu klucz Dallas jest elementem systemu

Ilustracja do pytania
A. sieci komputerowej.
B. dostępu i zabezpieczeń.
C. automatyki przemysłowej.
D. telewizji dozorowej.
Klucz Dallas, znany również jako iButton, jest kluczowym elementem w systemach kontroli dostępu i zabezpieczeń. Jego zastosowanie polega na bezpiecznej identyfikacji użytkowników, co czyni go niezwykle użytecznym w różnych aplikacjach, takich jak automatyczne otwieranie drzwi, autoryzacja dostępu do systemów komputerowych oraz zabezpieczenia w budynkach użyteczności publicznej. Klucz działa na zasadzie komunikacji z czytnikiem, co pozwala na szybką weryfikację tożsamości. Praktyczne zastosowania obejmują m.in. systemy kontroli dostępu w biurach, fabrykach czy instytucjach finansowych, gdzie bezpieczeństwo jest priorytetem. Dobre praktyki w branży wskazują na konieczność używania unikalnych identyfikatorów, co znacznie podnosi poziom bezpieczeństwa. Warto również zwrócić uwagę na standardy, takie jak ISO/IEC 27001, które dotyczą zarządzania bezpieczeństwem informacji, a systemy oparte na kluczach Dallas mogą wspierać implementację tych standardów poprzez efektywne zarządzanie dostępem i identyfikacją użytkowników.

Pytanie 2

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 3

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 4

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 5

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 6

Wtórnik emiterowy to wzmacniacz z tranzystorem w układzie

A. wspólnej bazy
B. wspólnego kolektora
C. wspólnego emitera
D. wspólnego źródła
Wybór innych konfiguracji tranzystora, jak wspólne źródło czy wspólny emiter, może prowadzić do nieporozumień w kwestii wzmacniaczy tranzystorowych. Wspólne źródło, na przykład, jest fajne do wzmocnienia napięcia, ale ma niską impedancję wyjściową, przez co nie za bardzo nadaje się do interfejsów wymagających dużej impedancji. Z kolei wspólny emiter to popularny układ, bo daje spore wzmocnienie napięcia i prądu, ale może wprowadzać więcej zniekształceń i ma niższą impedancję wyjściową. Co do wspólnej bazy, to chociaż czasami jest użyteczna, to ma bardzo niską impedancję wejściową i w większości zastosowań nie jest zbyt praktyczna. Wydaje mi się, że zrozumienie różnic między tymi konfiguracjami to kluczowa rzecz dla inżynierów i techników w elektronice, bo wybór niewłaściwego układu może prowadzić do problemów i nieefektywnych projektów.

Pytanie 7

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 8

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 9

Do jakiego celu wykorzystuje się komparator?

A. wzmacniania sygnału
B. filtrowania napięć
C. sumowania dwóch sygnałów
D. porównania dwóch napięć
Komparator to kluczowe urządzenie elektroniczne używane w wielu aplikacjach inżynieryjnych, które pozwala na precyzyjne porównanie dwóch napięć. Działa on na zasadzie analizy napięcia wejściowego względem napięcia odniesienia, co skutkuje generowaniem sygnału wyjściowego, który informuje o tym, które napięcie jest wyższe. Przykładowe zastosowanie komparatorów obejmuje systemy automatyki, gdzie mogą być używane do detekcji poziomu napięcia w różnych układach zasilania. W praktycznych zastosowaniach, takich jak układy alarmowe czy systemy wykrywania, komparatory działają jako czujniki, które aktywują alarm w odpowiedzi na zmiany w napięciu, co zwiększa bezpieczeństwo. Zgodnie z najlepszymi praktykami branżowymi, komparatory powinny być projektowane z uwzględnieniem parametrów takich jak histereza, aby zapobiegać fałszywym sygnałom wyjściowym w przypadku fluktuacji napięcia. Warto również zaznaczyć, że komparatory są szeroko wykorzystywane w układach analogowych oraz cyfrowych, co czyni je fundamentalnym narzędziem w inżynierii elektronicznej.

