Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik teleinformatyk
  • Kwalifikacja: INF.07 - Montaż i konfiguracja lokalnych sieci komputerowych oraz administrowanie systemami operacyjnymi
  • Data rozpoczęcia: 2 lutego 2026 13:38
  • Data zakończenia: 2 lutego 2026 13:58

Egzamin niezdany

Wynik: 14/40 punktów (35,0%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Aby zrealizować ręczną konfigurację interfejsu sieciowego w systemie LINUX, należy wykorzystać komendę

A. ipconfig
B. ifconfig
C. route add
D. eth0
Odpowiedź 'ifconfig' jest poprawna, ponieważ jest to klasyczne polecenie używane w systemach Linux do konfigurowania i zarządzania interfejsami sieciowymi. Umożliwia ono nie tylko wyświetlenie szczegółowych informacji o aktualnych ustawieniach interfejsów, takich jak adres IP, maska podsieci czy stan interfejsu, ale także pozwala na zmianę tych ustawień. Przykładem użycia może być wydanie polecenia 'ifconfig eth0 192.168.1.10 netmask 255.255.255.0 up', które ustawia adres IP dla interfejsu eth0. Pomimo że 'ifconfig' był standardowym narzędziem przez wiele lat, od czasu wprowadzenia narzędzia 'ip' w pakiecie iproute2, zaleca się używanie polecenia 'ip' do zarządzania interfejsami sieciowymi. Niemniej jednak, 'ifconfig' pozostaje w użyciu w wielu systemach oraz w starszych instrukcjach i dokumentacjach, co czyni go istotnym elementem wiedzy o administracji sieciami w systemach Linux.

Pytanie 2

Jaką rolę należy zainstalować na serwerze, aby umożliwić centralne zarządzanie stacjami roboczymi w sieci obsługiwanej przez Windows Serwer?

A. Usługi polityki sieciowej oraz dostępu do sieci
B. Usługi domenowe Active Directory
C. Dostęp zdalny
D. Serwer Aplikacji
Usługi domenowe Active Directory (AD DS) odgrywają kluczową rolę w centralnym zarządzaniu stacjami roboczymi w sieci opartej na systemach Windows. Active Directory umożliwia administratorom zarządzanie użytkownikami, komputerami oraz zasobami w sieci w sposób scentralizowany. Dzięki AD DS można tworzyć i zarządzać kontami użytkowników, grupami, a także implementować zasady bezpieczeństwa. Przykładowo, przy użyciu GPO (Group Policy Objects) można definiować zasady dotyczące bezpieczeństwa, które będą automatycznie stosowane do wszystkich stacji roboczych w domenie, co znacznie upraszcza zarządzanie i zwiększa bezpieczeństwo. Dodatkowo, zastosowanie Active Directory wspiera proces autoryzacji i uwierzytelniania użytkowników, co jest niezbędne w środowiskach korporacyjnych. W kontekście standardów branżowych, wykorzystanie AD DS jest zalecane przez Microsoft jako najlepsza praktyka w zakresie zarządzania infrastrukturą IT, co potwierdza jego powszechne przyjęcie w organizacjach na całym świecie.

Pytanie 3

Jakie protokoły są częścią warstwy transportowej w modelu ISO/OSI?

A. IP oraz IPX (Internet Protocol i Internetwork Packet Exchange)
B. ICMP oraz RIP (Internet Control Message Protocol i Routing Information Protocol)
C. ARP oraz RARP (Address Resolution Protocol i Reverse Address Resolution Protocol)
D. TCP oraz UDP (Transmission Control Protocol i User Datagram Protocol)
TCP (Transmission Control Protocol) oraz UDP (User Datagram Protocol) to dwa kluczowe protokoły warstwy transportowej w modelu ISO/OSI. TCP zapewnia niezawodną, połączeniową komunikację, co oznacza, że gwarantuje dostarczenie danych i ich kolejność. Jest powszechnie używany w zastosowaniach wymagających wysokiej niezawodności, jak przeglądarki internetowe, e-maile czy przesyłanie plików. Przykładem wykorzystania TCP jest protokół HTTP, który jest fundamentem przeglądania sieci. Z kolei UDP, będący protokołem bezpołączeniowym, pozwala na szybszą transmisję danych, co sprawia, że jest idealny do aplikacji, które mogą tolerować utratę pakietów, takich jak przesyłanie strumieniowe audio i wideo czy gry online. Oba protokoły są zgodne z dobrą praktyką projektowania systemów, gdyż są dostosowane do różnych potrzeb aplikacji, co sprawia, że warstwa transportowa jest elastyczna i wydajna.

Pytanie 4

Które z poleceń w systemie Windows umożliwia sprawdzenie zapisanych w pamięci podręcznej komputera tłumaczeń nazw DNS na odpowiadające im adresy IP?

A. ipconfig /renew
B. ipconfig /displaydns
C. ipconfig /release
D. ipconfig /flushdns
Wybór 'ipconfig /release' to nie jest najlepszy pomysł, bo to polecenie zwalnia adres IP, a nie ma nic wspólnego z pamięcią podręczną DNS. To może wprowadzać w błąd, bo można pomyśleć, że na pewno coś zmienia w kontekście monitorowania tej pamięci. Z kolei polecenie 'ipconfig /flushdns' też nie jest dobre, bo ono służy do czyszczenia pamięci, a nie do jej wyświetlania. Ważne jest, żeby znać różnice między tymi poleceniami, bo czyszczenie to jedno, a sprawdzanie zawartości to zupełnie co innego. A 'ipconfig /renew' to też nie jest odpowiednia odpowiedź, bo odnawia ono dzierżawę adresu IP z serwera DHCP. Wiele osób się gubi w tych poleceniach, bo wszystkie zaczynają się od 'ipconfig', ale każde z nich ma inne zastosowanie. Dlatego warto wiedzieć, jakie polecenie kiedy użyć, żeby rozwiązywanie problemów z siecią było skuteczniejsze.

Pytanie 5

Urządzenie sieciowe, które umożliwia dostęp do zasobów w sieci lokalnej innym urządzeniom wyposażonym w bezprzewodowe karty sieciowe, to

A. panel krosowy
B. koncentrator
C. punkt dostępu
D. przełącznik
Punkt dostępu, czyli access point, to mega ważny element każdej sieci bezprzewodowej. Dzięki niemu urządzenia z bezprzewodowymi kartami mogą się łączyć z siecią lokalną. W praktyce, to taki centralny hub, gdzie wszyscy klienci mogą znaleźć dostęp do różnych zasobów w sieci, jak Internet czy drukarki. Z mojego doświadczenia, punkty dostępu świetnie sprawdzają się w biurach, szkołach i miejscach publicznych, gdzie sporo osób potrzebuje dostępu do sieci naraz. Standardy jak IEEE 802.11 mówią o tym, jak te punkty powinny działać i jakie protokoły komunikacyjne wykorzystują. Żeby dobrze zamontować punkty dostępu, trzeba je odpowiednio rozmieszczać, tak by zminimalizować martwe strefy i mieć mocny sygnał, co jest istotne dla wydajności naszej sieci bezprzewodowej.

Pytanie 6

Jakie oprogramowanie odpowiada za funkcję serwera DNS w systemie Linux?

