Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik informatyk
  • Kwalifikacja: INF.02 - Administracja i eksploatacja systemów komputerowych, urządzeń peryferyjnych i lokalnych sieci komputerowych
  • Data rozpoczęcia: 10 grudnia 2025 05:47
  • Data zakończenia: 10 grudnia 2025 05:57

Egzamin zdany!

Wynik: 23/40 punktów (57,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Urządzenie używane do zestawienia 6 komputerów w sieci lokalnej to:

A. transceiver
B. most
C. serwer
D. przełącznik
Przełącznik to naprawdę ważne urządzenie w sieciach lokalnych. Dzięki niemu komputery mogą się ze sobą komunikować w obrębie tej samej sieci. Działa na drugiej warstwie modelu OSI, co oznacza, że używa adresów MAC, a jego głównym zadaniem jest przesyłanie danych tylko tam, gdzie są one potrzebne. Takie podejście sprawia, że przesył danych jest efektywniejszy, a opóźnienia są mniejsze. Kiedy podłączasz kilka komputerów do przełącznika, to każdy z nich może ze sobą rozmawiać bez zakłócania pracy innych. Oprócz tego, nowoczesne przełączniki oferują różne fajne funkcje, jak VLANy, które pomagają w dzieleniu sieci na mniejsze segmenty, oraz QoS – co pozwala lepiej zarządzać ruchem w sieci. Przełączniki są zgodne z różnymi standardami, np. IEEE 802.3, co ułatwia ich współpracę z różnymi urządzeniami. Warto pamiętać, że stosowanie przełączników w projektowaniu sieci lokalnych to dobra praktyka, bo naprawdę poprawia wydajność i zarządzanie ruchem.

Pytanie 2

Aby podłączyć drukarkę z portem równoległym do komputera, który dysponuje jedynie złączami USB, konieczne jest zainstalowanie adaptera

A. USB na PS/2
B. USB na RS-232
C. USB na COM
D. USB na LPT
Adapter USB na LPT (Line Print Terminal) jest kluczowym rozwiązaniem, gdy chcemy podłączyć drukarkę z interfejsem równoległym do komputera z portami USB. Złącze LPT, popularne w starszych modelach drukarek, wymaga odpowiedniego adaptera, który konwertuje sygnał USB na sygnał równoległy. Tego rodzaju adaptery są szeroko dostępne i pozwalają na bezproblemowe połączenie, umożliwiając korzystanie z drukarek, które w przeciwnym razie byłyby niekompatybilne z nowoczesnymi komputerami. Przykładem zastosowania może być sytuacja w biurze, gdzie starsze drukarki są wciąż używane, a komputery zostały zaktualizowane do nowszych modeli bez portów równoległych. W takich przypadkach, zastosowanie adaptera USB na LPT pozwala na dalsze korzystanie z posiadanych zasobów, co jest zgodne z zasadą ekoinnowacji i maksymalizacji efektywności kosztowej. Warto również dodać, że wiele adapterów USB na LPT obsługuje standardy Plug and Play, co oznacza, że nie wymagają one skomplikowanej instalacji oprogramowania, co znacznie upraszcza proces konfiguracji.

Pytanie 3

W systemie Windows po wykonaniu polecenia systeminfo nie otrzyma się informacji o

