Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik informatyk
  • Kwalifikacja: INF.02 - Administracja i eksploatacja systemów komputerowych, urządzeń peryferyjnych i lokalnych sieci komputerowych
  • Data rozpoczęcia: 20 grudnia 2025 19:00
  • Data zakończenia: 20 grudnia 2025 19:05

Egzamin zdany!

Wynik: 27/40 punktów (67,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Jaka usługa musi być aktywna na serwerze, aby stacja robocza mogła automatycznie uzyskać adres IP?

A. DHCP
B. PROXY
C. DNS
D. WINS
Usługa DHCP (Dynamic Host Configuration Protocol) jest kluczowym elementem w zarządzaniu adresami IP w sieciach komputerowych. Jej głównym zadaniem jest automatyczne przydzielanie dynamicznych adresów IP stacjom roboczym oraz innym urządzeniom podłączonym do sieci. Gdy stacja robocza łączy się z siecią, wysyła zapytanie DHCPDISCOVER w celu identyfikacji dostępnych serwerów DHCP. Serwer odpowiada, wysyłając ofertę DHCPOFFER, która zawiera adres IP oraz inne istotne informacje konfiguracyjne, takie jak maska podsieci, brama domyślna i serwery DNS. Po otrzymaniu oferty stacja robocza wysyła żądanie DHCPREQUEST, co finalizuje proces poprzez potwierdzenie przyznania adresu IP. Praktyczne zastosowanie DHCP znacznie upraszcza zarządzanie dużymi sieciami, eliminując potrzebę ręcznego przypisywania adresów IP oraz minimalizując ryzyko konfliktów adresów. Standardy związane z DHCP są określone w dokumentach IETF RFC 2131 i RFC 2132, które definiują sposób działania tego protokołu oraz jego parametry.

Pytanie 2

Ustalenie adresów fizycznych MAC na podstawie adresów logicznych IP jest efektem działania protokołu

A. HTTP
B. ARP
C. DHCP
D. DNS
Protokół ARP (Address Resolution Protocol) jest kluczowym elementem komunikacji w sieciach komputerowych opartych na protokole IP. Jego główną funkcją jest mapowanie adresów IP na odpowiadające im adresy MAC (Media Access Control), co umożliwia urządzeniom w sieci lokalnej prawidłowe wysyłanie danych. W przypadku, gdy urządzenie chce wysłać pakiet do innego urządzenia, najpierw musi znać adres MAC odbiorcy. Jeśli jedynie zna adres IP, wysyła zapytanie ARP, w którym prosi o podanie adresu MAC powiązanego z danym adresem IP. Odpowiedzią jest pakiet ARP, który zawiera żądany adres MAC. ARP jest standardowym protokołem w ramach stosu protokołów TCP/IP i stanowi fundament większości komunikacji w sieciach Ethernet. Zrozumienie działania ARP jest kluczowe dla administratorów sieci, którzy muszą monitorować, diagnozować oraz zabezpieczać ruch w sieciach lokalnych. Bez tego protokołu, urządzenia nie mogłyby skutecznie komunikować się w sieciach, co prowadziłoby do poważnych problemów z łącznością.

Pytanie 3

W przypadku drukarki igłowej, jaki materiał eksploatacyjny jest używany?

A. atrament
B. taśma barwiąca
C. toner
D. pigment
Wybór tuszu, tonera lub pigmentu jako materiałów eksploatacyjnych dla drukarki igłowej jest nietrafiony i wynika z nieporozumienia dotyczącego technologii druku. Tusz jest zazwyczaj używany w drukarkach atramentowych, gdzie cienkie krople atramentu są naniesione na papier przez dysze, co różni się od mechanizmu działania drukarki igłowej. Toner z kolei jest stosowany w drukarkach laserowych; jest to proszek, który jest utrwalany na papierze za pomocą wysokiej temperatury i ciśnienia. W kontekście pigmentu, jest to forma atramentu, ale również nie ma zastosowania w drukarkach igłowych. Warto zwrócić uwagę, że wybór nieodpowiednich materiałów eksploatacyjnych może prowadzić do problemów z jakością druku, a także do uszkodzenia urządzenia. Typowe błędy myślowe, które prowadzą do takich niepoprawnych wniosków, obejmują mylenie różnych technologii druku, co może wynikać z braku zrozumienia zasad działania poszczególnych typów drukarek. W związku z tym, znajomość specyfiki materiałów eksploatacyjnych oraz ich zastosowania jest kluczowa dla efektywnego wykorzystania drukarek w praktyce.

Pytanie 4

Schemat ilustruje fizyczną strukturę

Ilustracja do pytania
A. Gwiazdy
B. Szyny
C. Magistrali
D. Drzewa
Topologia gwiazdy jest jedną z najczęściej stosowanych fizycznych topologii sieci komputerowych, szczególnie w sieciach lokalnych (LAN). W tej topologii wszystkie urządzenia końcowe, takie jak komputery, są podłączone do centralnego urządzenia, którym zazwyczaj jest switch lub hub. Kluczową zaletą topologii gwiazdy jest jej łatwość w diagnostyce i zarządzaniu siecią. Jeśli jeden z kabli ulegnie uszkodzeniu, wpływa to tylko na jedno urządzenie, a reszta sieci działa bez zakłóceń. Topologia ta zapewnia również skalowalność, umożliwiając łatwe dodawanie nowych urządzeń bez wpływu na istniejące połączenia. W przypadku switcha, możliwe jest zastosowanie zaawansowanych mechanizmów zarządzania ruchem, takich jak filtry adresów MAC czy VLANy, co zwiększa wydajność i bezpieczeństwo sieci. Topologia gwiazdy jest zgodna z różnymi standardami komunikacyjnymi, takimi jak Ethernet, co czyni ją wszechstronną i kompatybilną z wieloma technologiami sieciowymi. W praktyce, ze względu na jej niezawodność i efektywność, jest to najczęściej wybierana topologia w środowiskach biurowych i komercyjnych, a jej zastosowanie jest szeroko udokumentowane w branżowych standardach i dobrych praktykach.

Pytanie 5

Jakie urządzenie sieciowe zostało przedstawione na diagramie sieciowym?

Ilustracja do pytania
A. przełącznik
B. modem
C. ruter
D. koncentrator
Ruter jest urządzeniem sieciowym kluczowym dla łączenia różnych sieci komputerowych. Jego główną funkcją jest przekazywanie pakietów danych pomiędzy sieciami, na przykład pomiędzy siecią lokalną (LAN) a rozległą siecią (WAN). Dzięki zastosowaniu protokołów routingu, takich jak OSPF czy BGP, ruter optymalnie wybiera ścieżki, którymi dane powinny podróżować, co ma ogromne znaczenie dla efektywności i szybkości działania sieci. Ruter również zarządza tablicami routingu, które zawierają informacje o możliwych trasach w sieci, co pozwala na dynamiczne reagowanie na zmiany w topologii sieci. Praktyczne zastosowanie ruterów obejmuje zarówno sieci domowe, gdzie umożliwiają dostęp do Internetu, jak i skomplikowane sieci korporacyjne, gdzie optymalizują ruch danych pomiędzy wieloma oddziałami firmy. Zgodnie z dobrymi praktykami branżowymi, ruter często współpracuje z innymi urządzeniami sieciowymi, takimi jak przełączniki czy firewalle, by zapewnić kompleksową ochronę i zarządzanie ruchem w sieci. Dzięki zaawansowanym funkcjom, takim jak NAT czy QoS, ruter umożliwia również zarządzanie przepustowością i bezpieczeństwem danych, co jest kluczowe w nowoczesnych środowiskach IT.