A. samba
B. bind
C. apache
D. vsftpd
Poprawna odpowiedź to bind, który jest popularnym serwerem DNS w systemach Linux. Bind, czyli Berkeley Internet Name Domain, to oprogramowanie, które implementuje protokół DNS (Domain Name System). Umożliwia to rozwiązywanie nazw domenowych na adresy IP, co jest kluczowe dla funkcjonowania internetu. Bind jest skonfigurowany do pracy zarówno jako serwer nazw autoritarny, jak i serwer rekurencyjny, co oznacza, że może odpowiadać na zapytania o nazwę domeny i jednocześnie przekazywać zapytania do innych serwerów DNS w celu uzyskania odpowiedzi. Przykładowo, gdy użytkownik wpisuje adres www.example.com w przeglądarce, serwer DNS wykorzystujący bind przekształca tę nazwę w odpowiedni adres IP, co pozwala na nawiązanie połączenia z właściwym serwerem. Bind jest zgodny z różnymi standardami, w tym RFC 1035, co czyni go niezawodnym narzędziem w zarządzaniu nazwami domenowymi. Dobrą praktyką jest regularne aktualizowanie konfiguracji serwera DNS oraz monitorowanie jego działania, aby zapewnić bezpieczeństwo i optymalną wydajność.

Pytanie 7

Do właściwości pojedynczego konta użytkownika w systemie Windows Serwer zalicza się

A. maksymalna objętość profilu użytkownika
B. maksymalna objętość pulpitu użytkownika
C. numer telefonu, na który serwer ma oddzwonić w przypadku nawiązania połączenia telefonicznego przez tego użytkownika
D. maksymalna objętość pojedynczego pliku, który użytkownik może zapisać na dysku serwera
Odpowiedź dotycząca numeru telefonu, pod który ma oddzwonić serwer w przypadku nawiązania połączenia telefonicznego przez użytkownika, jest poprawna, ponieważ jedno z zadań systemu Windows Serwer to zarządzanie połączeniami użytkowników, w tym obsługa połączeń telefonicznych w ramach funkcji komunikacyjnych. W praktyce, szczególnie w środowiskach korporacyjnych, administratorzy mogą skonfigurować systemy, które umożliwiają użytkownikom nawiązywanie połączeń telefonicznych z serwerem poprzez VoIP (Voice over Internet Protocol), co wymaga zdefiniowania numerów telefonów w profilu użytkownika. Dobre praktyki w zarządzaniu kontami użytkowników sugerują, że każdy profil powinien być dokładnie skonfigurowany, aby odpowiadał potrzebom użytkowników, co może obejmować również integrację z systemami telefonicznymi. Warto wiedzieć, że w systemach opartych na Windows Serwer, takie funkcje są często zintegrowane z Active Directory, gdzie profile użytkowników można łatwo zarządzać i dostosowywać do wymogów organizacyjnych.

Pytanie 8

Aby stworzyć las w strukturze katalogowej AD DS (Active Directory Domain Services), konieczne jest zrealizowanie co najmniej

A. jednego drzewa domeny
B. trzech drzew domeny
C. czterech drzew domeny
D. dwóch drzew domeny
Błędne odpowiedzi opierają się na niepełnym zrozumieniu struktury Active Directory oraz roli lasów i drzew domeny. Zakładając, że do utworzenia lasu wymagana jest większa liczba drzew domeny, można mylnie sugerować, że każdy las musi mieć co najmniej dwa lub więcej drzew. W rzeczywistości, las to hierarchiczna struktura, w której może istnieć jedno lub więcej drzew, a każde drzewo może składać się z jednej lub wielu domen. Typowym błędem myślowym jest mylenie hierarchii lasów i drzew z koniecznością posiadania wielu drzew w każdej organizacji. W praktyce, większość małych i średnich organizacji może skutecznie zarządzać swoimi zasobami wykorzystując tylko jedno drzewo w lesie. Tworzenie dodatkowych drzew jest zazwyczaj uzasadnione tylko w przypadku specyficznych potrzeb, takich jak różnice w politykach bezpieczeństwa, wymagania dotyczące zarządzania użytkownikami lub potrzeba izolacji zasobów. Wprowadzenie zbyt wielu drzew domeny prowadzi do nadmiernej złożoności oraz trudności w administracji, co jest sprzeczne z najlepszymi praktykami. Stąd, odpowiedzi sugerujące więcej niż jedno drzewo, wyrażają mylne przekonanie o konieczności skomplikowanej struktury w każdej organizacji, co nie znajduje odzwierciedlenia w rzeczywistej architekturze AD DS.

Pytanie 9

Jaką klasę adresów IP reprezentuje publiczny adres 130.140.0.0?

A. Należy do klasy B
B. Należy do klasy A
C. Należy do klasy D
D. Należy do klasy C
Niepoprawne odpowiedzi zazwyczaj wynikają z pomyłek przy klasyfikacji adresów IP, co może wprowadzać zamieszanie. Klasa D to przykład - ona nie służy do normalnego adresowania, a do multicastingu. Czyli używa się jej do wysyłania danych do wielu odbiorców na raz. Klasa A, która obejmuje zakres od 1.0.0.0 do 126.255.255.255, to coś dla olbrzymich sieci. Używanie jej dla adresu 130.140.0.0 byłoby trochę bez sensu, bo ten adres jest za mały na klasę A. Klasa C, z kolei, to adresy od 192.0.0.0 do 223.255.255.255, które są dla mniejszych sieci i mają ograniczoną liczbę adresów (maksymalnie 256 hostów), więc 130.140.0.0 nie pasuje. Jak się ocenia klasę adresu IP, to trzeba zrozumieć, jakie są potrzeby sieci. Klasa B to taki złoty środek, bo łączy dobre zarządzanie z odpowiednią ilością adresów dla średnich organizacji. Jak się tego nie ogarnie, to łatwo o błędne ustawienia w sieci i problemy z połączeniem.

Pytanie 10

Protokół stworzony do nadzorowania oraz zarządzania urządzeniami w sieci, oparty na architekturze klient-serwer, w którym jeden menedżer kontroluje od kilku do kilkuset agentów to

A. SNMP (Simple Network Management Protocol)
B. SMTP (Simple Mail Transfer Protocol)
C. FTP (File Transfer Protocol)
D. HTTP (Hypertext Transfer Protocol)
HTTP, czyli Hypertext Transfer Protocol, jest protokołem używanym do przesyłania danych w sieci WWW. Służy głównie do komunikacji między przeglądarkami internetowymi a serwerami, a jego głównym celem jest dostarczanie treści, takich jak strony internetowe. Protokół ten nie ma zastosowania w monitorowaniu i zarządzaniu urządzeniami sieciowymi. SMTP, czyli Simple Mail Transfer Protocol, jest z kolei protokołem odpowiedzialnym za przesyłanie wiadomości e-mail. Jego funkcjonalność ogranicza się do zarządzania wiadomościami oraz ich dostarczania, co nie ma nic wspólnego z zarządzaniem i monitorowaniem urządzeń w sieci. FTP, czyli File Transfer Protocol, służy do przesyłania plików między komputerami w sieci, co również nie odnosi się do zarządzania urządzeniami sieciowymi. Wybór jednego z tych protokołów w kontekście monitorowania i zarządzania urządzeniami może wynikać z mylnego założenia, że każdy protokół sieciowy ma podobne funkcje, co jest nieprawdziwe. Protokół SNMP został zaprojektowany w celu efektywnego zarządzania urządzeniami sieciowymi, a inne protokoły mają zupełnie inne cele i zastosowania, co prowadzi do nieporozumień w zakresie ich funkcjonowania. Zrozumienie różnic między tymi protokołami jest kluczowe dla właściwego zarządzania infrastrukturą sieciową.

Pytanie 11

Jakie medium transmisyjne w sieciach LAN wskazane jest do używania w obiektach historycznych?