A. liczbie partycji podstawowych
B. zainstalowanych aktualizacjach
C. zamontowanych kartach sieciowych
D. liczbie procesorów
Wybór odpowiedzi dotyczącej liczby procesorów, zainstalowanych poprawek lub zamontowanych kart sieciowych może wynikać z nieporozumienia dotyczącego funkcji narzędzia systeminfo oraz jego możliwości. Liczba procesorów jest informacją, która jest fundamentalna dla wydajności systemu, dlatego jest dostępna w wynikach polecenia systeminfo. Z kolei informacje o zainstalowanych poprawkach są równie istotne, zwłaszcza w kontekście bezpieczeństwa systemu, i także są przedstawiane przez to narzędzie. Podobnie, zamontowane karty sieciowe są kluczowe dla funkcjonowania połączeń sieciowych, a systeminfo dostarcza dokładnych informacji o ich konfiguracji i statusie. Niektórzy mogą mylnie sądzić, że informacje o partycjach podstawowych są również dostępne w systeminfo, co prowadzi do wyciągania błędnych wniosków. W rzeczywistości, partycje są bardziej szczegółowym zagadnieniem, które wymaga użycia specjalistycznych narzędzi, takich jak Disk Management czy polecenia diskpart, które oferują precyzyjny wgląd w strukturę dysku. Zrozumienie, jakie informacje są dostępne w różnych narzędziach, jest kluczowe dla skutecznej administracji systemem oraz zapobiegania problemom z zarządzaniem danymi. Właściwe podejście do analizy systemu operacyjnego wymaga znajomości narzędzi i ich zastosowań, co jest niezbędne dla efektywnej pracy w środowisku IT.

Pytanie 4

W jakim systemie jest przedstawiona liczba 1010(o)?

A. szesnastkowym
B. dziesiętnym
C. binarnym
D. ósemkowym
Liczba 1010 w systemie ósemkowym (oktalnym) oznacza 1*8^2 + 0*8^1 + 1*8^0, co daje 64 + 0 + 1 = 65 w systemie dziesiętnym. System ósemkowy jest systemem pozycyjnym, w którym podstawą jest liczba 8. W praktyce jest on często używany w informatyce, zwłaszcza w kontekście programowania i reprezentacji danych, ponieważ niektóre systemy operacyjne i języki programowania preferują reprezentację ósemkową dla grupowania bitów. Na przykład, adresy w systemie UNIX są często przedstawiane w ósemkowym formacie, co ułatwia manipulację i zrozumienie uprawnień plików. Zrozumienie konwersji pomiędzy różnymi systemami liczbowymi jest kluczowe dla programistów oraz inżynierów oprogramowania, gdyż pozwala na efektywniejsze działanie w środowiskach, gdzie stosuje się różne standardy numeryczne.

Pytanie 5

Na ilustracji zaprezentowano końcówkę kabla

Ilustracja do pytania
A. światłowodowego
B. koncentrycznego
C. rodzaju skrętka
D. telefonicznego
Zakończenia kabli mogą przyjmować różne formy i pełnić odmienne funkcje w zależności od ich zastosowania i technologii transmisji. Skrętka to popularne rozwiązanie w sieciach Ethernet gdzie przewody są skręcone parami co redukuje zakłócenia elektromagnetyczne. Jest to jednak technologia oparta na miedzi co ogranicza zasięg i przepustowość w porównaniu do światłowodów. Kable telefoniczne są również wykonane w technologii miedzianej i najczęściej wykorzystywane do przesyłania sygnałów telefonicznych o niższej przepustowości. Kable koncentryczne z kolei stosowane m.in. w telewizji kablowej czy przesyłaniu sygnałów satelitarnych również bazują na technologii miedzianej i mają ograniczoną przepustowość w stosunku do światłowodów. Wybór nieodpowiedniego typu kabla prowadzi do nieefektywności i problemów z transmisją danych szczególnie w erze cyfryzacji i zwiększających się wymagań co do przepustowości. Zrozumienie różnic między tymi technologiami jest kluczowe dla prawidłowego projektowania nowoczesnych systemów komunikacyjnych i infrastruktury IT gdzie światłowody odgrywają coraz ważniejszą rolę ze względu na swoje unikalne właściwości i wszechstronne zastosowanie w różnych dziedzinach przemysłu i technologii komunikacyjnych.

Pytanie 6

Jaki procesor powinien być zastosowany przy składaniu komputera osobistego z płytą główną Asus M5A78L-M/USB3 AMD760G socket AM3+?

