Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 19 lutego 2026 08:29
  • Data zakończenia: 19 lutego 2026 08:40

Egzamin niezdany

Wynik: 14/40 punktów (35,0%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Który element oznacza się na schematach elektrycznych symbolem graficznym przedstawionym na rysunku?

Ilustracja do pytania
A. Gniazdo z transformatorem separacyjnym.
B. Łącznik krańcowy.
C. Autotransformator.
D. Dławik.
Wybór innych odpowiedzi, takich jak autotransformator, łącznik krańcowy czy dławik, wskazuje na pewne nieporozumienia dotyczące oznaczania elementów w schematach elektrycznych. Autotransformator, na przykład, charakteryzuje się innym symbolem, który odzwierciedla jego funkcję, polegającą na regulacji napięcia na podstawie wtapiania w obwód. Z kolei łącznik krańcowy, używany do kończenia obwodów w aplikacjach, takich jak automatyka przemysłowa, również ma swój unikalny symbol, który różni się od symbolu gniazda z transformatorem separacyjnym. Dławik, z drugiej strony, jest elementem pasywnym używanym do ograniczania prądu w obwodach, a jego symbol graficzny jest zupełnie inny i odnosi się do jego charakterystyki indukcyjnej. Typowym błędem myślowym jest zatem utożsamianie różnych elementów na podstawie podobieństw w funkcjonalności, a nie ich rzeczywistych symboli. Zrozumienie różnorodności symboli oraz ich odpowiednich zastosowań jest kluczowe dla prawidłowej interpretacji schematów elektrycznych. Wymaga to nie tylko znajomości samego sprzętu, ale także umiejętności stosowania norm i standardów, co jest fundamentalne w dziedzinie elektrotechniki.

Pytanie 2

Woltomierz działający na zasadzie magnetoelektrycznej, który mierzy napięcie sinusoidalnie z dodatkiem składowej stałej, wskaże wartość

A. chwilową napięcia
B. średnią napięcia
C. skuteczną napięcia
D. znamionową napięcia
Woltomierz magnetoelektryczny jest narzędziem wykorzystywanym do pomiaru napięcia, a w przypadku napięcia sinusoidalnego z składową stałą, jego wskazanie dotyczy wartości średniej. Wartość średnia napięcia sinusoidalnego, z uwzględnieniem składowej stałej, jest kluczowa w aplikacjach, gdzie istotne jest określenie efektywnego poziomu energii dostarczanej do obciążenia. W praktyce, woltomierze magnetoelektryczne są często używane w pomiarach w systemach zasilania, gdzie zrozumienie i kontrola napięcia oraz prądu są niezbędne dla zapewnienia prawidłowego działania urządzeń. Wartość średnia jest obliczana jako średnia arytmetyczna z okresu sygnału, co w przypadku napięcia sinusoidalnego z składową stałą prowadzi do lepszego zrozumienia zarówno efektywności, jak i bezpieczeństwa systemów elektrycznych. Ustalono w normach IEC, że pomiar wartości średniej jest istotny dla wielu aplikacji w inżynierii elektrycznej, co podkreśla znaczenie tej metody pomiarowej.

Pytanie 3

Którą klasę ochronności posiada oprawa oświetleniowa opatrzona przedstawionym symbolem graficznym?

Ilustracja do pytania
A. 0
B. I
C. II
D. III
Wybór odpowiedzi, która wskazuje na inną klasę ochronności, może wynikać z nieporozumień dotyczących podstawowych zasad ochrony przed porażeniem elektrycznym. Klasa II, która często jest mylona z klasą I, nie wymaga przewodu ochronnego, ponieważ urządzenia tej klasy charakteryzują się podwójną izolacją, co nie zapewnia tak samo skutecznej ochrony w przypadku awarii. Z kolei klasa 0 dotyczy sprzętu bez izolacji i przewodu ochronnego, co czyni te urządzenia niebezpiecznymi i niezgodnymi z normami bezpieczeństwa. Wybór klasy III, z kolei, odnosi się do sprzętu zasilanego niskim napięciem, co również nie odnosi się do opraw oświetleniowych w standardowych instalacjach. Wiele osób myli te klasy, co może prowadzić do sytuacji narażających życie użytkowników. Przykładem takiego błędnego myślenia jest założenie, że niektóre urządzenia wystarczająco chronią przed porażeniem tylko dzięki zastosowaniu podstawowej izolacji. W rzeczywistości, prawidłowe podłączenie do przewodu ochronnego jest kluczowe dla bezpieczeństwa, co jednoznacznie potwierdzają normy i dobre praktyki w branży elektrycznej. Dlatego tak ważne jest zrozumienie różnic między tymi klasami i ich zastosowaniem w praktyce.

Pytanie 4

Na którym rysunku przedstawiono schemat układu do wykonania pomiaru impedancji pętli zwarcia instalacji w układzie TN?

Ilustracja do pytania
A. B.
B. D.
C. C.
D. A.
Rysunek B przedstawia właściwy schemat układu do pomiaru impedancji pętli zwarcia w instalacjach TN, co jest kluczowym aspektem w zapewnieniu bezpieczeństwa elektrycznego. W instalacji TN, systemy uziemienia są zintegrowane z przewodami neutralnymi, co pozwala na skuteczne odprowadzenie prądu zwarciowego do ziemi. Schemat układu pomiarowego, zawierającego źródło zasilania, miernik impedancji oraz odpowiednie przewody (fazowy, neutralny i ochronny), umożliwia dokładne określenie wartości impedancji pętli zwarcia. Przykładowo, w przypadku awarii, szybka detekcja impedancji pętli pozwala na skuteczne działanie zabezpieczeń, takich jak wyłączniki różnicowoprądowe, co z kolei przyczynia się do minimalizacji ryzyka porażenia prądem elektrycznym oraz zabezpieczenia osób i mienia przed skutkami zwarcia. Dobre praktyki wskazują na regularne wykonywanie takich pomiarów zgodnie z normami PN-EN 61557-3, co zapewnia nie tylko poprawne działanie instalacji, ale również zgodność z regulacjami prawnymi i standardami branżowymi.

Pytanie 5

Do pomiaru napięć stałych należy użyć miernika elektrycznego o ustroju, którego symbol graficzny przedstawiono na rysunku

Ilustracja do pytania
A. C.
B. B.
C. A.
D. D.
W przypadku wyboru jakiejkolwiek innej odpowiedzi, można zauważyć szereg nieporozumień dotyczących symboli oraz ich zastosowania w elektrotechnice. Symbol przedstawiony przy opcji A, który sugeruje gniazdo zasilania stałego, nie ma zastosowania w kontekście pomiaru napięcia, jako że jego funkcja polega na dostarczaniu energii elektrycznej, a nie na jej pomiarze. Wybór B, symbolizujący rezystor, również jest błędny, ponieważ rezystory są komponentami pasywnymi stosowanymi do ograniczania prądu w obwodach, a nie do pomiaru napięcia. Ponadto, wybór C, który przedstawia symbol cewki indukcyjnej, może prowadzić do mylnych wniosków o pomiarze napięcia w obwodach, w których cewki są używane. Cewki indukcyjne są elementami aktywnymi, ale ich rola w pomiarach napięcia jest ograniczona, a w niektórych przypadkach mogą powodować zniekształcenia w wynikach pomiarów. Te wybory świadczą o braku zrozumienia różnicy między symbolami komponentów pasywnych a przyrządami pomiarowymi. Wybór niewłaściwego symbolu odzwierciedla typowe błędy myślowe w zakresie rozpoznawania zastosowań komponentów elektrycznych oraz ich rzeczywistej funkcji w obwodach, co jest kluczowe dla prawidłowego stosowania wiedzy w praktyce inżynieryjnej.

Pytanie 6

W układzie jak na rysunku po załączeniu wskazówka watomierza W1 wychyliła się w lewą stronę. Po zamianie zacisków napięciowych watomierz wskazał moc 350 W. Jaka jest całkowita moc pobierana przez odbiornik, jeśli watomierz W2 wskazuje 800 W?

