Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.03 - Montaż, uruchamianie i konserwacja urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 8 grudnia 2025 08:43
  • Data zakończenia: 8 grudnia 2025 09:03

Egzamin zdany!

Wynik: 20/40 punktów (50,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 2

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 3

Podnośnik hydrauliczny do samochodów dysponuje tłokiem roboczym o średnicy 100 mm. Tłoczek pompy w tym urządzeniu ma średnicę 10 mm. Kiedy podnośnik unosi obciążenie wynoszące 20 kN, jaka jest siła działająca na tłoczek pompy?

A. 20 N
B. 2000 N
C. 2 N
D. 200 N
Wybór odpowiedzi innej niż 200 N często wynika z nieprawidłowego zrozumienia podstawowych zasad działania układów hydraulicznych. Warto zauważyć, że siły w takich systemach są ze sobą powiązane poprzez zasadę Pascala, która mówi, że ciśnienie wywierane na ciecz w zamkniętym układzie rozkłada się równomiernie. Niepoprawne odpowiedzi mogą wynikać z błędnych obliczeń lub mylenia jednostek. Na przykład, odpowiedź 20 N sugeruje zbyt małą siłę, co nie odpowiada podniesionemu ciężarowi 20 kN. To zrozumienie jest kluczowe, ponieważ w praktyce oznaczałoby to, że podnośnik nie byłby w stanie podnieść zadanej masy. Odpowiedź 2 N jest wynikiem jeszcze większego niedoszacowania i może wskazywać na nieprawidłowe zrozumienie relacji między siłą, ciśnieniem a powierzchnią tłoka. Odpowiedzi takie jak 2000 N również są błędne, ponieważ sugerują, że ciśnienie jest obliczane na podstawie zbyt dużej powierzchni tłoka, co prowadzi do mylnego wyobrażenia o działaniu układu. Kluczowym błędem jest nieuwzględnienie różnicy w powierzchniach tłoków; to właśnie dzięki małemu tłoczkowi pompy uzyskujemy dużą siłę na tłoku roboczym. Dobrą praktyką jest zawsze staranne przeliczenie wszystkich danych, aby upewnić się, że wyniki są zgodne z rzeczywistością oraz przepisami dotyczącymi bezpieczeństwa i skuteczności urządzeń hydraulicznych.

Pytanie 4

Zastępcza rezystancja obwodu widziana od strony zacisków A i B wynosi

Ilustracja do pytania
A. 3/2 ohma
B. 3 ohmy
C. 1/3 ohma
D. 2/3 ohma
Odpowiedź 2/3 ohma jest prawidłowa, ponieważ w obwodach elektrycznych zastępcza rezystancja obliczana jest na podstawie reguł dotyczących połączenia rezystorów. W przypadku łączenia rezystorów szeregowo, ich rezystancje sumuje się. W przypadku łączonych równolegle, stosuje się równanie 1/R = 1/R1 + 1/R2 + ... + 1/Rn, co pozwala na uzyskanie zastępczej rezystancji. W analizowanym obwodzie, sumując dwa rezystory o rezystancji 1Ω w połączeniu szeregowym, otrzymujemy 2Ω. Następnie, łącząc tę wartość z trzecim rezystorem o rezystancji 1Ω w układzie równoległym, otrzymujemy 2/3Ω. Wiedza na temat obliczania rezystancji jest kluczowa w projektowaniu układów elektrycznych, a także w praktyce inżynieryjnej, gdzie precyzyjne wartości rezystancji wpływają na efektywność obwodów. Warto zaznaczyć, że zgodnie z normami IEC 60076, poprawne wyliczanie rezystancji pozwala na optymalizację wydajności urządzeń elektrycznych.

Pytanie 5

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 6

Element zaznaczony na zdjęciu to

Ilustracja do pytania
A. kondensator.
B. transformator.
C. przekaźnik.
D. symetryzator.
Element zaznaczony na zdjęciu nie jest kondensatorem, przekaźnikiem ani transformatorami, a ich rozróżnienie wymaga zrozumienia podstawowych zasad działania każdego z tych komponentów. Kondensator to element pasywny, który magazynuje energię elektryczną w polu elektrycznym, a jego podstawową funkcją jest wygładzanie napięcia w obwodach zasilających lub filtracja sygnałów. Oznaczenia napięcia cewki i parametrów styków wskazują na inny typ urządzenia. Z kolei transformator jest urządzeniem, które służy do zmiany poziomów napięcia w obwodach prądu przemiennego, i jego konstrukcja opiera się na zasadzie indukcji elektromagnetycznej. Transformator nie posiada cewki o niskim napięciu, co jest typowe dla przekaźników, a jego wyjście z reguły charakteryzuje się innymi oznaczeniami. W przypadku symetryzatora, również nie ma podstaw do przypisania tego elementu do opisanej funkcji, gdyż jest to układ, który działa na zasadzie stabilizacji zniekształceń sygnału. Typowymi błędami w analizie są mylenie oznaczeń i funkcji tych urządzeń, co może prowadzić do nieprawidłowego rozpoznania ich zastosowania i niewłaściwego ich użycia w praktyce. Zrozumienie, w jaki sposób każdy z tych komponentów działa, jest kluczowe w projektowaniu układów elektronicznych oraz w skutecznym rozwiązywaniu problemów w obwodach elektrycznych.