A. AMD FX 8300 3300MHz AM3+ Oem
B. AMD APU A4 6320 3800MHz FM2
C. AMD APU A8 7650K 3300MHz FM2+ BOX
D. AMD A8-7600 S.FM2 BOX
Poprawna odpowiedź to AMD FX 8300 3300MHz AM3+ Oem, ponieważ jest to procesor kompatybilny z gniazdem AM3+, które znajduje się na płycie głównej Asus M5A78L-M/USB3. Gniazdo AM3+ obsługuje szereg procesorów z rodziny AMD FX, które oferują wyższą wydajność w porównaniu do procesorów z gniazda FM2. Wybór FX 8300 pozwala na lepsze zarządzanie wieloma wątkami dzięki architekturze, która obsługuje do ośmiu rdzeni, co jest szczególnie cenne w zastosowaniach wymagających dużej mocy obliczeniowej, takich jak gry czy edycja wideo. Dodatkowo, procesor ten wspiera technologię Turbo Core, co umożliwia dynamiczne zwiększenie częstotliwości taktowania, co przekłada się na lepszą wydajność w zastosowaniach jednowątkowych. W praktyce oznacza to, że użytkownicy mogą oczekiwać płynniejszej pracy systemu oraz lepszej odpowiedzi w zadaniach, które są intensywne obliczeniowo. Zastosowanie procesora zgodnego z gniazdem AM3+ jest zgodne z najlepszymi praktykami budowy komputera, gdzie kluczowym aspektem jest dobór komponentów zapewniających ich współpracę.

Pytanie 7

Jakim protokołem posługujemy się do przesyłania dokumentów hipertekstowych?

A. HTTP
B. SMTP
C. POP3
D. FTP
FTP, czyli File Transfer Protocol, jest protokołem używanym głównie do przesyłania plików pomiędzy komputerami w sieci. Choć można przesyłać dokumenty hipertekstowe za jego pomocą, nie jest to jego główne przeznaczenie. POP3 (Post Office Protocol) i SMTP (Simple Mail Transfer Protocol) to protokoły związane z wymianą wiadomości e-mail. POP3 służy do pobierania wiadomości z serwera poczty, natomiast SMTP jest wykorzystywany do ich wysyłania. Użytkownicy mogą pomylić te protokoły z HTTP, myśląc, że wszystkie są odpowiedzialne za przesyłanie danych w sieci. Kluczowym błędem w tym rozumowaniu jest mylenie pojęć związanych z różnymi rodzajami przesyłania informacji. HTTP jest ściśle związany z przeglądaniem stron internetowych i obsługą dokumentów hipertekstowych, natomiast inne protokoły służą do zupełnie innych celów. Ponadto, HTTP jako protokół aplikacyjny działa na wyższym poziomie abstrakcji w porównaniu do FTP, POP3 i SMTP, które są bardziej skoncentrowane na transferze danych i wiadomości. Zrozumienie różnicy między tymi protokołami jest kluczowe dla prawidłowego korzystania z zasobów sieciowych oraz efektywnego zarządzania wysyłaniem i odbieraniem informacji w różnych kontekstach.

Pytanie 8

Na stabilność wyświetlanego obrazu w monitorach CRT istotny wpływ ma

A. Odwzorowanie barw
B. Czas reakcji
C. Częstotliwość odświeżania
D. Wieloczęstotliwość
Częstotliwość odświeżania to bardzo ważny parametr, jeśli chodzi o stabilność obrazu w monitorach CRT. To właściwie mówi nam, jak często ekran jest odświeżany w ciągu sekundy. Im wyższa ta liczba, tym mniejsze ryzyko migotania, co może męczyć nasze oczy. Z mojego doświadczenia, warto zwrócić uwagę na to, że standardowe częstotliwości to zazwyczaj między 60 a 120 Hz, a niektóre monitory potrafią wyciągnąć nawet 180 Hz! Jeśli planujesz grać w gry albo pracować z grafiką przez dłuższy czas, lepiej wybrać monitor z wyższą częstotliwością. Fajnie jest też dostosować częstotliwość do tego, co właściwie robisz na komputerze, bo wtedy obraz będzie wyglądał lepiej, a oczy mniej się zmęczą. No i pamiętaj, niektóre karty graficzne mogą działać z różnymi częstotliwościami w zależności od rozdzielczości, więc przy konfiguracji monitora warto to mieć na uwadze.