A. Kabel koncentryczny
B. Fale radiowe
C. Światłowód
D. Kabel typu "skrętka"
Fale radiowe są zalecanym medium transmisyjnym w zabytkowych budynkach ze względu na ich zdolność do omijania przeszkód fizycznych, takich jak grube mury czy elementy architektoniczne, które mogą utrudniać tradycyjnym kablom dostęp do miejsc, gdzie potrzebna jest infrastruktura sieciowa. Wykorzystanie technologii Wi-Fi, które działa na falach radiowych, jest praktycznym rozwiązaniem, ponieważ nie wymaga dużych modyfikacji budowlanych, co jest kluczowe w kontekście zachowania integralności zabytków. Dodatkowo, fale radiowe oferują elastyczność w instalacji, umożliwiając łatwą adaptację w miarę zmieniających się potrzeb użytkowników. Stosowanie systemów bezprzewodowych w takich lokalizacjach jest zgodne ze standardami branżowymi, które promują minimalne zakłócenia w strukturze obiektu. Przykładem zastosowania mogą być hotele w zabytkowych budynkach, gdzie bezprzewodowy dostęp do Internetu umożliwia gościom korzystanie z sieci bez ingerencji w zabytkowe elementy wystroju.

Pytanie 12

Jakie urządzenie pozwala na połączenie lokalnej sieci komputerowej z Internetem?

A. router.
B. hub.
C. switch.
D. driver.
Przełącznik, sterownik i koncentrator to urządzenia, które pełnią różne role w sieciach komputerowych, ale nie są odpowiednie do łączenia lokalnych sieci z Internetem. Przełącznik działa na drugiej warstwie modelu OSI, czyli warstwie łącza danych. Jego zadaniem jest przekazywanie ramek danych pomiędzy urządzeniami w tej samej sieci lokalnej, na podstawie adresów MAC. Przełącznik nie potrafi kierować ruchu do zewnętrznych sieci, dlatego nie może być użyty do bezpośredniego podłączenia do Internetu. Sterownik, z kolei, to oprogramowanie, które umożliwia komunikację między systemem operacyjnym a urządzeniem. Sterowniki są kluczowe do pracy sprzętu, ale nie mają zastosowania w kontekście łączenia sieci z Internetem. Koncentrator, będąc prostym urządzeniem sieciowym, działa jako punkt centralny dla połączeń w lokalnej sieci, ale nie analizuje ruchu ani nie podejmuje decyzji o trasowaniu danych. Jest on również ograniczony w porównaniu do przełączników, ponieważ przesyła wszystkie dane do wszystkich podłączonych urządzeń, co może prowadzić do kolizji danych i obniżenia wydajności sieci. W kontekście projektowania sieci, nieprawidłowe zrozumienie ról różnych urządzeń może prowadzić do wyboru niewłaściwych rozwiązań, co w efekcie wpływa na wydajność i bezpieczeństwo sieci. Aby prawidłowo zbudować infrastrukturę sieciową, kluczowe jest zrozumienie, jakie urządzenie najlepiej odpowiada na konkretne potrzeby, w tym przypadków, w których niezbędne jest połączenie z Internetem.

Pytanie 13

Jakiego elementu pasywnego sieci należy użyć do połączenia okablowania ze wszystkich gniazd abonenckich z panelem krosowniczym umieszczonym w szafie rack?

A. Organizer kabli
B. Adapter LAN
C. Przepust szczotkowy
D. Kabel połączeniowy
Wybór niewłaściwego elementu pasywnego do podłączenia okablowania z gniazd abonenckich do panelu krosowniczego może prowadzić do poważnych problemów w funkcjonowaniu sieci. Organizery kabli, mimo że są użyteczne w porządkowaniu okablowania, nie pełnią funkcji aktywnego połączenia sygnału między urządzeniami. Ich rola polega na utrzymaniu porządku i struktury w instalacjach, co jest istotne, ale samo w sobie nie zapewnia transmisji danych. Adapter LAN, z drugiej strony, służy do konwersji sygnałów między różnymi typami połączeń, ale nie jest idealnym rozwiązaniem do podłączania gniazd abonenckich do paneli krosowniczych. Przepust szczotkowy, choć może ułatwiać przeprowadzenie kabli przez otwory w szafach rackowych, również nie stanowi elementu, który realizowałby połączenia. Powoduje to, iż jego użycie w tym kontekście nie zapewnia efektywnej komunikacji sieciowej. Zrozumienie roli i specyfiki każdego z tych elementów jest kluczowe dla budowy stabilnych i wydajnych sieci, a podejmowanie decyzji bez właściwej wiedzy technicznej może prowadzić do obniżenia jakości usług sieciowych oraz ich niezawodności.

Pytanie 14

Które z poniższych urządzeń sieciowych umożliwia segmentację sieci na poziomie warstwy 3 modelu OSI?

A. Repeater (regenerator sygnału)
B. Router
C. Punkt dostępowy (Access Point)
D. Switch
Wiele osób myli funkcje podstawowych urządzeń sieciowych, co prowadzi do błędnych założeń dotyczących segmentacji. <strong>Switch</strong> działa głównie w warstwie drugiej modelu OSI, czyli warstwie łącza danych. Jego głównym zadaniem jest przełączanie ramek w obrębie jednej sieci lokalnej (VLAN), a nie segmentacja na poziomie IP. Co prawda, istnieją switche warstwy trzeciej, które potrafią segmentować ruch na poziomie sieciowym, ale standardowo przyjmuje się, że switch nie jest urządzeniem do segmentacji warstwy trzeciej. <strong>Repeater</strong> to urządzenie jeszcze prostsze – działa w warstwie pierwszej i służy tylko do wzmacniania sygnału, bez jakiejkolwiek analizy czy rozdzielania ruchu. Nie wprowadza żadnej segmentacji ani logiki sieciowej. <strong>Punkt dostępowy</strong> (Access Point) odpowiada za umożliwienie urządzeniom bezprzewodowym dołączenie do sieci lokalnej, również operuje na niższych warstwach (głównie warstwa druga i warstwa fizyczna). Nie segmentuje ruchu IP, przekazuje jedynie sygnał dalej do sieci przewodowej. Typowym błędem jest mylenie funkcji tych urządzeń, zwłaszcza gdy w praktyce wiele z nich bywa zintegrowanych w jednym sprzęcie domowym (np. router Wi-Fi z wbudowanym switchem i access pointem). Jednak w kontekście profesjonalnych sieci, każde z tych urządzeń ma jasno określoną rolę i tylko router (lub zaawansowany switch L3) umożliwia segmentację na poziomie warstwy trzeciej. Z mojego doświadczenia wynika, że rozumienie tych różnic jest kluczowe przy projektowaniu wydajnej i bezpiecznej infrastruktury sieciowej, bo pomyłki na tym etapie mogą prowadzić do poważnych problemów z bezpieczeństwem, wydajnością czy zarządzaniem ruchem.

Pytanie 15

Aby serwer DNS mógł poprawnie przekształcać nazwy domenowe na adresy IPv6, konieczne jest skonfigurowanie rekordu

A. MX
B. A
C. AAAA
D. CNAME
Wybór rekordu MX, CNAME czy A zamiast AAAA do odwzorowania nazw domen na adresy IPv6 to spora pomyłka. Rekord MX to przecież serwery pocztowe dla danej domeny, więc w ogóle się nie nadaje do adresów IP. Z kolei rekordy CNAME służą do aliasowania nazw, co też nie ma sensu w tym kontekście. Rekord A również nie jest pomocny, bo on działa tylko z IPv4. Zrozumienie tych różnic jest kluczowe, bo brak odpowiedniego rekordu AAAA w DNS sprawi, że użytkownicy z IPv6 nie będą mogli się połączyć z serwisem. To częsty błąd – myślenie, że wszystkie rekordy DNS mają takie same zastosowania. W rzeczywistości każdy typ rekordu ma swój cel, a korzystanie z nich na właściwy sposób to podstawa w administrowaniu siecią.

Pytanie 16

Jakie polecenie w systemie Windows pokazuje tablicę routingu hosta?