Pytanie 7

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 8

Którą technikę łączenia materiałów przedstawiono na rysunku?

Ilustracja do pytania
A. Lutowania miękkiego.
B. Zgrzewania.
C. Lutowania twardego.
D. Klejenia.
Zgrzewanie, lutowanie miękkie oraz klejenie to techniki łączenia materiałów, które różnią się od lutowania twardego zarówno w zakresie procesu, jak i zastosowania. Zgrzewanie polega na połączeniu elementów poprzez ich miejscowe stopienie, co wymaga energii cieplnej generowanej poprzez opór elektryczny lub ultradźwięki. Choć zgrzewanie doskonale sprawdza się w łączeniu blach stalowych, nie osiąga takiej trwałości jak lutowanie twarde, szczególnie w kontekście różnorodności materiałów. Lutowanie miękkie, z kolei, opiera się na spoiwach o niższej temperaturze topnienia, co czyni je bardziej odpowiednim do delikatnych komponentów, jednak nie zapewnia odpowiedniej wytrzymałości w przypadku intensywnych obciążeń mechanicznych. Klejenie to proces łączenia materiałów przy użyciu substancji chemicznych, co w niektórych przypadkach może być korzystne, ale zazwyczaj nie jest wystarczająco mocne dla zastosowań przemysłowych wymagających dużych sił. Użytkownicy często mylą te techniki, co prowadzi do błędnych wniosków o ich zastosowalności. Zrozumienie różnic między tymi metodami jest kluczowe dla prawidłowego wyboru odpowiedniej technologii montażu w zależności od specyfikacji projektu oraz wymagań wytrzymałościowych.

Pytanie 9

Która kombinacja stanów logicznych wejść I2 i I3 sterownika w przedstawionym układzie wskazuje na poprawny montaż czujników?

Tłoczysko siłownika wsunięteTłoczysko siłownika wysunięte
Stan I2Stan I3Stan I2Stan I3
Zestaw 1.0011
Zestaw 2.1001
Zestaw 3.0110
Zestaw 4.1100
Ilustracja do pytania
A. Zestaw 3.
B. Zestaw 1.
C. Zestaw 2.
D. Zestaw 4.
Wybór innej odpowiedzi niż Zestaw 2. może wynikać z kilku powszechnych błędów myślowych, które są istotne w kontekście analizy stanów logicznych. Wiele osób może błędnie interpretować stany I2 i I3 jako niezależne, co prowadzi do założenia, że różne kombinacje mogą także spełniać wymagania montażowe. To podejście jest mylące, ponieważ w rzeczywistości stany te są ściśle powiązane z rzeczywistym działaniem systemu. Zestaw 1. mógłby sugerować, że zarówno tłoczysko jest w pozycji wciśniętej, co w praktyce nie odzwierciedla sytuacji, w której czujniki powinny sygnalizować stany logiczne. Zestaw 3. i 4. wprowadzają jeszcze większe zamieszanie, ponieważ zakładają stany, w których tłoczysko jest w pełni wysunięte lub w stanie neutralnym, co nie ma zastosowania w kontekście omawianego układu. W automatyce, kluczowe jest zrozumienie, że każdy stan logiczny ma swoje konsekwencje dla działania całego systemu. Przykładowo, błędna interpretacja tych stanów może prowadzić do niewłaściwej konfiguracji urządzeń, a tym samym do obniżenia wydajności systemu lub nawet jego uszkodzenia. Dlatego tak ważne jest, aby dokładnie analizować schematy i tabele stanów, stosując je do rzeczywistych warunków pracy czujników, aby uniknąć potencjalnych problemów związanych z ich działaniem.

Pytanie 10

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 11

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 12

Wskaż jednostkę głównego parametru prądnicy tachometrycznej (stałej prądnicy)?

A. V/(obr./min)
B. V
C. obr./min
D. Hz
Odpowiedź V/(obr./min) jest poprawna, ponieważ jednostka ta odzwierciedla zależność napięcia wyjściowego prądnicy tachometrycznej od prędkości obrotowej. Prądnice tachometryczne to urządzenia, które przekształcają ruch obrotowy w sygnał elektryczny, a ich zastosowanie jest kluczowe w systemach automatyki i kontroli procesów. Wartość wyjściowa, mierzona w woltach, jest proporcjonalna do prędkości obrotowej wyrażonej w obrotach na minutę. Dlatego stosunek V/(obr./min) idealnie charakteryzuje tę zależność. Na przykład, w aplikacjach takich jak regulacja prędkości silników elektrycznych, prądnice tachometryczne dostarczają istotnych informacji o prędkości obrotowej, co pozwala na precyzyjne sterowanie i monitorowanie systemów. W branży inżynieryjnej wykorzystuje się standardy, takie jak ISO 9001, które zapewniają jakość i niezawodność urządzeń pomiarowych, w tym prądnic tachometrycznych.