Pytanie 9

Aby zwiększyć lub zmniejszyć wielkość ikony na pulpicie, należy obracać kółkiem myszy, trzymając jednocześnie klawisz:

A. SHIFT
B. TAB
C. ALT
D. CTRL
Odpowiedź 'CTRL' jest poprawna, ponieważ przytrzymanie klawisza Ctrl podczas kręcenia kółkiem myszy pozwala na powiększanie lub zmniejszanie ikon na pulpicie w systemie Windows. Ta funkcjonalność jest zgodna z ogólną zasadą, że kombinacja klawisza Ctrl z innymi czynnościami umożliwia manipulację rozmiarem obiektów. Na przykład, wiele aplikacji graficznych czy edytorów tekstowych również wspiera taką interakcję, umożliwiając użytkownikowi precyzyjne dostosowywanie widoku. Dobrą praktyką jest znajomość tej kombinacji klawiszy, szczególnie dla osób pracujących w środowisku biurowym lub dla tych, którzy często korzystają z komputerów. Dodatkowo, kombinacja ta jest używana również w innych kontekstach, takich jak zmiana powiększenia w przeglądarkach internetowych, co czyni ją niezwykle uniwersalną. Warto również zauważyć, że w systemie macOS zamiast klawisza Ctrl często używa się klawisza Command, co podkreśla różnice między systemami operacyjnymi, ale zasada działania pozostaje podobna.

Pytanie 10

Pierwszym krokiem, który należy podjąć, aby chronić ruter przed nieautoryzowanym dostępem do jego panelu administracyjnego, jest

A. włączenie szyfrowania przy użyciu klucza WEP
B. zmiana loginu i hasła dla wbudowanego konta administratora
C. aktywacja filtrowania adresów MAC
D. zmiana domyślnej nazwy sieci (SSID) na unikalną
Dobra robota z tym pytaniem! Zmiana loginu i hasła dla konta administratora w ruterze to naprawdę ważny krok, żeby nie dać się złapać przez nieproszonych gości. Wiele ruterów przychodzi z domyślnymi hasłami, które wszyscy znają – to jak zostawić klucz pod wycieraczką, serio. Jak zmienisz te dane na coś trudniejszego, utrudniasz życie potencjalnym intruzom. Przykładowe hasło, takie jak `S3cur3P@ssw0rd!`, jest dużo lepsze niż coś prostego jak `admin` czy `123456`. A pamiętaj, żeby od czasu do czasu zmieniać te dane, żeby nie dać nikomu szans. To jest absolutnie kluczowe, żeby twoja sieć była bezpieczna. Wiesz, to nie tylko coś, co się zaleca, ale praktyka, która naprawdę się sprawdza.

Pytanie 11

Przedstawiony listing zawiera polecenia umożliwiające:

