Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektronik
  • Kwalifikacja: ELM.05 - Eksploatacja urządzeń elektronicznych
  • Data rozpoczęcia: 28 października 2025 08:20
  • Data zakończenia: 28 października 2025 08:37

Egzamin zdany!

Wynik: 25/40 punktów (62,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 2

Aby przeprowadzić ocenę jakości sygnału cyfrowej telewizji satelitarnej, wymagane jest użycie miernika

A. DVB-T
B. DVB-S
C. DVB-C
D. DVB-H
Odpowiedź DVB-S jest prawidłowa, ponieważ jest to standard telewizji satelitarnej, który jest wykorzystywany do przesyłania sygnałów cyfrowych przez satelity. Mierniki DVB-S są zaprojektowane specjalnie do analizy sygnałów satelitarnych, co obejmuje pomiar jakości sygnału, siły sygnału oraz innych parametrów, takich jak BER (Bit Error Rate) i MER (Modulation Error Ratio). Zastosowanie takiego miernika jest kluczowe dla instalacji anten satelitarnych i optymalizacji ich ustawienia, co może znacząco wpłynąć na jakość odbioru. Na przykład, w przypadku ustawiania anteny, ważne jest, aby uzyskać jak najwyższą jakość sygnału, aby zminimalizować utratę pakietów danych i zniekształcenia obrazu. Standard DVB-S jest powszechnie stosowany w Europie i wielu innych regionach, co czyni go najlepszym wyborem dla profesjonalistów w dziedzinie telekomunikacji satelitarnej. Warto pamiętać, że podczas pomiarów należy także zwrócić uwagę na warunki atmosferyczne, które mogą wpływać na jakość sygnału.

Pytanie 3

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 4

Jakie jest znaczenie tzw. krosowania przewodu skrętki, który jest zakończony dwoma wtykami RJ-45, podczas łączenia różnych urządzeń w sieci LAN?

A. Na zastosowaniu oddzielnych ekranów dla poszczególnych żył skrętki
B. Na uziemieniu ekranu skrętki
C. Na zapewnieniu takiej samej sekwencji ułożenia żył skrętki w obu wtykach RJ-45
D. Na odpowiedniej zamianie kolejności ułożenia żył skrętki w jednym wtyku RJ-45 w stosunku do drugiego wtyku
Krosowanie przewodu skrętki polega na zamianie kolejności żył w jednym wtyku RJ-45 w porównaniu do drugiego. Tego rodzaju połączenie jest niezbędne w przypadku łączenia dwóch urządzeń, które obydwa pełnią funkcję urządzeń końcowych, na przykład dwóch komputerów. Standard T568A oraz T568B definiuje, jak powinny być ułożone żyły w wtykach RJ-45, a krosowanie polega na tym, że w jednym wtyku żyły są ułożone zgodnie z jednym standardem, a w drugim zgodnie z drugim standardem, co pozwala na poprawne przesyłanie sygnałów. Przykładem zastosowania krosowania jest połączenie dwóch komputerów bezpośrednio za pomocą kabla, co pozwala na utworzenie lokalnej sieci bez użycia switcha. W praktyce krosowanie przewodów jest istotną umiejętnością dla techników sieciowych, gdyż umożliwia elastyczne konfigurowanie sieci lokalnych w zależności od potrzeb, zgodnie z zasadami wydajności i niskich opóźnień w komunikacji."

Pytanie 5

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 6

Na ekranie oscyloskopu zaobserwowano pokazany na rysunku czasowy przebieg napięcia. Jaka jest szybkość narastania napięcia?

Ilustracja do pytania
A. 4 mV/s
B. 1 ms
C. 4 V
D. 4 V/ms
Szybkość narastania napięcia, określana jako nachylenie wykresu napięcia w funkcji czasu, jest kluczowym parametrem w analizie sygnałów elektrycznych. W tym przypadku, zmiana napięcia o 4V w czasie 1 ms wskazuje na szybkość narastania równą 4 V/ms. Taki pomiar jest istotny w zastosowaniach związanych z elektroniką i inżynierią, gdzie precyzyjne określenie dynamiki sygnałów jest niezbędne dla poprawnego działania obwodów. Na przykład, w układach cyfrowych, szybkość narastania napięcia ma wpływ na czas, w jakim sygnał osiąga próg aktywacji bramek logicznych, co z kolei wpływa na szybkość działania całego systemu. Zgodnie z normami IEEE dotyczących sygnałów elektrycznych, monitorowanie szybkości narastania napięcia pozwala na optymalizację działania komponentów oraz minimalizację zakłóceń. Takie analizy są również używane w diagnostyce usterek, gdzie zmiany w szybkości narastania mogą wskazywać na problemy z komponentami, co czyni tę wiedzę niezwykle wartościową w praktyce inżynierskiej.

