Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik informatyk
  • Kwalifikacja: INF.02 - Administracja i eksploatacja systemów komputerowych, urządzeń peryferyjnych i lokalnych sieci komputerowych
  • Data rozpoczęcia: 10 grudnia 2025 10:53
  • Data zakończenia: 10 grudnia 2025 11:01

Egzamin niezdany

Wynik: 18/40 punktów (45,0%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

W trakcie normalnego funkcjonowania systemu operacyjnego w laptopie zjawia się informacja o potrzebie sformatowania wewnętrznego dysku twardego. Co to oznacza?

A. nośnik, który nie został zainicjowany lub przygotowany do użycia
B. uszkodzona pamięć RAM
C. przegrzewanie się procesora
D. usterki systemu operacyjnego wywołane złośliwym oprogramowaniem
Komunikat o konieczności formatowania wewnętrznego dysku twardego najczęściej wskazuje na to, że nośnik jest niezainicjowany lub nieprzygotowany do pracy. Możliwe, że dysk twardy został usunięty z systemu lub zainstalowany nowy dysk, który nie został jeszcze sformatowany ani zainicjowany. W standardowej praktyce, każdy nowy dysk twardy wymaga sformatowania, aby można było na nim zapisać dane. Formatowanie jest procesem, który przygotowuje nośnik do przechowywania danych poprzez tworzenie systemu plików. Aby zainicjować dysk, można użyć wbudowanych narzędzi w systemie operacyjnym, takich jak 'Zarządzanie dyskami' w systemie Windows czy 'Disk Utility' w macOS. Ważne jest, aby przed formatowaniem upewnić się, że na dysku nie ma ważnych danych, ponieważ ten proces skutkuje ich utratą. Dobrą praktyką jest również regularne sprawdzanie stanu dysków twardych, aby zminimalizować ryzyko utraty ważnych informacji oraz utrzymanie bezpieczeństwa systemu.

Pytanie 2

Jaką sekwencję mają elementy adresu globalnego IPv6 typu unicast ukazanym na diagramie?

Ilustracja do pytania
A. 1 - identyfikator interfejsu, 2 - globalny prefiks, 3 - identyfikator podsieci
B. 1 - identyfikator podsieci, 2 - globalny prefiks, 3 - identyfikator interfejsu
C. 1 - globalny prefiks, 2 - identyfikator podsieci, 3 - identyfikator interfejsu
D. 1 - globalny prefiks, 2 - identyfikator interfejsu, 3 - identyfikator podsieci
Często spotykanym błędem jest niewłaściwe zrozumienie struktury adresu IPv6. Globalny prefiks identyfikujący sieć jest najważniejszym elementem adresu IPv6 i jest przypisany przez dostawcę usług internetowych co zapewnia unikalność globalną. Niektórzy mylą go z identyfikatorem interfejsu co jest błędnym założeniem ponieważ identyfikator interfejsu jest specyficzny dla urządzenia w danej podsieci i jest generowany automatycznie. Kolejnym elementem jest identyfikator podsieci który pozwala na dalszy podział sieci w ramach globalnego prefiksu co zwiększa elastyczność konfiguracji sieci lokalnych. Często błędnie umiejscawiany jest na końcu adresu choć jego rola jest kluczowa w zarządzaniu ruchem sieciowym. Identyfikator interfejsu zajmujący ostatnie 64 bity jest istotny dla unikalności urządzeń w ramach podsieci i jest automatycznie generowany na bazie adresów fizycznych urządzeń co minimalizuje konflikty i ułatwia konfigurację. Zrozumienie tych elementów jest kluczowe dla efektywnego zarządzania siecią IPv6 i unikania problemów z alokacją adresów i routingiem. Poprawna organizacja adresów umożliwia efektywne wykorzystanie zasobów adresowych i wspiera nowe technologie w sieciach dużej skali.

Pytanie 3

Aby przygotować ikony zaprezentowane na załączonym obrazku do wyświetlania na Pasku zadań w systemie Windows, należy skonfigurować

Ilustracja do pytania
A. funkcję Snap i Peek
B. obszar Action Center
C. obszar powiadomień
D. funkcję Pokaż pulpit
Pokaż pulpit jest funkcją umożliwiającą szybkie zminimalizowanie wszystkich otwartych okien w celu dostępu do pulpitu. Nie jest związana z konfiguracją paska zadań lub obszaru powiadomień. Funkcja Snap i Peek to narzędzia służące do zarządzania oknami aplikacji w systemie Windows, które pozwalają na szybkie rozmieszczanie i podgląd uruchomionych programów. Nie dotyczą one konfiguracji ikon w obszarze powiadomień. Action Center, obecnie znane jako Centrum akcji, to sekcja systemu Windows odpowiedzialna za wyświetlanie powiadomień systemowych oraz szybki dostęp do ustawień, takich jak Wi-Fi, Bluetooth czy tryb samolotowy. Choć jest związane z powiadomieniami, nie jest to miejsce, w którym bezpośrednio konfiguruje się ikony widoczne na pasku zadań. Błędne zrozumienie funkcji tych elementów może wynikać z mylnego kojarzenia nazw lub niedostatecznej znajomości struktury interfejsu użytkownika w systemie Windows. Dlatego tak ważne jest zrozumienie roli każdego z elementów interfejsu użytkownika oraz ich zastosowań w codziennej pracy z komputerem.

Pytanie 4

Aby komputery mogły udostępniać dane w sieci, NIE powinny mieć tych samych

A. grup roboczych.
B. adresów IP.
C. serwerów DNS.
D. masek podsieci.
Grupy robocze, serwery DNS i maski podsieci to pojęcia, które, mimo że są kluczowe w kontekście funkcjonowania sieci, nie dotyczą bezpośrednio kwestii unikalnych identyfikatorów dla urządzeń. Grupa robocza to zbiór komputerów w sieci lokalnej, które mogą współdzielić zasoby, takie jak pliki czy drukarki. Wspólna grupa robocza pozwala na łatwiejsze zarządzanie dostępem do zasobów, ale nie wpływa na unikalność adresów IP. Serwery DNS pełnią rolę tłumacza w Internecie, przekształcając nazwy domen na adresy IP, co jest istotne dla nawigacji w sieci, ale również nie wpływa na to, czy dwa urządzenia mogą mieć ten sam adres IP. Z kolei maski podsieci służą do definiowania, która część adresu IP odnosi się do sieci, a która do konkretnego urządzenia w tej sieci. Choć maski podsieci są kluczowe w segregacji ruchu w obrębie większych sieci, to nie mają bezpośredniego wpływu na przypisanie adresów IP. Typowym błędem myślowym jest zakładanie, że zmiana innych parametrów sieciowych, jak grupa robocza, maska podsieci czy DNS, może rozwiązać problem konfliktu adresów IP. W rzeczywistości, aby bezpiecznie wdrożyć urządzenia w sieci, kluczowe jest zapewnienie unikalnych adresów IP, które są fundamentem każdej komunikacji sieciowej.

Pytanie 5

Zainstalowanie w komputerze przedstawionej karty pozwoli na

Ilustracja do pytania
A. rejestrację, przetwarzanie oraz odtwarzanie obrazu telewizyjnego
B. podłączenie dodatkowego urządzenia peryferyjnego, takiego jak skaner lub ploter
C. zwiększenie wydajności magistrali komunikacyjnej komputera
D. bezprzewodowe połączenie z siecią LAN z użyciem interfejsu BNC
Karta przedstawiona na obrazku to karta telewizyjna, która umożliwia rejestrację przetwarzanie oraz odtwarzanie sygnału telewizyjnego. Takie karty są używane do odbierania sygnału telewizyjnego na komputerze pozwalając na oglądanie telewizji bez potrzeby posiadania oddzielnego odbiornika. Karta tego typu zazwyczaj obsługuje różne standardy sygnału telewizyjnego takie jak NTSC PAL i SECAM co czyni ją uniwersalnym narzędziem do odbioru telewizji z różnych regionów świata. Ponadto karty te mogą mieć wbudowane funkcje nagrywania co pozwala na zapisywanie programów telewizyjnych na dysku twardym do późniejszego odtwarzania. Dzięki temu użytkownik może łatwo zarządzać nagranymi materiałami korzystając z oprogramowania do edycji i archiwizacji. Karty telewizyjne często współpracują z aplikacjami które umożliwiają zaawansowane funkcje takie jak zmiana kanałów planowanie nagrań czy dodawanie efektów specjalnych podczas odtwarzania. Montaż takiej karty w komputerze zwiększa jego funkcjonalność i pozwala na bardziej wszechstronne wykorzystanie urządzenia w kontekście multimediów.