Pytanie 6

Jakie narzędzie jest używane do zakończenia skrętki przy pomocy wtyku 8P8C?

A. zaciskarka do złączy typu F
B. spawarka światłowodowa
C. narzędzie uderzeniowe
D. zaciskarka wtyków RJ-45
Zaciskarka wtyków RJ-45 jest narzędziem dedykowanym do zakończenia skrętek sieciowych w standardzie Ethernet, które korzystają z wtyków 8P8C, często mylonych z RJ-45. Umożliwia ona precyzyjne połączenie przewodów skrętki z wtykiem poprzez ich odpowiednie zaciskanie. Tego typu zaciskarki są dostępne w wielu wariantach, od ręcznych po automatyczne, co ułatwia pracę w różnych warunkach. W praktyce, przy użyciu zaciskarki RJ-45, można zakończyć kable sieciowe w biurach, domach oraz w większych instalacjach teleinformatycznych. Zgodnie z normą ANSI/TIA-568, ważne jest, aby przewody były ułożone zgodnie z ustaloną kolorystyką, co może wpłynąć na wydajność i stabilność połączenia. Dobrze wykonane zakończenie, w tym użycie odpowiedniego narzędzia, jest kluczowe dla zapewnienia niezawodności sieci, co ma szczególne znaczenie w środowiskach o wysokim obciążeniu sieciowym, takich jak centra danych czy biura z wieloma stacjami roboczymi.

Pytanie 7

Jakim skrótem określa się połączenia typu punkt-punkt w ramach publicznej infrastruktury telekomunikacyjnej?

A. PAN
B. VPN
C. VLAN
D. WLAN
Odpowiedzi takie jak PAN, VLAN i WLAN dotyczą różnych rodzajów sieci, które nie są związane z koncepcją bezpiecznych połączeń przez publiczne infrastruktury. PAN, czyli Personal Area Network, odnosi się do lokalnych sieci, zazwyczaj używanych w kontekście urządzeń osobistych, takich jak telefony czy laptopy, a więc nie zapewnia połączeń przez publiczną infrastrukturę. VLAN, czyli Virtual Local Area Network, to technologia, która umożliwia segregację ruchu w ramach lokalnych sieci, ale nie dotyczy bezpośrednio bezpieczeństwa połączeń w przestrzeni publicznej. WLAN, czyli Wireless Local Area Network, odnosi się do sieci bezprzewodowych, które również nie są skoncentrowane na zapewnieniu bezpieczeństwa w połączeniach punkt-punkt przez Internet. Wybierając te odpowiedzi, można dojść do błędnego wniosku, że te technologie są podobne do VPN, co jest mylne. Kluczowym błędem myślowym jest zrozumienie różnicy pomiędzy lokalnymi i wirtualnymi sieciami, jak również nieodróżnianie ścisłych zabezpieczeń, które VPN oferuje, od mniej zabezpieczonych lokalnych połączeń, które nie wykorzystują szyfrowania. Warto zrozumieć, że każde z tych pojęć ma swoje specyficzne zastosowania i cele, które nie pokrywają się z funkcjonalnością VPN.

Pytanie 8

Procesem nieodwracalnym, całkowicie uniemożliwiającym odzyskanie danych z dysku twardego, jest

A. zalanie dysku.
B. przypadkowe usunięcie plików.
C. zerowanie dysku.
D. zatarcie łożyska dysku.
Wiele osób sądzi, że zwykłe usunięcie plików z dysku oznacza ich nieodwracalne utracenie, lecz w rzeczywistości taki proces jedynie usuwa wskaźniki do danych w systemie plików. Fizycznie, pliki nadal istnieją na sektorach dysku i do momentu ich nadpisania można je dość łatwo odzyskać za pomocą popularnych narzędzi do odzyskiwania danych. Mechaniczna awaria, taka jak zatarcie łożyska dysku, co prawda uniemożliwia normalne korzystanie z urządzenia, ale dane wciąż pozostają zapisane na talerzach. Firmy specjalizujące się w odzyskiwaniu potrafią rozmontować dysk i odczytać te informacje w warunkach laboratoryjnych – miałem okazję widzieć takie przypadki, gdzie po poważnej awarii mechanicznej ludzie byli w szoku, że „martwy” dysk dalej zdradzał swoje sekrety. Zalanie nośnika również nie daje żadnej gwarancji trwałego zniszczenia danych – przy odpowiedniej wiedzy i sprzęcie możliwe jest nawet odzyskanie danych z nośnika po dłuższym kontakcie z wodą. Praktyka branżowa, zwłaszcza w firmach IT czy sektorze publicznym, jasno pokazuje, że jedynym pewnym sposobem na nieodwracalne usunięcie informacji jest kontrolowane, programowe nadpisanie całej powierzchni dysku – czyli właśnie zerowanie. Warto pamiętać, że korzystanie z półśrodków często prowadzi do poważnych naruszeń bezpieczeństwa danych, o czym przekonało się już wiele instytucji na świecie. Zamiast polegać na awariach czy przypadkowych usunięciach, lepiej zawsze stosować rozwiązania sprawdzone i zgodne z najlepszymi praktykami – a zerowanie właśnie takim sposobem jest.

Pytanie 9

Transmisję danych w sposób bezprzewodowy umożliwia standard, który zawiera interfejs

A. LFH60
B. HDMI
C. DVI
D. IrDA
IrDA, czyli Infrared Data Association, to standard bezprzewodowej transmisji danych, który umożliwia przesyłanie informacji za pomocą podczerwieni. Jest to technologia wykorzystywana przede wszystkim w komunikacji pomiędzy urządzeniami na niewielkich odległościach, typowo do kilku metrów. Przykłady zastosowania IrDA obejmują przesyłanie plików pomiędzy telefonami komórkowymi, łączność z drukarkami czy synchronizację danych z komputerami. Standard ten jest zgodny z różnymi protokołami komunikacyjnymi, co pozwala na jego elastyczne użycie w wielu aplikacjach. W praktyce, IrDA zapewnia bezpieczne i szybkie połączenia, jednak wymaga, aby urządzenia były w bezpośredniej linii widzenia, co może być jego ograniczeniem. W branży standardy IrDA są uznawane za jedne z pierwszych prób stworzenia efektywnej komunikacji bezprzewodowej, co czyni je ważnym krokiem w rozwoju technologii bezprzewodowej. Warto również zauważyć, że pomimo spadku popularności IrDA na rzecz innych technologii, takich jak Bluetooth, pozostaje on istotnym elementem w kontekście historycznym oraz technologicznym.

Pytanie 10

Na stronie wydrukowanej przez drukarkę laserową występują jaśniejsze i ciemniejsze fragmenty. W celu usunięcia problemów z jakością oraz nieciągłościami w wydruku, należy

A. wymienić bęben światłoczuły
B. przeczyścić głowice drukarki
C. przeczyścić wentylator drukarki
D. wymienić grzałkę
Próby rozwiązania problemu z jaśniejszymi i ciemniejszymi obszarami na wydrukach mogą prowadzić do błędnych wniosków, jeśli nie zrozumiemy podstaw działania drukarki laserowej. Nagrzewnica, przeczyścić dysze oraz wentylator nie są kluczowymi elementami w kontekście tego konkretnego problemu. W przypadku nagrzewnicy, jej wymiana może być uzasadniona, gdy pojawiają się problemy z wygrzewaniem tonera, co skutkuje nieodpowiednim utrwaleniem obrazu. Jednak nie ma to bezpośredniego związku z nierównomiernością wydruku, która zazwyczaj wskazuje na zużycie bębna. Jeśli chodzi o dysze, to są one bardziej związane z drukarkami atramentowymi, gdzie ich zatykanie może prowadzić do braku wydruku kolorów, co jest zupełnie innym problemem. Z kolei wentylator, który odpowiada za chłodzenie komponentów urządzenia, również nie ma wpływu na jakość samego wydruku. W przypadku drukarek laserowych kluczowym elementem do oceny jakości wydruku jest bęben, dlatego ignorowanie jego stanu i podejmowanie działań w kierunku wymiany innych podzespołów prowadzi do nieefektywności oraz potencjalnych dodatkowych kosztów. Zrozumienie specyfiki każdego z elementów drukarki oraz ich roli w procesie wydruku jest niezbędne dla prawidłowego diagnozowania problemów i podejmowania właściwych działań.