Pytanie 10

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 11

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 12

Jakie z podanych rodzajów sprzężeń między poszczególnymi stopniami wzmacniacza wielostopniowego gwarantuje separację galwaniczną?

A. Sprzężenia rezystancyjne
B. Sprzężenia bezpośrednie
C. Sprzężenia pojemnościowe
D. Sprzężenia transformatorowe
Separacja galwaniczna w wzmacniaczach wielostopniowych to coś, co czasem mylone jest z różnymi rodzajami sprzężeń. Pojemnościowe sprzężenie, mimo że może trochę wpływać na sygnał, nie daje nam prawdziwej separacji galwanicznej. W sumie, opiera się ono na pojemności między przewodami i przy wyższych częstotliwościach może to prowadzić do różnych problemów. Sprzężenie rezystancyjne, które to jest po prostu podłączenie rezystorów między stopniami wzmacniacza, w ogóle nie izoluje obwodów, więc nie może dać separacji galwanicznej. Bezpośrednie sprzężenie, które łączy stopnie bez jakiejkolwiek izolacji, też nie rozwiąże tego problemu. Używając tych metod, inżynierowie mogą nieświadomie zmieniać parametry sygnału, co niestety psuje jakość i stabilność wzmacniacza. Dobrze jest pamiętać, że skuteczna separacja galwaniczna wymaga zastosowania rozwiązań, które fizycznie oddzielają obwody, a w wzmacniaczach wielostopniowych najlepiej osiąga się to przez sprzężenie transformatorowe.

Pytanie 13

Tabela przedstawia wybrane dane techniczne regulatora temperatury. Do jego wejścia można bezpośrednio podłączyć

Napięcie zasilające230 V AC; 50 Hz
Wejście pomiarowePt100/Pt500/Pt1000
Zakres pomiarowy-100 °C ÷ 600 °C
Rezystancja przewodów pomiarowychmaksymalnie 20 Ω w każdym przewodzie
Wyjścia przekaźnikowe2 styki zwierne; 2 A/250 V AC (cosφ=1)
Pamięć danychEEPROM
Stopień ochrony frontu urządzeniaIP65
Stopień ochrony zaciskówIP20

A. termoparę.
B. termistor.
C. czujnik pirometryczny.
D. czujnik rezystancyjny.
Wiesz, czujniki takie jak termistor, termopara czy czujnik pirometryczny to często te, które ludzie mylą z czujnikami rezystancyjnymi. Ale one działają na zupełnie innych zasadach. Termistory zmieniają rezystancję w szerszym zakresie temperatur, ale mają ograniczony zakres pomiarowy, co nie jest najlepsze do długotrwałego monitorowania w skrajnych warunkach. Z kolei termopary działają dzięki zjawisku Seebecka – wytwarzają napięcie, gdy są różne temperatury na dwóch złączach z różnych materiałów. Można nimi mierzyć wysokie temperatury, ale są mniej dokładne niż czujniki rezystancyjne. A czujniki pirometryczne to zupełnie inna bajka, bo mierzą temperaturę z daleka, więc nie nadają się do bezpośredniego podłączenia do regulatora temperatury. Wszystkie te czujniki mają swoje miejsce, ale jeśli ich nie zrozumiesz, to możesz źle je wybrać, co nie jest fajne. Dlatego warto znać różnice między tymi technologiami i wiedzieć, gdzie je najlepiej wykorzystać.

Pytanie 14

Jaką wartość napięcia odczytuje cyfrowy multimetr z aktywowaną funkcją True RMS na wyjściu obciążonego transformatora głośnikowego, który zasila szkolną instalację radiowęzłową, pokazując wartość 22,8 V?