Switch>enable
Switch#configure terminal
Switch(config)#interface range fastEthernet 0/1-10
Switch(config-if-range)#switchport access vlan 10
Switch(config-if-range)#exit
A. wyłączenie portów 0 i 1 przełącznika z sieci VLAN
B. zmianę parametrów prędkości dla portu 0/1 na FastEthernet
C. utworzenie wirtualnej sieci lokalnej o nazwie VLAN 10 w przełączniku
D. przypisanie nazwy FastEthernet dla pierwszych dziesięciu portów przełącznika
Analizując listę odpowiedzi, łatwo zauważyć, że każda z niepoprawnych opcji opiera się na pewnych typowych nieporozumieniach związanych z konfiguracją przełączników sieciowych. Jednym z najczęstszych błędów jest utożsamianie komendy 'switchport access vlan 10' z fizycznym wyłączaniem portów lub zmianą ich parametrów transmisji, takich jak prędkość czy tryb pracy. W rzeczywistości to polecenie jedynie przypisuje port do określonego VLAN-u, czyli logicznej domeny rozgłoszeniowej. Przełącznik nie wyłącza portu w taki sposób, jak mogłoby sugerować – do tego służy komenda 'shutdown' na odpowiednim interfejsie. Bardzo często początkujący administratorzy mylą też przypisywanie portów do VLAN-u z tworzeniem samego VLAN-u – tutaj samo przypisanie portu nie powoduje utworzenia VLAN-u, jeśli ten nie został wcześniej zadeklarowany poleceniem 'vlan 10' w trybie konfiguracji globalnej. Mylenie nazwy interfejsu z przypisaniem jej do portu to kolejny, całkiem popularny błąd – przełączniki nie pozwalają na dowolne „nadawanie nazw” portom poprzez interface range, a 'FastEthernet' to po prostu określenie typu portu, nie jego nazwa. W praktyce błędne rozumienie tych komend prowadzi do chaosu w zarządzaniu siecią i nieuporządkowanej konfiguracji, co potem trudno odkręcić. Z mojego doświadczenia wynika, że warto na spokojnie przeanalizować dokumentację do IOS-a Cisco czy innych przełączników, żeby nie wprowadzać niepotrzebnego zamieszania. Najlepszym sposobem uniknięcia takich pomyłek jest testowanie komend w środowisku laboratoryjnym lub na symulatorach typu Packet Tracer, zanim wdroży się je w produkcyjnej sieci. Takie podejście przekłada się na większe bezpieczeństwo i pewność działania całej infrastruktury.

Pytanie 12

Programy CommView oraz WireShark są wykorzystywane do

A. oceny zasięgu sieci bezprzewodowych
B. badania pakietów przesyłanych w sieci
C. ochrony przesyłania danych w sieciach
D. mierzenia poziomu tłumienia w torze transmisyjnym
Wybór odpowiedzi dotyczących zabezpieczania transmisji danych w sieci wskazuje na pewne nieporozumienia w zakresie funkcji programów takich jak CommView i WireShark. Choć bezpieczeństwo sieci jest ważnym aspektem ich zastosowania, nie są to narzędzia zaprojektowane bezpośrednio do zabezpieczania transmisji. Zamiast tego, ich głównym zadaniem jest analiza ruchu sieciowego. W kontekście sprawdzania zasięgu sieci bezprzewodowej, odpowiedzi te mogą wprowadzać w błąd, ponieważ CommView i WireShark nie są dedykowane do tego celu. Zasięg sieci bezprzewodowej można ocenić przy użyciu specjalistycznych narzędzi, które mierzą siłę sygnału w różnych lokalizacjach, natomiast oba te programy koncentrują się na pakietach danych, które już przeszły przez sieć. Określanie wielkości tłumienia w torze transmisyjnym również nie jest funkcją ani jednym z zastosowań tych narzędzi, które pozostają na poziomie analizy pakietów. Tłumienie w torze transmisyjnym to zagadnienie związane z fizyką sygnału i wymaga innych metod pomiarowych. Właściwe zrozumienie funkcji analizujących ruch sieciowy jest kluczowe dla prawidłowego wykorzystania tych narzędzi oraz efektywnego zarządzania sieciami komputerowymi.

Pytanie 13

Toner stanowi materiał eksploatacyjny w drukarce

A. atramentowej
B. igłowej
C. sublimacyjnej
D. laserowej
Toner to taki proszek, którego używają drukarki laserowe. Działa to trochę inaczej niż w atramentówkach, gdzie mamy tusz w płynnej formie. W laserówkach toner jest przyciągany przez naładowany bęben i dzięki temu powstaje obraz na papierze. To wszystko dzieje się szybko i sprawnie, dlatego laserówki są super, jeśli trzeba wydrukować dużo stron. Żeby wszystko działało dobrze, warto czyścić drukarkę regularnie i korzystać z oryginalnych tonerów. Dzięki temu uzyskasz lepszą jakość druku i twój sprzęt posłuży dłużej. Pamiętaj też, że różne drukarki mogą potrzebować różnych rodzajów tonera, więc lepiej to sprawdzić, żeby nie było problemów z jakością druku.