Pytanie 13

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 14

Na podstawie przedstawionej noty katalogowej termostatu HONEYWELL 3455RC określ temperaturę otwarcia oraz amplitudę.

Typ czujnikatermostat
Konfiguracja wyjściaNC
Temperatura otwarcia18°C
Temperatura zamknięcia-1°C
Prąd pracy maks.10A
Napięcie pracy maks.240V AC
Przyłączekonektory
6,4mm
A. Temperatura otwarcia 18°C, amplituda -1°C
B. Temperatura otwarcia -1°C, amplituda 18°C
C. Temperatura otwarcia 18°C, amplituda 19°C
D. Temperatura otwarcia 18°C, amplituda 17°C
Odpowiedź jest poprawna! Temperaturę otwarcia ustawiono na 18°C, a amplituda wynosi 19°C. Z tego wynika, że termostat HONEYWELL 3455RC zaczyna działać, gdy temperatura osiągnie 18°C. Amplituda wskazuje, że różnica między temperaturą otwarcia a zamknięcia to 19°C. W takim razie, temperatura zamknięcia powinna wynosić -1°C. Te parametry mają duże znaczenie w projektowaniu systemów HVAC, bo precyzyjne zarządzanie temperaturą jest ważne, żeby użytkownicy czuli się komfortowo i żeby oszczędzać energię. Na przykład, w systemach grzewczych dobrze skalibrowany termostat pomaga uniknąć niepotrzebnego zużycia energii i poprawia efektywność grzewczą. A odpowiednio dobrane parametry termostatów wpływają na to, jak działają systemy klimatyzacyjne i grzewcze, co jest istotne w naszej branży.

Pytanie 15

W celu kontroli siłowników jednostronnego działania wykorzystuje się zawory rozdzielające

A. 3/2
B. 4/2
C. 5/2
D. 4/3
Zawór rozdzielający 3/2 jest odpowiednim elementem do sterowania siłownikami jednostronnego działania, ponieważ ten typ zaworu ma trzy porty i dwa stany robocze. W konfiguracji 3/2, jeden z portów jest podłączony do źródła zasilania, a dwa pozostałe porty mogą być podłączone do siłownika oraz do otoczenia. W przypadku siłownika jednostronnego działania, który działa w jednym kierunku, zawór 3/2 jest odpowiedni, ponieważ umożliwia wprowadzenie ciśnienia do siłownika, a następnie jego odprowadzenie do atmosfery przy powrocie. Przykładem zastosowania zaworu 3/2 może być system pneumatyczny w maszynach produkcyjnych, gdzie siłowniki są używane do podnoszenia lub opuszczania komponentów. Warto również zauważyć, że w praktyce przemysłowej stosowanie zaworów powinno być zgodne z normami, takimi jak ISO 1219, które definiują symbole i oznaczenia dla urządzeń pneumatycznych, co ułatwia ich identyfikację oraz integrację w systemach automatyki.

Pytanie 16

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 17

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 18

Aby zmierzyć napięcie na cewce elektrozaworu o nominalnym Un = 24 V, zastosowano analogowy woltomierz z 75 podziałami na skali, ustawiony na zakres 30 V. Ile podziałów wskaże ten woltomierz, jeśli napięcie na cewce elektrozaworu jest poprawne?

A. 60
B. 30
C. 24
D. 75
Odpowiedzi, które wskazują na 24, 75 lub 30 działek, oparte są na błędnych założeniach dotyczących sposobu pomiaru napięcia. W przypadku odpowiedzi 24 działki, może występować mylne przekonanie, że każda działka odpowiada napięciu 1 V - jednak w rzeczywistości, z uwagi na zakres 30 V i 75 działek, wartość, która przypada na jedną działkę, to 0,4 V. Natomiast odpowiedź 75 działek sugeruje, że woltomierz mógłby wskazać maksymalną wartość zakresu, co nie jest możliwe, gdyż mierzymy napięcie 24 V, a nie jego maksymalne dozwolone napięcie. Z kolei 30 działek odnosi się do błędnego założenia, że napięcie 24 V odpowiada 30% zakresu 30 V, co jest nieprawidłowe, ponieważ stanowiłoby to wartość mniejszą od rzeczywistego odczytu. W praktyce istotne jest zrozumienie, że pomiar napięcia wymaga nie tylko wiedzy na temat używanego narzędzia, ale także o jego właściwościach i układzie skali. Typowe błędy myślowe, które prowadzą do tych niepoprawnych odpowiedzi, to brak zrozumienia mechanizmu działania woltomierzy, co może skutkować nieprawidłową interpretacją danych pomiarowych. Prawidłowe zrozumienie skali oraz wartości mierzonych jest kluczowe, aby uniknąć nieporozumień i zapewnić dokładność pomiarów, co jest niezwykle ważne w inżynierii elektrotechnicznej.