A. ipconfig /renew
B. netstat - r
C. netstat -n
D. ipconfig /release
Wybierając 'ipconfig /renew', użytkownik wprowadza polecenie, które odnawia adres IP przypisany do interfejsu sieciowego za pośrednictwem protokołu DHCP. Choć jest to istotne w kontekście dynamicznego zarządzania adresami IP, nie ma to związku z wyświetlaniem tabeli routingu, gdyż to narzędzie nie dostarcza informacji o trasach, a jedynie odświeża adres IP. Z kolei 'netstat -n' to polecenie, które wyświetla aktywne połączenia sieciowe oraz ich stany, ale nie obejmuje tabeli routingu. Użytkownik może myśleć, że poprzez monitorowanie połączeń uzyska informacje o trasach, co jest błędne, ponieważ informacje te dotyczą jedynie aktualnych sesji komunikacyjnych. Ostatecznie, 'ipconfig /release' również nie dotyczy tabeli routingu, ponieważ jego funkcją jest zwolnienie aktualnie przypisanego adresu IP. Często mylone jest pojęcie zarządzania IP z zarządzaniem trasami, co prowadzi do nieporozumień. Użytkownicy powinni zrozumieć, że polecenia związane z konfiguracją DHCP różnią się od tych, które dotyczą analizy i zarządzania trasami w sieci. W kontekście zarządzania siecią, ważne jest właściwe rozróżnianie funkcji poszczególnych poleceń, aby efektywnie diagnozować i optymalizować działanie sieci.

Pytanie 17

Technologia oparta na architekturze klient-serwer, która umożliwia połączenie odległych komputerów w sieci poprzez szyfrowany tunel, nazywa się

A. VPN
B. WLAN
C. WAN
D. VLAN
WLAN (Wireless Local Area Network) to technologia bezprzewodowej sieci lokalnej, która umożliwia komunikację między urządzeniami w ograniczonym zasięgu, zazwyczaj w obrębie jednego budynku lub na niewielkim terenie. Jednak nie oferuje ona możliwości tworzenia szyfrowanych tuneli, co jest kluczowe w przypadku zdalnego dostępu do zasobów. WAN (Wide Area Network) to sieć, która łączy komputery na dużych odległościach, ale nie koncentruje się na zapewnieniu bezpiecznego połączenia przez szyfrowanie. VLAN (Virtual Local Area Network) dzieli sieć lokalną na mniejsze segmenty, co poprawia zarządzanie ruchem, ale również nie realizuje szyfrowania i tworzenia tuneli, jak ma to miejsce w przypadku VPN. Typowym błędem myślowym jest mylenie tych technologii z VPN, które jest ukierunkowane na bezpieczeństwo danych i zdalny dostęp. Zrozumienie różnic między tymi pojęciami jest kluczowe dla efektywnego zarządzania sieciami oraz ochrony informacji w organizacjach.

Pytanie 18

Aby chronić lokalną sieć komputerową przed atakami typu Smurf pochodzącymi z Internetu, należy zainstalować oraz właściwie skonfigurować

A. bezpieczną przeglądarkę internetową
B. skaner antywirusowy
C. zapory ogniowej
D. oprogramowanie antyspamowe
Wybór oprogramowania antyspamowego, skanera antywirusowego lub bezpiecznej przeglądarki nie jest adekwatnym rozwiązaniem w kontekście ochrony lokalnej sieci przed atakami typu Smurf. Oprogramowanie antyspamowe jest skoncentrowane na blokowaniu niechcianej korespondencji e-mailowej i nie ma wpływu na ruch sieciowy, który jest kluczowy w atakach DDoS, do których należy Smurf. Skanery antywirusowe są skuteczne w wykrywaniu i usuwaniu złośliwego oprogramowania, ale nie zabezpieczają infrastruktury sieciowej przed nadmiernym ruchem. Atak Smurf polega na rozsyłaniu dużej ilości zapytań ping, które mogą prowadzić do przeciążenia sieci, co oznacza, że ochrona przed takim atakiem wymaga odpowiednich mechanizmów kontroli ruchu, które nie są związane z funkcjonalnościami skanera antywirusowego. Bezpieczna przeglądarka stron WWW ma na celu ochronę użytkowników podczas przeglądania internetu, ale nie ma żadnego wpływu na ruch sieciowy wewnętrzny, ani na zabezpieczenie przed atakami, które mogą wykorzystać luki w konfiguracji sieci. Właściwym rozwiązaniem jest wdrożenie zapory ogniowej, która będzie w stanie adekwatnie monitorować i kontrolować ruch w sieci, a także blokować niebezpieczne pakiety, co jest zgodne z najlepszymi praktykami w zakresie bezpieczeństwa sieciowego.

Pytanie 19

Do ilu sieci należą komputery o podanych w tabeli adresach IP i standardowej masce sieci?

komputer 1172.16.15.5
komputer 2172.18.15.6
komputer 3172.18.16.7
komputer 4172.20.16.8
komputer 5172.20.16.9
komputer 6172.21.15.10
A. Dwóch.
B. Sześciu.
C. Jednej.
D. Czterech.
Wybierając jedną z pozostałych odpowiedzi, można popaść w błąd związany z interpretacją adresacji IP i stosowania masek podsieci. Niektórzy mogą myśleć, że komputery o adresach IP 172.16.1.10, 172.18.2.20, 172.20.3.30 i 172.21.4.40 należą do mniej niż czterech różnych sieci, co jest nieprawidłowe. Przy masce 255.255.0.0, pierwsze dwa oktety adresu IP służą do identyfikacji sieci, co oznacza, że każdy z kombinowanych adresów IP z różnych drugich oktetów, takich jak 16, 18, 20 i 21, stanowi odrębną sieć. Często występującym błędem jest pomijanie znaczenia drugiego oktetu w adresie IP, co prowadzi do nieprawidłowego wnioskowania o przynależności do sieci. W praktyce, administratorzy sieci muszą być świadomi, że każdy unikalny adres sieciowy, wynikający z połączenia pierwszych dwóch oktetów, oznacza oddzielną sieć. Dodatkowo, przy projektowaniu sieci, kluczowe jest, aby zrozumieć zasady przydzielania adresów IP, co pozwala na efektywne zarządzanie zasobami w sieciach komputerowych. Zatem wybór odpowiedzi wskazującej na mniejszą liczbę sieci jest prostym błędem w logice adresacji IP oraz interpretacji używanych masek podsieci.

Pytanie 20

Atak DDoS (ang. Distributed Denial of Service) na serwer spowoduje

A. zatrzymywanie pakietów danych w sieci.
B. przeciążenie aplikacji dostarczającej określone informacje.
C. zbieranie danych o atakowanej infrastrukturze sieciowej.
D. zmianę pakietów transmisyjnych w sieci.
Wiele osób może mylnie sądzić, że atak DDoS polega na podmianie pakietów przesyłanych przez sieć. Jednakże podmiana pakietów odnosi się do technik, takich jak ataki typu Man-in-the-Middle, gdzie atakujący przechwytuje i modyfikuje komunikację między dwoma stronami, co jest zupełnie innym zjawiskiem. Podczas ataku DDoS celem jest przeciążenie zasobów, a nie ich modyfikacja. Również odpowiedź sugerująca zbieranie informacji na temat atakowanej sieci myli cel i techniki ataku; atak DDoS nie koncentruje się na zbieraniu danych, lecz na wywoływaniu frustracji użytkowników przez niedostępność usługi. Natomiast przechwytywanie pakietów sieciowych również jest techniką używaną w atakach, ale nie jest to charakterystyczne dla ataków DDoS. Atak DDoS cechuje się masowym wysyłaniem żądań do serwera, co prowadzi do jego zablokowania. Kluczowe jest zrozumienie różnicy między różnymi rodzajami ataków, gdyż błędne interpretacje mogą prowadzić do nieefektywnych strategii obronnych. Właściwe zabezpieczenie przed atakami DDoS wymaga zastosowania odpowiednich narzędzi oraz procedur, takich jak wdrażanie limitów przepustowości oraz korzystanie z usług ochrony DDoS, które mogą analizować ruch w czasie rzeczywistym i filtrujący podejrzane zapytania.