Pytanie 7

W przedstawionym na rysunku stabilizatorze wystąpiło zwarcie jednego z elementów. Wskaż, który podzespół uległ uszkodzeniu. Woltomierz prądu stałego wskazuje około 5 V.

Ilustracja do pytania
A. Kondensator C1
B. Dioda Dz
C. Układ μA7805
D. Kondensator C2
Analizując inne odpowiedzi, możemy zauważyć pewne nieporozumienia dotyczące funkcji i zachowania elementów w przedstawionym stabilizatorze napięcia. W przypadku kondensatorów C1 i C2, ich głównym zadaniem jest filtrowanie, co oznacza, że nie są one odpowiedzialne za regulację napięcia. Kondensatory działają jako akumulatory energii, a ich awaria zazwyczaj prowadzi do spadku wydajności systemu lub zakłóceń, ale nie wpływa bezpośrednio na poziom napięcia wyjściowego w taki sposób, jak sugeruje pytanie. Z kolei układ μA7805 pełni rolę stabilizatora napięcia i, jeśli woltomierz wskazuje 5 V, oznacza to, że jego działanie jest prawidłowe. Sądzenie, że którykolwiek z wymienionych kondensatorów lub układ sam w sobie mógłby być przyczyną zwarcia, jest błędne, ponieważ ich uszkodzenie nie spowodowałoby stabilizacji napięcia na tym poziomie. Zdarza się, że użytkownicy mylnie przypisują winę za awarię komponentów na podstawie objawów, nie biorąc pod uwagę, jak poszczególne elementy współdziałają w układzie. Kluczowe jest zrozumienie, że przy diagnozowaniu usterek ważne jest dokładne przeanalizowanie roli każdego z elementów oraz ich interakcji w całym systemie. Takie podejście pozwala na skuteczniejsze rozwiązywanie problemów oraz lepsze projektowanie obwodów elektronicznych.

Pytanie 8

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 9

W tabeli podano parametry katalogowe wybranych diod LED. Uszereguj rosnąco względem napięcia przewodzenia diody LED czterech różnych barw.

Parametry katalogowe wybranych diod LED
  • Soczewka w kolorze żółtym
  • Długość emitowanej fali: 589 nm
  • Jasność: 40 mcd
  • Kąt świecenia: 60°
  • Parametry pracy:
    IF: 25 mA, VF: 2,0 V
  • Soczewka w kolorze zielonym
  • Długość emitowanej fali: 571 nm
  • Jasność: 100÷150 mcd
  • Kąt świecenia: 50°
  • Parametry pracy:
    IF: 20 mA, VF: 2,3÷2,5 V
  • Soczewka w kolorze czerwonym
  • Długość emitowanej fali: 625-645 nm
  • Jasność: 450÷800 mcd
  • Kąt świecenia: 70°
  • Parametry pracy:
    IF: 20 mA, VF: 1,8÷1,9 V
  • Soczewka w kolorze niebieskim
  • Długość emitowanej fali: 470 nm
  • Jasność: 1000 mcd
  • Kąt świecenia: 30°
  • Parametry pracy:
    IF: 25 mA, VF: 3,2 V
A. Czerwona, zielona, żółta, niebieska.
B. Niebieska, czerwona, zielona, żółta.
C. Czerwona, żółta, zielona, niebieska.
D. Niebieska, czerwona, żółta, zielona.
Twoja odpowiedź jest poprawna, ponieważ poprawnie uszeregowałeś diody LED według ich napięcia przewodzenia. Dioda czerwona, z napięciem 1,8-1,9 V, charakteryzuje się najniższym napięciem, co czyni ją pierwszą w kolejności. Następnie znajduje się dioda żółta o napięciu 2,0 V, która jest wyższa od czerwonej, ale niższa od kolejnych kolorów. Dioda zielona, z napięciem 2,3-2,5 V, zajmuje trzecie miejsce, a na końcu jest dioda niebieska z napięciem 3,2 V. Zrozumienie tego porządku jest niezbędne przy projektowaniu obwodów z diodami LED, ponieważ właściwe dobranie diod do zastosowania wymaga znajomości ich parametrów elektrycznych. Przykładowo, w aplikacjach oświetleniowych, gdzie kluczowe są oszczędności energetyczne oraz długowieczność komponentów, dobór diod LED o odpowiednich napięciach przewodzenia jest istotny dla zapewnienia stabilności obwodu. Dlatego warto zwracać uwagę na te parametry podczas projektowania układów elektronicznych.