A. Międzyszczytową
B. Średnią
C. Maksymalną
D. Skuteczną
Odpowiedź 'Skuteczna' jest prawidłowa, ponieważ multimetr cyfrowy z funkcją True RMS mierzy wartość skuteczną napięcia, co jest szczególnie istotne w przypadku sygnałów zmiennych, takich jak napięcie na wyjściu transformatora głośnikowego. Wartość skuteczna (RMS, Root Mean Square) określa równoważną wartość DC, która dostarcza tę samą moc do obciążenia. W praktyce oznacza to, że jeśli transformator głośnikowy zasilany jest napięciem zmiennym, wskazanie multimetru 22,8 V oznacza, że ta wartość skuteczna dostarcza równoważną moc do podłączonego obciążenia, co jest kluczowe w zastosowaniach audio. W branży audio i elektroakustycznej, pomiar wartości skutecznej jest standardem, ponieważ pozwala na dokładną ocenę wydajności systemu, zapewniając stabilność i jakość dźwięku. Dobrą praktyką jest stosowanie multimetrów z funkcją True RMS, które poprawnie mierzą napięcia w systemach, gdzie występują zniekształcenia sygnału, co jest często spotykane w instalacjach radiowęzłowych.

Pytanie 15

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 16

Na podstawie danych technicznych zawartych w tabeli określ rodzaj czujki opisanej przez te parametry.

Typ czujkiNC
Maksymalne napięcie przełączalne kontaktronu20 V
Maksymalny prąd przełączalny20 mA
Oporność przejściowa150 mΩ
Minimalna liczba przełączeń przy obciążeniu 20 V, 20 mA360 000
Materiał stykowyRu (Ruten)
Odległość zamknięcia styków kontaktronu18 mm
Odległość otwarcia styków kontaktronu28 mm
Masa10 g

A. Wibracyjna.
B. Akustyczna.
C. Magnetyczna.
D. Ruchu.
Czujki ruchu, akustyczne i wibracyjne mają swoje specyficzne właściwości, które odróżniają je od czujników magnetycznych. Czujki ruchu działają na zasadzie detekcji przemieszczających się obiektów w danym obszarze, co często wiąże się z użyciem technologii podczerwieni lub mikrofal. W związku z tym, ich zastosowanie jest ograniczone do warunków, gdzie obecność obiektów jest kluczowa, co różni się od pasywnej detekcji stosowanej w czujnikach magnetycznych. Czujki akustyczne natomiast, które reagują na dźwięki, mogą być wrażliwe na hałas otoczenia, co często prowadzi do fałszywych alarmów, eliminując ich użyteczność w wielu sytuacjach. Z kolei czujki wibracyjne, czułe na drgania, są stosowane głównie w aplikacjach zabezpieczeń, ale ich skuteczność może być ograniczona przez zmienność warunków otoczenia i rodzaj monitorowanego obiektu. Problematyka identyfikacji tych różnic często prowadzi do nieprawidłowych klasyfikacji, a ich niewłaściwe zastosowanie może skutkować nieefektywnością systemu zabezpieczeń. Brak zrozumienia różnic między tymi technologiami oraz ich odpowiednich zastosowań jest powszechnym błędem, który należy unikać, aby zapewnić skuteczność i niezawodność systemów detekcji.

Pytanie 17

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 18

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 19

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 20

Które z poniższych urządzeń elektronicznych wymaga zaprogramowania po jego zainstalowaniu, zanim zacznie działać?

A. Detektor gazu
B. Telefon analogowy
C. Konwerter satelitarny
D. Domofon cyfrowy
Domofon cyfrowy to urządzenie, które po zainstalowaniu wymaga zaprogramowania, aby móc w pełni wykorzystać jego funkcje. Konfiguracja domofonu obejmuje ustawienie numerów mieszkańców, przypisanie dzwonków do poszczególnych lokali oraz skonfigurowanie opcji komunikacji z mieszkańcami. W zależności od modelu, programowanie może obejmować także dodawanie użytkowników do systemu, definiowanie uprawnień czy integrację z innymi systemami zabezpieczeń w budynku. Przykłatami zastosowania są nowoczesne budynki mieszkalne, gdzie domofon cyfrowy współpracuje z systemami monitoringu oraz automatyki budynkowej, co podnosi komfort i bezpieczeństwo mieszkańców. Dobry projekt systemu domofonowego uwzględnia standardy branżowe, takie jak systemy interkomowe zgodne z normą IEC 60947-5-1, co zapewnia wysoką jakość i niezawodność działania tego typu urządzeń.