Pytanie 21

Jakie polecenie pozwoli na wyświetlenie ustawień interfejsu sieciowego w systemie Linux?

A. iproute show
B. ipaddr show
C. ipconfig
D. traceroute
Odpowiedzi takie jak 'ipconfig', 'traceroute' i 'iproute show' to powszechne źródła nieporozumień, które mogą prowadzić do błędnych wniosków w kontekście administracji siecią w systemie Linux. 'ipconfig' jest poleceniem, które działa w systemach Windows i służy do wyświetlania konfiguracji sieciowej, co może wprowadzać w błąd użytkowników, którzy są przyzwyczajeni do pracy w tym środowisku. W systemie Linux zamiast tego używa się polecenia 'ip addr' lub 'ip addr show', które jest bardziej wszechstronne i dostarcza szczegółowych informacji o konfiguracji interfejsów. 'Traceroute' to narzędzie do diagnozowania tras pakietów w sieci, które pokazuje, przez jakie węzły przechodzą dane, ale nie dostarcza informacji o konfiguracji lokalnych interfejsów sieciowych, co czyni je nieodpowiednim w tym kontekście. 'Iproute show' to nieco bliższe polecenie, ale również niepoprawne w tym przypadku, ponieważ 'iproute' dotyczy bardziej ogólnych informacji o routingu i nie wyświetla dokładnych informacji o samych interfejsach. Typowym błędem myślowym jest mylenie funkcji różnych poleceń, co może prowadzić do nieefektywnego rozwiązywania problemów sieciowych. Dlatego kluczowe jest zrozumienie, jakie narzędzia są dostępne i jak je prawidłowo wykorzystać w kontekście administracji siecią w systemie Linux.

Pytanie 22

W wtyczce 8P8C, zgodnie z normą TIA/EIA-568-A, w sekwencji T568A, para przewodów biało-pomarańczowy/pomarańczowy jest przypisana do styków

A. 3 i 5
B. 4 i 6
C. 3 i 6
D. 1 i 2
Odpowiedź wskazująca na styki 3 i 6 dla pary przewodów biało-pomarańczowy i pomarańczowy jest poprawna, ponieważ zgodnie z normą TIA/EIA-568-A, w standardzie T568A to właśnie te styki są przypisane do tej pary. W standardzie T568A, para biało-pomarańczowy/pomarańczowy zajmuje miejsca odpowiednio na stykach 3 i 6, co jest kluczowe dla prawidłowego przesyłania danych w sieciach Ethernet. W praktycznych zastosowaniach, poprawne podłączenie jest niezbędne dla zachowania pełnej funkcjonalności sieci, a także dla minimalizacji zakłóceń. Stosowanie właściwych standardów przy instalacji okablowania strukturalnego nie tylko zwiększa efektywność transmisji, ale także ułatwia diagnostykę ewentualnych problemów w przyszłości. Prawidłowe wykonanie połączeń zgodnych z T568A jest istotne dla zapewnienia stabilności i jakości przesyłanej sygnały.

Pytanie 23

Funkcja roli Serwera Windows 2012, która umożliwia obsługę ruterów NAT oraz ruterów BGP w sieciach lokalnych, to

A. serwer proxy aplikacji sieci Web
B. przekierowanie HTTP
C. Direct Access oraz VPN (RAS)
D. routing
Rozważając dostępne odpowiedzi, warto zauważyć, że Direct Access i VPN (RAS) dotyczą zdalnego dostępu do sieci, a nie zarządzania ruchem między różnymi sieciami. Usługi te są używane do zapewnienia zdalnym użytkownikom bezpiecznego połączenia z siecią lokalną, ale nie obejmują zarządzania trasami czy translacją adresów, które są kluczowe dla routingu. Przekierowanie HTTP to technika stosowana w kontekście sieci web, która dotyczy przesyłania ruchu webowego na inny adres URL, co nie ma związku z routingiem ani z funkcjami NAT. Z kolei serwer proxy aplikacji sieci Web działa jako pośrednik w komunikacji między klientem a serwisem internetowym, jednak nie jest to równoznaczne z routowaniem czy obsługą sieci lokalnych. W przypadku błędnych odpowiedzi często pojawia się nieporozumienie dotyczące podstawowych funkcji i zastosowań różnych technologii sieciowych, co może prowadzić do mylnych wniosków. Kluczowe jest zrozumienie, że routing to nie tylko dążenie do połączenia sieci, ale także zarządzanie tym połączeniem w sposób, który zapewnia efektywność i bezpieczeństwo, co jest fundamentalne w projektowaniu sieci.

Pytanie 24

Kable światłowodowe nie są często używane w lokalnych sieciach komputerowych z powodu

A. niski poziom odporności na zakłócenia elektromagnetyczne.
B. niskiej wydajności.
C. znaczących strat sygnału podczas transmisji.
D. wysokich kosztów elementów pośredniczących w transmisji.
Wybór odpowiedzi dotyczących niskiej przepustowości oraz dużych strat sygnału transmisyjnego w kontekście kabli światłowodowych jest nieuzasadniony, ponieważ te technologie oferują znacznie wyższą wydajność w porównaniu do tradycyjnych kabli miedzianych. Kable światłowodowe osiągają przepustowości rzędu gigabitów na sekundę, a w przypadku światłowodów wielomodowych i jednomodowych, możliwości te mogą sięgać terabitów na sekundę, co czyni je idealnym wyborem do zastosowań wymagających dużych transferów danych. Ponadto, straty sygnału są minimalne, a w rzeczywistych warunkach, przy odpowiedniej instalacji, światłowody mogą przesyłać sygnał na odległości przekraczające 100 kilometrów bez potrzeby stosowania wzmacniaczy. Odpowiedź odnosząca się do małej odporności na zakłócenia elektromagnetyczne również nie jest poprawna, ponieważ kable światłowodowe są naturalnie odporne na tego typu zakłócenia. Wykorzystanie światłowodów eliminowało problemy z zakłóceniami, które są częstym problemem w przypadku kabli miedzianych, szczególnie w środowiskach o dużym poziomie zakłóceń elektromagnetycznych. W związku z powyższym, kluczowym ograniczeniem stosowania światłowodów w lokalnych sieciach komputerowych są koszty związane z infrastrukturą i urządzeniami wspierającymi, a nie techniczne ograniczenia samej technologii światłowodowej.

Pytanie 25

Jakiego protokołu dotyczy port 443 TCP, który został otwarty w zaporze sieciowej?

A. DNS
B. HTTPS
C. NNTP
D. SMTP
Zrozumienie portów i przypisanych do nich protokołów jest kluczowe w kontekście zarządzania siecią i bezpieczeństwa. W przypadku odpowiedzi związanych z SMTP, NNTP oraz DNS, ważne jest, aby zrozumieć, do jakich portów są przypisane te protokoły. SMTP (Simple Mail Transfer Protocol) używa portu 25, który jest wykorzystywany do przesyłania wiadomości e-mail. Z kolei NNTP (Network News Transfer Protocol) korzysta z portu 119, który służy do przesyłania wiadomości w grupach dyskusyjnych. Port 53 jest zarezerwowany dla DNS (Domain Name System), który przetwarza zapytania dotyczące nazw domenowych i ich adresów IP. Często zdarza się, że osoby mylnie kojarzą porty z protokołami, co prowadzi do nieprawidłowych wniosków. Kluczowym błędem jest utożsamianie portu 443 z innymi protokołami, które mają zupełnie inne zastosowanie i nie są związane z przesyłaniem bezpiecznych danych. Niewłaściwe przypisanie portu do protokołu może prowadzić do nieefektywnego zarządzania siecią i problemów z bezpieczeństwem, dlatego ważne jest, aby zawsze odnosić się do standardowych przyporządkowań portów zgodnych z dokumentacją IANA (Internet Assigned Numbers Authority). W erze, gdy bezpieczeństwo danych jest kluczowe, wiedza na temat odpowiednich protokołów i portów jest niezbędna dla każdego specjalisty w dziedzinie IT.