Ilustracja do pytania
A. 800W
B. 450W
C. 1150W
D. 350W
Wybór odpowiedzi 350W, 800W lub 1150W może wynikać z błędnych założeń dotyczących interpretacji wskazań watomierzy. Pierwsza z tych wartości, 350W, odpowiada jedynie odczytowi watomierza W1 po zamianie zacisków, co nie odzwierciedla rzeczywistego całkowitego poboru energii przez odbiornik. Ignorowanie wskazań W2, które są kluczowe dla pełnej analizy mocy, prowadzi do niekompletnego obrazu sytuacji. Kolejna wartość – 800W, będąca wskazaniem watomierza W2, również jest myląca, ponieważ wskazuje na moc dostarczoną przez źródło, a nie na moc pobraną przez odbiornik. Ostatnia opcja, 1150W, jest sumą mocy wskazywanych przez oba watomierze bez uwzględniania ich charakterystyki, co prowadzi do fałszywego wniosku, że całkowita moc pobierana przez odbiornik wynosi tyle, ile suma odczytów, co jest błędne. W praktyce, przy pomiarach energii elektrycznej, konieczne jest rozumienie zasadów działania watomierzy, gdzie pomiar może wskazywać moc ujemną w przypadku niewłaściwego podłączenia. Ważne jest, aby zrozumieć, że moc dostarczana przez źródło i moc pobierana przez odbiorniki muszą być traktowane w kontekście całego układu, co pozwala na dokładne obliczenia i unikanie nieporozumień w analizie mocy w systemach elektrycznych.

Pytanie 7

Jakie akcesoria są wymagane do podłączenia gniazda wtyczkowego do instalacji zrealizowanej przewodami LY?

A. Ściągacz izolacji, lutownica, tester
B. Szczypce, wkrętak, lutownica
C. Tester, wkrętak, lutownica
D. Ściągacz izolacji, wkrętak, próbnik
Aby prawidłowo podłączyć gniazdo wtyczkowe do sieci wykonanej przewodami LY, niezbędne są trzy podstawowe narzędzia: ściągacz izolacji, wkrętak oraz próbnik. Ściągacz izolacji pozwala na bezpieczne usunięcie izolacji z końców przewodów, co jest kluczowe dla uzyskania dobrego kontaktu elektrycznego. Użycie ściągacza jest zalecane, aby uniknąć uszkodzenia miedzi wewnątrz przewodu. Wkrętak jest niezbędny do mocowania gniazda oraz łączenia przewodów w zaciskach. Próbnik z kolei umożliwia sprawdzenie, czy w obwodzie znajduje się napięcie, co jest niezwykle istotne dla zapewnienia bezpieczeństwa podczas pracy. Stosując te narzędzia, wykonawcy mogą zapewnić, że instalacja będzie zgodna z obowiązującymi normami, takimi jak PN-IEC 60364, które określają zasady dotyczące instalacji elektrycznych. Prawidłowe użycie tych narzędzi poprawia niezawodność całego systemu elektrycznego oraz minimalizuje ryzyko awarii.

Pytanie 8

Który schemat montażowy łącznika odpowiada symbolowi graficznemu przedstawionemu na rysunku?

Ilustracja do pytania
A. C.
B. B.
C. A.
D. D.
Wybór innej odpowiedzi prowadzi do nieporozumień dotyczących funkcji różnych typów łączników. Schematy oznaczone literami B, C i D odnoszą się do łączników krzyżowych, schodowych oraz dzwonkowych, co jest niezgodne z symbolem graficznym przedstawionym w pytaniu. Łącznik krzyżowy jest używany do sterowania jednym źródłem światła z dwóch lub więcej miejsc, co wymaga zastosowania odpowiednich schematów montażowych, a nie pojedynczego łącznika. Z kolei łącznik schodowy, stosowany w układach umożliwiających włączanie i wyłączanie oświetlenia z dwóch miejsc, również nie jest reprezentowany przez ten symbol. Zrozumienie różnicy między tymi typami łączników jest kluczowe, aby uniknąć błędów w instalacjach elektrycznych. Należy pamiętać, że stosowanie niewłaściwego schematu może prowadzić do niebezpiecznych sytuacji, takich jak zwarcia czy niewłaściwe działanie systemu oświetleniowego. Przy wyborze odpowiedniej odpowiedzi warto kierować się nie tylko wyglądem symboli, ale także ich funkcjami i zastosowaniem w praktyce, co jest zgodne z zasadami bezpieczeństwa i efektywności energetycznej w instalacjach elektrycznych.

Pytanie 9

Na podstawie tabeli określ znamionowy prąd wyłącznika nadprądowego do zabezpieczenia jednofazowego obwodu oświetlenia złożonego z dwunastu lamp 2×36 W z kompensacją mocy biernej.

Ilustracja do pytania
A. 10 A
B. 13 A
C. 6 A
D. 4 A
Odpowiedź 10 A jest prawidłowa, ponieważ w przypadku obwodu oświetleniowego składającego się z dwunastu lamp 2×36 W, całkowita moc wynosi 864 W. Aby obliczyć prąd znamionowy, stosujemy wzór: I = P / U, gdzie P to moc, a U to napięcie. Zakładając, że obwód jest zasilany napięciem 230 V, obliczamy: I = 864 W / 230 V, co daje około 3,76 A. Jednak ze względu na zasady doboru wyłączników nadprądowych i aby zapewnić odpowiedni margines bezpieczeństwa oraz uwzględnić kompensację mocy biernej, wybieramy wyłącznik o prądzie znamionowym 10 A. Taki wybór jest zgodny z normami instalacyjnymi, które zalecają stosowanie wyłączników o prądzie znamionowym nieprzekraczającym 125% obliczonego prądu znamionowego. W praktyce, wyłącznik 10 A sprawdzi się doskonale w zabezpieczaniu obwodu oświetleniowego, chroniąc instalację przed przeciążeniem oraz zwarciem, co jest kluczowe dla zapewnienia bezpieczeństwa użytkowników i trwałości instalacji.

Pytanie 10

Na rysunku przedstawiono

Ilustracja do pytania
A. pomiar rezystancji izolacji przewodów ochronnych.
B. badanie skuteczności ochrony podstawowej.
C. sprawdzanie ciągłości przewodów ochronnych.
D. pomiar impedancji pętli zwarcia.
Chociaż odpowiedzi dotyczące badania skuteczności ochrony podstawowej, pomiaru rezystancji izolacji przewodów ochronnych czy pomiaru impedancji pętli zwarcia są związane z instalacjami elektrycznymi, nie odnoszą się bezpośrednio do opisanej sytuacji. Badanie skuteczności ochrony podstawowej dotyczy oceny, czy system ochrony przed porażeniem prądem elektrycznym spełnia swoje funkcje, co jest analizowane w kontekście całej instalacji, a nie tylko pojedynczych przewodów. Z kolei pomiar rezystancji izolacji jest procedurą, która ma na celu wykrycie uszkodzeń izolacji, co również nie odnosi się do sprawdzania ciągłości przewodów ochronnych. Pomiar impedancji pętli zwarcia jest natomiast techniką służącą do oceny skuteczności zabezpieczeń przeciwzwarciowych i nie ma związku ze sprawdzaniem ciągłości przewodów. Często pojawiające się błędne rozumienie zasadności tych pomiarów wynika z mylnego utożsamiania różnych procedur kontrolnych. Należy pamiętać, że każda z tych metod ma swoje specyficzne zastosowanie i w kontekście przedstawionego rysunku, tylko sprawdzanie ciągłości przewodów ochronnych jest w pełni adekwatne. Przez nieprecyzyjne odpowiedzi możemy nieświadomie zignorować kluczowe aspekty bezpieczeństwa elektrycznego, co może prowadzić do poważnych konsekwencji.

Pytanie 11

Który skutek dla organizmu pracownika może spowodować utrzymywanie się mgły olejowej w słabo wentylowanym pomieszczeniu?