Pytanie 21

Sieć komputerowa, która rozciąga się poza granice miast, krajów lub kontynentów, jest siecią

A. LAN
B. PAN
C. MAN
D. WAN
Sieć WAN (Wide Area Network) to typ sieci komputerowej, której zasięg geograficzny wykracza poza granice pojedynczego miasta, państwa, a nawet kontynentu. WAN jest używana do łączenia lokalnych sieci, takich jak LAN (Local Area Network), w celu umożliwienia komunikacji na dużą odległość. Przykładem zastosowania sieci WAN są połączenia między biurami korporacji działających w różnych krajach, które wykorzystują takie technologie jak MPLS (Multi-Protocol Label Switching) czy VPN (Virtual Private Network) do zapewnienia bezpiecznego transportu danych. WAN jest również kluczowym elementem infrastruktury Internetu, gdzie różne dostawcy usług internetowych łączą swoje sieci, tworząc globalną sieć komunikacyjną. W kontekście standardów, WAN opiera się na różnych protokołach komunikacyjnych, takich jak TCP/IP, które pozwalają na niezawodne przesyłanie danych na dużych odległościach. Dobry projekt sieci WAN powinien zapewniać wysoką dostępność, bezpieczeństwo oraz odpowiednią przepustowość, co można osiągnąć poprzez zastosowanie technologii redundancji i optymalizacji tras.

Pytanie 22

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 23

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 24

Na rysunku przedstawiono symbol graficzny

Ilustracja do pytania
A. przełącznika.
B. mostu.
C. routera.
D. modemu.
Wybór innej odpowiedzi może wynikać z nieporozumienia dotyczącego różnicy pomiędzy różnymi urządzeniami sieciowymi. Modem, który nie został wybrany, jest urządzeniem, które łączy lokalną sieć domową z internetem, przetwarzając sygnały cyfrowe na analogowe i odwrotnie. Jego symbol graficzny zazwyczaj różni się od symbolu routera, przedstawiając inną funkcję, jaką jest konwersja sygnału. Most, będący kolejnym z możliwych wyborów, służy do łączenia dwóch segmentów sieci w celu zwiększenia wydajności, ale nie kieruje ruchu między sieciami tak jak router. Z kolei przełącznik to urządzenie, które łączy różne urządzenia w ramach tej samej sieci, działając na poziomie warstwy drugiej modelu OSI. Wybór tych odpowiedzi świadczy o myleniu funkcji różnych urządzeń sieciowych, co jest powszechnym błędem w zrozumieniu architektury sieci. Zastosowanie routerów, mostów i przełączników w odpowiednich kontekstach jest kluczowe dla efektywnego projektowania i zarządzania sieciami komputerowymi. Warto zatem zapoznać się z ich specyfikacją i rolą, aby uniknąć takich nieporozumień w przyszłości.

Pytanie 25

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 26

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 27

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 28

Stabilność systemu automatycznej regulacji sprawia, że gdy układ zostaje wyprowadzony ze stanu równowagi,

A. nie wraca do tego stanu, oscyluje.
B. resetuje się.
C. wyłącza się automatycznie.
D. sam wraca do tego stanu.
W przypadku nieprawidłowych odpowiedzi można zauważyć pewne powszechne błędy myślowe, które prowadzą do błędnych wniosków o stabilności układów automatycznej regulacji. Przykładowo, sugestia, że układ "resetuje się", wskazuje na niepełne zrozumienie mechanizmów regulacyjnych. Takie podejście może sugerować, że układ przestaje działać w momencie zakłócenia, co jest sprzeczne z ideą ciągłości działania systemu automatyki. Z kolei stwierdzenie, że układ "wyłącza się samoczynnie", implikuje, że w przypadku zakłócenia nie podejmuje on żadnych działań kompensacyjnych, co jest charakterystyczne dla systemów niestabilnych lub awaryjnych, a nie zautomatyzowanych regulacji. Oscylacje, o których mowa w ostatniej nieprawidłowej odpowiedzi, mogą występować w systemach niestabilnych, ale nie są one pożądanym efektem w praktyce inżynieryjnej. W rzeczywistości, dobrym przykładem są systemy, w których odpowiedź na zakłócenie prowadzi do oscylacji, co może wskazywać na niewłaściwe dobranie parametrów regulatora. Zrozumienie tych zasad jest kluczowe w kontekście projektowania układów regulacji, które powinny być zgodne z najlepszymi praktykami w branży, takimi jak dostosowanie parametrów do specyfikacji systemu oraz realnych warunków eksploatacyjnych.