Pytanie 10

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 11

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 12

Który z wymienionych scalonych stabilizatorów napięcia powinien być użyty do zasilania systemów zaprojektowanych w technologii TTL?

A. LM7915
B. LM7908
C. LM7812
D. LM7805
Wybór stabilizatora LM7805 do zasilania układów TTL jest uzasadniony przede wszystkim jego parametrami technicznymi, które są zgodne z wymaganiami tych układów. LM7805 to liniowy stabilizator napięcia, który dostarcza stabilne napięcie 5V, co jest standardowym napięciem zasilania dla układów TTL. Układy te, znane z niskiego poboru prądu i dużej szybkości działania, wymagają dostarczania precyzyjnego napięcia, co zapewnia LM7805. Jego zastosowanie w praktyce jest szerokie, od prostych projektów edukacyjnych po bardziej zaawansowane aplikacje w elektronice użytkowej. Warto również wspomnieć, że LM7805 charakteryzuje się dobrymi właściwościami termicznymi oraz możliwością pracy w szerszym zakresie temperatur, co czyni go odpowiednim wyborem w różnych warunkach. W kontekście dobrych praktyk, korzystanie z tego stabilizatora zgodnie z jego specyfikacją zapewnia wysoką niezawodność i stabilność działania układów TTL, co jest kluczowe w projektach elektronicznych.

Pytanie 13

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 14

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 15

Poszczególnym paskom w kodzie kreskowym rezystora, którego wartość rezystancji zapisano jako R22, odpowiadają kolory

KolorCyfra/mnożnikTolerancja
brak-20%
srebrny-210%
złoty-15%
czarny0-
brązowy11%
czerwony22%
pomarańczowy3-
żółty4-
zielony50,5%
niebieski60,25%
fioletowy70,1%
szary8-
biały9-
Ilustracja do pytania
A. 1 - czerwony, 2 - srebrny, 3 - srebrny, 4 - złoty.
B. 1 - srebrny, 2 - srebrny, 3 - czerwony, 4 - złoty.
C. 1 - srebrny, 2 - czerwony, 3 - czerwony, 4 - złoty.
D. 1 - czerwony, 2 - czerwony, 3 - srebrny, 4 - złoty.
Odpowiedź, która wskazuje na kolory pasków jako 1 - czerwony, 2 - czerwony, 3 - srebrny, 4 - złoty, jest poprawna, ponieważ odzwierciedla ona zasady kodowania kolorów stosowanych w rezystorach. Wartość 'R22' wskazuje na rezystor o wartości 22 omów, co przekłada się na pierwszą cyfrę równą 2, a zatem kolor czerwony jest odpowiedni dla obu pierwszych pasków. Trzeci pasek oznacza mnożnik, a srebrny odpowiada mnożnikowi 1, co w tym przypadku oznacza, że nie ma dodatkowej potęgi, co jest zgodne z wartością 22. Złoty pasek na końcu oznacza tolerancję rezystora, która w standardach branżowych wynosi 5%. Zrozumienie tego systemu jest kluczowe nie tylko dla poprawnego identyfikowania wartości rezystorów, ale także dla zapewnienia właściwego działania obwodów elektronicznych, w których są wykorzystywane. W praktyce, umiejętność szybkiego odczytywania kodów kolorów pozwala inżynierom i technikom na skuteczne projektowanie i diagnozowanie układów, co przekłada się na oszczędności czasu oraz zwiększenie efektywności pracy.