Pytanie 19

W trakcie inspekcji efektywności systemu sterującego urządzeń transportujących elementy aluminiowe, w środowisku produkcyjnym o podwyższonym poziomie hałasu powinno się używać

A. kasku ochronnego
B. rękawic dielektrycznych
C. okularów ochronnych
D. ochronników słuchu
Ochronniki słuchu są kluczowym elementem ochrony osobistej w środowisku pracy, gdzie poziom hałasu przekracza dopuszczalne normy. W przypadku kontroli sprawności układu sterowania urządzenia transportującego kształtki aluminiowe, które mogą generować wysokie poziomy hałasu, zastosowanie ochronników słuchu jest niezbędne dla minimalizacji ryzyka uszkodzenia słuchu. Zgodnie z normami takimi jak PN-N-01307:2013, każdy pracownik narażony na hałas o poziomie przekraczającym 85 dB powinien stosować odpowiednie środki ochrony. Ochronniki słuchu mogą występować w różnych formach, takich jak nauszniki lub wkładki douszne, dostosowane do specyfiki pracy. W praktyce, ich stosowanie nie tylko chroni zdrowie pracownika, ale również zwiększa komfort pracy, umożliwiając lepszą koncentrację na wykonywanych zadaniach. Dbanie o zdrowie pracowników poprzez stosowanie wymaganych środków ochrony osobistej jest nie tylko kwestią zgodności z przepisami, ale także wpływa na ogólną wydajność i morale w zespole.

Pytanie 20

Na schemacie symbolem 1A oznaczono

Ilustracja do pytania
A. czujniki położenia.
B. zawór rozdzielający.
C. stację zasilania olejem.
D. element wykonawczy.
Symbol 1A na schemacie oznacza element wykonawczy, którym jest siłownik pneumatyczny. Siłowniki odgrywają kluczową rolę w automatyzacji procesów przemysłowych, zamieniając energię sprężonego powietrza na ruch mechaniczny. Dzięki temu, siłowniki są szeroko stosowane w różnych aplikacjach, takich jak transport materiałów, montaż, czy pakowanie. Przykładem zastosowania siłownika może być linia montażowa, gdzie siłownik wykonawczy przemieszcza elementy w odpowiednich sekwencjach, co zwiększa efektywność produkcji. W kontekście standardów branżowych, siłowniki pneumatyczne często zgodne są z normami ISO, co zapewnia ich niezawodność i kompatybilność w różnorodnych systemach. Warto również zwrócić uwagę na wybór odpowiednich siłowników w zależności od aplikacji, co może obejmować ich rozmiar, siłę oraz rodzaj napędu, co w praktyce przekłada się na optymalizację procesu i redukcję kosztów operacyjnych.

Pytanie 21

Jaką metodę łączenia materiałów powinno się wybrać do skrzyżowania elementów ze stali nierdzewnej i mosiądzu?

A. Lutowanie twarde
B. Lutowanie miękkie
C. Zgrzewanie
D. Sklejanie
Lutowanie miękkie, zgrzewanie oraz sklejanie to techniki, które nie są odpowiednie do łączenia stali nierdzewnej z mosiądzem, z powodów technicznych i materiałowych. Lutowanie miękkie, które wykorzystuje temperatury poniżej 450 °C, nie zapewnia wystarczającej wytrzymałości dla takich połączeń, ponieważ materiały te wymagają znacznie wyższych temperatur, aby osiągnąć odpowiednią integralność strukturalną. Zgrzewanie, z kolei, polega na połączeniu materiałów poprzez ich miejscowe stopienie przy użyciu ciepła generowanego w miejscu złącza, co może być trudne do zrealizowania w przypadku stali nierdzewnej i mosiądzu, ze względu na różnice w ich przewodnictwie cieplnym oraz topnieniu. Technika ta również nie daje możliwości wypełnienia szczelin, co jest kluczowe przy łączeniu tych dwóch materiałów. Sklejanie, chociaż może być użyteczne w niektórych zastosowaniach, nie jest odpowiednie dla połączeń wymagających dużej wytrzymałości, jak w przypadku stali nierdzewnej i mosiądzu. Kleje nie zawsze są w stanie wytrzymać warunki pracy, takie jak zmiany temperatury, wilgotność czy obciążenia mechaniczne. Dlatego dla prawidłowego łączenia stali nierdzewnej i mosiądzu należy stosować lutowanie twarde, co zapewnia nie tylko odpowiednią wytrzymałość, ale również trwałość połączenia.

Pytanie 22

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 23

Pokazany na rysunku sposób montowania podzespołów elektronicznych, na płytce obwodu drukowanego to

Ilustracja do pytania
A. spawanie.
B. klejenie.
C. lutowanie.
D. zgrzewanie.
Lutowanie jest kluczową techniką montażu podzespołów elektronicznych na płytkach obwodów drukowanych. Proces ten polega na łączeniu elementów za pomocą stopu lutowniczego, który po podgrzaniu staje się płynny, a następnie, po ochłodzeniu, tworzy mocne połączenie zarówno elektryczne, jak i mechaniczne. Lutowanie jest szeroko stosowane w przemyśle elektronicznym, szczególnie w produkcji urządzeń, które muszą wykazywać niezawodność i długowieczność. W przypadku lutowania, istotne jest przestrzeganie standardów takich jak IPC-A-610, które definiują wymagania dotyczące jakości lutowanych połączeń. Przykładowo, lutowanie może być stosowane do montażu komponentów SMD (przez powierzchnię), gdzie precyzyjne i niezawodne połączenia są kluczowe. Dodatkowo, lutowanie może być realizowane zarówno ręcznie, jak i maszynowo, co pozwala na elastyczność w procesie produkcyjnym, zależnie od skali produkcji oraz wymagań jakościowych.