Pytanie 11

Symbol graficzny przedstawiony na ilustracji oznacza jaką bramkę logiczną?

Ilustracja do pytania
A. NAND
B. NOR
C. AND
D. OR
Zrozumienie działania bramek logicznych jest kluczowe dla projektowania układów cyfrowych. W tym pytaniu trzy z czterech odpowiedzi dotyczą bramek które są często mylone z bramką AND. Bramka NAND jest odwrotnością bramki AND i działa na zasadzie że wyjście jest w stanie logicznym 0 tylko wtedy gdy wszystkie wejścia są w stanie 1. Jest szeroko stosowana w generowaniu sygnałów resetujących i układach pamięci ponieważ jej działanie pozwala na efektywne implementowanie funkcji logicznych. Bramka NOR z kolei to odwrotność bramki OR i jej wyjście jest 1 tylko wtedy gdy wszystkie wejścia są 0 co jest przydatne w projektowaniu pamięci i przerzutników. Bramka OR przekazuje stan logiczny 1 na wyjściu gdy przynajmniej jedno z wejść jest w stanie 1 co jest użyteczne w obwodach wyboru sygnałów. Mylenie bramek NAND NOR i OR z bramką AND wynika często z podobieństw w ich symbolach graficznych oraz złożoności ich funkcji logicznych. Ważne jest aby inżynierowie dokładnie analizowali zarówno działanie jak i zastosowania każdej z tych bramek aby unikać błędów w projektowaniu i implementacji układów cyfrowych. Dobra znajomość tych różnic jest niezbędna do tworzenia poprawnych i efektywnych rozwiązań technologicznych.

Pytanie 12

Jakim skrótem określane są czynności samokontroli komputera po uruchomieniu zasilania?

A. POST
B. BIOS
C. CPU
D. MBR
POST, czyli Power-On Self Test, to taka procedura diagnostyczna, którą komputer odpala sobie samodzielnie zaraz po włączeniu. Robi to po to, by sprawdzić, czy wszystkie podstawowe elementy, jak RAM, procesor, karta graficzna i inne urządzenia peryferyjne, działają jak należy zanim załaduje system operacyjny. Jak coś jest nie tak, to POST da znać – generuje dźwięki albo wyświetla komunikaty, co pozwala na szybką diagnozę. Przykład? Kiedy komputer nie chce się uruchomić, to komunikat o błędzie może podpowiedzieć, co z tym zrobić. Te procedury są zgodne z normami różnych organizacji, więc sprzęt różnych producentów współpracuje z tymi samymi procedurami, co bardzo ułatwia życie. Dlatego warto znać, jak działa POST, bo to pozwala na łatwiejsze rozwiązywanie problemów i poprawę wydajności systemu.

Pytanie 13

Aby móc zakładać konta użytkowników, komputerów oraz innych obiektów i przechowywać o nich informacje w centralnym miejscu, konieczne jest zainstalowanie na serwerze Windows roli

A. Usługi LDS w usłudze Active Directory
B. Usługi certyfikatów Active Directory
C. Active Directory Federation Service
D. Usługi Domenowe Active Directory
Usługi Domenowe Active Directory (AD DS) są kluczowym elementem infrastruktury serwerowej w systemach Windows, umożliwiającym centralne zarządzanie kontami użytkowników, komputerów oraz innymi obiektami w sieci. Dzięki AD DS można tworzyć i zarządzać strukturą hierarchiczną domen, co ułatwia kontrolę dostępu i administrację zasobami. AD DS przechowuje informacje o obiektach w formie bazy danych, co pozwala na szybką i efektywną obsługę zapytań związanych z autoryzacją oraz uwierzytelnianiem. Przykładowo, w organizacji z wieloma użytkownikami, administratorzy mogą w łatwy sposób nadawać prawa dostępu do zasobów, takich jak pliki czy aplikacje, na podstawie przynależności do grup. Dobrą praktyką jest również regularne monitorowanie i aktualizowanie polityk bezpieczeństwa w AD DS, co pozwala na minimalizację ryzyka naruszenia bezpieczeństwa danych. Z perspektywy branżowej, znajomość AD DS jest niezbędna dla każdego specjalisty IT, ponieważ wiele organizacji wykorzystuje tę technologię jako podstawę swojej infrastruktury IT.

Pytanie 14

Aby serwer mógł przesyłać dane w zakresach częstotliwości 2,4 GHz oraz 5 GHz, konieczne jest zainstalowanie w nim karty sieciowej działającej w standardzie

A. 802.11n
B. 802.11b
C. 802.11g
D. 802.11a
Wybór standardów 802.11a, 802.11b oraz 802.11g do obsługi transmisji na pasmach 2,4 GHz i 5 GHz jest niewłaściwy. Standard 802.11a działa wyłącznie w paśmie 5 GHz, co ogranicza jego zastosowanie w środowiskach, gdzie pasmo 2,4 GHz jest równie istotne, na przykład w domowych sieciach Wi-Fi. Podobnie standard 802.11b jest przypisany wyłącznie do pasma 2,4 GHz, co uniemożliwia korzystanie z pasma 5 GHz i ogranicza prędkość transferu danych do maksymalnie 11 Mbps. Standard 802.11g, choć obsługuje pasmo 2,4 GHz i oferuje wyższe prędkości (do 54 Mbps), nadal nie jest w stanie wykorzystać obu pasm jednocześnie. Zastosowanie tych starszych standardów może prowadzić do wąskich gardeł w sieci, zwłaszcza w środowiskach z dużą liczbą użytkowników i urządzeń. W dobie wzrastającej liczby urządzeń IoT oraz wymagań dotyczących szybkości i jakości połączenia, wybór technologii 802.11n, która pozwala na efektywne wykorzystanie zarówno 2,4 GHz, jak i 5 GHz, staje się kluczowy. Niezrozumienie różnic pomiędzy tymi standardami może prowadzić do nieefektywnego projektowania sieci oraz frustracji użytkowników z powodu niskiej wydajności połączeń bezprzewodowych.

Pytanie 15

Jakie porty powinny być odblokowane w firewallu komputera, aby uzyskać dostęp do zainstalowanej usługi FTP?

A. 20 i 21
B. 80 i 443
C. 53 i 137
D. 25 i 110
Odpowiedź 20 i 21 jest poprawna, ponieważ są to domyślne porty używane przez protokół FTP (File Transfer Protocol). Port 21 jest portem kontrolnym, za pomocą którego nawiązywane są połączenia i przesyłane są polecenia między klientem a serwerem. Port 20 natomiast jest używany do przesyłania danych, gdyż połączenia FTP operują w trybie aktywnym. W praktyce oznacza to, że klient FTP otwiera port 20, na który serwer FTP wysyła dane. Odblokowanie tych portów w zaporze sieciowej jest kluczowe dla prawidłowego funkcjonowania FTP, co z kolei umożliwia przesyłanie plików między komputerami w sposób bezpieczny i efektywny. W związku z tym, aby korzystać z usługi FTP, administratorzy powinni stosować się do standardów branżowych, które zalecają otwieranie tych portów oraz monitorowanie aktywności, aby minimalizować ryzyko nieautoryzowanego dostępu. Warto również pamiętać o korzystaniu z bezpiecznych wersji protokołu, takich jak FTPS czy SFTP, które oferują szyfrowanie przesyłanych danych.