Pytanie 26

Sieć o adresie IP 172.16.224.0/20 została podzielona na cztery podsieci z maską 22-bitową. Który z poniższych adresów nie należy do żadnej z tych podsieci?

A. 172.16.228.0
B. 172.16.236.0
C. 172.16.240.0
D. 172.16.232.0
Adres 172.16.240.0 nie jest adresem jednej z podsieci stworzonych z sieci 172.16.224.0/20. Przy podziale na cztery podsieci z maską /22, każda z podsieci ma 1024 adresy (2^(32-22)), co daje 1022 dostępne adresy hostów. Pierwsza podsieć zaczyna się od 172.16.224.0 i kończy na 172.16.227.255, druga od 172.16.228.0 do 172.16.231.255, trzecia od 172.16.232.0 do 172.16.235.255, a czwarta od 172.16.236.0 do 172.16.239.255. Adres 172.16.240.0 wykracza poza zakres ostatniej podsieci. Zrozumienie podziału sieci IP w kontekście CIDR (Classless Inter-Domain Routing) jest kluczowe dla efektywnego zarządzania adresami IP w dużych środowiskach sieciowych. W praktyce, narzędzia takie jak kalkulatory CIDR ułatwiają obliczenia i wizualizację podsieci, co jest nieocenione w codziennych zadaniach administratorów sieci.

Pytanie 27

Kabel skręcany o czterech parach, w którym każdy z przewodów jest otoczony ekranem foliowym, a ponadto wszystkie pary są dodatkowo zabezpieczone siatką, to kabel

A. SF/UTP
B. S/FTP
C. F/UTP
D. U/UTP
Każda z pozostałych odpowiedzi ma swoje specyficzne cechy, które nie odpowiadają dokładnie opisanej specyfikacji kabla. Odpowiedź SF/UTP oznacza kabel, w którym zewnętrzny ekran jest wspólny dla wszystkich par, ale nie ma osobnych ekranów dla każdej z par. To sprawia, że jego odporność na zakłócenia jest niższa w porównaniu do S/FTP. F/UTP, z kolei, oznacza kabel z ekranem folii dla całego układu par, a brak ekranowania dla poszczególnych par może prowadzić do większego ryzyka zakłóceń, zwłaszcza w gęsto zabudowanych środowiskach. U/UTP to najprostsza konstrukcja bez ekranowania w ogóle, co czyni go najmniej odpornym na zakłócenia elektromagnetyczne. Stosowanie kabli U/UTP w środowiskach o wysokim poziomie zakłóceń może prowadzić do degradacji jakości sygnału i zwiększonej liczby błędów przy transmisji danych. Typowe błędy myślowe, które mogą prowadzić do wyboru nieodpowiednich kabli, obejmują niedocenienie wpływu zakłóceń elektromagnetycznych oraz nieznajomość wymagań dotyczących konkretnego zastosowania. Warto zatem zapoznać się z wymaganiami sieci, aby dobrać odpowiedni kabel, który zapewni stabilne połączenie i wysoką wydajność transmisji danych.

Pytanie 28

Do zdalnego administrowania stacjami roboczymi nie używa się

A. programu UltraVNC
B. programu TeamViewer
C. programu Wireshark
D. pulpitu zdalnego
Program Wireshark to narzędzie służące do analizy ruchu sieciowego, a nie do zdalnego zarządzania stacjami roboczymi. Umożliwia on przechwytywanie i analizowanie pakietów danych przesyłanych w sieci, co jest kluczowe w diagnostyce problemów sieciowych oraz zabezpieczaniu infrastruktury IT. Wireshark pozwala na zrozumienie ruchu sieciowego, wykrywanie nieprawidłowości czy analizowanie wydajności, jednak jego funkcjonalność nie obejmuje zdalnego dostępu do komputerów. W praktyce, narzędzie to jest używane przez administratorów sieci, specjalistów ds. bezpieczeństwa oraz inżynierów do monitorowania i analizowania komunikacji w sieci. Przykładowo, przy użyciu Wireshark można zidentyfikować potencjalne ataki, sprawdzić, jakie dane są przesyłane między urządzeniami, a także analizować protokoły sieciowe. W kontekście dobrych praktyk, korzystanie z Wiresharka powinno odbywać się zgodnie z zasadami etyki zawodowej oraz przepisami prawa, szczególnie w odniesieniu do prywatności użytkowników.

Pytanie 29

W lokalnej sieci stosowane są adresy prywatne. Aby nawiązać połączenie z serwerem dostępnym przez Internet, trzeba

A. ustawić sieci wirtualne w obrębie sieci lokalnej
B. dodać drugą kartę sieciową z adresem publicznym do każdego hosta
C. skonfigurować translację NAT na ruterze brzegowym lub serwerze
D. przypisać adres publiczny jako dodatkowy adres karty sieciowej na każdym hoście
Wszystkie niepoprawne odpowiedzi odnoszą się do koncepcji, które nie są zgodne z zasadami działania adresacji IP oraz praktykami zarządzania siecią. Konfiguracja sieci wirtualnych w sieci lokalnej nie ma wpływu na komunikację z Internetem, ponieważ VLSM (Variable Length Subnet Mask) i sieci VLAN (Virtual Local Area Network) służą jedynie do strukturyzacji lokalnej sieci, a nie do umożliwienia dostępu do Internetu. Ponadto, przypisanie adresu publicznego jako drugiego adresu karty sieciowej na każdym hoście jest niepraktyczne i może prowadzić do konfliktów adresowych, a także zwiększa ryzyko bezpieczeństwa, ponieważ każdy host byłby bezpośrednio dostępny z Internetu. Dodatkowo, dodawanie drugiej karty sieciowej z adresem publicznym do każdego hosta narusza zasady efektywnego zarządzania adresami IP, ponieważ publiczne adresy są ograniczone i kosztowne, a ich użycie na każdym urządzeniu w sieci lokalnej jest nieekonomiczne. Typowym błędem myślowym jest założenie, że każdy host musi mieć unikalny adres publiczny, co jest sprzeczne z zasadami NAT, które umożliwiają wielu urządzeniom korzystanie z jednego adresu publicznego. Całościowe podejście do projektowania sieci powinno obejmować NAT jako kluczowy element, co pozwala na optymalne wykorzystanie zasobów adresacji IP, jak również zwiększa bezpieczeństwo dostępu do zasobów w Internecie.

Pytanie 30

Jakie jest adres rozgłoszeniowy (broadcast) dla hosta z adresem IP 192.168.35.202 oraz 26-bitową maską?

A. 192.168.35.0
B. 192.168.35.255
C. 192.168.35.63
D. 192.168.35.192
Adresy 192.168.35.63, 192.168.35.0 oraz 192.168.35.192 są błędnymi odpowiedziami, ponieważ wynikają z niepoprawnego zrozumienia struktury adresacji IP oraz zasad obliczania adresu rozgłoszeniowego. Rozpoczynając od adresu 192.168.35.0, który jest adresem sieciowym, należy zauważyć, że nie może być użyty jako adres rozgłoszeniowy, ponieważ jest to adres identyfikujący sieć, a nie konkretne urządzenie. Kolejnym błędnym podejściem jest wybranie adresu 192.168.35.192; ten adres jest pierwszym adresem, który może być przypisany do hostów w tej podsieci, a zatem nie może być adresem rozgłoszeniowym. Ostatecznie, 192.168.35.63 nie jest poprawnym adresem rozgłoszeniowym, gdyż mieści się w niewłaściwym zakresie, który wynika z zastosowanej maski. Właściwy sposób obliczania adresów IP wymaga staranności oraz znajomości koncepcji dotyczących podziału sieci i adresowania. Mocna znajomość tych zasad jest kluczowa dla administratorów sieci, aby skutecznie zarządzać połączeniami i optymalizować ruch w sieci, co stanowi fundament dobrej praktyki w inżynierii sieciowej.