Pytanie 6

Aby bezpośrednio połączyć dwa komputery w przewodowej sieci LAN, należy zastosować

A. kabel USB i po jednej karcie sieciowej w każdym z komputerów
B. kabel sieciowy cross-over i po jednej karcie sieciowej w każdym z komputerów
C. kabel światłowodowy i jedną kartę sieciową w jednym z komputerów
D. kabel sieciowy patch-cord bez krosowania oraz kabel Centronics
Kabel sieciowy cross-over jest specjalnie zaprojektowany do bezpośredniego łączenia ze sobą dwóch komputerów, co oznacza, że umożliwia wymianę danych bez potrzeby stosowania switcha lub routera. W takim połączeniu każdy z komputerów musi być wyposażony w kartę sieciową, która obsługuje standardy Ethernet, takie jak 10Base-T, 100Base-TX lub 1000Base-T. Kabel cross-over różni się od standardowego kabla prostego, ponieważ w nim pary przewodów są zamienione, co pozwala na poprawne przesyłanie sygnałów transmitowanych i odbieranych pomiędzy dwoma urządzeniami. Praktycznym przykładem takiego rozwiązania jest konfiguracja sieci w małych biurach, gdzie dwa komputery muszą wymieniać pliki lub współdzielić zasoby bez dodatkowego sprzętu. Zastosowanie tego typu kabli jest zgodne ze standardem IEEE 802.3, co zapewnia wysoką jakość transmisji danych oraz minimalizację zakłóceń.

Pytanie 7

Jakie urządzenie sieciowe umożliwia połączenie lokalnej sieci LAN z rozległą siecią WAN?

A. Hub
B. Router
C. Repeater
D. Switch
Wybór urządzeń takich jak repeater, hub czy switch w kontekście łączenia sieci LAN z WAN jest nieprawidłowy z kilku powodów. Repeater służy głównie do wzmacniania sygnału w sieciach lokalnych, co pozwala na wydłużenie zasięgu, ale nie ma zdolności do zarządzania ruchem między różnymi sieciami. Hub, będący urządzeniem działającym na warstwie 1 modelu OSI, po prostu przekazuje dane do wszystkich portów bez analizowania ich zawartości, co nie jest wystarczające w przypadku komunikacji między sieciami. Switch, chociaż działa na warstwie 2 i umożliwia bardziej inteligentne przesyłanie danych w ramach sieci lokalnej dzięki nauce adresów MAC, także nie ma możliwości bezpośrednie

Pytanie 8

Komputer, którego naprawa ma zostać przeprowadzona u klienta, nie reaguje na wciśnięcie przycisku POWER. Pierwszą czynnością harmonogramu prac związanych z lokalizacją i usunięciem tej usterki powinno być

A. sprawdzenie zasilania w gniazdku sieciowym.
B. sporządzenie rewersu serwisowego.
C. sporządzenie kosztorysu naprawy.
D. odłączenie wszystkich zbędnych podzespołów od komputera.
To jest właśnie to, od czego powinno się zacząć w takiej sytuacji. Jeśli komputer nie reaguje na wciśnięcie przycisku POWER, pierwszym krokiem zgodnie z zasadami diagnozowania usterek sprzętu komputerowego powinno być sprawdzenie zasilania w gniazdku sieciowym. Z doświadczenia wiem, że w praktyce serwisowej bardzo często zdarza się, że usterka jest banalna i wynika z braku zasilania – na przykład kabel jest luźno wpięty, gniazdko jest wyłączone czy zabezpieczenie przeciwprzepięciowe się wyłączyło. Można się napracować, rozbierając komputer, testując podzespoły, a potem okazuje się, że winna jest listwa zasilająca… Według dobrych praktyk branżowych, zanim cokolwiek zaczniemy rozkręcać, zawsze trzeba upewnić się, że do urządzenia dociera napięcie sieciowe. To podstawa – nawet w podręcznikach do technikum jest to pierwsza rzecz na liście kroków diagnostycznych. Często technicy mają miernik napięcia lub po prostu podłączają inny, sprawny sprzęt do tego samego gniazdka, żeby się upewnić. Poza tym, to pozwala zaoszczędzić czas i niepotrzebną pracę – szczególnie, gdy naprawa odbywa się u klienta, gdzie każda minuta się liczy. Moim zdaniem, ta zasada sprawdza się nie tylko przy komputerach, ale i praktycznie każdym innym sprzęcie zasilanym z sieci. Lepiej najpierw wykluczyć najprostsze rzeczy, zanim przejdzie się do bardziej zaawansowanych działań.

Pytanie 9

W cenniku usług informatycznych znajdują się poniższe wpisy. Jaki będzie koszt dojazdu serwisanta do klienta, który mieszka poza miastem, w odległości 15km od siedziby firmy?

Dojazd do klienta na terenie miasta – 25 zł netto
Dojazd do klienta poza miastem – 2 zł netto za każdy km odległości od siedziby firmy liczony w obie strony.
A. 60 zł + VAT
B. 25 zł + 2 zł za każdy km poza granicami miasta
C. 30 zł + VAT
D. 30 zł
Wybór odpowiedzi 60 zł + VAT jest prawidłowy, ponieważ kalkulacja kosztu dojazdu serwisanta poza miasto opiera się na warunkach przedstawionych w cenniku. Zgodnie z zapisami dojazd poza miasto kosztuje 2 zł netto za każdy kilometr liczony w obie strony. W tym przypadku klient mieszka 15 km od siedziby firmy co oznacza że serwisant pokona łącznie 30 km (15 km w jedną stronę i 15 km z powrotem). Koszt dojazdu wynosi zatem 30 km x 2 zł = 60 zł netto. Dodając do tego obowiązujący podatek VAT uzyskamy pełny koszt usługi. Takie podejście do kalkulacji kosztów jest standardem w branży usługowej co zapewnia przejrzystość i przewidywalność cen dla klientów. Zrozumienie tego mechanizmu cenowego jest kluczowe nie tylko dla serwisantów ale i dla klientów którzy chcą dokładnie rozplanować swoje wydatki na usługi komputerowe. Stosowanie jasnych zasad rozliczeń jest również dobrym przykładem budowania zaufania do firmy usługowej.

Pytanie 10

Który adres IP jest zaliczany do klasy B?

A. 134.192.16.1
B. 96.15.2.4
C. 198.15.10.112
D. 100.10.10.2
Adresy IP z pozostałych opcji nie są przypisane do klasy B, co może być źródłem nieporozumień wśród osób uczących się o adresacji IP. Na przykład, adres 96.15.2.4 należy do klasy A, ponieważ jego pierwszy oktet (96) znajduje się w zakresie od 1 do 126. Klasa A jest przeznaczona dla bardzo dużych sieci, gdzie możliwe jest przydzielenie ponad 16 milionów adresów IP. Adres 100.10.10.2 również należy do klasy A, co może być mylące, ponieważ podobnie jak w przypadku 96.15.2.4, jego pierwszy oktet (100) jest w tym samym zakresie. Klasa A składa się z adresów, które często są używane przez globalne organizacje, ponieważ ich struktura sieciowa wymaga dużej ilości adresów. Z kolei adres 198.15.10.112 należy do klasy C, która obejmuje zakres od 192.0.0.0 do 223.255.255.255. Klasa C jest stosowana w mniejszych sieciach, gdzie zwykle przypisuje się od 2 do 254 adresów IP. Osoby mogą mylnie interpretować klasy adresów IP, skupiając się na wartości liczbowej pierwszego oktetu, nie zdając sobie sprawy z ich klasyfikacji oraz zastosowań w praktyce. Zrozumienie różnic pomiędzy klasami A, B i C jest niezbędne do efektywnego zarządzania sieciami, co jest kluczowe w kontekście projektowania i administrowania infrastrukturą sieciową.