Pytanie 16

W którym typie macierzy, wszystkie fizyczne dyski są postrzegane jako jeden dysk logiczny?

A. RAID 2
B. RAID 5
C. RAID 1
D. RAID 0
RAID 0 to konfiguracja macierzy, w której wszystkie dyski fizyczne są łączone w jeden logiczny wolumen, co przynosi korzyści w postaci zwiększonej wydajności i pojemności. W tej konfiguracji dane są dzielone na segmenty (striping) i rozkładane równomiernie na wszystkich dyskach. To oznacza, że dostęp do danych jest szybszy, ponieważ operacje odczytu i zapisu mogą odbywać się jednocześnie na wielu dyskach. RAID 0 nie zapewnia jednak redundancji – utrata jednego dysku skutkuje całkowitą utratą danych. Ta macierz jest idealna dla zastosowań wymagających dużych prędkości, takich jak edycja wideo, gry komputerowe czy bazy danych o dużej wydajności, w których czas dostępu jest kluczowy. W praktyce, RAID 0 jest często stosowany w systemach, gdzie priorytetem jest szybkość, a nie bezpieczeństwo danych.

Pytanie 17

Jaki protokół sygnalizacyjny jest wykorzystywany w technologii VoIP?

A. SIP (Session Initiation Protocol)
B. POP (Post Office Protocol)
C. DHCP (Dynamic Host Configuration Protocol)
D. SNMP (Simple Network Management Protocol)
SIP, czyli Session Initiation Protocol, to jeden z najważniejszych protokołów w telefonii VoIP. Odpowiada za wszystko, co związane z rozpoczęciem, modyfikowaniem i kończeniem sesji multimedialnych, jak na przykład połączenia głosowe i wideo. Dzięki SIP można łatwo nawiązać połączenie między kilkoma osobami, a także zarządzać informacjami, takimi jak kodeki audio czy wideo, które są niezbędne do prawidłowego działania. Zauważyłem, że ten protokół jest niezwykle elastyczny i świetnie współpracuje z innymi technologiami, co czyni go standardem w nowoczesnych systemach telefonii IP. Przykładem mogą być programy jak Skype czy Zoom, które korzystają z SIP do łączenia nas w czasie rozmów wideo. Co więcej, ten protokół radzi sobie w różnych sytuacjach – od prostych połączeń głosowych po bardziej skomplikowane systemy konferencyjne, więc naprawdę jest to wszechstronne narzędzie. Jeśli sięgniemy do standardów IETF i RFC 3261, to znajdziemy tam zasady działania SIP, które pomagają w jego szerokiej akceptacji w branży telekomunikacyjnej.

Pytanie 18

Jak nazywa się program, który pozwala na interakcję pomiędzy kartą sieciową a systemem operacyjnym?

A. detektor.
B. komunikator.
C. sterownik.
D. middleware.
Wybór sniffera, middleware czy komunikatora jako odpowiedzi na to pytanie wskazuje na pewne nieporozumienia dotyczące ról i funkcji tych elementów w ekosystemie informatycznym. Sniffer to narzędzie do analizy ruchu sieciowego, które zbiera dane z pakietów przesyłanych w sieci. Choć jest niezwykle przydatny do monitorowania i analizowania komunikacji, nie pełni funkcji łącznika między kartą sieciową a systemem operacyjnym. Middleware to z kolei oprogramowanie pośredniczące, które łączy różne aplikacje i umożliwia im komunikację, ale również nie działa jako bezpośredni interfejs dla sprzętu. Jest to bardziej warstwa abstrakcji, która nie odnosi się bezpośrednio do sterowania urządzeniami sieciowymi. Komunikatory, natomiast, to aplikacje służące do wymiany wiadomości i nie mają związku z obsługą sprzętu. Powszechne błędy myślowe przy wyborze tych odpowiedzi wynikają z niejasnego rozumienia hierarchii funkcji w systemie komputerowym oraz roli, jaką odgrywają poszczególne komponenty. Kluczowe jest zrozumienie, że odpowiedzialność za komunikację z kartą sieciową leży przede wszystkim w rękach sterowników, które bezpośrednio wchodzą w interakcję z systemem operacyjnym.

Pytanie 19

Jakie polecenie w systemach Linux służy do przedstawienia konfiguracji interfejsów sieciowych?

A. tracert
B. ifconfig
C. ping
D. ipconfig
Polecenie 'ifconfig' jest używane w systemach Linux do wyświetlania oraz konfigurowania interfejsów sieciowych. Dzięki niemu administratorzy mogą uzyskać informacje o aktywnych interfejsach, ich adresach IP, maskach podsieci oraz innych istotnych parametrach, takich jak prędkość połączenia czy statystyki przesyłania danych. Na przykład, polecenie 'ifconfig' uruchomione bez żadnych argumentów wyświetli listę wszystkich interfejsów, ich status (aktywny lub nieaktywny) oraz przypisane adresy IP. W praktyce administracja sieci często korzysta z 'ifconfig' do diagnozowania problemów z połączeniem, monitorowania aktywności interfejsów oraz do aktualizacji ustawień sieciowych. Warto zauważyć, że 'ifconfig' jest częścią pakietu net-tools, który jest deprecjonowany na rzecz bardziej nowoczesnego narzędzia 'ip'. Mimo to, 'ifconfig' pozostaje popularnym narzędziem w wielu środowiskach. Zaleca się znajomość obu narzędzi w kontekście zarządzania siecią w systemach Linux.

Pytanie 20

Liczba 10011001100 w systemie heksadecymalnym przedstawia się jako

A. 2E4
B. 998
C. 4CC
D. EF4
Kiedy przeliczasz liczby z systemu binarnego na heksadecymalny, często błędy biorą się z niewłaściwego grupowania bitów. W przypadku liczby 10011001100, musisz podzielić ją na grupy po cztery bity. W tej sytuacji, poprawne grupy to 0010 0110 0110, co daje nam wartości heksadecymalne 2, 6 oraz 6, więc wynik powinien być 2B6. Widzę, że odpowiedzi takie jak 4CC mogą wynikać z nieporozumienia co do długości grupy lub błędów przy przeliczaniu. Pamiętaj, każdy znak heksadecymalny to cztery bity i czasami to może wprowadzać w błąd. W praktyce, dobrze jest znać te konwersje, bo są one kluczowe w programowaniu oraz w różnych zastosowaniach inżynieryjnych, gdzie precyzja na danych jest mega ważna.