Pytanie 16

W terminologii związanej z sieciami komputerowymi termin 'sterownik urządzenia' odnosi się do

A. rodzaju kabli w sieci LAN
B. programu
C. małej płytki elektronicznej
D. typ złącza
Sterownik urządzenia, w kontekście sieci komputerowych, odnosi się do oprogramowania, które umożliwia komunikację pomiędzy systemem operacyjnym a sprzętem komputerowym, takim jak karty sieciowe, drukarki czy inne urządzenia peryferyjne. Program ten tłumaczy polecenia z systemu operacyjnego na zrozumiałe dla sprzętu sygnały, co pozwala na prawidłowe funkcjonowanie urządzenia. Na przykład, gdy komputer próbuje wysłać dane do drukarki, sterownik umożliwia przetworzenie tych danych na format, który drukarka jest w stanie zrozumieć. W praktyce, podczas instalacji nowego sprzętu, użytkownicy często muszą zainstalować odpowiedni sterownik, aby zapewnić pełną funkcjonalność urządzenia. W branży IT przestrzega się standardów, takich jak IEEE 802.3 w przypadku kart sieciowych, które definiują sposoby komunikacji w sieciach lokalnych, co również podkreśla znaczenie odpowiednich sterowników w zapewnieniu zgodności z tymi standardami.

Pytanie 17

W obwodowych systemach zabezpieczeń wykorzystuje się detektory

A. gazów usypiających
B. zalania
C. magnetyczne
D. dymu i ciepła
Wybór czujek gazów usypiających, zalania albo dymu i ciepła do ochrony obwodowej to pomyłka. Te technologie są zupełnie do czego innego. Czujki gazów usypiających, jak sama nazwa wskazuje, są po to, by zabezpieczać przed zagrożeniami chemicznymi, a nie by chronić przed włamaniami. Nie wykrywają intruzów, a ich rola skupia się na sytuacjach awaryjnych związanych z substancjami chemicznymi. Czujki zalania z kolei wykrywają wodę i są przydatne do ochrony przed uszkodzeniami mienia, ale to nie to samo co zabezpieczenie przed włamaniami. Czujki dymu i ciepła są ważne w systemach przeciwpożarowych, ale też nie pełnią funkcji ochrony obwodowej. Nie można myśleć, że wszystkie czujki robią to samo; każda z nich ma swoje konkretne zastosowanie, zgodne z normami ochrony przeciwpożarowej lub mienia. Dobrze dobrane czujki do systemu bezpieczeństwa są kluczowe, a błędny wybór może prowadzić do luk w zabezpieczeniach i większego ryzyka.

Pytanie 18

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 19

Jaką kluczową rolę w tunerze satelitarnym pełni moduł CI (Common Interface)?

A. Pozwala na podłączenie pamięci zewnętrznej.
B. Funkcjonuje jako czytnik kart dostępu.
C. Służy do łączenia urządzeń audio-video.
D. Daje możliwość aktualizacji oprogramowania tunera.
Odpowiedzi sugerujące, że moduł CI służy do podłączenia pamięci zewnętrznej, aktualizacji oprogramowania tunera lub podłączenia urządzeń audio-video, są błędne, ponieważ pomijają fundamentalną rolę, jaką odgrywa ten moduł w kontekście dostępu do zaszyfrowanych kanałów. Moduł CI nie jest przeznaczony do obsługi pamięci zewnętrznych; zamiast tego, jego głównym celem jest dekodowanie sygnałów z kart kodowych. Podłączenie pamięci zewnętrznej do tunera może być realizowane za pomocą portów USB, ale nie jest związane z funkcjonalnością modułu CI. Również aktualizacja oprogramowania tunera najczęściej realizowana jest poprzez internet lub zewnętrzne nośniki danych, a nie przez CI, który pełni rolę jedynie w kontekście zarządzania dostępem do treści. Co więcej, podłączenie urządzeń audio-video, takich jak odtwarzacze Blu-ray czy kina domowe, odbywa się zazwyczaj za pomocą HDMI lub innych standardowych złączy, a nie za pośrednictwem modułu CI. W ten sposób można dostrzec, że wiele błędnych odpowiedzi wynika z pomylenia ról różnych komponentów systemu telewizyjnego oraz braku zrozumienia, jakie funkcje pełnią poszczególne elementy w zapewnieniu dostępu do treści multimedialnych.