Pytanie 11

Adresy IPv6 są reprezentowane jako liczby

A. 32 bitowe, wyrażane w postaci ciągów binarnych
B. 256 bitowe, wyrażane w postaci ciągów szesnastkowych
C. 64 bitowe, wyrażane w postaci ciągów binarnych
D. 128 bitowe, wyrażane w postaci ciągów szesnastkowych
Zrozumienie struktury adresów IPv6 jest kluczowe dla prawidłowego ich wykorzystania w nowoczesnych sieciach. Adresy IPv6 nie są 32-bitowe, jak sugeruje jedna z opcji odpowiedzi. Takie podejście jest typowe dla adresowania IPv4, które ogranicza się do około 4 miliardów unikalnych adresów. Z kolei 256-bitowe adresy byłyby niezwykle rozbudowane i praktycznie niepotrzebne, biorąc pod uwagę, że liczba adresów IPv6 wynosi 2^128, co przekłada się na ilość rzędu 340 undecylionów. Taki nadmiar adresów nie jest potrzebny w obecnych zastosowaniach. Inna błędna koncepcja dotyczy podawania adresów w postaci napisów binarnych. Chociaż technicznie możliwe jest przedstawienie adresów IPv6 w formie binarnej, byłoby to niewygodne i niepraktyczne dla ludzi, dlatego przyjęto konwencję szesnastkową. Format szesnastkowy jest znacznie bardziej kompaktowy i łatwiejszy do zrozumienia i zapamiętania. Z tego powodu, aby uniknąć zamieszania, ważne jest, aby przyzwyczaić się do odpowiednich formatów i standardów, takich jak RFC 5952, który promuje sposób zapisywania adresów IPv6. Zrozumienie tych różnic jest kluczowe dla prawidłowego zarządzania sieciami oraz ich bezpieczeństwem, co jest podstawowym wymaganiem w projektach IT.

Pytanie 12

Na których urządzeniach do przechowywania danych uszkodzenia mechaniczne są najczęściej spotykane?

A. W dyskach HDD
B. W kartach pamięci SD
C. W dyskach SSD
D. W pamięciach Flash
Wybór nośników pamięci, które są mniej podatne na uszkodzenia mechaniczne, powinien być analizowany w kontekście konstrukcji i działania tych urządzeń. Dyski SSD, w przeciwieństwie do HDD, nie mają ruchomych części. Zastosowanie pamięci flash w tych dyskach eliminuje ryzyko uszkodzeń spowodowanych wstrząsami czy upadkami, co czyni je idealnym wyborem dla mobilnych aplikacji. Odpowiedzi sugerujące, że SSD są narażone na uszkodzenia mechaniczne, wynikają z nieporozumienia dotyczącego ich technologii. W rzeczywistości, ich wytrzymałość jest jedną z kluczowych zalet, a również standardy branżowe, takie jak NVMe, promują ich wykorzystanie w nowoczesnych rozwiązaniach informatycznych. Odpowiedzi dotyczące pamięci flash i kart SD również nie są trafne. Te urządzenia, podobnie jak SSD, korzystają z technologii, która minimalizuje ryzyko uszkodzeń mechanicznych. Warto również zauważyć, że pamięci flash i karty SD mogą być bardziej narażone na uszkodzenia logiczne, a nie mechaniczne, co jest zupełnie innym zagadnieniem. Typowym błędem myślowym w tych odpowiedziach jest mylenie odporności na uszkodzenia mechaniczne z ogólną wydajnością lub niezawodnością nośnika. Wybór odpowiedniego nośnika pamięci powinien być oparty na zrozumieniu różnic technologicznych oraz przewidywaniu warunków, w jakich będą one używane.

Pytanie 13

Liczba szesnastkowa 1E2F(16) zapisana w systemie ósemkowym ma postać

A. 74274
B. 7727
C. 17057
D. 7277
Wybór innej odpowiedzi niż 17057 najczęściej wynika z niepoprawnego przeliczania wartości między systemami liczbowymi lub uproszczenia procedury konwersji. W praktyce, jednym z najczęstszych błędów jest próba zamiany każdej cyfry szesnastkowej bezpośrednio na cyfrę ósemkową – co jest niestety niezgodne z zasadami matematycznymi. Szesnastkowy i ósemkowy opierają się na różnych podstawach i nie istnieje prosta „podmiana” cyfr. Kolejnym problemem jest nieuwzględnienie wartości pozycyjnych – na przykład, cyfra 'E' w szesnastkowym to 14 w dziesiętnym, a nie 7 czy 2. Jeśli ktoś uzyskał wyniki takie jak 7277 lub 7727, to najprawdopodobniej próbował przypisać każdej szesnastkowej cyfrze jakąś ósemkową, ignorując ich realną wartość. To klasyczny błąd początkujących, który moim zdaniem pojawia się przez chęć skrócenia drogi albo przez presję czasu. Odpowiedź 74274 sugeruje natomiast, że mogło dojść do pomylenia systemu binarnego z ósemkowym lub niewłaściwego zgrupowania bitów podczas konwersji. W rzeczywistości, poprawna metoda polega na rozbiciu każdej cyfry szesnastkowej na 4 bity, połączeniu wszystkiego w jeden ciąg, a później grupowaniu tych bitów po trzy (dla ósemkowego) od końca i przeliczaniu na cyfry ósemkowe. To zgodne z dobrymi praktykami opisanymi w wielu podręcznikach do informatyki czy elektroniki. Z mojego punktu widzenia, takie błędy są naturalne na początku nauki pracy z systemami liczbowymi – mnie samemu to się zdarzało. Dlatego warto trenować zamianę przez system binarny lub dziesiętny, bo wtedy unika się nieporozumień i nie popełnia się tych drobnych, ale kosztownych w praktyce błędów. W codziennej pracy, np. przy programowaniu niskopoziomowym, takie pomyłki mogą prowadzić do bardzo poważnych konsekwencji, więc dobrze już teraz wyrobić sobie właściwe nawyki.

Pytanie 14

Jaką przepustowość określa standard Ethernet IEEE 802.3z?

A. 1Gb
B. 10Mb
C. 100Mb
D. 1GB
W przypadku odpowiedzi 1 Gb, należy zauważyć, że standard IEEE 802.3z dotyczy przepływności 100 Mb/s, a nie 1 Gb/s. W rzeczywistości 1 Gb/s jest zdefiniowany przez inny standard, znany jako Gigabit Ethernet (IEEE 802.3ab), który umożliwia znacznie szybsze przesyłanie danych, ale nie jest to właściwy kontekst dla pytania. Odpowiedzi 10 Mb i 1GB również są mylące. 10 Mb/s, znany jako Ethernet, to starsza technologia, która nie spełnia wymagań współczesnych aplikacji, a 1GB/s odnosi się do prędkości, która przekracza możliwości standardu IEEE 802.3z. Mylne przypisanie tych wartości do odpowiedniego standardu może prowadzić do nieporozumień w kontekście projektowania sieci. Kluczowym błędem myślowym jest nieznajomość ewolucji standardów Ethernet oraz ich zastosowań w praktyce. Często zdarza się, że inżynierowie sieciowi nie rozumieją różnic pomiędzy poszczególnymi standardami, co skutkuje nieefektywnym wykorzystaniem zasobów sieciowych oraz narastającymi problemami z wydajnością. Zrozumienie tych różnic jest kluczowe dla tworzenia efektywnych architektur sieciowych.