Pytanie 31

Na serwerze Windows została włączona usługa DHCP. W trakcie testowania sieci zauważono, że niektóre stacje robocze odbierają adresy IP spoza puli, która została określona w usłudze. Co może być tego przyczyną?

A. Sieć LAN jest przeciążona
B. W sieci działa inny, dodatkowy serwer DHCP
C. Interfejsy sieciowe na komputerach klienckich mają wyłączoną autokonfigurację
D. Na serwerze zostały nieprawidłowo ustawione opcje zapory sieciowej
Odpowiedź dotycząca dodatkowego serwera DHCP jest prawidłowa, ponieważ w typowych konfiguracjach sieciowych jeden serwer DHCP jest odpowiedzialny za przydzielanie adresów IP w danym zakresie. Jeżeli w sieci znajduje się więcej niż jeden serwer DHCP, mogą one przydzielać adresy z różnych pul, co prowadzi do konfliktów adresów IP oraz sytuacji, w której stacje robocze otrzymują adresy spoza zdefiniowanej puli. Standardowa praktyka zaleca, aby w jednej sieci LAN istniał tylko jeden serwer DHCP, aby uniknąć takich problemów. W przypadku konieczności posiadania wielu serwerów DHCP, powinny one być odpowiednio skonfigurowane, aby współdzielić informacje o przydzielonych adresach i nie kolidować ze sobą. Dodatkowo ważne jest, aby w konfiguracji routerów i przełączników zastosować odpowiednie mechanizmy, takie jak DHCP Snooping, które pomagają zabezpieczyć sieć przed nieautoryzowanymi serwerami DHCP. Przykładem może być sytuacja w dużych biurach, gdzie zastosowanie dedykowanych VLAN-ów i centralnego serwera DHCP z odpowiednią konfiguracją może zoptymalizować zarządzanie adresacją IP.

Pytanie 32

Jakie oprogramowanie do wirtualizacji jest dostępne jako rola w systemie Windows Server 2019?

A. VMware
B. Hyper-V
C. Virtual PC
D. Virtual Box
Wybór VMware, Virtual PC i Virtual Box jako oprogramowania do wirtualizacji dostępnego w Windows Serwer 2019 wynika z pewnych nieporozumień co do charakterystyki i przeznaczenia tych rozwiązań. VMware to ogólny termin odnoszący się do różnych produktów wirtualizacyjnych tej firmy, z których wiele działa niezależnie od systemu Windows, co sprawia, że nie może być uznawane za rolę w samej platformie Windows Server 2019. Virtual PC, z kolei, to starsza technologia wirtualizacji stworzona przez Microsoft, która nie jest już rozwijana i nie oferuje funkcji dostępnych w nowoczesnych rozwiązaniach jak Hyper-V, co czyni ją mało praktycznym wyborem w kontekście nowoczesnych środowisk serwerowych. Virtual Box, stworzony przez Oracle, także nie jest zintegrowany z Windows Server 2019 w sposób, który pozwalałby na jego użycie jako roli systemowej. Wybór tych technologii może wynikać z braku zrozumienia ich funkcji oraz ograniczeń, które może prowadzić do nieoptymalnych decyzji w zakresie zarządzania infrastrukturą IT. Dla organizacji, które chcą zapewnić wysoką dostępność oraz efektywność operacyjną, kluczowe jest, aby w pełni zrozumieć różnice między tymi rozwiązaniami a Hyper-V. Ignorowanie tych różnic może prowadzić do problemów z wydajnością oraz trudności w zarządzaniu zasobami, co jest niezgodne z dobrymi praktykami zarządzania infrastrukturą IT.

Pytanie 33

Aby sprawdzić funkcjonowanie serwera DNS w systemach Windows Server, można wykorzystać narzędzie nslookup. Gdy w poleceniu podamy nazwę komputera, np. nslookup host.domena.com, nastąpi weryfikacja

A. strefy przeszukiwania wstecz
B. strefy przeszukiwania do przodu
C. aliasu przypisanego do rekordu adresu domeny
D. obu stref przeszukiwania, najpierw wstecz, a następnie do przodu
Odpowiedź dotycząca strefy przeszukiwania do przodu jest poprawna, ponieważ narzędzie nslookup, używane do testowania działania serwera DNS, najpierw wykonuje zapytania w kierunku strefy przeszukiwania do przodu. Oznacza to, że kiedy wpisujemy komendę nslookup z nazwą domeny, serwer DNS przekłada tę nazwę na adres IP, korzystając z bazy danych zawierającej mapowania nazw na adresy IP. To podejście jest zgodne z zasadami działania systemu DNS, gdzie pierwszym krokiem jest przetłumaczenie nazwy na adres, co jest kluczowe dla funkcjonowania wielu aplikacji sieciowych. Na przykład, gdy przeglądarka internetowa żąda dostępu do strony, jej działanie polega na najpierw ustaleniu adresu IP serwera, na którym znajduje się ta strona, co realizowane jest właśnie przez zapytania w strefie przeszukiwania do przodu. Dobrą praktyką jest także testowanie różnych rekordów DNS, takich jak A, AAAA czy CNAME, co może pomóc w diagnostyce problemów z połączeniem lub dostępnością usług sieciowych.

Pytanie 34

Jakie jest IP sieci, w której funkcjonuje host o adresie 192.168.176.125/26?

A. 192.168.176.64
B. 192.168.176.192
C. 192.168.176.0
D. 192.168.176.128
Rozważając inne odpowiedzi, warto zauważyć, że adres 192.168.176.0 odnosi się do pierwszej podsieci, jednak nie jest to poprawna odpowiedź w kontekście pytania, ponieważ dotyczy adresu sieci, a nie konkretnej podsieci, w której znajduje się host. W przypadku adresu 192.168.176.128, jest on również nieprawidłowy, ponieważ znajduje się poza zakresem podsieci 192.168.176.0/26. Adres ten jest częścią kolejnej podsieci, co prowadzi do błędnych wniosków o przynależności hosta do tej sieci. Adres 192.168.176.192 również nie jest poprawny, ponieważ znajduje się w dalszej podsieci, co wskazuje na brak zrozumienia zasady podziału adresów w sieciach IP. Często spotykanym błędem jest nieprawidłowe określenie, która podsieć jest używana, co prowadzi do niepoprawnego przypisania adresów IP. W kontekście standardów adresacji IP, zrozumienie maski podsieci oraz zakresu adresów jest kluczowe dla efektywnego projektowania i zarządzania sieciami lokalnymi. Warto pamiętać, że w przypadku CIDR, adresy podsieci są zdefiniowane przez pierwsze bity maski, co powinno być uwzględnione przy określaniu przynależności adresów IP do określonych podsieci.

Pytanie 35

Podłączając wszystkie elementy sieciowe do switcha, wykorzystuje się topologię fizyczną

A. gwiazdy
B. siatki
C. magistrali
D. pierścienia
Topologie siatki, pierścienia i magistrali to różne struktury organizacyjne sieci komputerowych, każda z własnymi zaletami i wadami. Siatka charakteryzuje się wieloma połączeniami między urządzeniami, co zapewnia redundancję, ale może być kosztowna i skomplikowana w implementacji. W przypadku topologii pierścienia dane krążą w jednym kierunku, co sprawia, że awaria jednego z urządzeń może zablokować całą sieć. Takie podejście wymaga dodatkowych mechanizmów, by zapewnić ciągłość działania, co często prowadzi do złożoności systemu. Z kolei magistrala, w której wszystkie urządzenia są podłączone do jednego przewodu, jest tania, ale jej wydajność spada z liczbą urządzeń, a awaria kabla oznacza przerwanie komunikacji dla wszystkich podłączonych do niego urządzeń. Wybór niewłaściwej topologii prowadzi do problemów z wydajnością, bezpieczeństwem i zarządzaniem siecią. Właściwe podejście do projektowania sieci powinno uwzględniać specyfikę zastosowania, wymagania dotyczące niezawodności oraz łatwości w utrzymaniu, co czyni topologię gwiazdy najbardziej odpowiednią w wielu współczesnych zastosowaniach.