A. Podrażnienie skóry, oczu, gardła i płuc.
B. Zakłócenia w układzie kostno-stawowym.
C. Zaburzenia w układzie krążenia.
D. Zmęczenie i obciążenie wzroku.
Mgła olejowa w pomieszczeniu roboczym to dość typowy problem w zakładach, gdzie pracują obrabiarki, sprężarki czy różne układy smarowania. Łatwo jest jednak źle skojarzyć jej skutki zdrowotne. Wiele osób, patrząc na zamglone pomieszczenie, intuicyjnie myśli o zmęczeniu wzroku. Rzeczywiście, widoczność jest gorsza, oświetlenie wydaje się rozproszone, oczy mogą się szybciej męczyć, ale to nie jest główny, typowy i udokumentowany skutek medyczny opisany w przepisach BHP. Zmęczenie oczu wynika raczej z niewłaściwego oświetlenia, odblasków, pracy przy monitorach, a nie tyle bezpośrednio z mgły olejowej jako czynnika chemicznego. Podobnie bywa z zaburzeniami układu krążenia. To są poważne problemy zdrowotne, ale nie wiąże się ich bezpośrednio z obecnością aerozoli olejowych w powietrzu. Taki skutek kojarzy się bardziej z długotrwałym stresem, dużym wysiłkiem fizycznym, wysoką temperaturą, odwodnieniem, czy chorobami przewlekłymi, a nie z ekspozycją na mgłę olejową w typowych warunkach przemysłowych. Oczywiście, bardzo złe warunki pracy mogą pośrednio wpływać na ogólny stan zdrowia, ale w literaturze BHP jako podstawowe skutki mgły olejowej wymienia się problemy z układem oddechowym i podrażnienia błon śluzowych. Zakłócenia w układzie kostno-stawowym również nie są logicznie związane z tym zagrożeniem. Problemy z kręgosłupem, stawami, ścięgnami wynikają głównie z ergonomii pracy: dźwigania, wymuszonej pozycji ciała, wibracji od narzędzi, złego ustawienia stanowiska. To jest zupełnie inna grupa czynników ryzyka niż środki chemiczne w powietrzu. Typowym błędem jest ogólne myślenie: „skoro coś szkodzi, to może szkodzi na wszystko”. W BHP trzeba raczej łączyć konkretny czynnik z konkretnym układem narządów. W przypadku mgły olejowej celem jest przede wszystkim ochrona skóry i dróg oddechowych oraz oczu, a do tego służą dobra wentylacja, odciągi miejscowe i odpowiednio dobrane środki ochrony indywidualnej, a nie działania typowe dla problemów z krążeniem czy układem kostno-stawowym.

Pytanie 12

Które z podanych narzędzi nie jest potrzebne do zamontowania listew elektroinstalacyjnych na ścianach z użyciem kołków rozporowych?

A. Poziomnica
B. Piła do metalu
C. Młotek
D. Ściągacz izolacji
Wybór młotka jako podstawowego narzędzia do montażu listew elektroinstalacyjnych może pokazywać pewne nieporozumienie co do samego procesu. Młotek faktycznie przydaje się do wbijania kołków, ale nie każdy montaż musi polegać na tym; w niektórych sytuacjach można używać wkrętów lub innych sposobów mocowania, które nie wymagają uderzenia. Z drugiej strony, poziomnica to narzędzie, które naprawdę ma znaczenie, bo pozwala sprawdzić, czy listwy są prosto zamocowane, co jest istotne dla wyglądu i skuteczności instalacji. Jej brak może skutkować problemami z prawidłowym ustawieniem listew, co potem może się odbić na reszcie instalacji elektrycznej. Co do piły do metalu – też może być kluczowa, jeśli listwy trzeba przyciąć, co zdarza się w czasie montażu. Czasami nie do końca wiadomo, które narzędzia są naprawdę niezbędne, co prowadzi do pośpiechu i niepotrzebnych opóźnień. Dlatego warto zrozumieć, jakie narzędzia w jakiej sytuacji są najlepsze.

Pytanie 13

Jakie napięcie należy stosować podczas określania rezystancji izolacji w obwodach SELV lub PELV?

A. 750 V
B. 500 V
C. 250 V
D. 1000 V
Wybór wyższych wartości napięcia pomiarowego, takich jak 1000 V, 500 V czy 750 V, jest niewłaściwy w kontekście obwodów SELV i PELV. Te obwody, które są projektowane z myślą o bezpieczeństwie, nie powinny być testowane przy użyciu napięć, które mogą prowadzić do sytuacji niebezpiecznych dla użytkowników. Przy pomiarze rezystancji izolacji w instalacjach niskonapięciowych, takich jak SELV i PELV, zastosowanie wyższego napięcia pomiarowego może nie tylko prowadzić do uszkodzeń izolacji, ale także stwarzać ryzyko porażenia prądem elektrycznym. W rzeczywistości, zastosowanie napięć wyższych niż 250 V w takich instalacjach nie jest zgodne z normami bezpieczeństwa. Często błędnie przyjmuje się, że wyższe napięcie pomiarowe pozwala na dokładniejszą ocenę stanu izolacji, co jest mylnym przekonaniem. W rzeczywistości, pomiary w wyższych zakresach napięć mogą dawać fałszywe wyniki, ponieważ mogą powodować uszkodzenia materiałów izolacyjnych, które w normalnych warunkach pracy nie występują. Stąd też kluczowe jest przestrzeganie standardów oraz dobrych praktyk, aby zapewnić bezpieczeństwo i niezawodność instalacji elektrycznych.

Pytanie 14

Rysunek przedstawia sposób zainstalowania urządzenia ochronnego różnicowoprądowego w sieci typu

Ilustracja do pytania
A. TN-S
B. TN-C-S
C. IT
D. TT
Odpowiedź 'IT' jest prawidłowa, ponieważ rysunek ilustruje charakterystyczny sposób instalacji urządzenia ochronnego różnicowoprądowego w sieci typu IT. W systemie IT punkty neutralne źródła zasilania są izolowane od ziemi, co minimalizuje ryzyko zwarć i zwiększa bezpieczeństwo użytkowników. Zastosowanie impedancji o dużej wartości w połączeniu z punktem neutralnym pozwala na ograniczenie prądów upływowych do poziomu, który nie stwarza zagrożenia, a jednocześnie umożliwia wykrycie uszkodzeń izolacji. W praktyce, aby zapewnić ciągłość zasilania, w systemach IT częstym elementem jest urządzenie do kontrolowania stanu izolacji, co pozwala na szybką detekcję potencjalnych usterek. Dzięki tej architekturze, w przypadku uszkodzenia jednego z przewodów, drugi pozostaje na stałym poziomie napięcia względem ziemi, co zapobiega poważnym awariom. Takie rozwiązanie jest często stosowane w przemyśle oraz w obiektach wymagających wysokiego poziomu niezawodności zasilania, takich jak szpitale czy centra danych.

Pytanie 15

Której końcówki wkrętaka należy użyć do demontażu wyłącznika nadprądowego z szyny TH 35?

Ilustracja do pytania
A. Końcówki 2.
B. Końcówki 1.
C. Końcówki 4.
D. Końcówki 3.
Wybór niewłaściwej końcówki wkrętaka do demontażu wyłącznika nadprądowego z szyny TH 35 może prowadzić do szeregu problemów technicznych oraz zwiększenia ryzyka uszkodzeń. Końcówki 1., 3. i 4. są nieodpowiednie, ponieważ mają różne kształty, które nie są dostosowane do typowych złączy śrubowych stosowanych w tej aplikacji. Końcówka 1. najprawdopodobniej jest typu krzyżowego lub pozbawiona odpowiedniej płaskości, co utrudni prawidłowe wkręcanie czy wykręcanie. Z kolei końcówki 3. i 4. mogą być przeznaczone do specyficznych zastosowań, takich jak śruby torx czy inne nietypowe złącza, a ich użycie w montażu wyłączników nadprądowych może spowodować uszkodzenia elementów lub niepewne połączenia. Błędem myślowym jest zatem założenie, że wszelkie końcówki mogą być stosowane zamiennie, co jest sprzeczne z dobrymi praktykami w branży elektroinstalacyjnej. W praktyce kluczowe jest korzystanie z narzędzi, które są odpowiednio dobrane do specyfiki i standardów instalacji, aby zapewnić bezpieczeństwo oraz niezawodność działania urządzeń. Niezastosowanie się do tych zasad może prowadzić do awarii systemu elektrycznego oraz stwarzać ryzyko wystąpienia zagrożeń, takich jak zwarcia czy przegrzanie.

Pytanie 16

Które z przedstawionych narzędzi, oprócz lutownicy, jest niezbędne przy naprawie przeciętego przewodu LY przez połączenie lutowane?

Ilustracja do pytania
A. C.
B. D.
C. A.
D. B.
Wybór odpowiedzi B jest słuszny, ponieważ narzędzie to, czyli szczypce do ściągania izolacji, jest kluczowe w procesie naprawy przewodów elektrycznych. Przy lutowaniu przeciętego przewodu LY, fundamentalnym krokiem jest przygotowanie jego końców poprzez usunięcie izolacji, co umożliwia bezpośredni dostęp do miedzianych rdzeni. Użycie odpowiednich narzędzi do ściągania izolacji zapewnia, że miedź nie zostanie uszkodzona, co jest istotne dla uzyskania solidnego połączenia lutowanego. W praktyce, szczypce do ściągania izolacji są zaprojektowane tak, aby zminimalizować ryzyko zgniecenia lub zerwania włókien miedzianych, co mogłoby prowadzić do problemów z przewodnictwem elektrycznym. Zgodnie z normami branżowymi, każdy elektryk powinien mieć w swoim zestawie narzędzi to urządzenie, aby zapewnić rzetelność i bezpieczeństwo wykonywanych połączeń. Dobrą praktyką jest także sprawdzenie, czy końce przewodów są czyste i nieuszkodzone przed przystąpieniem do lutowania, co zapewnia lepszą jakość połączenia.