Pytanie 21

Do usunięcia elementu Wszystkie programy z prostego Menu Start systemu Windows należy wykorzystać przystawkę

A. <i>gpedit.msc</i>
B. <i>ciadv.msc</i>
C. <i>lusrmgr.msc</i>
D. <i>azman.msc</i>
Przystawka gpedit.msc, czyli Edytor zasad grupy, to narzędzie wykorzystywane przez administratorów systemu Windows do zaawansowanej konfiguracji środowiska użytkownika oraz systemu operacyjnego. W praktyce, jeśli chcemy usunąć lub ukryć element „Wszystkie programy” z prostego Menu Start, właśnie gpedit.msc pozwala nam dostać się do odpowiednich polityk systemowych. To jedno z podstawowych narzędzi, które umożliwia sterowanie wyglądem i funkcjonalnością interfejsu użytkownika bez potrzeby edytowania rejestru na piechotę czy ręcznie podmieniać pliki systemowe – co według mnie jest nie tylko wygodne, ale przede wszystkim bezpieczne. W Edytorze zasad grupy znajdziesz bardzo dużo ustawień związanych z interfejsem, bezpieczeństwem czy zarządzaniem aplikacjami, co zresztą jest zgodne z dobrymi praktykami IT: ograniczamy użytkownikowi dostęp tylko do niezbędnych funkcji, żeby system był bardziej przewidywalny i odporny na błędy lub celowe modyfikacje. Używanie gpedit.msc to typowy sposób zarządzania komputerami w większych firmach lub w szkołach – pozwala administratorowi wprowadzać jednolite zasady na wielu stanowiskach na raz, co porządkuje zarządzanie całym środowiskiem. Fakt, że nie każdy wie, jak tam trafić i co ustawić, tylko pokazuje jak potężne i czasem niedoceniane jest to narzędzie. W sumie, znajomość gpedit.msc to taki must-have dla każdego, kto myśli o pracy administratora systemów Windows.

Pytanie 22

Funkcja znana jako: "Pulpit zdalny" standardowo operuje na porcie

A. 3379
B. 3389
C. 3390
D. 3369
Odpowiedź 3389 jest poprawna, ponieważ port ten jest domyślnie używany przez protokół RDP (Remote Desktop Protocol), który umożliwia zdalny dostęp do komputerów oraz zarządzanie nimi. Użycie tego portu pozwala na bezpieczną komunikację z serwerem, co jest kluczowe w kontekście administracji IT, zwłaszcza w środowiskach korporacyjnych. RDP jest szeroko stosowany w zarządzaniu serwerami oraz w pracy zdalnej, co czyni go istotnym narzędziem w arsenale administratorów systemów. Zrozumienie domyślnego portu RDP, czyli 3389, jest fundamentem dla właściwej konfiguracji zapór ogniowych oraz zabezpieczeń sieciowych. Aby zwiększyć bezpieczeństwo, wiele organizacji decyduje się na zmianę domyślnego portu na inny, co może pomóc w ochronie przed nieautoryzowanym dostępem. Dobre praktyki sugerują dodatkowe zabezpieczenia, takie jak stosowanie VPN oraz wieloskładnikowe uwierzytelnianie, co zwiększa bezpieczeństwo zdalnego dostępu do zasobów. Takie podejście sprzyja zgodności z normami bezpieczeństwa oraz redukcji ryzyka ataków.

Pytanie 23

Przerywając działalność na komputerze, możemy szybko wrócić do pracy, wybierając w systemie Windows opcję:

A. wylogowania
B. stanu wstrzymania
C. ponownego uruchomienia
D. zamknięcia systemu
Wybór opcji stanu wstrzymania jest prawidłowy, ponieważ pozwala na szybkie wznowienie pracy na komputerze bez potrzeby uruchamiania systemu od nowa. Stan wstrzymania, znany również jako tryb uśpienia, przechowuje aktualny stan systemu oraz otwarte aplikacje w pamięci RAM, co umożliwia natychmiastowy powrót do pracy po wznowieniu. Przykładem zastosowania stanu wstrzymania jest sytuacja, gdy użytkownik wykonuje kilka zadań i musi na chwilę odejść od komputera; zamiast wyłączać system, co zajmie więcej czasu, może po prostu wprowadzić go w stan wstrzymania. Z perspektywy dobrych praktyk zarządzania energią, przejście w stan wstrzymania jest bardziej efektywne energetycznie niż pełne wyłączenie komputera, a także przeciwdziała nadmiernemu zużyciu podzespołów. Warto również zauważyć, że wiele nowoczesnych systemów operacyjnych wspiera automatyczne przejście w stan wstrzymania po określonym czasie bezczynności, co jest korzystne zarówno dla wydajności, jak i oszczędności energii.

Pytanie 24

Podczas monitorowania aktywności sieciowej zauważono, że na adres serwera przesyłano tysiące zapytań DNS w każdej sekundzie z różnych adresów IP, co doprowadziło do zawieszenia systemu operacyjnego. Przyczyną tego był atak typu

A. DDoS (Distributed Denial of Service)
B. Flooding
C. DNS snooping
D. Mail Bombing
W analizowanym pytaniu niepoprawne odpowiedzi dotyczą różnych form ataków, które nie są związane z opisanym fenomenem. DNS snooping odnosi się do techniki wykorzystania informacji z systemu DNS, aby zdobyć dane o infrastrukturze sieciowej lub o osobach korzystających z danej usługi. Nie jest to metoda ataku, a raczej technika zbierania informacji, która nie prowadzi do przeciążenia systemu. Mail Bombing, z drugiej strony, polega na wysyłaniu dużych ilości wiadomości e-mail do konkretnego odbiorcy, co może prowadzić do przeciążenia jego skrzynki pocztowej, ale nie wpływa na serwer DNS jako taki. Flooding, w kontekście cyberbezpieczeństwa, to termin ogólny odnoszący się do zasypywania systemu wieloma zapytaniami lub danymi, jednak niekoniecznie musi to być atak rozproszony, a zatem nie odpowiada dokładnie opisanej sytuacji. Typowe błędy myślowe, które mogą prowadzić do wybrania tych odpowiedzi, obejmują mylenie technik zbierania informacji z atakami oraz ograniczone rozumienie specyfiki ataków DDoS, które są zorganizowane i rozproszone, a nie pojedyncze akcje, jak te przedstawione w pozostałych odpowiedziach.

Pytanie 25

W systemie Windows harmonogram zadań umożliwia przypisanie

A. więcej niż pięciu terminów realizacji dla danego programu
B. nie więcej niż czterech terminów realizacji dla danego programu
C. nie więcej niż pięciu terminów realizacji dla danego programu
D. nie więcej niż trzech terminów realizacji dla danego programu
Wiele osób może błędnie zakładać, że harmonogram zadań w systemie Windows ogranicza się do niewielkiej liczby terminów wykonania, co prowadzi do niepełnego wykorzystania jego możliwości. Stwierdzenie, że harmonogram może przypisać nie więcej niż trzy, cztery lub pięć terminów wykonania, jest niezgodne z rzeczywistością. System Windows rzeczywiście pozwala na tworzenie wielu zadań dla jednego programu, co oznacza, że użytkownicy mają możliwość planowania go w różnych terminach i w różnorodny sposób. Takie ograniczone podejście do harmonogramu może być wynikiem niepełnej wiedzy na temat funkcji tego narzędzia. W rzeczywistości, harmonogram zadań może być wykorzystywany do tworzenia zadań cyklicznych, takich jak uruchamianie skanów antywirusowych, aktualizacji systemu, czy synchronizacji plików, co czyni go niezwykle wszechstronnym narzędziem. Ponadto, brak wiedzy o możliwościach harmonogramu zadań może negatywnie wpłynąć na efektywność pracy, ponieważ automatyzacja rutynowych operacji pozwala na bardziej efektywne zarządzanie czasem i zasobami. Warto zatem zainwestować czas w naukę pełnej funkcjonalności harmonogramu zadań, aby móc w pełni wykorzystać jego potencjał w codziennej pracy.