Pytanie 24

Korzystając z danych zamieszczonych w tabeli, określ klasę jakości oleju, który można zastosować do urządzeń pracujących przy wysokim ciśnieniu i w stałej temperaturze otoczenia?

Klasa jakości
ISO 6743/4
Charakterystyka olejuZastosowanie olejuZawartość dodatków
%
HHoleje bez dodatków uszlachetniającychdo słabo obciążonych systemów0
HLoleje z inhibitorami utlenienia i korozjido umiarkowanie obciążonych systemówOk. 0,6
HRoleje z inhibitorami utlenienia i korozji oraz modyfikatorami lepkoścido umiarkowanie obciążonych systemów pracujących w zmiennych temperaturach otoczeniaOk. 8,0
HMoleje z inhibitorami utlenienia dodatkami przeciwzużyciowymido systemów pracujących przy wysokim ciśnieniuOk. 1,2
HVoleje z inhibitorami utlenienia i korozji, dodatkami przeciwzużyciowymi oraz modyfikatorami lepkoścido systemów pracujących przy wysokim ciśnieniu w zmiennych temperaturach otoczeniaOk. 8,0
A. HR
B. HL
C. HH
D. HM
Odpowiedź HM jest poprawna, ponieważ oleje klasy HM są specjalnie zaprojektowane do pracy w systemach hydraulicznych, które operują pod wysokim ciśnieniem. Oleje te zawierają inhibitory utleniania, co zwiększa ich trwałość i stabilność w trudnych warunkach eksploatacyjnych. Dodatki przeciwzużyciowe pomagają redukować zużycie komponentów, co jest istotne w aplikacjach, gdzie wymagana jest niezawodność i długoterminowa efektywność. Zgodnie z normami branżowymi, takie jak ISO 6743-4, oleje hydrauliczne HM są uznawane za standard w wielu zastosowaniach przemysłowych, w tym w systemach hydraulicznych w maszynach budowlanych i produkcyjnych, gdzie występują wysokie obciążenia oraz stałe warunki pracy. Użycie oleju klasy HM w takich systemach pozwala na optymalizację wydajności, zmniejszenie ryzyka awarii oraz prolongowanie żywotności urządzeń, co jest kluczowe dla efektywności produkcji i obniżenia kosztów utrzymania.

Pytanie 25

Wielkością charakterystyczną układu elektrycznego, mierzona w watach, jest jaka?

A. moc czynna
B. moc pozorna
C. moc bierna
D. energia elektryczna
Moc bierna, energia elektryczna i moc pozorna to terminy, które sporo osób myli z mocą czynną. Słuchaj, moc bierna ma związek z elementami, które są indukcyjne i pojemnościowe w układzie elektrycznym i nie generują żadnej realnej pracy, tylko tak sobie 'krążą' w systemie. Więc moc bierna, mierzona w warach, nie przyczynia się do wykonywania pracy i przez to jest jakoś mniej istotna, jeśli chodzi o wydajność urządzeń. Z drugiej strony, energia elektryczna to całkowita ilość energii, którą zużywają urządzenia w określonym czasie, a mierzymy to w kilowatogodzinach (kWh). To też jest coś innego niż moc, która to jest miarą chwilową. Co do mocy pozornej, ona jest określona jako iloczyn napięcia i natężenia prądu bez brania pod uwagę kąta fazowego. To jest taka całkowita miara, ale nie pokazuje nam rzeczywistej wydajności systemu, bo nie bierze pod uwagę strat związanych z mocą bierną. Często ludzie mylą te pojęcia i to prowadzi do błędnych wniosków o efektywności i kosztach eksploatacji instalacji elektrycznych. W konsekwencji, ignorowanie tych różnic może skutkować nieodpowiednim projektowaniem instalacji i wyższymi opłatami za energię, ponieważ moc bierna może obciążać dostawców energii.

Pytanie 26

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 27

Uzwojenia silnika powinny być połączone w gwiazdę. Który rysunek przedstawia tabliczkę zaciskową silnika z poprawnie połączonymi uzwojeniami?