Pytanie 17

W pomieszczeniu przyłączowym budynku sprawdzono ciągłość głównego połączenia wyrównawczego między główną szyną wyrównawczą a czterema punktami, jak na rysunku. Który pomiar powinien wykazać brak ciągłości połączenia?

Ilustracja do pytania
A. 4
B. 1
C. 2
D. 3
Wybór odpowiedzi 1, 2 lub 3 może wydawać się logiczny, jednak opiera się na błędnym założeniu, że wszystkie punkty będą przewodzić prąd bez względu na ich połączenia. Punkty 1, 2 i 3 są podłączone do elementów metalowych, które powinny zapewniać ciągłość połączenia wyrównawczego. Kluczowym aspektem, który jest często mylnie rozumiany, jest zrozumienie, że izolacyjne materiały, takie jak plastik, nie przewodzą prądu. W przypadku punktu 4, jeśli rura gazowa jest wykonana z materiału nieprzewodzącego, to naturalnym jest, że nie może ona zapewnić ciągłości połączenia. Nieprzewodzące materiały nie mogą być używane jako część systemu wyrównawczego, co często prowadzi do błędnych interpretacji i wyborów. Przykładem błędnych wniosków może być przypuszczenie, że każda rura metalowa, niezależnie od połączeń, zawsze zapewnia ciągłość. Niezrozumienie zasady, według której materiał ma kluczowe znaczenie dla właściwego działania instalacji, może prowadzić do poważnych konsekwencji w instalacjach elektrycznych. W branży elektrycznej standardy, takie jak PN-EN 61439, podkreślają znaczenie prawidłowego doboru materiałów oraz sprawowania nad nimi kontroli, co ma istotny wpływ na bezpieczeństwo systemów elektrycznych.

Pytanie 18

Na podstawie ilustracji przedstawiającej fragment instalacji elektrycznej, określ technikę wykonania instalacji.

Ilustracja do pytania
A. Podtynkowa.
B. Natynkowa na uchwytach.
C. Natynkowa prowadzona w rurkach.
D. Wtynkowa.
Na fotografii łatwo się pomylić, bo widać przewody na wierzchu muru, więc część osób od razu myśli o instalacji natynkowej. Tymczasem kluczowe jest to, na jakim etapie budowy jesteśmy i co się stanie dalej. Przewody są ułożone na surowej ścianie z cegły i wyraźnie przygotowane do przykrycia tynkiem – to jest właśnie klasyczna instalacja wtynkowa. Błąd polega często na utożsamianiu każdego widocznego przewodu z instalacją natynkową, a to nie do końca tak działa. Instalacja natynkowa na uchwytach to rozwiązanie docelowe: przewody lub przewody w izolacji są prowadzone po gotowej powierzchni ściany, mocowane klipsami, listwami lub korytami i pozostają widoczne po zakończeniu robót wykończeniowych. Stosuje się ją np. w piwnicach, garażach, warsztatach, gdzie nikt nie planuje tynkowania ścian albo priorytetem jest łatwy dostęp do przewodów. Na zdjęciu widać mury w stanie surowym i brak jakiegokolwiek wykończenia, więc trudno mówić o docelowej instalacji natynkowej. Z kolei instalacja natynkowa prowadzona w rurkach polega na układaniu przewodów wewnątrz rur sztywnych lub peszli po powierzchni ściany; rury są dobrze widoczne i tworzą osobną, mechaniczną osłonę. Tu czegoś takiego nie widać – przewody biegną swobodnie, jedynie przytwierdzone do cegły. Częsty błąd myślowy polega też na myleniu pojęć „podtynkowa” i „wtynkowa”. W języku potocznym bywa to mieszane, ale w technice instalacyjnej podtynkowa oznacza zwykle prowadzenie przewodów w rurkach lub peszlach zatopionych w tynku lub w konstrukcji ściany. W pokazanym przypadku przewód leży bezpośrednio na murze i dopiero zostanie zatopiony w tynku, bez ciągłej rury ochronnej – czyli jest to typowa wtynkowa. Żeby dobrze rozpoznawać takie sytuacje, warto zawsze zadać sobie pytanie: czy to jest stan końcowy instalacji, czy dopiero przygotowanie pod tynk? I czy przewód ma własną osłonę mechaniczną w postaci rury, czy jego ochroną będzie później warstwa tynku. Odpowiedź na te dwie kwestie zwykle rozwiewa wątpliwości.

Pytanie 19

Do czego służy złączka przedstawiona na ilustracji?

Ilustracja do pytania
A. Do łączenia przewodów dowolnego typu.
B. Do zdejmowania izolacji z przewodów dwużyłowych.
C. Do wykonywania połączeń bez zdejmowania izolacji.
D. Do zaciskania końcówek tulejkowych na przewodach.
Odpowiedź 'Do łączenia przewodów dowolnego typu' jest jak najbardziej trafna, bo złączka WAGO właśnie do tego służy. Łączy przewody elektryczne – zarówno te jednożyłowe, jak i wielożyłowe. Takie złączki są teraz mega popularne w nowoczesnych instalacjach, bo są łatwe w użyciu i naprawdę niezawodne. Dzięki nim można szybko i bezpiecznie połączyć przewody, bez potrzeby lutowania czy innych skomplikowanych metod, co na pewno przyspiesza całą robotę. Co więcej, złączki WAGO spełniają normy IEC 60998 i IEC 60529, więc można mieć pewność, że są solidne i bezpieczne. Używanie ich w pracy to też sposób na oszczędność czasu i minimalizację błędów, bo nie trzeba ręcznie łączyć przewodów. W praktyce świetnie się sprawdzają w instalacjach oświetleniowych, automatyce budynkowej czy w rozdzielnicach elektrycznych, gdzie ważna jest jakość połączeń. No i ich konstrukcja pozwala na wielokrotne użycie, co czyni je fajnym rozwiązaniem na dłuższą metę.

Pytanie 20

Powstanie napięcia na obudowie urządzenia AGD zasilanego z sieci TN-S jest rezultatem braku działania

A. odłącznika
B. wyłącznika różnicowoprądowego
C. wyłącznika nadprądowego
D. rozłącznika
Czasem pojawienie się napięcia na obudowie AGD może być mylone z innymi zabezpieczeniami, jak odłączniki czy rozłączniki. Odłącznik fizycznie przerywa obwód, ale nie chroni nas przed prądami upływowymi, które są tu kluczowe. Rozłącznik też rozłącza obwód, ale nie monitoruje różnic w prądzie, więc nie wyłapie potencjalnych problemów. Wyłącznik nadprądowy dba o przeciążenia i zwarcia, ale znów — nie sprawdza prądów, które mogą być niebezpieczne. Często mylimy te urządzenia z RCD, co prowadzi do błędnych wniosków o ich funkcjach. RCD jest jedynym z tych urządzeń, które rzeczywiście chroni przed skutkami prądów upływowych. Warto to zrozumieć, żeby właściwie korzystać z elektryczności i dbać o nasze bezpieczeństwo w domu.

Pytanie 21

Jakie kroki oraz w jakiej kolejności należy wykonać przy wymianie uszkodzonego łącznika?