Pytanie 15

Zastosowanie symulacji stanów logicznych w obwodach cyfrowych pozwala na

A. impulsator.
B. kalibrator.
C. sonda logiczna.
D. sonometr.
Impulsator jest urządzeniem, które pozwala na generowanie sygnałów o określonych stanach logicznych, co jest kluczowe w symulacji obwodów cyfrowych. Umożliwia on testowanie i analizowanie zachowania układów logicznych poprzez wprowadzanie impulsów, które odwzorowują stany binarne 0 i 1. Przykładem zastosowania impulsatora jest testowanie układów scalonych, gdzie za jego pomocą można symulować różne warunki pracy i sprawdzać reakcje obwodów na zmiany sygnału. Dobrą praktyką jest korzystanie z impulsatorów w laboratoriach elektronicznych i na zajęciach z dziedziny inżynierii elektronicznej, co pozwala studentom na bezpośrednie zrozumienie działania układów cyfrowych. W branży, impulsatory są również wykorzystywane w diagnostyce, gdzie umożliwiają analizę i lokalizację usterek w złożonych systemach cyfrowych, zgodnie z normami i standardami testowania obwodów.

Pytanie 16

Port AGP służy do łączenia

A. modemu
B. urządzeń peryferyjnych
C. kart graficznych
D. szybkich pamięci masowych
Nieprawidłowe odpowiedzi sugerują nieporozumienia związane z funkcją i zastosowaniem złącza AGP. Złącze AGP jest specjalnie zaprojektowane do podłączania kart graficznych, co oznacza, że jego architektura jest zoptymalizowana pod kątem przesyłania danych graficznych. Wybór kart graficznych jako jedynego zastosowania dla AGP jest zgodny z jego przeznaczeniem, ponieważ inne urządzenia, takie jak szybkie pamięci dyskowe, urządzenia wejścia/wyjścia czy modemy, wykorzystują inne złącza, które są bardziej odpowiednie do ich funkcji. Szybkie pamięci dyskowe, na przykład, zazwyczaj wymagają interfejsów takich jak SATA lub SCSI, które są dedykowane do transferu danych z magazynów pamięci, a nie do bezpośredniego komunikowania się z jednostką graficzną. Podobnie, urządzenia wejścia/wyjścia korzystają z portów USB lub PS/2, które są zaprojektowane do obsługi różnorodnych peryferiów, a nie do przesyłania informacji graficznych. Użytkownicy mogą mylnie sądzić, że AGP jest uniwersalnym złączem, jednak jego zastosowanie jest wysoce wyspecjalizowane. Dlatego kluczowe jest zrozumienie, że złącze AGP było innowacyjnym rozwiązaniem, które koncentrowało się na dostarczaniu maksymalnej wydajności dla kart graficznych, co czyni je nieodpowiednim dla innych typów urządzeń, które wymagają odmiennych protokołów i standardów komunikacji.

Pytanie 17

Jaką długość w bitach ma adres logiczny IPv6?

A. 16
B. 128
C. 32
D. 64
Odpowiedzi, które wskazują na 16, 32 lub 64 bity jako długość adresu logicznego IPv6, opierają się na błędnych założeniach dotyczących architektury protokołów internetowych. 16 bitów odnosi się do bardzo ograniczonej liczby adresów, która byłaby niewystarczająca w kontekście współczesnych potrzeb internetowych, zwłaszcza z uwagi na rozwój technologii takich jak IoT. 32 bity, jak w IPv4, również nie odpowiadają wymaganiom dzisiejszego internetu, gdzie liczba urządzeń znacznie przekracza liczbę dostępnych adresów IPv4. Wprowadzenie IPv6, które ma 128 bitów, zostało zaprojektowane tak, aby rozwiązać problem wyczerpywania się adresów. 64 bity, mimo że mogą sugerować większą przestrzeń adresową, nie są odpowiednie w kontekście IPv6. Typowym błędem myślowym jest mylenie długości adresu z innymi parametrami, takimi jak długość segmentu adresu w protokole TCP/IP. W praktyce, zrozumienie struktury adresowania IPv6 jest kluczowe dla inżynierów sieciowych, aby prawidłowo projektować architektury sieciowe oraz implementować usługi w sieciach opartych na nowych standardach.

Pytanie 18

Jaki typ plików powinien być stworzony w systemie operacyjnym, aby zautomatyzować najczęściej wykonywane zadania, takie jak kopiowanie, utworzenie pliku lub folderu?

A. Plik systemowy
B. Plik konfiguracyjny
C. Plik inicjujący
D. Plik wsadowy
No więc, odpowiedzi dotyczące plików konfiguracyjnych, systemowych czy inicjujących są w sumie trochę mylące. Plik konfiguracyjny w zasadzie jest tylko takim zestawieniem ustawień dla systemu albo aplikacji, więc nie ma co liczyć na automatyzację. Pliki systemowe? One tylko działają w tle, żeby system miał po prostu jak funkcjonować, ale też nie pomagają w automatyzacji. A pliki inicjujące, które uruchamiają różne programy, ani myślą o robieniu sekwencji zadań. Wiem, że czasem można pomylić te funkcje, ale warto pamiętać, że pliki konfiguracyjne to nie to samo co automatyzacja. Wielu ludzi myśli, że skoro dotyczą ustawień, to mogą też coś tam automatyzować, ale to nie tak działa. W rzeczywistości pliki wsadowe są tym, co naprawdę pomaga w automatyzacji i w efektywnym zarządzaniu systemem.

Pytanie 19

AppLocker to funkcjonalność dostępna w systemach Windows Server, która umożliwia

A. przyznawanie uprawnień do plików i katalogów zawierających dane użytkowników
B. tworzenie reguł zarządzających uruchamianiem aplikacji dla użytkowników lub grup
C. szyfrowanie partycji systemowej, z wyjątkiem partycji rozruchowej
D. administrację partycjami dysków twardych przy pomocy interpretera poleceń PowerShell
AppLocker to zaawansowane narzędzie bezpieczeństwa dostępne w systemach Windows Server, które umożliwia administratorom tworzenie reguł kontrolujących, jakie aplikacje mogą być uruchamiane przez użytkowników lub grupy użytkowników. Dzięki tej funkcjonalności można skutecznie ograniczyć ryzyko uruchamiania nieautoryzowanych aplikacji, co jest kluczowe w kontekście bezpieczeństwa danych i integralności systemu. Administratorzy mogą definiować zasady na podstawie różnych kryteriów, takich jak identyfikatory plików, lokalizacja oraz suma kontrolna, co pozwala na precyzyjne dostosowanie polityki bezpieczeństwa do potrzeb organizacji. Przykładem zastosowania AppLocker może być blokowanie nieznanych aplikacji pobranych z Internetu lub zezwolenie tylko na uruchamianie aplikacji podpisanych cyfrowo, co znacząco zwiększa poziom ochrony przed złośliwym oprogramowaniem. Wdrożenie AppLocker jest zgodne z najlepszymi praktykami w zakresie zarządzania bezpieczeństwem IT, co sprawia, że jest to istotny element strategii ochrony zasobów w środowisku korporacyjnym.

Pytanie 20

Jakie urządzenie jest używane do pomiaru napięcia w zasilaczu?