Pytanie 26

Określ najprawdopodobniejszą przyczynę pojawienia się komunikatu: CMOS checksum error press F1 to continue press DEL to setup podczas uruchamiania systemu

A. Zgubiony plik setup
B. Uszkodzona karta graficzna
C. Rozładowana bateria podtrzymująca ustawienia BIOS-u
D. Skasowana zawartość pamięci CMOS
Komunikat CMOS checksum error oznacza, że przy starcie systemu BIOS wykrył problem z danymi przechowywanymi w pamięci CMOS, która jest odpowiedzialna za przechowywanie ustawień konfiguracyjnych systemu. Najczęściej w takim przypadku przyczyną jest rozładowana bateria podtrzymująca pamięć CMOS. Bateria ta, zwykle typu CR2032, zapewnia zasilanie dla pamięci, gdy komputer jest wyłączony. Gdy bateria jest rozładowana, ustawienia BIOS-u mogą zostać utracone, co prowadzi do błędów, takich jak CMOS checksum error. Aby rozwiązać ten problem, należy wymienić baterię na nową, co jest prostą procedurą, dostępną dla większości użytkowników. Dobrą praktyką jest również regularne sprawdzanie stanu baterii, aby zapobiegać podobnym sytuacjom w przyszłości. W przypadku, gdy użytkownik napotyka ten problem, powinien wykonać kopię zapasową ważnych danych oraz ponownie skonfigurować ustawienia BIOS-u po wymianie baterii, aby upewnić się, że wszystkie preferencje są prawidłowo ustawione. Podążanie tymi krokami pozwala na uniknięcie przyszłych problemów z uruchamianiem systemu oraz utratą ustawień.

Pytanie 27

Jakie procesory można wykorzystać w zestawie komputerowym z płytą główną wyposażoną w gniazdo procesora typu Socket AM3?

A. Itanium
B. Pentium D
C. Core i7
D. Phenom II
Procesor Phenom II jest zgodny z gniazdem Socket AM3, co czyni go odpowiednim wyborem do montażu na płycie głównej obsługującej ten standard. Socket AM3 został zaprojektowany z myślą o procesorach AMD, w tym rodzinie Phenom, Phenom II oraz Athlon II. Użycie procesora Phenom II w zestawie komputerowym zapewnia dobrą wydajność w zastosowaniach multimedialnych oraz gier, co czyni go popularnym wyborem wśród entuzjastów. Przykładowo, procesory z tej serii oferują wielordzeniową architekturę, co pozwala na równoległe przetwarzanie zadań, co jest istotne w dzisiejszych aplikacjach wymagających dużej mocy obliczeniowej. Warto dodać, że Phenom II obsługuje także pamięć DDR2 i DDR3, co pozwala na większą elastyczność w konfiguracji systemu. W kontekście standardów branżowych, zgodność z gniazdem jest kluczowa dla zapewnienia stabilności i wydajności, a wybór odpowiednich komponentów zgodnych z płytą główną to fundamentalna zasada w budowie komputerów.

Pytanie 28

Na ilustracji przedstawiono złącze

Ilustracja do pytania
A. D-SUB
B. HDMI
C. FIRE WIRE
D. DVI
Odpowiedzi które wybrałeś nie są poprawne ponieważ dotyczą innych typów złączy stosowanych w różnych kontekstach elektronicznych i komputerowych. Złącze FIRE WIRE inaczej nazywane IEEE 1394 jest używane głównie do przesyłania danych cyfrowych z wysoką prędkością w urządzeniach takich jak kamery cyfrowe i dyski twarde. Technologie takie były popularne na przełomie XX i XXI wieku szczególnie w środowiskach profesjonalnych gdzie wymagana była szybka transmisja danych multimedialnych. Natomiast DVI czyli Digital Visual Interface to standard zaprojektowany do przesyłania wysokiej jakości sygnału wideo do monitorów cyfrowych. DVI zazwyczaj wykorzystuje się w kontekście połączeń między komputerem a monitorem co umożliwia przesyłanie obrazu o wysokiej rozdzielczości bez kompresji. Z kolei HDMI czyli High-Definition Multimedia Interface to złącze służące do przesyłania zarówno sygnału wideo jak i audio w formie cyfrowej. HDMI jest obecnie standardem w wielu urządzeniach konsumenckich takich jak telewizory monitory czy konsole do gier oferując wysoką jakość obrazu i dźwięku. Myślenie że jedno z tych złączy mogłoby być złączem D-SUB wynikać może z pomylenia ich ze względu na fizyczne podobieństwa w konstrukcji niektórych złączy szczególnie gdy pełnią one rolę portów komunikacyjnych. Warto jednak pamiętać że każde z tych złączy ma swoje specyficzne zastosowania i jest projektowane z myślą o różnych rodzajach transmisji danych oraz różnych środowiskach operacyjnych. Kluczowe jest rozumienie różnic funkcjonalnych aby prawidłowo identyfikować typ złącza i jego zastosowanie w praktyce. Wybór odpowiedniego złącza dla danego zastosowania jest istotny z punktu widzenia wydajności i niezawodności całego systemu elektronicznego.

Pytanie 29

Jaką fizyczną topologię sieci komputerowej przedstawia ilustracja?

Ilustracja do pytania
A. Gwiazdy
B. Siatki
C. Pierścienia
D. Hierarchiczna
Topologia gwiazdy jest jedną z najczęściej stosowanych fizycznych topologii sieci komputerowych, gdzie każde urządzenie sieciowe jest bezpośrednio połączone z centralnym urządzeniem, takim jak przełącznik lub serwer. Zaletą tej topologii jest łatwość zarządzania i rozbudowy sieci poprzez dodawanie nowych urządzeń bez wpływu na działanie już istniejących. Awaria jednego urządzenia nie wpływa bezpośrednio na pozostałe, co znacząco zwiększa niezawodność sieci. W praktyce taka topologia jest wykorzystywana w lokalnych sieciach komputerowych (LAN) w biurach i domach. Standardy takie jak Ethernet bardzo dobrze współpracują z tą topologią, umożliwiając efektywną komunikację danych. W przypadku większych sieci, topologia gwiazdy może być łączona z innymi topologiami w celu tworzenia bardziej złożonych struktur, co jest zgodne z zasadami dobrej praktyki projektowania sieci. Centralne urządzenie w topologii gwiazdy pełni kluczową rolę w zarządzaniu przepływem danych, co pozwala na optymalne wykorzystanie zasobów sieciowych.

Pytanie 30

Bez uzyskania zgody właściciela praw autorskich do oprogramowania, jego legalny użytkownik, zgodnie z ustawą o prawie autorskim i prawach pokrewnych, co może uczynić?

A. może stworzyć dowolną ilość kopii programu na własny użytek
B. ma prawo do rozpowszechniania programu
C. może wykonać jedną kopię, jeśli jest to konieczne do korzystania z programu
D. nie ma możliwości wykonania jakiejkolwiek kopii programu
Wybór odpowiedzi sugerującej, że użytkownik nie może wykonać żadnej kopii programu, jest błędny, ponieważ nie uwzględnia on możliwości, które daje prawo autorskie w kontekście legalnego użytkowania oprogramowania. Użytkownik, który nabył program, ma prawo do jego użytkowania, a wykonanie kopii jest często niezbędne, aby można było z niego korzystać w różnych warunkach, na przykład w przypadku awarii sprzętu. Twierdzenie, że użytkownik może rozpowszechniać program, jest całkowicie sprzeczne z zasadami licencji, które zazwyczaj zastrzegają, że jedynie posiadacz praw autorskich ma prawo do dystrybucji. Rozpowszechnianie programu bez zgody posiadacza praw naruszałoby prawo autorskie. Użytkownicy często mylą prawo do tworzenia kopii na własny użytek z prawem do ich rozpowszechniania, co jest błędnym wnioskiem. Ponadto, odpowiedź sugerująca, że użytkownik może wykonać dowolną liczbę kopii na własny użytek, ignoruje ograniczenia licencyjne, które wprowadza prawo autorskie. W rzeczywistości, wykonanie kopii powinno być ograniczone do sytuacji, gdy jest to absolutnie niezbędne do korzystania z programu, a nie do swobodnego kopiowania go w dowolnych ilościach. Kluczowe jest, aby użytkownicy zrozumieli, że każde oprogramowanie posiada określone zasady licencyjne, które muszą być przestrzegane, a ich naruszenie może prowadzić do konsekwencji prawnych.