A. Wymontować uszkodzony łącznik, odłączyć zasilanie, sprawdzić ciągłość połączeń
B. Odłączyć zasilanie, wymontować uszkodzony łącznik, sprawdzić ciągłość połączeń
C. Odłączyć zasilanie, sprawdzić brak zasilania, wymontować uszkodzony łącznik
D. Załączyć zasilanie, sprawdzić ciągłość połączeń, wymontować uszkodzony łącznik
Nieprawidłowe odpowiedzi opierają się na błędnych zasadach bezpieczeństwa i procedurach wykonywania prac elektrycznych. Przykładowo, propozycja rozpoczynająca się od załączenia napięcia jest fundamentalnie wadliwa. Włączenie zasilania przed jakąkolwiek weryfikacją stanu instalacji elektrycznej stwarza poważne ryzyko dla zdrowia i życia wykonawcy. Ponadto, sprawdzenie ciągłości połączeń przed upewnieniem się, że nie ma napięcia, jest niewłaściwe, ponieważ pomiar ciągłości w obwodzie z napięciem może prowadzić do uszkodzeń miernika lub, co gorsza, do porażenia prądem. Następnie, co do wymontowania uszkodzonego łącznika, nie powinno się go demontować bez wcześniejszego potwierdzenia, że cały obwód jest bezpieczny. Typowym błędem myślowym w tych podejściach jest zaufanie do założeń, że obwód jest wyłączony lub bezpieczny bez wcześniejszego sprawdzenia. Ignorowanie podstawowych procedur bezpieczeństwa może prowadzić do tragicznych konsekwencji, dlatego tak ważne jest przestrzeganie kolejności działań w zgodzie z ogólnie przyjętymi normami i przepisami, które mają na celu ochronę osób wykonujących takie prace. W każdej sytuacji związanej z pracą w instalacjach elektrycznych kluczowe jest stosowanie się do procedur, które zapewniają zarówno bezpieczeństwo, jak i prawidłowe działanie systemu. W tym kontekście, doświadczenie i świadomość potencjalnych zagrożeń są niezwykle istotne.

Pytanie 22

Który rodzaj wirującej maszyny elektrycznej przedstawiono na ilustracji?

Ilustracja do pytania
A. Synchroniczną.
B. Bocznikową prądu stałego.
C. Komutatorową prądu przemiennego.
D. Asynchroniczną pierścieniową.
Odpowiedź 'synchroniczna' jest prawidłowa, ponieważ na ilustracji przedstawiono maszynę elektryczną, której konstrukcja jednoznacznie wskazuje na typ synchroniczny. Charakterystyczne oznaczenia biegunów magnetycznych 'S' i 'N' sugerują wykorzystanie stałego magnesu, co jest typowe dla maszyn synchronicznych. Dodatkowo, trójfazowe uzwojenie stojana (U, V, W) jest kluczowym elementem, który współpracuje z wirnikiem, aby utrzymać prędkość obrotową zsynchronizowaną z częstotliwością prądu w sieci, co czyni te maszyny niezwykle stabilnymi w działaniu. Maszyny synchroniczne mają szerokie zastosowania, od produkcji energii w elektrowniach po napędy w różnorodnych aplikacjach przemysłowych. Dzięki ich zdolności do pracy z wysoką efektywnością i kontrolą mocy czynnej oraz biernej, są one preferowanym rozwiązaniem w wielu systemach zasilania. W branży energetycznej, zgodność z normami IEC 60034-1 jest kluczowa dla zapewnienia jakości i bezpieczeństwa działania tych maszyn.

Pytanie 23

Który typ silnika elektrycznego najczęściej stosuje się w urządzeniach gospodarstwa domowego?

A. Silnik indukcyjny jednofazowy
B. Silnik liniowy
C. Silnik krokowy
D. Silnik synchroniczny trójfazowy
Silniki synchroniczne trójfazowe, choć są niezwykle wydajne i precyzyjne, nie są powszechnie używane w urządzeniach gospodarstwa domowego. Ich konstrukcja wymaga bardziej skomplikowanego układu zasilania oraz większego nakładu na utrzymanie synchronizacji prędkości wirnika z częstotliwością zasilania. Z tego powodu znajdują zastosowanie głównie w przemyśle, gdzie precyzyjna kontrola prędkości jest kluczowa, na przykład w maszynach produkcyjnych lub generatorach prądu. Silniki krokowe natomiast, choć używane w sytuacjach wymagających precyzyjnego sterowania pozycyjnego, takich jak w drukarkach czy robotyce, nie są typowe dla podstawowych urządzeń AGD. Ich koszt oraz specyficzne wymagania co do sterowania czynią je mniej optymalnym wyborem dla prostych zastosowań domowych. Silniki liniowe, choć interesujące ze względu na ich zdolność do generowania ruchu liniowego bezpośrednio, są rzadko spotykane w urządzeniach AGD z powodu kosztów i skomplikowanej konstrukcji. Zwykle znajdują zastosowanie w specjalistycznych aplikacjach, takich jak transport wewnętrzny w zakładach produkcyjnych czy w kolejkach magnetycznych. Typowe błędy myślowe, które mogą prowadzić do wyboru tych silników do urządzeń domowych, wynikają z niezrozumienia specyficznych potrzeb i ograniczeń każdego z tych rodzajów silników.

Pytanie 24

Aby ocenić efektywność ochrony przez automatyczne odcięcie zasilania w systemie TN instalacji elektrycznej, konieczne jest

A. określenie czasu oraz prądu zadziałania wyłącznika RCD
B. wykonanie pomiaru rezystancji uziemienia
C. przeprowadzenie pomiarów impedancji pętli zwarcia
D. zweryfikowanie ciągłości połączeń w instalacji
Sprawdzanie ciągłości połączeń w instalacji, chociaż ważne dla ogólnego bezpieczeństwa, nie jest bezpośrednio związane z oceną skuteczności wyłączenia zasilania w systemie TN. Często można mylnie sądzić, że zapewnienie ciągłości połączeń jest wystarczające do zapewnienia bezpieczeństwa użytkowników. Jednakże nawet jeśli ciągłość połączenia jest zachowana, nie gwarantuje to, że zabezpieczenia, takie jak wyłączniki różnicowoprądowe (RCD), zadziałają w odpowiednim czasie. Wyznaczanie czasu i prądu zadziałania wyłącznika RCD jest również istotne, ale nie dostarcza informacji o impedancji pętli zwarcia, która jest kluczowa do oceny, czy ochrona przed zwarciami jest wystarczająca. Mierzenie rezystancji uziemienia to kolejny ważny aspekt, ale jego wyniki nie zastąpią pomiaru impedancji pętli zwarcia, który jest bezpośrednim wskaźnikiem skuteczności działania zabezpieczeń przy wystąpieniu niebezpiecznych sytuacji. W związku z tym, pomiar impedancji pętli zwarcia powinien być priorytetem dla inżynierów i techników zajmujących się instalacjami elektrycznymi, aby zapewnić ich właściwe działanie w sytuacjach awaryjnych.

Pytanie 25

Przygotowując się do wymiany uszkodzonego gniazda siłowego w instalacji elektrycznej, po odłączeniu zasilania w obwodzie tego gniazda, należy przede wszystkim

A. rozłożyć dywanik izolacyjny w rejonie pracy
B. poinformować dostawcę energii
C. oznaczyć obszar roboczy
D. zabezpieczyć obwód przed przypadkowym włączeniem zasilania
Rozłożenie dywanika elektroizolacyjnego w miejscu pracy, powiadomienie dostawcy energii oraz oznaczenie miejsca pracy, choć mogą wydawać się logicznymi krokami, nie odnoszą się bezpośrednio do kluczowego aspektu bezpieczeństwa, jakim jest zapobieganie przypadkowemu załączeniu napięcia. Dywanik elektroizolacyjny może pomóc w zapewnieniu dodatkowej izolacji, ale nie eliminuje ryzyka, jeśli obwód nie jest odpowiednio zabezpieczony przed możliwością załączenia. Powiadomienie dostawcy energii jest praktyką, która może być przydatna w przypadku większych prac lub modernizacji, ale nie ma bezpośredniego wpływu na bezpieczeństwo konkretnego obwodu, który ma być naprawiony. Oznaczenie miejsca pracy jest istotne w kontekście informowania innych osób o prowadzonych pracach, jednak nie stanowi skutecznej ochrony przed nieautoryzowanym włączeniem zasilania. Kluczowym błędem w myśleniu jest przekonanie, że jakiekolwiek działanie związane z bezpieczeństwem w miejscu pracy jest wystarczające, podczas gdy najważniejsze jest usunięcie ryzyka związane z ponownym załączeniem napięcia w obwodzie, który jest w trakcie naprawy. W związku z tym, podejście skoncentrowane na zabezpieczeniu obwodu powinno być zawsze priorytetem, a inne działania traktowane jako dodatkowe, a nie podstawowe. Poprawne podejście do kwestii bezpieczeństwa w instalacjach elektrycznych wymaga wieloaspektowego myślenia i stosowania procedur, które są zgodne z obowiązującymi normami i dobrymi praktykami branżowymi.

Pytanie 26

Na której ilustracji przedstawiono prawidłowy, zgodny z zasadami BHP sposób wykonania połączenia przewodu z żyłą w postaci drutu w zacisku śrubowym?