Pytanie 29

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 30

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 31

Jakim rodzajem energii pobieranej przez telewizor LCD w trybie czuwania (tzw. tryb STANDBY) jest wartość 3 VA, podana w jego specyfikacji technicznej?

A. Skutecznej
B. Biernej
C. Pozornej
D. Czynnej
Odpowiedź "Pozornej" jest prawidłowa, ponieważ moc pozorna, wyrażana w voltamperach (VA), odnosi się do całkowitej mocy w obwodzie prądu przemiennego, którą dostarcza źródło energii. W przypadku telewizora LCD w trybie czuwania, moc pozorna 3 VA oznacza, że urządzenie pobiera moc, która nie jest w pełni przekładana na pracę wykonaną przez urządzenie, co jest charakterystyczne dla stanu STANDBY. Takie urządzenia zazwyczaj nie wykonują aktywnej pracy, jednak pozostają w gotowości do szybkiego uruchomienia. W praktyce oznacza to, że telewizor może pobierać moc pozorną z sieci elektrycznej, ale rzeczywista moc czynna, która jest używana do generowania obrazu, jest minimalna. Zgodnie z normami IEC 62087, pomiar mocy pozornej w trybie czuwania jest istotny dla oceny efektywności energetycznej urządzeń, a takie informacje są niezbędne przy podejmowaniu decyzji o wyborze energooszczędnych produktów.

Pytanie 32

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 33

Która z wymienionych liczb nie stanowi reprezentacji w systemie BCD8421?

A. 00000000
B. 01100110
C. 11111111
D. 10011001
10011001, 01100110 i 00000000 to zapisy, które potencjalnie mogą być widziane jako BCD8421, ale to może wprowadzać w błąd. Na przykład, 10011001 można odczytać jako 9 i 1, więc formalnie jest to poprawne, jeśli dobrze to zinterpretować. Z drugiej strony, 01100110 da się zrozumieć jako 6 i 6, co też pasuje do kodu. Ważne jest, żeby pamiętać, że BCD8421 polega na tym, żeby reprezentować cyfry dziesiętne jako ich odpowiedniki w binarze, a nie sumować bity. A 00000000, mimo że wygląda na nieaktywny zapis, odpowiada cyfrze 0 w tym kodzie. Często ludzie myślą, że każda sekwencja binarna musi być większa od zera, a tak nie jest. W BCD8421 można mieć różne interpretacje i zastosowania, co wpływa na to, jak dane są przetwarzane. W systemach elektronicznych przydatne jest, żeby w każdej sytuacji jasno reprezentować wszystkie wartości, co ma znaczenie dla późniejszych analiz i obliczeń.

Pytanie 34

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 35

Jaką rezystancję Rb powinien mieć bocznik, aby można było podłączyć go równolegle do amperomierza o oporności wewnętrznej RA=300 mΩ, aby czterokrotnie zwiększyć jego zakres pomiarowy?