A. multimetr
B. impulsator
C. amperomierz
D. pirometr
Multimetr to wszechstronne narzędzie pomiarowe, które łączy w sobie funkcje różnych przyrządów elektronicznych, w tym woltomierza, amperomierza i omomierza. Jego główną zaletą jest możliwość pomiaru napięcia, prądu oraz oporu w jednym urządzeniu, co czyni go niezwykle praktycznym w diagnostyce i konserwacji zasilaczy oraz innych urządzeń elektrycznych. Multimetry są standardowym wyposażeniem elektryków, inżynierów oraz hobbystów zajmujących się elektroniką. Umożliwiają dokładne sprawdzenie napięcia w zasilaczach stałych i zmiennych, co jest niezbędne do zapewnienia prawidłowego działania urządzeń. Używając multimetru, można na przykład zweryfikować, czy zasilacz dostarcza odpowiednie napięcie do komponentów elektronicznych, co jest kluczowe dla ich prawidłowej pracy. Dobrą praktyką jest regularne kalibrowanie multimetru, aby zapewnić dokładność pomiarów, oraz zapoznanie się z instrukcją obsługi, aby skutecznie wykorzystać wszystkie jego funkcje.

Pytanie 21

Aby podłączyć drukarkę z portem równoległym do komputera, który dysponuje jedynie złączami USB, konieczne jest zainstalowanie adaptera

A. USB na LPT
B. USB na PS/2
C. USB na COM
D. USB na RS-232
Adapter USB na LPT (Line Print Terminal) jest kluczowym rozwiązaniem, gdy chcemy podłączyć drukarkę z interfejsem równoległym do komputera z portami USB. Złącze LPT, popularne w starszych modelach drukarek, wymaga odpowiedniego adaptera, który konwertuje sygnał USB na sygnał równoległy. Tego rodzaju adaptery są szeroko dostępne i pozwalają na bezproblemowe połączenie, umożliwiając korzystanie z drukarek, które w przeciwnym razie byłyby niekompatybilne z nowoczesnymi komputerami. Przykładem zastosowania może być sytuacja w biurze, gdzie starsze drukarki są wciąż używane, a komputery zostały zaktualizowane do nowszych modeli bez portów równoległych. W takich przypadkach, zastosowanie adaptera USB na LPT pozwala na dalsze korzystanie z posiadanych zasobów, co jest zgodne z zasadą ekoinnowacji i maksymalizacji efektywności kosztowej. Warto również dodać, że wiele adapterów USB na LPT obsługuje standardy Plug and Play, co oznacza, że nie wymagają one skomplikowanej instalacji oprogramowania, co znacznie upraszcza proces konfiguracji.

Pytanie 22

Jakie złącze jest przypisane do kategorii 7?

A. ST
B. E2000
C. TERA
D. RJ45
Wybór E2000, RJ45 i ST jako odpowiedzi na pytanie dotyczące złącza kategorii 7 może prowadzić do nieporozumień, ponieważ każde z tych złączy ma swoje specyficzne zastosowania i nie odpowiada na wymagania kategorii 7. Złącze E2000, choć używane w aplikacjach optycznych, nie jest związane z kategorią 7, która koncentruje się na standardach transmisji miedzianych. RJ45 to popularne złącze dla standardu Ethernet, ale w kontekście kategorii 7, które obsługuje wyższe przepustowości i lepszą ochronę przed zakłóceniami, RJ45 nie wystarcza. Z kolei złącze ST, przeznaczone głównie do kabli światłowodowych, również nie spełnia wymagań technicznych kategorii 7. Typowe błędy myślowe obejmują mylenie zastosowania złączy optycznych z miedzianymi, a także nieznajomość specyfikacji technicznych dotyczących przewodów i złączy. Zrozumienie różnic pomiędzy tymi złączami oraz ich zastosowania w różnych standardach jest kluczowe dla prawidłowego projektowania i wdrażania nowoczesnych sieci komputerowych.

Pytanie 23

Jeżeli użytkownik zdecyduje się na pozycję wskazaną przez strzałkę, uzyska możliwość zainstalowania aktualizacji?

Ilustracja do pytania
A. odnoszące się do sterowników lub nowego oprogramowania od Microsoft
B. związane z lukami w zabezpieczeniach o najwyższym priorytecie
C. prowadzące do aktualizacji Windows 8.1 do wersji Windows 10
D. naprawiające krytyczną awarię, która nie dotyczy zabezpieczeń
Opcjonalne aktualizacje w systemie Windows dotyczą często sterowników oraz dodatkowego oprogramowania od firmy Microsoft. Wybór tej opcji może pozwalać użytkownikowi na zainstalowanie nowych wersji sterowników, które mogą poprawić kompatybilność sprzętu oraz wydajność systemu. Dodatkowo mogą obejmować nowe funkcje aplikacji Microsoft, które nie są krytyczne, ale mogą być użyteczne dla użytkownika. W praktyce, dbanie o aktualizację sterowników jest jedną z dobrych praktyk branżowych, ponieważ zapewnia, że sprzęt na którym pracujemy działa optymalnie. Sterowniki są kluczowe zwłaszcza w kontekście nowych urządzeń peryferyjnych, takich jak drukarki czy skanery, które mogą wymagać konkretnej wersji oprogramowania do prawidłowego działania. Instalowanie opcjonalnych aktualizacji może także wprowadzać nowe funkcje lub rozszerzenia do istniejącego oprogramowania, zwiększając jego funkcjonalność. Ważne jest, aby użytkownik regularnie sprawdzał dostępność takich aktualizacji, aby mieć pewność, że korzysta z najnowszych dostępnych technologii, co jest zgodne z najlepszymi praktykami zarządzania systemami IT.

Pytanie 24

Które z tych określeń nie odpowiada charakterystyce kabla światłowodowego?

A. 12 - włóknowy
B. jednomodowy
C. ekranowany
D. wielomodowy
Odpowiedź "ekranowany" jest prawidłowa, ponieważ to określenie nie jest związane z kabelkami światłowodowymi, które są używane do przesyłania sygnałów optycznych. Kable światłowodowe dzielą się na dwa główne typy: jednomodowe oraz wielomodowe. Kable jednomodowe są zaprojektowane do przesyłania sygnałów w jednym trybie, co umożliwia długozasięgowy przesył i mniejsze straty sygnału. Z kolei kable wielomodowe są używane do przesyłania sygnałów w wielu trybach, co jest korzystne w krótszych odległościach, takich jak w lokalnych sieciach komputerowych. Dodatkowo, określenie "12-włóknowy" odnosi się do liczby włókien w kablu, co jest istotnym parametrem w kontekście jego zastosowań. Na przykład kable wielomodowe 12-włóknowe są powszechnie stosowane w instalacjach telekomunikacyjnych i sieciach LAN, gdzie potrzeba większej liczby połączeń. Ekranowanie jest natomiast techniką stosowaną w kablach miedzianych, aby zredukować zakłócenia elektromagnetyczne, a nie w kablach światłowodowych, co czyni to określenie niepasującym w tym kontekście.

Pytanie 25

Elementem aktywnym w elektronice jest

A. cewka
B. tranzystor
C. rezystor
D. kondensator
Cewka, rezystor i kondensator to elementy pasywne, co znaczy, że nie mają mocy do wzmacniania sygnałów ani do aktywnego przełączania. Cewka działa jak magazyn energii w postaci pola magnetycznego - przydaje się w filtrach czy oscylatorach, ale nie kontroluje prądu tak jak tranzystor. Rezystor ogranicza prąd w obwodzie, co też nie pozwala mu na aktywne działanie na sygnały. Kondensator z kolei gromadzi energię w polu elektrycznym, co pomaga w wygładzaniu sygnałów w zasilaczach, ale też nie jest przełącznikiem ani wzmacniaczem. Często mylone są funkcje elementów pasywnych i aktywnych, a to kluczowa różnica. Pasywne elementy mają swoje zastosowania w regulacji sygnałów, podczas gdy tranzystor, jako element czynny, potrafi je wzmacniać i przełączać, co czyni go niezbędnym w nowoczesnych układach elektronicznych. Zrozumienie tej różnicy to podstawa przy projektowaniu obwodów.