Pytanie 36

Jaką maksymalną liczbę komputerów można zaadresować adresami IP w klasie C?

A. 252 komputery
B. 256 komputerów
C. 255 komputerów
D. 254 komputery
Adresy IP klasy C mają strukturę, która pozwala na podział sieci na mniejsze segmenty, co jest idealne w przypadku małych sieci lokalnych. Klasa C posiada 24 bity dla identyfikacji sieci i 8 bitów dla identyfikacji hostów. Wartość 2^8 daje nam 256 możliwych adresów dla hostów. Jednak z tych adresów należy odjąć dwa: jeden jest zarezerwowany dla adresu sieci, a drugi dla adresu rozgłoszeniowego (broadcast). Dlatego maksymalna liczba komputerów, które można zaadresować w sieci klasy C wynosi 254. W praktyce takie sieci są często stosowane w biurach oraz małych organizacjach, gdzie liczy się efektywne wykorzystanie dostępnych adresów IP. Umożliwia to łatwe zarządzanie urządzeniami, a także zwiększa bezpieczeństwo poprzez ograniczenie dostępu do pozostałych segmentów sieci. W branży IT, zgodnie z normami IETF, zaleca się staranne planowanie adresacji IP, aby uniknąć konfliktów i zapewnić płynność działania sieci.

Pytanie 37

Zestaw zasad do filtrowania ruchu w routerach to

A. NNTP (Network News Transfer Protocol)
B. ACL (Access Control List)
C. ACPI (Advanced Configuration and Power Interface)
D. MMC (Microsoft Management Console)
Niestety, wybór ACPI, MMC i NNTP nie jest dobry w kontekście pytania o reguły filtrujące ruch sieciowy. ACPI, czyli Advanced Configuration and Power Interface, dotyczy zarządzania energią w komputerach, a nie ma nic wspólnego z kontrolowaniem ruchu w sieci. Jego użycie koncentruje się na oszczędzaniu energii, więc nie pasuje do tematu. Z kolei MMC, czyli Microsoft Management Console, to narzędzie administracyjne w Windowsie, ale też nie ma nic do rzeczy jeśli chodzi o regulację ruchu sieciowego. A NNTP, czyli Network News Transfer Protocol, to protokół do przesyłania wiadomości w Usenet, więc też nie ma związku z bezpieczeństwem dostępu w sieci. Często myli się te wszystkie narzędzia i protokoły z tym, co faktycznie służy do bezpieczeństwa. Pamiętaj, że ACL to konkretny mechanizm do filtrowania i kontrolowania ruchu sieciowego, a nie inne protokoły czy interfejsy, które mogą być używane do innych celów.

Pytanie 38

W jakiej warstwie modelu TCP/IP funkcjonuje protokół DHCP?

A. Łącza danych
B. Transportowej
C. Aplikacji
D. Internetu
Wybór odpowiedzi z warstwą Internetu, łącza danych lub transportową sugeruje, że może być jakieś nieporozumienie odnośnie tego, jak działa model TCP/IP i jakie są role poszczególnych protokołów. Warstwa Internetu, w której działają protokoły takie jak IP, zajmuje się przesyłaniem datagramów przez sieć i kierowaniem ich do odpowiednich adresów, ale nie odpowiada za przydzielanie adresów IP. Protokół DHCP nie działa na tym poziomie, bo nie zajmuje się routowaniem, tylko konfiguracją. Z kolei warstwa łącza danych zapewnia komunikację między urządzeniami w tej samej sieci lokalnej, używając adresów MAC, a nie IP. Warstwa transportowa to już inna bajka, bo to tam działają protokoły jak TCP i UDP, które odpowiadają za przesyłanie danych i kontrolę błędów, ale nie za konfigurację sieci. Często ludzie mylą funkcje protokołów i ich miejsca w modelu TCP/IP. DHCP jako protokół aplikacyjny tworzy most między aplikacjami a warstwą transportową, ale samo w sobie nie przesyła danych, tylko je konfiguruje, co dobrze pokazuje, czemu należy do warstwy aplikacji.

Pytanie 39

Który z protokołów nie jest wykorzystywany do ustawiania wirtualnej sieci prywatnej?

A. SNMP
B. PPTP
C. L2TP
D. SSTP
Wybór PPTP, L2TP lub SSTP jako protokołów do konfiguracji wirtualnej sieci prywatnej może wynikać z powszechnego przekonania, że wszystkie te protokoły mają podobne zastosowania. PPTP (Point-to-Point Tunneling Protocol) jest jednym z najstarszych protokołów VPN, który wykorzystuje tunelowanie do zabezpieczania połączeń. Mimo że jest łatwy w konfiguracji, jego bezpieczeństwo w przeszłości było kwestionowane, co sprawiło, że rzadko zaleca się go w nowoczesnych implementacjach. L2TP (Layer 2 Tunneling Protocol) to kolejny protokół, który, chociaż używany do tunelowania, często jest łączony z IPsec w celu zapewnienia lepszego bezpieczeństwa. SSTP (Secure Socket Tunneling Protocol) to protokół, który wykorzystuje SSL do szyfrowania tuneli, co czyni go bardziej nowoczesnym i bezpiecznym rozwiązaniem. Wybierając którykolwiek z tych protokołów do konfiguracji VPN, można osiągnąć różne poziomy bezpieczeństwa i wydajności w zależności od wymagań danej organizacji. Kluczowe jest zrozumienie, że SNMP nie jest przeznaczony do tego celu, a jego funkcjonalność koncentruje się na zarządzaniu, a nie na tworzeniu bezpiecznych połączeń. Błędne przypisanie SNMP do roli protokołu VPN może prowadzić do nieefektywnej konfiguracji sieci oraz potencjalnych luk w zabezpieczeniach, co w konsekwencji może zagrażać integralności i poufności danych przesyłanych w sieci.

Pytanie 40

W biurze rachunkowym potrzebne jest skonfigurowanie punktu dostępu oraz przygotowanie i podłączenie do sieci bezprzewodowej trzech komputerów oraz drukarki z WiFi. Koszt usługi konfiguracji poszczególnych elementów sieci wynosi 50 zł za każdy komputer, 50 zł za drukarkę i 100 zł za punkt dostępu. Jaki będzie całkowity wydatek związany z tymi pracami serwisowymi?

A. 250 zł
B. 300 zł
C. 100 zł
D. 200 zł
Cały koszt serwisu wynosi 300 zł. To wynik dodania kosztów za konfigurację trzech komputerów, drukarki i punktu dostępu. Koszt skonfigurowania jednego komputera to 50 zł, więc jeśli mamy trzy, to wychodzi 150 zł (50 zł razy 3). Do tego jeszcze 50 zł za drukarkę i 100 zł za punkt dostępu. Jak to zsumujesz, to dostaniesz 150 zł + 50 zł + 100 zł, co daje 300 zł. To jest ważne, bo pokazuje, jak kluczowe jest dobre planowanie budżetu w usługach IT. Z mojego doświadczenia, firmy często muszą uważnie oceniać koszty przy wprowadzaniu nowych technologii, bo inaczej mogą się zdziwić. Dlatego dobrze jest przeanalizować wszystko dokładnie przed startem projektu, żeby lepiej nią zarządzać i nie mieć niespodzianek z wydatkami w przyszłości.