Ilustracja do pytania
A. C.
B. D.
C. A.
D. B.
Wybierając inny rysunek, można było natknąć się na powszechne błędy w rozumieniu zasadniczych połączeń uzwojeń silników elektrycznych. Na przykład, wiele osób myli połączenie w gwiazdę z połączeniem w trójkąt. W połączeniu w trójkąt, uzwojenia są połączone w taki sposób, że każdy zacisk jest połączony z kolejnym, co prowadzi do wyższego napięcia fazowego oraz zwiększonego momentu obrotowego przy rozruchu. W związku z tym, wybór połączenia w trójkąt może wydawać się atrakcyjny w kontekście wydajności, lecz nie zawsze jest właściwy, zwłaszcza w przypadku silników, które są zaprojektowane do pracy w trybie gwiazdy. Istotnym jest zrozumienie, że połączenie w gwiazdę nie tylko minimalizuje ryzyko przeciążeń, ale również wspiera stabilność pracy silnika w warunkach zmiennego obciążenia. Typowe błędy myślowe obejmują także brak wiedzy na temat charakterystyki startowej silnika, co może prowadzić do niewłaściwej oceny jego wymagań energetycznych. Rekomenduje się, aby przed dokonaniem wyboru między tymi połączeniami, zapoznać się z dokumentacją producenta oraz standardami branżowymi, które jasno określają zasady użytkowania i konfiguracji silników elektrycznych.

Pytanie 28

Elektrozawór typu normalnie zamknięty o parametrach 230V AC, 50Hz, DN 3/8" FAF 61 mm, nie aktywuje się po podaniu napięcia znamionowego. Przystępując do serwisu elektrozaworu, trzeba najpierw wyłączyć napięcie zasilające, a następnie, w pierwszej kolejności

A. zwiększyć napięcie zasilania i podać je na cewkę elektrozaworu
B. zmierzyć rezystancję cewki
C. wymienić membranę
D. wymienić uszczelkę
Mierzenie rezystancji cewki elektrozaworu jest kluczowym krokiem w diagnostyce problemów z jego działaniem. Cewka, będąca sercem elektrozaworu, generuje pole elektromagnetyczne, które otwiera lub zamyka zawór. Sprawdzenie rezystancji cewki pozwala określić, czy nie występuje uszkodzenie, takie jak przerwanie drutu lub zwarcie. Standardowe wartości rezystancji dla cewki elektrozaworu powinny odpowiadać temu, co podano w specyfikacji producenta. Jeśli wartość ta jest znacznie niższa lub nieodpowiednia, może to wskazywać na uszkodzenie cewki. W praktyce, aby przeprowadzić pomiar, należy użyć multimetru ustawionego na pomiar rezystancji, co jest standardową procedurą w branży. Po potwierdzeniu, że cewka jest sprawna, można kontynuować diagnostykę, sprawdzając inne elementy zaworu, jak membrana lub uszczelki. Właściwe podejście oparte na pomiarze rezystancji cewki jest nie tylko zgodne z najlepszymi praktykami, ale może znacznie przyspieszyć proces naprawy.

Pytanie 29

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 30

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 31

Okres przebiegu czasowego przedstawionego na rysunku wynosi

Ilustracja do pytania
A. 300 μs
B. 100 μs
C. 600 μs
D. 1000 μs
Kiedy określenie okresu jest niedokładne, mogą się pojawić spore nieporozumienia i na pewno wpłynie to na jakość analizy sygnałów. Jeśli wybierasz odpowiedzi, takie jak 300 μs, 100 μs albo 1000 μs, to ważne jest, żeby zrozumieć, że one wynikają z błędnych obliczeń albo złego odczytu danych z oscylogramu. Na przykład, 300 μs może wynikać z mylnego rozumienia, że cykl trwa krócej, co może się zdarzyć przez zniekształcenie sygnału lub źle ustawiony oscylograf. Z kolei wybór 100 μs to z pewnością zbyt mało dla fal tej częstotliwości. A jak już wybierzesz 1000 μs, to wyraźnie sugeruje, że nie zrozumiałeś, jak działa ten sygnał. Takie błędy są typowe, gdy nie patrzy się na całą skalę sygnału albo nie wie się, jak działa oscylograf i jak czytać podziałki. W praktyce, kluczowe jest precyzyjne ustalenie tych parametrów, bo ma to bezpośredni wpływ na to, jak skutecznie działają systemy elektroniczne. Niedokładne obliczenia mogą prowadzić nie tylko do złych wyników, ale wręcz do awarii urządzeń, więc zrozumienie metod pomiarowych jest naprawdę istotne.

Pytanie 32

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 33

Dla którego stanu wejść na wyjściu Y układu logicznego pojawi się "1"?

Ilustracja do pytania
A. A=l, B=0, C=0
B. A=1, B=1, C=1
C. A=0, B=0, C=0
D. A=0, B=1, C=1
Pozostałe odpowiedzi są błędne, bo nie biorą pod uwagę podstaw działania układów logicznych. Na przykład, A=1, B=1, C=1 sugeruje, że wszystkie wejścia są aktywne, co w przypadku bramki AND teoretycznie dałoby aktywne wyjście Y. Ale w naszym przypadku, nie osiągniemy Y=1, jeśli inne warunki nie są spełnione. Z kolei A=0, B=1, C=1 pokazuje, że jedno z wejść jest nieaktywne, przez co nie możemy uzyskać pełnego aktywnego stanu, a to jest poważny błąd w myśleniu. W układach logicznych trzeba znać zasady, bo niektóre kombinacje wejść zostawiają wyjście w stanie '0'. Ostatnia opcja z A=0, B=0, C=0 ilustruje, że wszystkie wejścia są nieaktywne i zgodnie z regułami działania bramek logicznych nie mogą dać nam '1' na wyjściu. Zrozumienie tych prostych zasad jest kluczowe w pracy z systemami cyfrowymi, bo błędy w interpretacji mogą prowadzić do dużych pomyłek w praktyce.