Pytanie 26

W skanerze z systemem CIS źródłem światła oświetlającym skanowany dokument jest

A. świetlówka
B. lampa fluorescencyjna
C. układ żarówek
D. grupa trójkolorowych diod LED
W skanerach z układami CIS (Contact Image Sensor) elementem oświetlającym skanowany dokument jest grupa trójkolorowych diod LED. Takie rozwiązanie pozwala na bardziej efektywne i równomierne oświetlenie skanowanej powierzchni, co przekłada się na wyższą jakość uzyskiwanych obrazów. Diody LED charakteryzują się długą żywotnością, niskim zużyciem energii oraz szybką reakcją, co jest szczególnie istotne w zastosowaniach przemysłowych oraz biurowych, gdzie czas skanowania ma kluczowe znaczenie. W praktyce, dzięki zastosowaniu technologii diod LED, skanery są w stanie efektywnie rejestrować detale w różnych warunkach oświetleniowych, co jest niezwykle ważne, gdy skanowane dokumenty różnią się pod względem kolorystyki i kontrastu. Ponadto, standardy branżowe, takie jak ISO 16000, zalecają stosowanie efektywnych źródeł światła, co obejmuje technologie LED, aby poprawić jakość obrazów oraz zredukować wpływ zmienności oświetlenia na wyniki skanowania.

Pytanie 27

Można przywrócić pliki z kosza, korzystając z polecenia

A. Powróć
B. Wykonaj ponownie
C. Przywróć
D. Anuluj
Odpowiedź 'Przywróć' jest poprawna, ponieważ to właśnie to polecenie jest standardowym sposobem na przywracanie plików z kosza w systemach operacyjnych, takich jak Windows czy macOS. Po przeniesieniu pliku do kosza, system nie usuwa go całkowicie, lecz oznacza jako usunięty, co pozwala na jego późniejsze odzyskanie. W przypadku systemu Windows, aby przywrócić plik, wystarczy kliknąć na plik w koszu prawym przyciskiem myszy i wybrać opcję 'Przywróć'. Działa to również w przypadku zaznaczenia pliku i naciśnięcia klawisza 'Przywróć' na pasku narzędzi. Ta funkcjonalność jest zgodna z najlepszymi praktykami zarządzania danymi, które zalecają posiadanie mechanizmu odzyskiwania danych, aby minimalizować ryzyko trwałej utraty informacji. Należy pamiętać, że pliki w koszu pozostają tam do momentu, gdy kosz nie zostanie opróżniony. Warto także regularnie monitorować zawartość kosza, aby upewnić się, że ważne pliki są odpowiednio zabezpieczone.

Pytanie 28

Jaką liczbę warstw określa model ISO/OSI?

A. 3
B. 7
C. 5
D. 9
Model ISO/OSI to naprawdę podstawowa rzecz, jaką trzeba znać w sieciach komputerowych. Obejmuje on siedem warstw, każda z nich ma swoje zadanie. Mamy tu warstwę fizyczną, która przesyła bity, potem łącza danych, sieciową, transportową, sesji, prezentacji i na końcu aplikacji. Dobrze jest zrozumieć, jak te warstwy działają, bo każda z nich ma swoje miejsce i rolę. Na przykład warstwa aplikacji to ta, z którą użytkownicy bezpośrednio pracują, a warstwa transportowa dba o przesyłanie danych. Bez znajomości tych warstw, ciężko byłoby poradzić sobie z problemami w sieci. To trochę jak z budowaniem domu – nie można ignorować fundamentów, jeśli chcemy, żeby całość stała. A model OSI jest właśnie takim fundamentem dla przyszłych inżynierów sieciowych.

Pytanie 29

Jakie jest nominalne wyjście mocy (ciągłe) zasilacza o parametrach przedstawionych w tabeli?

Napięcie wyjściowe+5 V+3.3 V+12 V1+12 V2-12 V+5 VSB
Prąd wyjściowy18,0 A22,0 A18,0 A17,0 A0,3 A2,5 A
Moc wyjściowa120 W336 W3,6 W12,5 W
A. 576,0 W
B. 456,0 W
C. 472,1 W
D. 336,0 W
Wybór innych odpowiedzi może wynikać z błędnych obliczeń albo tego, że nie wzięto pod uwagę wszystkich parametrów zasilacza. Przykładowo, jeśli ktoś podaje moc 336,0 W, to pewnie zsumował tylko część napięć albo pominął prąd dla jakiegoś napięcia, co prowadzi do niższej wartości. Inny błąd to złe pomnożenie napięcia przez prąd, co może spowodować, że wynik wyjdzie za wysoki. Mnożenie prądu dla -12 V jest problematyczne, bo tam prąd jest ujemny, więc to może wprowadzać w błąd; moc w zasilaczu powinna być traktowana tak, by sumować wartości dodatnie, a nie robić prostą sumę. Często ludzie też nie biorą pod uwagę, że zasilacz z różnymi napięciami może mieć wspólne linie zasilające, co znowu wpływa na końcową moc. Właściwe zaprojektowanie zasilacza wymaga zrozumienia, jak działają różne napięcia i co one znaczą dla całkowitej mocy wyjściowej. Błędy w obliczeniach często pojawiają się przez nieodpowiednie odczytywanie danych technicznych, niezrozumienie jednostek miary czy brak umiejętności łączenia wyników z różnych napięć. Kiedy budujesz coś elektronicznego, musisz brać pod uwagę nie tylko nominalne wartości, ale też ich tolerancje i szczytowe obciążenia, bo to jest ważne dla stabilności i bezpieczeństwa systemu.

Pytanie 30

Tryb pracy portu równoległego, bazujący na magistrali ISA, umożliwiający transfer danych do 2,4 MB/s, dedykowany dla skanerów i urządzeń wielofunkcyjnych, to

A. Bi-directional
B. SPP
C. ECP
D. Nibble Mode
Patrząc na wszystkie dostępne opcje, nietrudno zauważyć, że każda z nich odnosi się do różnych etapów rozwoju portów równoległych i ich obsługi. SPP, czyli Standard Parallel Port, był pierwszym szeroko stosowanym trybem pracy – umożliwiał jednak tylko prostą, jednokierunkową transmisję, głównie z komputera do drukarki. Prędkość transferu w SPP była ograniczona do około 150 kB/s, co w praktyce nie wystarczało do obsługi bardziej zaawansowanych urządzeń, jak nowoczesne skanery czy urządzenia wielofunkcyjne. Często spotykałem się z mylnym przekonaniem, że wystarczy tryb dwukierunkowy, żeby wszystko działało szybciej – niestety, tryb Bi-directional, choć pozwalał przesyłać dane w obie strony, nie dawał realnych zysków wydajnościowych, bo nie implementował zaawansowanych protokołów usprawniających transmisję czy buforowania. Z kolei Nibble Mode to rozwiązanie bardzo specyficzne – był używany głównie przy podłączaniu skanerów starszego typu, ale jedynie do odbioru danych po cztery bity naraz (stąd nazwa „nibble”), co mocno ograniczało prędkość. Moim zdaniem często myli się go z profesjonalnymi trybami, ale to raczej obejście, nie docelowe rozwiązanie dla szybkich urządzeń. Najczęstszy błąd polega właśnie na utożsamianiu trybu dwukierunkowego czy Nibble Mode z prawdziwym wsparciem dla szybkiej, buforowanej transmisji na poziomie kilku megabajtów na sekundę. Tymczasem tylko ECP został zaprojektowany od podstaw z myślą o wydajnych, wymagających peryferiach, zgodnie ze standardem IEEE 1284 – dlatego to jedyne poprawne rozwiązanie przy wskazanym scenariuszu.

Pytanie 31

Jakie urządzenie pozwala na połączenie lokalnej sieci komputerowej z Internetem?