Pytanie 20

W specyfikacji technicznej zasilacza podano, że współczynnik tętnień kt < 2%. Współczynnik tętnień zdefiniowano jako stosunek wartości skutecznej składowej zmiennej do wartości średniej przebiegu. Jaką wartość ma ten współczynnik i czy spełnia on normy techniczne zasilacza, jeżeli przebieg wyjściowy zasilacza można przedstawić równaniem uwyj(t) = 1 0 + 0,1√2sin(628t) ?

A. 1%, tak
B. 3%, tak
C. 1%, nie
D. 3%, nie
Prawidłowa odpowiedź wynika z analizy wzoru przebiegu wyjściowego zasilacza: u<sub>wyj</sub>(t) = 1 0 + 0,1√2sin(628t). Aby obliczyć współczynnik tętnień (kt), musimy najpierw określić wartość skuteczną składowej zmiennej oraz wartość średnią. Wartość skuteczna składowej zmiennej sinusoidalnej, w tym przypadku, wynosi 0,1√2, co odpowiada 0,1414. Wartość średnia tej samej składowej sinusoidalnej wynosi 0, ponieważ dla sinusoidy, średnia z jednego pełnego okresu równoważy się do zera. Z tego powodu współczynnik tętnień obliczamy jako: kt = (0,1414 / 1) * 100% = 14,14%. W praktyce dla zasilaczy wymagany współczynnik tętnień powinien być mniejszy niż 2%, co oznacza, że nasz wynik 1% jest znacznie poniżej tego progu, a zatem spełnia wymagania techniczne. Takie zasilacze są odpowiednie do zasilania wrażliwych urządzeń elektronicznych, gdzie stabilność napięcia jest kluczowa dla ich prawidłowego działania. Przykładem mogą być systemy audio czy urządzenia pomiarowe, które wymagają wysokiej jakości zasilania.

Pytanie 21

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 22

Jaki typ generatora powinno się wykorzystać w bloku podstawy czasu oscyloskopu?

A. Generator sinusoidalny
B. Generator prostokątny
C. Generator piłokształtny
D. Generator impulsowy
Zastosowanie niewłaściwych typów generatorów w bloku podstawy czasu oscyloskopu może prowadzić do nieprawidłowych wyników pomiarów oraz trudności w interpretacji sygnałów. Generator impulsowy, który generuje krótkie impulsy o dużej amplitudzie, może wprowadzać zniekształcenia, ponieważ nie dostarcza informacji o czasie trwania sygnału. Użycie generatora prostokątnego, mimo iż pozwala na analizę sygnałów cyfrowych, nie spełnia wymagań dotyczących linearności zmian w czasie, co jest kluczowe w kontekście analizy sygnałów analogowych. Z kolei generator sinusoidalny generuje sygnały o stałej częstotliwości i amplitudzie, co może być niewystarczające do adekwatnego modelowania bardziej złożonych sygnałów, które występują w praktycznych zastosowaniach inżynierskich. Często błędne jest przekonanie, że każdy z tych generatorów może być stosowany wymiennie, co prowadzi do niepoprawnych wniosków i rezultatów analiz. W analizach inżynieryjnych niezwykle istotne jest stosowanie odpowiednich kształtów sygnałów, co znajduje potwierdzenie w praktykach i standardach branżowych, które wymagają precyzyjnych i powtarzalnych pomiarów. Właściwy dobór generatora, a w tym przypadku generatora piłokształtnego, odgrywa kluczową rolę w zapewnieniu dokładności i wiarygodności pomiarów, co jest niezbędne w każdej laboratorium inżynieryjnym.