Pytanie 31

Monolityczne jądro (kernel) występuje w którym systemie?

A. Mac OS
B. Windows
C. Linux
D. QNX
Jądro monolityczne, takie jak to, które występuje w systemie Linux, jest architekturą, w której wszystkie podstawowe funkcje systemu operacyjnego, takie jak zarządzanie procesami, pamięcią, systemem plików oraz obsługą urządzeń, są zintegrowane w jednym dużym module. Ta konstrukcja umożliwia efektywną komunikację między różnymi komponentami jądra, co prowadzi do zwiększonej wydajności systemu. Praktycznym przykładem zastosowania jądra monolitycznego jest jego wykorzystanie w serwerach oraz urządzeniach wbudowanych, gdzie wydajność i niski narzut czasowy są kluczowe. Jądro monolityczne często charakteryzuje się również większą stabilnością i bezpieczeństwem, ponieważ jest mniej podatne na błędy w interakcjach między modułami. Dodatkowo, jądro Linux zyskało popularność dzięki aktywnemu wsparciu społeczności i szerokiemu wachlarzowi dostępnych sterowników, co czyni je wszechstronnym rozwiązaniem dla różnych zastosowań. W kontekście dobrych praktyk, korzystanie z jądra monolitycznego w systemach operacyjnych opartych na Linuxie jest zgodne z ideą otwartego oprogramowania, co sprzyja innowacji i współpracy w społeczności programistów.

Pytanie 32

Jaką wartość przepustowości definiuje standard 1000Base-T?

A. 1 Mbit/s
B. 1 Gbit/s
C. 1 MB/s
D. 1 GB/s
Wiele osób może pomylić przepływność standardu 1000Base-T z innymi wartościami, co prowadzi do nieporozumień. Odpowiedź wskazująca na 1 Mbit/s jest znacznie niedoszacowana i nie odnosi się do praktyk stosowanych w nowoczesnych sieciach. Taka wartość jest typowa dla dawnych standardów, takich jak 10Base-T, które oferowały znacznie niższe prędkości. Podobnie, 1 MB/s, co odpowiada 8 Mbit/s, również jest zbyt niską wartością, aby pasować do 1000Base-T. W praktyce, prędkość ta jest często mylona z jednostkami transferu danych, co może prowadzić do dalszych nieporozumień. Z kolei wartość 1 GB/s, chociaż bliska, może być mylona z innymi standardami, jak 10GBase-T, które oferują jeszcze wyższe prędkości. Kluczowym błędem jest nieznajomość podstawowych różnic między jednostkami miary — Mbit/s i MB/s, co jest istotne z punktu widzenia wydajności sieci. Odpowiedzi te mogą wprowadzać w błąd, jeśli nie uwzględnimy aktualnych standardów i wymagań infrastrukturalnych, które w dużej mierze opierają się na dokładnych wartościach przesyłania danych. Dlatego ważne jest, aby zrozumieć i przyswoić sobie te różnice w kontekście nowoczesnych technologii sieciowych.

Pytanie 33

Jaki procesor powinien być zastosowany przy składaniu komputera osobistego z płytą główną Asus M5A78L-M/USB3 AMD760G socket AM3+?

A. AMD A8-7600 S.FM2 BOX
B. AMD FX 8300 3300MHz AM3+ Oem
C. AMD APU A8 7650K 3300MHz FM2+ BOX
D. AMD APU A4 6320 3800MHz FM2
Poprawna odpowiedź to AMD FX 8300 3300MHz AM3+ Oem, ponieważ jest to procesor kompatybilny z gniazdem AM3+, które znajduje się na płycie głównej Asus M5A78L-M/USB3. Gniazdo AM3+ obsługuje szereg procesorów z rodziny AMD FX, które oferują wyższą wydajność w porównaniu do procesorów z gniazda FM2. Wybór FX 8300 pozwala na lepsze zarządzanie wieloma wątkami dzięki architekturze, która obsługuje do ośmiu rdzeni, co jest szczególnie cenne w zastosowaniach wymagających dużej mocy obliczeniowej, takich jak gry czy edycja wideo. Dodatkowo, procesor ten wspiera technologię Turbo Core, co umożliwia dynamiczne zwiększenie częstotliwości taktowania, co przekłada się na lepszą wydajność w zastosowaniach jednowątkowych. W praktyce oznacza to, że użytkownicy mogą oczekiwać płynniejszej pracy systemu oraz lepszej odpowiedzi w zadaniach, które są intensywne obliczeniowo. Zastosowanie procesora zgodnego z gniazdem AM3+ jest zgodne z najlepszymi praktykami budowy komputera, gdzie kluczowym aspektem jest dobór komponentów zapewniających ich współpracę.

Pytanie 34

Jakie oprogramowanie opisuje najnowsza wersja wieloplatformowego klienta, który cieszy się popularnością wśród użytkowników na całym świecie, oferującego wirtualną sieć prywatną do nawiązywania połączenia pomiędzy hostem a lokalnym komputerem, obsługującego uwierzytelnianie z wykorzystaniem kluczy, certyfikatów, nazwy użytkownika i hasła, a także dodatkowych kart w wersji dla Windows?

A. Putty
B. Ethereal
C. OpenVPN
D. TightVNC
OpenVPN to jeden z najpopularniejszych klientów dla wirtualnych sieci prywatnych (VPN), który wspiera wiele platform, w tym Windows, Linux i macOS. Jego główną cechą jest możliwość korzystania z różnych metod uwierzytelniania, takich jak klucze prywatne, certyfikaty oraz tradycyjne nazwy użytkownika i hasła. OpenVPN stosuje złożone algorytmy szyfrowania, co zapewnia wysoki poziom bezpieczeństwa danych przesyłanych przez niezabezpieczone sieci, takie jak Internet. Użytkownicy często wykorzystują OpenVPN do bezpiecznego łączenia się z sieciami firmowymi zdalnie, co stało się szczególnie istotne w dobie pracy zdalnej. Przykładem zastosowania może być sytuacja, w której pracownik łączy się z firmowym serwerem, aby uzyskać dostęp do zasobów niedostępnych w publicznej sieci. Dzięki OpenVPN, dane przesyłane są szyfrowane, co znacząco zwiększa bezpieczeństwo i prywatność. Dodatkowo, OpenVPN jest zgodny z różnymi standardami bezpieczeństwa, takimi jak IETF RFC 5280, co czyni go zgodnym z aktualnymi praktykami branżowymi w obszarze ochrony danych.

Pytanie 35

Jakie narzędzie służy do delikatnego wyginania blachy obudowy komputera oraz przykręcania śruby montażowej w miejscach trudno dostępnych?