A. switch
B. driver
C. hub
D. router
Wybór innych opcji, takich jak przełącznik, sterownik czy koncentrator, wykazuje szereg nieporozumień dotyczących ich funkcji i zastosowania w kontekście łączenia sieci lokalnej z Internetem. Przełącznik, na przykład, jest urządzeniem, które działa na warstwie drugiej modelu OSI (Layer 2) i służy do łączenia komputerów w ramach lokalnej sieci, umożliwiając im komunikację wewnętrzną. Jego zadaniem jest przekazywanie ramek danych pomiędzy urządzeniami w obrębie tej samej sieci, co oznacza, że nie posiada zdolności do komunikacji z siecią zewnętrzną, taką jak Internet. Podobnie, koncentrator to prostsze urządzenie, które łączy wiele portów w sieci lokalnej, ale nie analizuje ani nie kieruje ruchu sieciowego, co czyni go przestarzałym w nowoczesnym świecie technologii sieciowych. Sterownik, z drugiej strony, to oprogramowanie lub komponent, który umożliwia systemowi operacyjnemu komunikację z urządzeniami sprzętowymi, a nie urządzenie sieciowe, co wprowadza dodatkowe zamieszanie. Kluczowym nieporozumieniem w podejmowaniu decyzji o wyborze odpowiednich urządzeń sieciowych jest brak zrozumienia, że różne urządzenia pełnią różne role w architekturze sieci. Aby prawidłowo zbudować i zarządzać siecią, ważne jest, aby znać funkcje i zastosowania każdego z tych urządzeń oraz umieć je odpowiednio dobierać na podstawie wymagań sieciowych.

Pytanie 32

Jakim elementem sieci SIP jest telefon IP?

A. Terminalem końcowym
B. Serwerem przekierowań
C. Serwerem Proxy SIP
D. Serwerem rejestracji SIP
Wybór serwera rejestracji SIP, serwera przekierowań lub serwera proxy SIP jako odpowiedzi na pytanie o to, czym jest telefon IP, jest niepoprawny z kilku powodów. Serwer rejestracji SIP jest odpowiedzialny za zarządzanie informacjami o dostępności terminali końcowych w sieci. Jego funkcja polega na rejestrowaniu i aktualizowaniu lokalizacji urządzeń, co pozwala na ich identyfikację oraz kierowanie połączeń do właściwego terminalu. Serwer przekierowań, z kolei, działa jako pośrednik w procesie zestawiania połączeń, ale nie pełni funkcji końcowego punktu komunikacji. W przypadku serwera proxy SIP, jego rola polega na przekazywaniu komunikatów SIP między różnymi urządzeniami, a nie na bezpośrednim interfejsie użytkownika. Te elementy są integralnymi składnikami architektury SIP, ale nie stanowią samodzielnych terminali końcowych. Typowym błędem myślowym jest utożsamianie funkcji pośredniczących z rolą urządzeń końcowych, co prowadzi do nieporozumień. Terminal końcowy to zawsze urządzenie, które bezpośrednio uczestniczy w komunikacji, a telefony IP dokładnie spełniają tę definicję, umożliwiając użytkownikowi interakcję w czasie rzeczywistym.

Pytanie 33

Jaką maksymalną liczbę kanałów z dostępnego pasma kanałów standardu 802.11b można stosować w Polsce?

A. 9 kanałów
B. 10 kanałów
C. 13 kanałów
D. 11 kanałów
Wybór błędnych odpowiedzi, takich jak 9, 10 czy 11 kanałów, może wynikać z niepełnego zrozumienia zasad funkcjonowania sieci bezprzewodowych oraz przepisów regulujących ich użycie. W przypadku odpowiedzi mówiącej o 11 kanałach można zauważyć, że jest to liczba kanałów dostępnych w niektórych innych krajach, takich jak Stany Zjednoczone, gdzie obowiązują inne regulacje. Z kolei 10 czy 9 kanałów są jeszcze bardziej nieprecyzyjne i nie mają oparcia w rzeczywistych regulacjach obowiązujących w Polsce. Warto również zauważyć, że ograniczenie liczby kanałów może prowadzić do zwiększonej konkurencji o dostępne pasmo, co negatywnie wpływa na jakość sygnału i stabilność połączenia. Przy projektowaniu sieci bezprzewodowej istotne jest, aby uwzględnić lokalne przepisy oraz możliwości techniczne sprzętu, a także znać zasady planowania kanałów, aby uniknąć nakładania się sygnałów i zakłóceń. Dlatego zrozumienie pełnego zakresu dostępnych kanałów jest kluczowe dla skutecznego zarządzania sieciami Wi-Fi oraz optymalizacji ich wydajności.

Pytanie 34

W systemach Windows XP Pro/ Windows Vista Bizness/Windows 7 Pro/Windows 8 Pro, rozwiązaniem zapewniającym poufność danych dla użytkowników korzystających z jednego komputera, których informacje mogą być wykorzystywane wyłącznie przez nich, jest

A. korzystanie z prywatnych kont z ograniczeniami
B. korzystanie z prywatnych kont z uprawnieniami administratora
C. ręczne przypisywanie plikom atrybutu: zaszyfrowany
D. ręczne przypisywanie plikom atrybutu: ukryty
Wybór opcji związanej z korzystaniem z własnych kont z ograniczeniami, przypisywaniem plikom atrybutu "ukryty" czy "zaszyfrowany", czy też korzystanie z kont z uprawnieniami administratora, nie zapewnia odpowiedniego poziomu poufności danych w kontekście opisanym w pytaniu. Konta z ograniczeniami mogą ograniczać dostęp do niektórych funkcji systemowych, ale nie zabezpieczają danych przed innymi użytkownikami, którzy mogą mieć dostęp do systemu. Przypisanie plikom atrybutu "ukryty" jedynie sprawia, że pliki nie są widoczne w standardowych ustawieniach eksploratora, co nie chroni ich przed dostępem, a jedynie przed przypadkowym usunięciem czy modyfikacją. W kontekście bezpieczeństwa danych, to podejście jest niewystarczające, ponieważ każdy użytkownik z odpowiednią wiedzą może łatwo zmienić ustawienia, aby zobaczyć ukryte pliki. Natomiast przypisanie atrybutu "zaszyfrowany" jest kluczowe, ale może być mylone z innymi atrybutami, które nie oferują rzeczywistej ochrony. Użytkowanie kont z uprawnieniami administratora stwarza dodatkowe ryzyko, ponieważ administratorzy mają pełny dostęp do wszystkich plików, co może prowadzić do niezamierzonych naruszeń prywatności. W praktyce, najlepsze metody zarządzania poufnością danych obejmują stosowanie silnych mechanizmów szyfrowania oraz polityk dotyczących dostępu, co nie jest zapewnione przez te inne metody.

Pytanie 35

Wskaż błędny podział dysku MBR na partycje?

A. 3 partycje podstawowe oraz 1 rozszerzona
B. 1 partycja podstawowa oraz 2 rozszerzone
C. 2 partycje podstawowe oraz 1 rozszerzona
D. 1 partycja podstawowa oraz 1 rozszerzona
W Twojej odpowiedzi wskazałeś jedną partycję podstawową i dwie rozszerzone, co jest zgodne z zasadami podziału dysków w standardzie MBR. A tak szczerze, to dobrze, że to zauważyłeś. W MBR można mieć maks 4 partycje – albo 4 podstawowe, albo 3 podstawowe i jedna rozszerzona. Te rozszerzone są przydatne, gdy trzeba stworzyć dodatkowe partycje logiczne, co ułatwia zarządzanie przestrzenią na dysku. Wyobraź sobie, że potrzebujesz kilku partycji, bo dzielisz dysk na różne systemy operacyjne. No, to wtedy jedna partycja rozszerzona z kilkoma logicznymi to świetne rozwiązanie. To jest w sumie najlepszy sposób na wykorzystanie miejsca na dysku i zapanowanie nad danymi, więc masz tu całkiem dobry wgląd w temat.