Pytanie 23

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 24

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 25

Modyfikacja szerokości kąta widzenia w kamerze CCTV to proces polegający na

A. regulacji ustawień pokrętłem SCREEN
B. regulacji ustawień za pomocą pokrętła FOCUS
C. zmianie miejsca umiejscowienia kamery
D. wymianie kopułki kamery
Regulacja szerokości kąta widzenia kamery CCTV poprzez pokrętło SCREEN jest kluczowym elementem w procesie dostosowywania parametrów obrazu do specyficznych potrzeb monitoringu. Pokrętło to pozwala na modyfikację ustawień obrazu, co może obejmować kontrast, jasność oraz nasycenie barw. Umożliwia to optymalne dostosowanie kamery do zmieniających się warunków oświetleniowych oraz różnych scenariuszy monitoringu. Przykładowo, w trudnych warunkach oświetleniowych, takich jak nocne nagrania lub silne oświetlenie słoneczne, odpowiednie dostosowanie tych parametrów może znacząco poprawić jakość obrazu, co jest niezbędne dla skutecznego monitoringu. Dobrą praktyką jest regularne kalibrowanie kamer i sprawdzanie ustawień, aby zapewnić, że obraz jest zawsze wyraźny i czytelny. W branży zabezpieczeń istnieją standardy, takie jak ONVIF, które podkreślają znaczenie odpowiednich ustawień w celu uzyskania najlepszych wyników z systemu CCTV.

Pytanie 26

W jakim urządzeniu wykorzystuje się przetwornik cyfrowo-analogowy?

A. W odtwarzaczu CD
B. W generatorze RC
C. W mierniku cyfrowym
D. W magnetowidzie VHS
Zarówno magnetowid VHS, generator RC, jak i miernik cyfrowy nie wykorzystują przetworników cyfrowo-analogowych w sposób, w jaki jest to wymagane do konwersji sygnałów cyfrowych na analogowe. Magnetowid VHS jest urządzeniem analogowym, które rejestruje i odtwarza sygnał wideo w formacie analogowym. Jego działanie polega na wykorzystaniu taśmy magnetycznej, a proces zapisu i odczytu odbywa się w technologii, która nie wymaga przetwarzania sygnałów cyfrowych, przez co definicja przetwornika DAC jest w tym kontekście zbędna. Generator RC, z kolei, jest używany do generowania sygnałów analogowych, głównie sinusoidalnych, kwadratowych lub trójkątnych, ale nie przetwarza sygnałów cyfrowych. Jego zastosowanie jest związane z obwodami elektronicznymi, w których kluczowa jest kontrola częstotliwości i amplitudy sygnałów. Miernik cyfrowy, będący urządzeniem pomiarowym, przetwarza sygnały analogowe na cyfrowe, jednak nie wykonuje konwersji w odwrotnym kierunku; jego zadaniem jest pomiar różnych wielkości elektrycznych, takich jak napięcie czy prąd. Oznacza to, że typowe błędy myślowe mogą wynikać z nieodróżniania funkcji pomiędzy przetwarzaniem cyfrowo-analogowym a analogowo-cyfrowym, co prowadzi do mylnego wniosku o zastosowaniu DAC w tych urządzeniach.

Pytanie 27

Podczas fachowej wymiany uszkodzonego układu scalonego SMD – kontrolera przetwornicy impulsowej w odbiorniku TV – powinno się zastosować

A. lutownicę gazową
B. lutownicę transformatorową
C. stację na gorące powietrze
D. stację lutowniczą grzałkową
Stacja na gorące powietrze jest narzędziem idealnym do wymiany uszkodzonych układów scalonych SMD, takich jak sterowniki przetwornic impulsowych w odbiornikach TV. Dzięki zastosowaniu gorącego powietrza można jednocześnie podgrzewać wiele pinów układu, co znacząco ułatwia proces lutowania oraz odlutowywania. Metoda ta minimalizuje ryzyko uszkodzenia elementów sąsiadujących, ponieważ nie wprowadza bezpośredniego kontaktu z gorącą powierzchnią, jak ma to miejsce w przypadku lutownic. W praktyce, użytkownicy stacji na gorące powietrze powinni ustawić odpowiednią temperaturę (zwykle w zakresie 250-350°C) oraz przepływ powietrza, co zależy od konkretnego rozmiaru i typu układu. Użycie tej technologii jest zgodne z najlepszymi praktykami w branży, co podkreślają normy IPC, które promują odpowiednie techniki lutowania dla komponentów SMD. Ponadto, stacje na gorące powietrze są również używane do reworku i napraw, co czyni je wszechstronnym narzędziem w elektronice.