Pytanie 34

Na zdjęciu przedstawiono element hydrauliczny i odpowiadający mu symbol graficzny. Jest to

Ilustracja do pytania
A. zasilacz kompaktowy.
B. pompa łopatkowa.
C. rozdzielacz suwakowy.
D. zawór kulowy.
Zawór kulowy, który widzisz na zdjęciu, to naprawdę ważna część w systemach hydraulicznych. Dzięki jego budowie, gdzie kulisty element zamyka otwór, można łatwo i szybko kontrolować przepływ cieczy. Taki zawór sprawdzi się świetnie w różnych instalacjach, przykładowo w wodociągach czy w przemyśle. Musisz pamiętać, że w hydraulice ważne jest, by stosować zawory zgodnie z normami – na przykład ISO 1219, które mówią, jak powinny wyglądać oznaczenia w schematach. Dobrze dobrany zawór nie tylko działa efektywnie, ale też zwiększa bezpieczeństwo, co jest kluczowe w hydraulice. Różne rozmiary i materiały, z jakich są produkowane, dają możliwość ich zastosowania w różnych warunkach, co z mojego doświadczenia jest sporym plusem.

Pytanie 35

Który rodzaj połączenia przedstawiono na rysunku?

Ilustracja do pytania
A. klinowe.
B. kołkowe.
C. sworzniowe.
D. wciskowe.
Wybór odpowiedzi sugerującej inne rodzaje połączeń, takie jak klinowe, wciskowe czy sworzniowe, wskazuje na pewne nieporozumienia dotyczące charakterystyki i zastosowania tych mechanizmów łączenia. Połączenia klinowe wykorzystują kształt klinów do zapewnienia stabilności, co jest skuteczne w niektórych kontekstach, ale nie oddaje zasady działania kołków, które działają na zasadzie przejrzystego przepływu sił przez cylindryczny element. Ponadto, połączenia wciskowe opierają się na dopasowaniu elementów, które są łączone poprzez siłę tarcia, co również różni się od mechanizmu opartego na kołkach. W przypadku sworzniowych połączeń, elementy są łączone za pomocą sworzni, które również mają inną funkcję i zastosowanie. Wiele osób myli różne typy połączeń, co może prowadzić do nieefektywności w projektach inżynieryjnych czy konstrukcyjnych. Kluczowe jest, aby zrozumieć, jakie są różnice między tymi mechanizmami oraz ich specyfikę w kontekście materiałów i zastosowań. Znajomość standardów branżowych, takich jak PN-EN 1993 dla konstrukcji stalowych, pozwoli na lepsze zrozumienie, kiedy i jakie połączenie zastosować, aby zapewnić maksymalną wydajność, bezpieczeństwo i trwałość w budownictwie.

Pytanie 36

Który element z przedstawionych należy zamontować w układzie przedstawionym na schemacie w miejscu zaznaczonym czerwoną ramką?

Ilustracja do pytania
A. D.
B. C.
C. B.
D. A.
W przypadku wyboru błędnego elementu, na przykład wyłącznika oznaczonego literą B, ważne jest zrozumienie, dlaczego taka decyzja może być nieodpowiednia. Wyłączniki nadprądowe charakteryzują się różnymi charakterystykami, które definiują ich zachowanie w różnych sytuacjach. Charakteryzują się one różnymi czasami reakcji oraz zdolnością do znoszenia prądów szczytowych. Wyłącznik o charakterystyce C, do którego należy odpowiedź B, jest przeznaczony głównie do obwodów, które mogą mieć chwilowe prądy rozruchowe znacznie wyższe od prądu znamionowego, co nie jest optymalne w przypadku standardowych obciążeń trójfazowych, takich jak silniki wentylatorów czy oświetlenia. Wybór niewłaściwej charakterystyki może prowadzić do niepożądanych wyłączeń, co w konsekwencji może powodować przerwy w dostawie energii lub uszkodzenia urządzeń. Ponadto, zastosowanie wyłącznika z nieodpowiednią wartością prądu znamionowego, takiego jak 10A (w przypadku C), nie zapewnia odpowiedniej ochrony, co jest istotne w obwodach wymagających 16A. Dlatego dobór elementów zabezpieczających powinien być przeprowadzany z uwzględnieniem nie tylko ich podstawowych parametrów, ale również analizą specyfikacji obciążenia, co jest kluczowe w projektowaniu bezpiecznych i efektywnych instalacji elektrycznych.

Pytanie 37

Toczenie powierzchni czołowej przedstawia rysunek.