Ilustracja do pytania
A. Na ilustracji 2.
B. Na ilustracji 3.
C. Na ilustracji 4.
D. Na ilustracji 1.
W pozostałych wariantach problemem nie jest samo użycie zacisku śrubowego, ale sposób ułożenia przewodu względem śruby i elementu dociskowego. To jest dość typowy błąd montażowy: przewód niby jest w zacisku, śruba niby dokręcona, a połączenie wcale nie jest pewne ani trwałe. Jeżeli drut trafi pod samą krawędź śruby lub obok właściwej strefy docisku, to siła skupia się w jednym, bardzo małym punkcie. W efekcie żyła może być mechanicznie „ścięta”, spłaszczona, a kontakt elektryczny będzie miał zwiększoną rezystancję przejścia. Taki zacisk zaczyna się po jakimś czasie grzać, szczególnie przy większym obciążeniu prądowym. Z mojego doświadczenia właśnie z tak wykonanych połączeń biorą się lokalne przypalenia izolacji, ciemnienie obudowy czy w skrajnym przypadku nadtopienia w gniazdach i wyłącznikach. Innym typowym błędem jest częściowe wsunięcie przewodu. Końcówka drutu znajduje się wtedy tylko na skraju pola docisku, a reszta przestrzeni pod śrubą jest pusta. Przy dokręcaniu śruba potrafi „odjechać” na bok, wygiąć przewód albo go powoli wysuwać. Na rysunkach nieprawidłowych dokładnie to widać: brak pełnego podparcia żyły pod elementem dociskowym i niewłaściwe prowadzenie drutu. Część osób kieruje się tu mylnym założeniem, że skoro śruba dotyka przewodu, to połączenie jest OK. Niestety BHP i dobre praktyki mówią coś innego – śruba ma dociskać przewód do szyny, płytki lub ścianki zacisku, a nie tylko go „łapać” punktowo. Producenci aparatów instalacyjnych wręcz ostrzegają w katalogach i instrukcjach przed takim montażem, bo prowadzi on do luzowania połączeń pod wpływem zmian temperatury i drgań. W instalacjach zgodnych z PN‑HD 60364 i ogólnymi zasadami montażu zaleca się zawsze pełne wsunięcie żyły, ułożenie jej równolegle do płaszczyzny docisku i kontrolę, czy izolacja nie weszła pod śrubę. Właśnie zlekceważenie tych szczegółów widoczne jest na błędnych ilustracjach: zbyt mała powierzchnia styku, niewłaściwy tor przepływu prądu i duże ryzyko uszkodzenia żyły. Dlatego takie sposoby łączenia nie spełniają wymogów bezpieczeństwa i nie powinny być stosowane w prawidłowo wykonanej instalacji.

Pytanie 27

Która zależność musi być spełniona podczas wymiany uszkodzonych przewodów instalacji elektrycznej i ewentualnej zmiany ich zabezpieczeń nadprądowych?

Iz – prąd obciążalności długotrwałej przewodu
IN – prąd znamionowy zabezpieczenia przeciążeniowego
IB – prąd wynikający z przewidywanej mocy przesyłanej przewodem
A. IB ≤ IZ ≤ IN
B. IN ≤ IB ≤ IZ
C. IZ ≤ IN ≤ IB
D. IB ≤ IN ≤ IZ
Odpowiedź IB ≤ IN ≤ IZ jest prawidłowa, ponieważ odzwierciedla fundamentalne zasady projektowania instalacji elektrycznych. Prąd znamionowy obciążenia (IB) powinien być zawsze mniejszy lub równy prądowi znamionowemu zabezpieczenia przeciążeniowego (IN), aby zabezpieczenie mogło poprawnie zadziałać w przypadku nadmiernego obciążenia. Z kolei IN musi być mniejsze lub równe prądowi obciążalności długotrwałej przewodu (IZ), co zapewnia, że przewód nie ulegnie przegrzaniu ani uszkodzeniu w trakcie normalnej pracy. Takie podejście zgodne jest z normami, takimi jak PN-IEC 60364, które podkreślają znaczenie odpowiedniego doboru zabezpieczeń i przewodów. Przykładowo, w przypadku instalacji oświetleniowej, jeśli przewody mają maksymalną obciążalność 10 A (IZ), a przewidywane obciążenie to 8 A (IB), to zabezpieczenie powinno mieć wartość 10 A (IN). Taki dobór zabezpieczenia pozwala na ochronę zarówno przewodów, jak i urządzeń podłączonych do instalacji.

Pytanie 28

Jaki rodzaj wkładki topikowej powinien być użyty do ochrony nadprądowej obwodu jednofazowych gniazd do użytku ogólnego?

A. gL
B. gG
C. aR
D. aM
Wkładka topikowa typu gG jest rekomendowanym rozwiązaniem do zabezpieczenia nadprądowego obwodów jednofazowych gniazd ogólnego przeznaczenia. Charakteryzuje się ona zdolnością do ochrony przed przeciążeniami oraz krótkimi spięciami, a także do działania w obwodach wymagających wysokich zdolności zwarciowych. W praktyce, zastosowanie wkładki gG w instalacjach elektrycznych, takich jak gniazda w domach, biurach czy obiektach użyteczności publicznej, zapewnia skuteczną ochronę przed uszkodzeniami spowodowanymi nadmiernym przepływem prądu. Wkładki te są zgodne z normami IEC 60269 oraz PN-EN 60269, które regulują ich parametry techniczne. Dzięki zastosowaniu wkładek gG, można zminimalizować ryzyko uszkodzenia urządzeń elektrycznych oraz przeciążenia obwodów, co jest kluczowe dla bezpieczeństwa użytkowników oraz sprawności całego systemu elektrycznego.

Pytanie 29

Którą oprawę oświetleniową należy zastosować w piwnicy o zwiększonej wilgotności powietrza?

Ilustracja do pytania
A. D.
B. C.
C. B.
D. A.
Oprawa oświetleniowa oznaczona jako D. jest odpowiednia do zastosowania w piwnicy o zwiększonej wilgotności powietrza, ponieważ spełnia normy dotyczące szczelności i odporności na działanie wilgoci. W takich warunkach, zastosowanie oprawy z wyższym stopniem ochrony, jak IP65 lub IP67, jest kluczowe, aby uniknąć ryzyka uszkodzenia instalacji elektrycznej oraz zapewnić bezpieczeństwo użytkowników. Dobrą praktyką jest wybór opraw wyekwipowanych w zatrzaski, co zwiększa ich szczelność i zapobiega przedostawaniu się pary wodnej oraz zanieczyszczeń. W piwnicach, gdzie może występować wilgoć, szczególnie istotne jest regularne sprawdzanie stanu technicznego oświetlenia, a także stosowanie źródeł światła odpornych na wahania temperatury oraz wilgotności, takich jak diody LED. Przykładem mogą być instalacje oświetleniowe w magazynach lub piwnicach, które wymagają nie tylko właściwego doboru opraw, ale także odpowiedniego montażu, aby zapewnić ich długotrwałą i bezpieczną eksploatację.

Pytanie 30

Które urządzenie elektryczne przedstawiono na rysunku?

Ilustracja do pytania
A. Rozłącznik izolacyjny FRX400.
B. Stycznik elektromagnetyczny.
C. Wyłącznik nadprądowy S304.
D. Wyłącznik silnikowy.
Wybór rozłącznika izolacyjnego FRX400, wyłącznika silnikowego lub wyłącznika nadprądowego S304 jako odpowiedzi jest błędny, ponieważ każde z tych urządzeń pełni inną funkcję w obwodach elektrycznych. Rozłącznik izolacyjny, jak sugeruje jego nazwa, jest używany głównie do izolacji obwodu od źródła zasilania, co jest niezbędne w kontekście prac serwisowych, ale nie ma funkcji aktywnego załączania lub wyłączania obwodów, jak to robi stycznik. Wyłącznik silnikowy z kolei jest przeznaczony do ochrony silnika elektrycznego przed przeciążeniem i zwarciem, a nie do ich sterowania. Mimo że ma zdolność do załączania i wyłączania silnika, nie ma charakterystycznych cewek elektromagnetycznych, które są kluczowe dla styczników. Z kolei wyłącznik nadprądowy S304 jest urządzeniem ochronnym, które reaguje na nadmiar prądu, ale również nie pełni funkcji załączania obwodów. Te pomyłki wynikają często z niepełnego zrozumienia różnic między tymi urządzeniami oraz ich specyfikacji. W praktyce, znajomość zastosowania i działania tych elementów jest kluczowa dla prawidłowego doboru urządzeń w instalacjach elektrycznych. Warto zatem zwrócić uwagę na ich właściwości i funkcje, aby uniknąć nieporozumień w obszarze automatyki i sterowania w systemach elektrycznych.