Pytanie 28

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 29

Jakie urządzenie elektroniczne jest niezbędne do bezpośredniego łączenia układów CMOS z układami TTL?

A. Generator fali prostokątnej
B. Wzmacniacz napięciowy
C. Konwerter poziomów logicznych
D. Stabilizator impulsowy
Konwerter poziomów logicznych jest niezbędnym układem elektronicznym, gdy chcemy połączyć układy CMOS (Complementary Metal-Oxide-Semiconductor) z układami TTL (Transistor-Transistor Logic). Różnice w poziomach napięć logicznych między tymi dwoma technologiami mogą prowadzić do uszkodzenia układów, dlatego konwerter zapewnia bezpieczne i prawidłowe przejście sygnałów. Na przykład, standardowe napięcie logiczne dla układów TTL wynosi 5V, podczas gdy dla wielu układów CMOS poziom logiczny „1” może wynosić od 3V do 15V, w zależności od konkretnego układu. Konwertery poziomów logicznych są projektowane tak, aby dostosować te napięcia, co pozwala na prawidłowe i niezawodne działanie systemu. W praktyce konwertery te są szeroko stosowane w systemach, gdzie różne technologie są integrowane, np. w mikrokontrolerach, które współpracują z różnymi typami czujników lub modułów komunikacyjnych. Dzięki konwerterom poziomów logicznych można również uniknąć problemów związanych z kompatybilnością sygnałów w projektach elektronicznych, co jest kluczowe dla zapewnienia stabilności i niezawodności działania całego układu.

Pytanie 30

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 31

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 32

Przedstawiony na zdjęciu klucz Dallas jest elementem systemu

Ilustracja do pytania
A. dostępu i zabezpieczeń.
B. automatyki przemysłowej.
C. telewizji dozorowej.
D. sieci komputerowej.
Klucz Dallas, znany również jako iButton, jest kluczowym elementem w systemach kontroli dostępu i zabezpieczeń. Jego zastosowanie polega na bezpiecznej identyfikacji użytkowników, co czyni go niezwykle użytecznym w różnych aplikacjach, takich jak automatyczne otwieranie drzwi, autoryzacja dostępu do systemów komputerowych oraz zabezpieczenia w budynkach użyteczności publicznej. Klucz działa na zasadzie komunikacji z czytnikiem, co pozwala na szybką weryfikację tożsamości. Praktyczne zastosowania obejmują m.in. systemy kontroli dostępu w biurach, fabrykach czy instytucjach finansowych, gdzie bezpieczeństwo jest priorytetem. Dobre praktyki w branży wskazują na konieczność używania unikalnych identyfikatorów, co znacznie podnosi poziom bezpieczeństwa. Warto również zwrócić uwagę na standardy, takie jak ISO/IEC 27001, które dotyczą zarządzania bezpieczeństwem informacji, a systemy oparte na kluczach Dallas mogą wspierać implementację tych standardów poprzez efektywne zarządzanie dostępem i identyfikacją użytkowników.

Pytanie 33

Dodatnie sprzężenie zwrotne polega na tym, że część sygnału

A. wyjściowego trafia na wejście w przeciwfazie do sygnału wyjściowego
B. wejściowego jest przekazywana na wyjście w fazie z sygnałem wyjściowym
C. wejściowego kierowana jest na wyjście w przeciwfazie z sygnałem wyjściowym
D. wyjściowego zostaje przekazywana na wejście w fazie z sygnałem wejściowym
Odpowiedź, że dodatnie sprzężenie zwrotne polega na przekazywaniu sygnału wyjściowego na wejście w fazie z sygnałem wejściowym, jest poprawna, ponieważ dodatnie sprzężenie zwrotne rzeczywiście polega na wzmocnieniu sygnału. W praktyce oznacza to, że sygnał wyjściowy jest dodawany do sygnału wejściowego, co prowadzi do zwiększenia wartości sygnału w systemie. Takie podejście jest powszechnie stosowane w różnych systemach, takich jak wzmacniacze audio, gdzie dążymy do uzyskania intensyfikacji dźwięku. Dodatnie sprzężenie zwrotne znajduje zastosowanie także w systemach stabilizacji, takich jak kontrola temperatury, gdzie zwiększenie sygnału może prowadzić do szybszego osiągnięcia pożądanej wartości. Standardowe praktyki inżynieryjne zalecają ostrożne stosowanie dodatniego sprzężenia zwrotnego, ponieważ może ono prowadzić do niestabilności systemu i oscylacji, jeśli nie jest odpowiednio zaprojektowane. Kluczowe jest zrozumienie, że dodatnie sprzężenie zwrotne wzmacnia sygnał, co może przynieść zarówno korzyści, jak i ryzyko, dlatego wymaga odpowiedniej analizy i projektowania.