Ilustracja do pytania
A. A.
B. C.
C. D.
D. B.
Rysunek C ilustruje właściwy proces toczenia powierzchni czołowej, gdzie narzędzie toczenia jest ustawione prostopadle do osi obrabianego elementu. Tego rodzaju toczenie jest powszechnie stosowane w przemyśle mechanicznym do nadawania przedmiotom pożądanych kształtów i wymiarów. Przykładem praktycznego zastosowania toczenia powierzchni czołowej jest produkcja wałów, tulei czy elementów maszyn, które wymagają precyzyjnego wykończenia ich końców. W branży istnieją standardy dotyczące toczenia, takie jak ISO 8688, które określają normy jakości i dokładności obróbki skrawaniem. Ustawienie narzędzia prostopadle do osi obrabianego przedmiotu zapewnia optymalny kąt skrawania, co przyczynia się do poprawy jakości powierzchni oraz wydajności skrawania. Warto również zauważyć, że toczenie powierzchni czołowej pozwala na skuteczne usuwanie materiału, co jest kluczowe w procesach produkcyjnych, gdzie ilość odpadów musi być minimalizowana.

Pytanie 38

Do metod oceny stanu łożysk tocznych nie zalicza się pomiaru

A. prędkości
B. wibracji
C. hałasów
D. ciepłoty
Pomiar prędkości to nie najlepsza metoda do oceny stanu łożysk tocznych. W praktyce zazwyczaj korzysta się z analizy drgań, szumów i temperatury. Analiza drgań to fajna technika, bo monitorując drgania, można zauważyć, czy coś jest nie tak, na przykład, czy łożysko ma luz albo jest uszkodzone. Z kolei pomiar szumów daje nam dodatkowe info o stanie łożysk, bo zmieniające się dźwięki mogą wskazywać na problemy. A co do temperatury — jeśli zaczyna rosnąć, to może być znak, że coś się dzieje, jak na przykład zbyt duże tarcie lub słabe smarowanie. W przemyśle, na przykład motoryzacyjnym czy w transporcie kolejowym, regularne sprawdzanie drgań i temperatury łożysk jest mega ważne, żeby maszyny działały sprawnie i bezawaryjnie. Ustalenie norm dla tolerancji drgań i temperatur dla różnych typów łożysk to standardy, które pomagają w zarządzaniu utrzymaniem ruchu, co zresztą potwierdzają normy ISO 10816.

Pytanie 39

Jakie urządzenie można zastosować do pomiaru siły nacisku generowanej przez prasę pneumatyczną?

A. pirometr
B. hallotron
C. szczelinomierz
D. tensometr
Pirometr, hallotron i szczelinomierz to urządzenia, które nie są przeznaczone do pomiaru siły nacisku. Pirometr służy do pomiaru temperatury na podstawie promieniowania cieplnego obiektu. W przypadku pras pneumatycznych, pomiar temperatury może być istotny, ale nie dostarczy bezpośredniej informacji o sile nacisku. Hallotron to czujnik magnetyczny, który mierzy pole magnetyczne, co również nie ma związku z pomiarem siły. Może być używany w aplikacjach detekcji czy pomiaru prędkości, ale nie w kontekście pomiaru obciążeń mechanicznych. Szczelinomierz z kolei służy do pomiaru szczelin i odległości między elementami, co nie przekłada się na pomiar siły nacisku. Zrozumienie, jakie właściwości mają te urządzenia, jest kluczowe w kontekście wyboru odpowiednich narzędzi pomiarowych. Wybór niewłaściwego sprzętu, takiego jak pirometr lub hallotron, może prowadzić do błędnych wyników i w konsekwencji do nieefektywności w procesach przemysłowych. Dlatego ważne jest, aby przed podjęciem decyzji o wyborze urządzenia pomiarowego dokładnie znać jego funkcję i zastosowanie, co pozwala uniknąć typowych błędów myślowych.

Pytanie 40

Ile stopni swobody ma manipulator, którego schemat przedstawiono na rysunku?

Ilustracja do pytania
A. 3 stopnie swobody.
B. 6 stopni swobody.
C. 5 stopni swobody.
D. 4 stopnie swobody.
Ten manipulator, co go widzisz na schemacie, ma 4 stopnie swobody. To znaczy, że może się poruszać w czterech różnych kierunkach. Ma trzy obrotowe przeguby, które pozwalają mu na rotację w trzech osiach, a do tego jeden przegub liniowy, który umożliwia przesuwanie wzdłuż jednej osi. Taki układ jest całkiem typowy w przemyśle, zwłaszcza w robotyce, gdzie trzeba precyzyjnie manewrować urządzeniami w różnych warunkach. Myślę, że 4 stopnie swobody to super rozwiązanie do zadań takich jak montaż czy pakowanie. Poza tym, w obróbce materiałów też się przydaje, gdy trzeba przesuwać narzędzia w kilku osiach naraz. W przemyśle warto projektować te maszyny z uwzględnieniem norm ISO, bo bezpieczeństwo operatorów i otoczenia to podstawa. Rozumienie, co to są te stopnie swobody, to kluczowa sprawa dla inżynierów zajmujących się automatyzacją.