Pytanie 31

Jakiego typu powinna być końcówka wkrętaka dobranego do wkrętu o główce, której kształt przedstawiono na rysunku?

Ilustracja do pytania
A. Phillips.
B. Torx.
C. Płaska.
D. Pozidriv.
Wybór złej końcówki wkrętaka pokazuje, że chyba nie do końca rozumiesz różnice między wkrętami. Końcówka płaska, choć popularna, w ogóle nie pasuje do krzyżowych nacięć, co może skończyć się poślizgiem narzędzia i uszkodzeniem zarówno końcówki, jak i główki wkrętu. Końcówka Torx też nie jest tu odpowiednia, bo jest zaprojektowana do większych momentów obrotowych, a to nie dotyczy wkrętów Pozidriv. Odpowiedź z końcówką Phillips też jest błędna, bo to narzędzie nie ma tych dodatkowych nacięć, które zwiększają stabilność. Takie błędy mogą skutkować problemami w pracy, a nawet niebezpieczeństwem, szczególnie na wysokości. Warto wiedzieć, jakie narzędzia pasują do jakich wkrętów, żeby wszystko robić bezpiecznie i skutecznie.

Pytanie 32

Wyzwalacz elektromagnetyczny wyłącznika toru prądowego, przedstawiamy na schemacie blokowym jak na rysunku, oznacza się na schemacie elektrycznym symbolem graficznym

Ilustracja do pytania
A. B.
B. A.
C. C.
D. D.
Wybór innej odpowiedzi, niż oznaczenie "B", może prowadzić do nieporozumień w zakresie identyfikacji wyzwalaczy elektromagnetycznych. Odpowiedzi, które nie są zgodne z definicją i standardami schematów elektrycznych, mogą wywołać szereg problemów związanych z interpretacją projektów elektronicznych. Na przykład, nieprawidłowe symbole mogą prowadzić do błędów w instalacji i eksploatacji urządzeń. W schematach elektrycznych każdy symbol ma swoje unikalne znaczenie, a ich niewłaściwe zrozumienie może skutkować nieefektywnymi rozwiązaniami oraz stwarzaniem zagrożeń dla bezpieczeństwa. Przy projektowaniu obwodów zabezpieczeń, istotne jest, aby każdy komponent był jednoznacznie zidentyfikowany, ponieważ nawet małe błędy mogą prowadzić do poważnych konsekwencji. Ponadto, korzystanie z nieautoryzowanych lub mylnych symboli może być sprzeczne z obowiązującymi normami branżowymi, co może skutkować problemami prawnymi w przypadku awarii. Dlatego kluczowe jest, aby na każdym etapie projektowania oraz realizacji prac korzystać z poprawnych symboli i wytycznych, które odpowiadają rzeczywistym funkcjom urządzeń w obwodzie elektrycznym.

Pytanie 33

Jakim oznaczeniem charakteryzuje się przewód jednożyłowy z żyłą wykonaną z aluminium, w izolacji z PVC, o przekroju 2,5 mm2, przeznaczony na napięcie znamionowe izolacji 500 V?

A. ALY 500 V 2,5 mm2
B. YLY 500 V 2,5 mm2
C. YDY 500 V 2,5 mm2
D. ADY 500 V 2,5 mm2
No, niestety, nie wszystkie inne odpowiedzi są poprawne. Odpowiedź ALY 500 V 2,5 mm2 ma poważny błąd, bo 'L' sugeruje, że przewód wykonany jest z miedzi, a nie z aluminium. W przypadku YDY 500 V 2,5 mm2, 'Y' mówi, że to przewód jednożyłowy, ale 'D' jest tu problematyczne, bo powinno dotyczyć PVC przy żyłach aluminiowych. Co do YLY 500 V 2,5 mm2, to znowu 'L' sugeruje miedź, co jest sprzeczne z informacjami w pytaniu. Często ludzie popełniają błąd, ignorując materiał żyły, co może prowadzić do różnych problemów w instalacji. Mylimy symbole różnych typów przewodów, co może później skutkować ich niewłaściwym doborem i zwiększa ryzyko awarii. W inżynierii elektrycznej, ogarnięcie tych oznaczeń jest mega ważne, żeby wszystko działało bezpiecznie i sprawnie.

Pytanie 34

Określ w kolejności od lewej strony nazwy narzędzi przedstawionych na rysunku.

Ilustracja do pytania
A. Szczypce uniwersalne, przyrząd do ściągania izolacji, obcinaczki boczne, szczypce do zaciskania końcówek, wkrętak izolowany, wskaźnik napięcia.
B. Obcinaczki czołowe, przyrząd do ściągania izolacji, szczypce uniwersalne, wskaźnik napięcia, szczypce do zaciskania końcówek, wkrętak izolowany płaski.
C. Szczypce do zaciskania końcówek, szczypce uniwersalne, wskaźnik napięcia, obcinaczki czołowe, szczypce do ściągania izolacji, wkrętak izolowany płaski.
D. Obcinaczki boczne, przyrząd do ściągania izolacji, szczypce do zaciskania końcówek, szczypce uniwersalne, wkrętak izolowany, wskaźnik napięcia.
Obcinaczki boczne to pierwsze narzędzie na zdjęciu. Mają ostrza skierowane ku sobie, co fajnie ułatwia precyzyjne cięcie drutów i kabli. W branży elektrycznej i podczas domowych napraw to naprawdę przydatne narzędzie. Potem mamy przyrząd do ściągania izolacji, który jest bardzo ważny, kiedy przygotowujemy przewody do połączeń elektrycznych. Dzięki niemu można łatwo usunąć izolację, nie uszkadzając rdzenia przewodu, co jest kluczowe. Dalej są szczypce do zaciskania końcówek, które są super przydatne, bo mocują końcówki kablowe na stałe. To bardzo ważne, żeby połączenia były niezawodne. Słyszałeś o szczypcach uniwersalnych? Te zajmują czwarte miejsce. Są mega wszechstronne i można ich używać do różnych zadań – od cięcia po chwytanie rzeczy. I nie zapomnijmy o wkrętaku izolowanym, bo to ważne narzędzie do pracy przy elektryce. Jest odporny na przebicie prądu. Na końcu mamy wskaźnik napięcia, który jest kluczowy dla bezpieczeństwa. Pozwala sprawdzić, czy jest napięcie, zanim zaczniemy jakąkolwiek robotę.

Pytanie 35

Którego z przedstawionych przyrządów pomiarowych należy użyć w celu wyznaczenia tras ułożenia przewodów elektrycznych w instalacjach podtynkowych?

Ilustracja do pytania
A. C.
B. B.
C. D.
D. A.
Wybór odpowiedzi A, B lub C wskazuje na nieporozumienia dotyczące funkcji poszczególnych przyrządów pomiarowych. Miernik grubości powłoki, choć istotny w kontekście badania kondycji materiałów, nie ma zastosowania w lokalizacji przewodów elektrycznych. Jego głównym zadaniem jest pomiar grubości różnych powłok ochronnych, co nie jest pomocne przy planowaniu tras instalacji elektrycznych. Kamera termowizyjna, z kolei, jest używana do wykrywania różnic temperatur na powierzchniach, co może być przydatne przy diagnostyce problemów z instalacjami, ale nie oferuje precyzyjnego wskazania położenia przewodów. Miernik poziomu dźwięku również nie jest narzędziem właściwym do tego celu, ponieważ jego funkcja polega na rejestrowaniu natężenia dźwięku, co nie ma związku z lokalizacją przewodów. Typowe błędy myślowe, które prowadzą do takich wyborów, to utożsamianie przyrządów pomiarowych z ich funkcjami, które nie są bezpośrednio związane z konkretnym zadaniem. Właściwe dobieranie narzędzi do pracy jest kluczowe dla efektywności i bezpieczeństwa instalacji elektrycznych, dlatego warto dokładnie zapoznać się z charakterystyką każdego z nich i ich przeznaczeniem w praktyce.

Pytanie 36

Parametry techniczne którego stycznika z tabeli odpowiadają stycznikowi przedstawionemu na ilustracji?