Pytanie 34

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 35

Która z podanych cech nie charakteryzuje się właściwościami idealnego wzmacniacza operacyjnego?

A. Nieskończenie szeroki zakres przenoszenia
B. Nieskończenie wielkie różnicowe wzmocnienie napięciowe
C. Nieskończenie wielka rezystancja wyjściowa
D. Nieskończenie wielka rezystancja wejściowa
Wzmacniacze operacyjne są kluczowym elementem w elektronice analogowej, a znajomość ich właściwości jest niezbędna do ich prawidłowego zastosowania. Jedną z fundamentalnych cech idealnego wzmacniacza operacyjnego jest nieskończenie duża rezystancja wejściowa. Tego rodzaju rezystancja pozwala na minimalizację wpływu wzmacniacza na sygnał wejściowy, co jest istotne w aplikacjach, gdzie istotne są bardzo małe sygnały. W praktyce, oznacza to, że idealny wzmacniacz operacyjny nie pobiera praktycznie żadnego prądu z sygnału wejściowego, co jest pożądane w pomiarach i amplifikacji sygnałów. Szerokie pasmo przenoszenia jest również kluczowym parametrem, który pozwala na efektywne wzmacnianie sygnałów o różnych częstotliwościach, co jest niezbędne w systemach komunikacyjnych i obróbczych. Kolejnym ważnym aspektem jest nieskończenie duże różnicowe wzmocnienie napięciowe, które pozwala na bardzo dużą amplifikację różnicy napięć na wejściach, co jest istotne w zastosowaniach takich jak wzmacniacze instrumentacyjne. Wybierając wzmacniacz operacyjny do konkretnego zastosowania, należy zawsze uwzględnić te parametry, aby zapewnić optymalne działanie systemu. Wstępne założenia dotyczące parametrów idealnych są podstawą do analizy rzeczywistych wzmacniaczy operacyjnych, które zawsze będą miały ograniczenia techniczne i różnice w charakterystyce, ale ich projektowanie powinno dążyć do zbliżenia się do ideału.

Pytanie 36

Topologia fizyczna realizacji sieci komputerowej określa

A. zasady komunikacji w sieci
B. geometriczną strukturę sieci, wizualnie ukazując jej formę i organizację
C. sposób dzielenia się zasobami sieci
D. metodę układania okablowania
Analizując inne odpowiedzi, można zauważyć, że niektóre z nich mylą pojęcia związane z różnymi aspektami funkcjonowania sieci komputerowych. Na przykład, wskazanie na sposób wykonania okablowania jako topologii fizycznej jest mylne, ponieważ okablowanie to tylko jeden z elementów, które tworzą całość sieci. O ile okablowanie ma wpływ na wydajność, to opis topologii fizycznej powinien koncentrować się na ogólnym układzie i strukturze sieci. Z kolei koncepcja współużytkowania zasobów sieci odnosi się do modelu dostępu do tych zasobów, a nie do ich fizycznej organizacji. Mylne jest także postrzeganie topologii jako reguł komunikacji w sieci. Reguły komunikacji związane są z protokołami i standardami, które definiują, jak urządzenia komunikują się ze sobą, natomiast topologia fizyczna to bardziej konkretna kwestia związana z układem urządzeń i kabli. Typowym błędem w myśleniu o topologii fizycznej jest pomijanie znaczenia schematycznego przedstawienia sieci, co jest kluczowe dla planowania oraz zarządzania infrastrukturą sieciową. Z tego powodu, zrozumienie różnicy między topologią fizyczną a innymi aspektami sieci jest kluczowe dla prawidłowego projektowania i eksploatacji sieci komputerowych.

Pytanie 37

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 38

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 39

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 40

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.