Ilustracja do pytania
A. B
B. D
C. C
D. A
Odpowiedź D jest prawidłowa ponieważ przedstawia kombinerki płaskie które są narzędziem doskonale nadającym się do lekkiego odgięcia blachy obudowy komputera oraz zamocowania śruby montażowej w trudno dostępnych miejscach. Kombinerki płaskie posiadają wąskie szczęki co pozwala na precyzyjne operowanie w ciasnych przestrzeniach. W przypadku obudów komputerowych takie narzędzie jest przydatne gdy konieczne jest dostosowanie kształtu blachy bez ryzyka jej uszkodzenia. Dobrą praktyką w branży IT jest stosowanie narzędzi które nie tylko ułatwiają pracę ale również minimalizują ryzyko uszkodzenia komponentów. Kombinerki płaskie często wykonane są ze stali nierdzewnej co zapewnia ich trwałość oraz odporność na korozję. Przy montażu i demontażu komponentów komputerowych konieczna jest delikatność i precyzja dlatego kombinerki płaskie są popularnym wyborem wśród specjalistów. Ich zastosowanie obejmuje nie tylko branżę informatyczną ale również szeroki zakres innych dziedzin w których precyzyjne manipulacje są kluczowe.

Pytanie 36

Wykonując w konsoli systemu Windows Server komendę convert, co można zrealizować?

A. naprawę systemu plików
B. zmianę systemu plików
C. defragmentację dysku
D. naprawę logicznej struktury dysku
Polecenie 'convert' w systemie Windows Server służy do zmiany systemu plików z FAT32 na NTFS. NTFS, czyli New Technology File System, jest bardziej zaawansowanym systemem plików niż FAT32, oferującym funkcje takie jak wsparcie dla większych dysków, lepsze zarządzanie uprawnieniami oraz możliwość wykorzystania kompresji plików. Przykładem zastosowania tego polecenia może być sytuacja, w której użytkownik chce zainstalować nowe oprogramowanie wymagające NTFS lub chce skorzystać z funkcji, takich jak szyfrowanie EFS (Encrypted File System). Aby przeprowadzić tę konwersję, wystarczy w wierszu poleceń wpisać 'convert D: /FS:NTFS', gdzie D: to litera napędu, który chcemy przekonwertować. Dobrą praktyką jest wykonanie kopii zapasowej danych przed dokonaniem takiej zmiany, aby zminimalizować ryzyko utraty informacji. Warto również zauważyć, że konwersja na NTFS jest procesem bezpiecznym i nie powoduje utraty danych, co czyni go preferowanym rozwiązaniem dla wielu administratorów systemów.

Pytanie 37

Jakie urządzenie aktywne pozwoli na podłączenie do sieci lokalnej za pomocą kabla UTP 15 komputerów, drukarki sieciowej oraz rutera?

A. Panel krosowniczy 16-portowy
B. Switch 24-portowy
C. Switch 16-portowy
D. Panel krosowniczy 24-portowy
Przełącznik 24-portowy to urządzenie, które umożliwia jednoczesne podłączenie kilku urządzeń do sieci lokalnej, w tym komputerów, drukarek oraz routerów. W tym przypadku, aby obsłużyć 15 komputerów i jedną drukarkę sieciową, niezbędne jest posiadanie odpowiedniej liczby portów. Przełącznik 24-portowy spełnia te wymagania, ponieważ dysponuje wystarczającą liczbą portów do podłączenia wszystkich urządzeń z zapasem. Przełączniki są kluczowymi elementami infrastruktury sieciowej, które umożliwiają komunikację między różnymi urządzeniami i zwiększają efektywność przesyłania danych. Ważne jest, aby zastosować dobre praktyki, takie jak segregacja ruchu sieciowego przez VLAN, co pozwala na lepszą organizację sieci. Stosując standardy IEEE 802.3, przełączniki zapewniają wysoką wydajność i niezawodność w przesyłaniu danych, co jest niezbędne w dzisiejszych sieciach lokalnych pełnych różnorodnych urządzeń.

Pytanie 38

Jakim protokołem łączności, który gwarantuje pewne dostarczenie informacji, jest protokół

A. ARP
B. TCP
C. UDP
D. IPX
Protokół TCP (Transmission Control Protocol) jest kluczowym protokołem w modelu OSI, który zapewnia niezawodne dostarczenie danych w sieciach komputerowych. Jego główną cechą jest to, że stosuje mechanizmy kontroli błędów oraz potwierdzania odbioru danych. TCP dzieli dane na pakiety, które są numerowane, co umożliwia ich prawidłowe odtworzenie w odpowiedniej kolejności na odbiorcy. W przypadku, gdy pakiety nie dotrą lub dotrą uszkodzone, protokół TCP podejmuje działania naprawcze, takie jak retransmisja brakujących pakietów. Przykładem zastosowania TCP jest przesyłanie stron internetowych, podczas gdy protokoły takie jak HTTP czy HTTPS, które działają na bazie TCP, zapewniają, że dane są dostarczane poprawnie i w odpowiedniej kolejności. Standardy branżowe, takie jak RFC 793, definiują funkcjonalność i działanie TCP, co sprawia, że jest on uznawany za jeden z najważniejszych protokołów w komunikacji internetowej, szczególnie tam, gdzie niezawodność przesyłania informacji jest kluczowa.

Pytanie 39

Jakiego numeru kodu należy użyć w komendzie do zmiany uprawnień folderu w systemie Linux, aby właściciel miał dostęp do zapisu i odczytu, grupa miała prawo do odczytu i wykonania, a pozostali użytkownicy mogli jedynie odczytywać zawartość?

A. 123
B. 654
C. 751
D. 765
Poprawna odpowiedź 654 oznacza, że właściciel folderu ma pełne uprawnienia do odczytu i zapisu (6), grupa ma uprawnienia do odczytu i wykonania (5), a pozostali użytkownicy mają tylko uprawnienia do odczytu (4). W systemie Linux uprawnienia są reprezentowane w systemie ósemkowym, gdzie każdy z trzech poziomów (właściciel, grupa, pozostali) może mieć przypisane różne uprawnienia: 'r' (odczyt), 'w' (zapis), 'x' (wykonanie). W tym przypadku suma uprawnień dla właściciela to 4 (odczyt) + 2 (zapis) = 6, dla grupy 4 (odczyt) + 1 (wykonanie) = 5, a dla pozostałych użytkowników tylko 4 (odczyt). Użycie polecenia 'chmod 654 folder' pozwoli na odpowiednie ustawienie uprawnień, co jest zgodne z najlepszymi praktykami bezpieczeństwa w zarządzaniu danymi. Zachowanie minimalnych uprawnień, jakie są potrzebne do funkcjonowania, jest kluczowe w zarządzaniu systemem, co ogranicza ryzyko nieautoryzowanego dostępu.

Pytanie 40

Adres IP urządzenia, zapisany jako sekwencja 172.16.0.1, jest przedstawiony w systemie

A. dwójkowym
B. dziesiętnym
C. szesnastkowym
D. ósemkowym
Adres IP 172.16.0.1 jest zapisany w systemie dziesiętnym, co oznacza, że każda liczba w tej sekwencji jest wyrażona w standardowym formacie dziesiętnym. Adresy IP w wersji 4 (IPv4) składają się z czterech oktetów, z których każdy jest reprezentowany jako liczba całkowita w zakresie od 0 do 255. System dziesiętny jest najczęściej używany do prezentacji adresów IP, co ułatwia ich odczyt i zapamiętanie przez użytkowników. Przykładem zastosowania adresów IP jest konfiguracja urządzeń w sieci lokalnej czy przydzielanie adresów IP przez serwery DHCP. W praktyce, standardy takie jak RFC 791 określają zasady dotyczące struktury adresów IP, w tym ich przedstawianie. Użycie systemu dziesiętnego w adresach IP jest zgodne z najlepszymi praktykami w dziedzinie inżynierii sieciowej, zapewniając przejrzystość i ułatwiając diagnostykę problemów sieciowych.