A. 100 mΩ
B. 75 mΩ
C. 150 mΩ
D. 300 mΩ
Rozważając błędne odpowiedzi, ważne jest zrozumienie podstawowych zasad dotyczących pomiarów prądu oraz rezystancji w układach elektrycznych. Odpowiedzi takie jak 150 mΩ, 75 mΩ oraz 300 mΩ mogą wynikać z niepoprawnego zrozumienia zasady równoległego połączenia rezystancji. Przy połączeniach równoległych rezystancje zmniejszają ogólną rezystancję układu, co jest kluczowe w kontekście amperomierza. Wartości 150 mΩ i 300 mΩ są zbyt wysokie, aby uzyskać pożądaną całkowitą rezystancję wynoszącą 75 mΩ, co prowadziłoby do nieprawidłowych odczytów. Odpowiedź 75 mΩ, mimo że zbliżona, pozostaje błędna, ponieważ w tym przypadku całkowita rezystancja nie osiągnie pożądanego celu czterokrotnego zwiększenia zakresu. Typowym błędem myślowym jest zakładanie, że większa wartość bocznika wspomoże pomiar, co w rzeczywistości prowadzi do spadku dokładności. Kluczowe jest, aby pamiętać, że dobór rezystancji bocznika musi być starannie przemyślany, aby zachować balans między bezpieczeństwem a dokładnością pomiaru. W przypadku nieprawidłowych wyborów rezystancji, wyniki pomiarowe mogą być zafałszowane, co w kontekście profesjonalnych pomiarów elektrycznych może prowadzić do poważnych błędów i nieprawidłowych analiz.

Pytanie 36

Jakiego typu kabel wykorzystuje się do przesyłania cyfrowych sygnałów audio zgodnie ze standardem TOSLINK?

A. Kabel skrętkowy
B. Kabel koncentryczny
C. Kabel światłowodowy
D. Kabel symetryczny
Odpowiedź 'światłowodowy' jest poprawna, ponieważ TOSLINK (Toshiba Link) to standard technologii audio, który pozwala na przesyłanie cyfrowych sygnałów audio za pomocą światłowodów. Kabel światłowodowy jest w stanie przesyłać dane szybko i z minimalnymi stratami sygnału, co czyni go idealnym rozwiązaniem w przypadku przesyłania audio wysokiej jakości, takiego jak dźwięk przestrzenny czy sygnał bezstratny. Przykłady zastosowania kabla TOSLINK obejmują połączenia między odtwarzaczami Blu-ray, telewizorami i systemami audio, co zapewnia czysty dźwięk. Dobre praktyki branżowe zalecają korzystanie z kabli światłowodowych w zastosowaniach, gdzie istotna jest jakość dźwięku oraz minimalizacja zakłóceń elektromagnetycznych. Dodatkowo, kable światłowodowe są odporne na wpływ zakłóceń zewnętrznych, co jest istotne w środowiskach z dużą ilością urządzeń elektronicznych.

Pytanie 37

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 38

Podczas podłączania czujnika ruchu typu NC do panelu alarmowego w konfiguracji 3EOL/NC, konieczne jest umieszczenie w tym czujniku, odpowiednio podłączonych, trzech

A. fototranzystorów
B. diody
C. kondensatorów
D. rezystorów
Podłączenie czujki ruchu typu NC (normalnie zamknięty) w konfiguracji 3EOL/NC wymaga zastosowania odpowiednich rezystorów, które są kluczowe dla zapewnienia poprawnej pracy systemu alarmowego. W przypadku czujek ruchu, rezystory służą do monitorowania stanu obwodu, co pozwala na wykrycie sabotażu oraz sygnalizację alarmu w momencie, gdy czujka jest aktywowana. Standardowo w tej konfiguracji stosuje się rezystory o wartości 1kΩ dla każdego z trzech kanałów, co umożliwia efektywne zbalansowanie systemu oraz dostarczenie informacji o ewentualnych uszkodzeniach. Dobrą praktyką jest również stosowanie rezystorów w odpowiednich wartościach, aby uniknąć fałszywych alarmów oraz zapewnić stabilność działania czujki w różnych warunkach środowiskowych. W praktyce, zastosowanie rezystorów zwiększa niezawodność systemów alarmowych, co jest kluczowe w kontekście ochrony obiektów.

Pytanie 39

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 40

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.