Pytanie 36

Aby zmienić profil na obowiązkowy, trzeba zmodyfikować rozszerzenie pliku ntuser.dat na

Ilustracja do pytania
A. ntuser.man
B. $ntuser.exe
C. $ntuser.bat
D. ntuser.sys
Plik ntuser.man jest używany do wymuszenia profilu użytkownika jako obowiązkowego w systemie Windows. Profil obowiązkowy to taki, którego użytkownik nie może zmieniać, co jest przydatne w środowiskach, gdzie konfiguracja musi pozostać stała dla wielu użytkowników. Aby stworzyć taki profil, należy przekopiować profil użytkownika do folderu profili sieciowych i zmienić rozszerzenie pliku ntuser.dat na ntuser.man. System Windows, rozpoznając rozszerzenie .man, traktuje profil jako niezmienny. Jakiekolwiek zmiany dokonane przez użytkownika są odrzucane po wylogowaniu, przywracając profil do stanu początkowego przy każdym logowaniu. Stosowanie profili obowiązkowych jest zgodne z dobrymi praktykami zarządzania środowiskami korporacyjnymi, gdzie ograniczenie zmian w konfiguracji użytkownika może zapobiec błędom i problemom z bezpieczeństwem. Implementacja takich profili może również obniżyć koszty wsparcia technicznego, ponieważ użytkownicy nie są w stanie wprowadzać zmian, które mogłyby prowadzić do nieprawidłowego działania systemu.

Pytanie 37

Który z poniższych interfejsów powinien być wybrany do podłączenia dysku SSD do płyty głównej komputera stacjonarnego, aby uzyskać najwyższą szybkość zapisu oraz odczytu danych?

A. SATA Express
B. ATA
C. mSATA
D. PCI Express
Wybór interfejsu SATA Express jako opcji do podłączenia dysku SSD może wydawać się atrakcyjny, jednak ten standard nie jest w stanie dorównać przepustowości interfejsu PCI Express. SATA Express, mimo że jest szybszy niż tradycyjny SATA III, wciąż ogranicza się do teoretycznej maksymalnej prędkości 10 Gb/s. Natomiast PCIe 3.0 oferuje do 32 Gb/s, a PCIe 4.0 nawet do 64 Gb/s, co wyraźnie pokazuje różnicę w wydajności. Mimo że mSATA również może być stosowany do podłączenia SSD, jego zastosowanie jest ograniczone głównie do starszych laptopów, a jego prędkość transferu jest niewspółmierna do możliwości nowoczesnych dysków. Z kolei ATA, będący starszym standardem, nie jest w ogóle odpowiedni dla nowoczesnych dysków SSD, które wymagają dużo wyższej przepustowości. Typowe błędy myślowe, które prowadzą do wyboru niewłaściwego interfejsu, obejmują przekonanie, że wszystkie formy SATA są wystarczające dla wydajności SSD, co jest nieprawdziwe. Użytkownicy powinni zawsze brać pod uwagę wymagania dotyczące przepustowości, szczególnie przy pracy z danymi o dużej szybkości, takimi jak w przypadku gier, edycji wideo czy zastosowań profesjonalnych. Kluczowe jest zrozumienie, że wybór niewłaściwego interfejsu może znacznie ograniczyć potencjał sprzętu, co w dłuższej perspektywie przekłada się na niezadowolenie z wydajności systemu.

Pytanie 38

Jaką cechę posiada przełącznik w sieci?

A. Działa na fragmentach danych określanych jako segmenty
B. Z odebranych ramek wydobywa adresy MAC
C. Korzysta z protokołu EIGRP
D. Z przesyłanych pakietów pobiera docelowe adresy IP
Przełącznik sieciowy to urządzenie, które odgrywa kluczową rolę w zarządzaniu komunikacją w sieciach lokalnych. Jego podstawową funkcją jest odczytywanie adresów MAC z ramek sieciowych, co umożliwia efektywne przekazywanie danych pomiędzy urządzeniami w tej samej sieci. Dzięki mechanizmowi przechowywania adresów MAC w tablicy, przełącznik jest w stanie podejmować decyzje dotyczące przesyłania danych tylko do tych portów, które są rzeczywiście połączone z docelowymi urządzeniami. Taka operacja zwiększa wydajność sieci oraz minimalizuje niepotrzebny ruch, co jest zgodne z najlepszymi praktykami w projektowaniu sieci lokalnych. Na przykład, w dużych biurach, gdzie wiele komputerów jest podłączonych do jednego przełącznika, jego zdolność do prawidłowego kierowania ruchu bazując na adresach MAC jest kluczowa dla zapewnienia płynnej komunikacji. Przełączniki są niezbędnymi elementami w nowoczesnych sieciach Ethernet, a ich odpowiednia konfiguracja zgodna z protokołami IEEE 802.1D (Spanning Tree Protocol) i IEEE 802.1Q (VLAN) może znacząco poprawić zarządzanie ruchem sieciowym oraz zwiększyć bezpieczeństwo.

Pytanie 39

Długi oraz dwa krótkie dźwięki sygnałowe BIOS POST od AMI i AWARD sygnalizują problem

A. karty sieciowej
B. zegara systemowego
C. mikroprocesora
D. karty graficznej
Odpowiedzi związane z zegarem systemowym, kartą sieciową oraz mikroprocesorem są błędne, ponieważ nie odpowiadają one sygnałom generowanym przez BIOS POST w przypadku wykrycia błędów sprzętowych. Sygnały dźwiękowe są stosowane do szybkiej diagnozy problemów, a każda kombinacja dźwięków ma swoją specyfikę. Zegar systemowy ma kluczowe znaczenie dla synchronizacji całego systemu, jednak jego problemy objawiają się w inny sposób, zazwyczaj związane z niewłaściwą konfiguracją zegara lub brakiem odpowiedniego sygnału, co nie jest sygnalizowane przez dźwięki BIOS-u. Karta sieciowa, chociaż istotna w kontekście łączności, zazwyczaj nie powoduje sygnalizacji błędów na etapie POST; błędy te zazwyczaj są rozpoznawane później, po uruchomieniu systemu operacyjnego. Jeżeli chodzi o mikroprocesor, to problemy z nim mogą prowadzić do różnorodnych symptomów, ale jednego długiego i dwóch krótkich sygnałów dźwiękowych BIOS nie klasyfikuje jako błędu mikroprocesora. Zrozumienie tego, jakie komponenty są związane z danym sygnałem, jest kluczowe dla efektywnej diagnostyki i naprawy sprzętu, co jest istotne w praktyce IT.

Pytanie 40

Na przedstawionym zdjęciu złącza pozwalają na

Ilustracja do pytania
A. zapewnienie zasilania dla urządzeń PATA
B. zapewnienie zasilania dla urządzeń SATA
C. zapewnienie dodatkowego zasilania dla kart graficznych
D. zapewnienie zasilania dla urządzeń ATA
Złącza przedstawione na fotografii to standardowe złącza zasilania SATA. SATA (Serial ATA) to popularny interfejs używany do podłączania dysków twardych i napędów optycznych w komputerach. Złącza zasilania SATA charakteryzują się trzema napięciami: 3,3 V 5 V i 12 V co umożliwia zasilanie różnorodnych urządzeń. Standard SATA jest używany w większości nowoczesnych komputerów ze względu na szybki transfer danych oraz łatwość instalacji i konserwacji. Zasilanie SATA zapewnia stabilną i efektywną dystrybucję energii do dysków co jest kluczowe dla ich niezawodnej pracy. Dodatkowym atutem jest kompaktowy design złącza które ułatwia zarządzanie przewodami w obudowie komputera co jest istotne dla przepływu powietrza i chłodzenia. Przy projektowaniu systemów komputerowych zaleca się zwracanie uwagi na jakość kabli zasilających aby zapewnić długowieczność i stabilność podłączonych urządzeń. Wybierając zasilacz komputerowy warto upewnić się że posiada on wystarczającą ilość złącz SATA co pozwoli na przyszłą rozbudowę systemu o dodatkowe napędy czy dyski.