StycznikZnamionowy prąd pracyLiczba styków NOLiczba styków NC
1.31 A40
2.31 A31
3.40 A31
4.40 A40
Ilustracja do pytania
A. Stycznika 2.
B. Stycznika 4.
C. Stycznika 3.
D. Stycznika 1.
Odpowiedzi niepoprawne wynikają z kilku powszechnych błędów myślowych, które mogą prowadzić do mylnych wniosków. Wiele osób może sugerować, że inne styczniki z tabeli mają podobne parametry, jednak kluczowe jest dokładne zwrócenie uwagi na oznaczenia i specyfikacje techniczne. Przykładowo, stycznik 2 ma inny prąd nominalny, co czyni go niewłaściwym wyborem. Jest to częsty błąd w ocenie, gdzie koncentruje się wyłącznie na liczbie styków, a nie na ich charakterystyce oraz innych istotnych parametrach, takich jak prąd roboczy czy napięcie. Podobne pomyłki można zauważyć przy ocenie stycznika 1 i 4, które również różnią się specyfikacjami od stycznika przedstawionego na ilustracji. W takich przypadkach warto zwrócić uwagę na szczegóły, które odgrywają kluczową rolę w zapewnieniu optymalnego działania urządzeń. W kontekście projektowania instalacji elektrycznych, znajomość dokładnych parametrów styczników oraz ich zgodności z normami, takimi jak IEC 60947, jest niezbędna do osiągnięcia bezpiecznych i efektywnych rozwiązań. Pominięcie tych kryteriów może prowadzić do awarii systemu oraz zwiększenia ryzyka uszkodzeń sprzętu.

Pytanie 37

Którego z symboli należy użyć na schemacie wielokreskowym w celu oznaczenia łącznika schodowego?

Ilustracja do pytania
A. B.
B. A.
C. D.
D. C.
Wybór symboli A, B lub D do oznaczenia łącznika schodowego jest nieprawidłowy i wynika z nieporozumienia dotyczącego funkcji oraz konstrukcji tych elementów. Symbol A przedstawia zwykły łącznik, który jest używany do włączania i wyłączania obwodu z jednego miejsca. Nie ma on możliwości zarządzania oświetleniem z dwóch różnych lokalizacji, co jest kluczowe dla łącznika schodowego. Użycie tego symbolu w tym kontekście prowadzi do błędnej interpretacji możliwości instalacji. Symbol B, z kolei, może odnosić się do innego typu przełącznika, który nie jest przystosowany do działania w systemach schodowych. Oznaczenia te mogą mylić, ponieważ nie oddają rzeczywistych funkcji, które powinny być jasno sprecyzowane w dokumentacji technicznej. Natomiast symbol D może reprezentować elementy, które nie są powiązane z funkcjonalnością zarządzania oświetleniem w kontekście schodów. Te błędne wybory wynikają z typowych nieporozumień w interpretacji rysunków technicznych oraz braku znajomości norm dotyczących oznaczania symboli elektrycznych. Ważne jest, aby przy projektowaniu instalacji elektrycznych zwracać uwagę na specyfikację i zastosowanie poszczególnych symboli, aby zapewnić ich poprawne użytkowanie i efektywność działania systemu. Dobrą praktyką jest konsultacja z dokumentacją normatywną oraz specjalistami w dziedzinie elektrotechniki przed podjęciem decyzji o wyborze odpowiednich elementów instalacji.

Pytanie 38

Na podstawie rysunku montażowego określ, na jakiej wysokości od podłogi należy zamontować dolną krawędź rozdzielnicy.

Ilustracja do pytania
A. 1,4 m
B. 0,90 m
C. 1,5 m
D. 0,80 m
Zgodnie z rysunkiem montażowym, dolna krawędź rozdzielnicy powinna być zamontowana na wysokości 1500 mm (1,5 m) od podłogi. Taki wymiar jest zgodny z normami branżowymi, które określają ergonomiczne i bezpieczne wysokości montażu rozdzielnic elektrycznych. Wysokość ta zapewnia wygodny dostęp do urządzeń oraz pozwala na swobodne prowadzenie prac serwisowych. Dodatkowo, montaż na tej wysokości minimalizuje ryzyko przypadkowego kontaktu z wodą oraz zanieczyszczeniami, co jest istotne w kontekście bezpieczeństwa elektrycznego. W praktyce, takie umiejscowienie rozdzielnicy ułatwia również korzystanie z niej w warunkach przemysłowych lub w budynkach użyteczności publicznej, gdzie użytkownicy mogą być różnego wzrostu. Warto pamiętać, że zgodność z obowiązującymi standardami oraz zasadami BHP jest kluczowym aspektem każdego projektu instalacji elektrycznych.

Pytanie 39

Zdjęcie przedstawia przewód

Ilustracja do pytania
A. YDYn 3x1,5 500 V
B. YLY 3x1,5 500 V
C. YDYp 3x1,5 750 V
D. YDY 3x1,5 750 V
Przewód przedstawiony na zdjęciu to przewód typu YDYp 3x1,5 750 V, co można rozpoznać po zastosowaniu symboliki w oznaczeniach. Oznaczenie 'Y' wskazuje na materiał izolacji, w tym przypadku poliwinitowy. Druga litera 'D' oznacza, że przewód wykonany jest z drutu miedzianego, co zapewnia jego dużą przewodność elektryczną. Z kolei 'Y' ponownie odnosi się do dodatkowej warstwy izolacji, a 'p' oznacza, że przewód ma formę płaską. Taki typ przewodu jest często wykorzystywany w instalacjach elektrycznych w budynkach, gdzie występuje potrzeba oszczędności miejsca oraz estetyki. Przewody płaskie, jak YDYp, są idealne do układania w ścianach, podłogach, czy w innych przestrzeniach, gdzie ich rozmiar pozwala na łatwe ukrycie. Napięcie znamionowe 750 V czyni je odpowiednim rozwiązaniem do wielu standardowych aplikacji, co czyni je zgodnym z normami PN-EN 50525, dotyczącymi przewodów elektrycznych. Wybór właściwego przewodu ma kluczowe znaczenie dla bezpieczeństwa i efektywności instalacji elektrycznej, dlatego znajomość ich właściwości jest niezbędna w pracy elektryka.

Pytanie 40

Urządzenie przestawione na ilustracji przeznaczone jest do

Ilustracja do pytania
A. montażu łożysk.
B. demontażu łożysk.
C. odkręcania zapieczonych śrub.
D. obróbki skrawaniem.
Na zdjęciu widoczny jest ściągacz do łożysk, czyli narzędzie typowo serwisowe, używane głównie do demontażu, a nie do montażu elementów osadzonych na wale. Częsty błąd polega na tym, że ktoś myli funkcję tego przyrządu i traktuje go jako coś w rodzaju prasy albo klucza do śrub. W rzeczywistości konstrukcja z trzema ramionami zakończonymi haczykowatymi stopkami oraz centralną śrubą pociągową jednoznacznie wskazuje, że służy on do ściągania, czyli zdejmowania łożysk, kół pasowych, kół zębatych czy tarcz z wałów i osi. Do montażu łożysk stosuje się zupełnie inne narzędzia: prasy hydrauliczne lub mechaniczne, tuleje montażowe, pobijaki z miękkiego materiału, specjalne zestawy montażowe, często także nagrzewnice indukcyjne. Chodzi o to, żeby siłę przyłożyć wyłącznie do odpowiedniego pierścienia łożyska i nie przenosić obciążeń przez elementy toczne, bo to niszczy bieżnie. Ściągacz z obrazka działa odwrotnie: ramiona „łapią” za element, a śruba wypycha wał, co odrywa łożysko od czopa. Równie mylące bywa skojarzenie tego narzędzia z obróbką skrawaniem – tutaj nie ma żadnego noża, głowicy, uchwytu narzędziowego ani ruchu obrotowego charakterystycznego dla tokarki czy frezarki. Nie zachodzi proces zdejmowania wióra, jest tylko kontrolowane odkształcenie sprężyste i przesunięcie pasowanej części. Zdarza się też, że ktoś widząc śrubę z poprzecznym uchwytem sądzi, że to rodzaj klucza do odkręcania zapieczonych śrub. To też jest mylne, bo konstrukcja ściągacza nie pozwala na przenoszenie momentu obrotowego na łeb śruby; on generuje głównie siłę osiową, a nie moment skręcający. W dobrych praktykach utrzymania ruchu przyjęło się, że do śrub stosuje się klucze nasadowe, udarowe, penetranty chemiczne, czasem podgrzewanie, natomiast do łożysk – ściągacze, prasy i nagrzewnice. Właściwe rozróżnianie tych narzędzi i ich funkcji to podstawa bezpiecznego serwisu maszyn i urządzeń elektrycznych.