Pytanie 14

Dwie stacje robocze w tej samej sieci nie mają możliwości komunikacji. Która z poniższych okoliczności może być przyczyną tego problemu?

A. Identyczne nazwy użytkowników
B. Różne bramy domyślne dla stacji roboczych
C. Inne systemy operacyjne stacji roboczych
D. Identyczne adresy IP stacji roboczych
Odpowiedź dotycząca takich samych adresów IP stacji roboczych jest poprawna, ponieważ w sieciach komputerowych każdy węzeł musi mieć unikalny adres IP, aby umożliwić poprawną komunikację. Gdy dwa urządzenia mają ten sam adres IP, wówczas występuje konflikt adresów, co prowadzi do problemów z routingiem i przesyłaniem danych. Przykładem może być sytuacja, w której dwa komputery w tej samej podsieci – na przykład 192.168.1.10 – próbują jednocześnie wysłać dane do routera. Router nie będzie w stanie zidentyfikować, które urządzenie jest źródłem danych, co skutkuje niemożnością nawiązania komunikacji. Zgodnie z zasadami TCP/IP, każdy interfejs sieciowy musi mieć unikalny adres, co jest kluczowe dla funkcjonowania sieci lokalnych i internetu. W praktyce, aby uniknąć takich konfliktów, powinno się stosować protokoły DHCP, które automatycznie przydzielają unikalne adresy IP urządzeniom w sieci, minimalizując tym samym ryzyko błędów związanych z powielającymi się adresami.

Pytanie 15

Jaka jest nominalna moc wyjściowa (ciągła) zasilacza o parametrach zapisanych w tabeli?

Napięcie wyjściowe+5 V+3.3 V+12 V1+12 V2-12 V+5 VSB
Prąd wyjściowy18,0 A22,0 A18,0 A17,0 A0,3 A2,5 A
Moc wyjściowa120 W336W3,6 W12,5 W
A. 336,0 W
B. 456,0 W
C. 472,1 W
D. 576,0 W
Analizując odpowiedzi, można zauważyć, że błędne oszacowania wynikają najczęściej z nieuwzględnienia ograniczeń wynikających z konstrukcji zasilacza i dokumentacji technicznej. Najbardziej typowym błędem jest mechaniczne mnożenie napięć przez prądy dla każdej linii i sumowanie tych wartości bez sprawdzania, jakie limity nakłada producent. Takie podejście sprawdza się teoretycznie, ale w praktyce linie 3,3 V oraz 5 V mają najczęściej wspólną maksymalną moc sumaryczną – np. tutaj producent jasno podał 120 W jako maksimum dla tych dwóch napięć razem, a nie oddzielnie. Pominięcie tego ograniczenia prowadzi do przeszacowań – stąd odpowiedzi typu 456 W czy nawet 576 W, które mocno odbiegają od realnych możliwości zasilacza. Czasem ktoś pomija linie pomocnicze lub odwrotnie – sumuje wszystkie wartości z tabeli, także niepotrzebne lub błędnie odczytane, przez co wychodzi np. 336 W (tyle daje jedna linia). Moim zdaniem to pokazuje, jak ważna jest umiejętność czytania dokumentacji i znajomość standardów branżowych, szczególnie norm ATX, gdzie takie ograniczenia są standardem. W praktyce inżynierskiej to kluczowa sprawa – w projektach komputerowych czy automatyki przemysłowej nie można polegać na czystej matematyce bez znajomości realiów sprzętowych. Warto też zapamiętać, że producenci czasami podają zawyżone wartości pojedynczych linii, ale w sumie moc wyjściowa zasilacza jest niższa, bo ograniczają ją układy zabezpieczeń (OCP, OPP) i konstrukcja fizyczna. To ochrona przed przegrzaniem, przeciążeniem i awariami. Ostatecznie, zawsze należy korzystać z tabeli podanej przez producenta i sumować tylko te wartości, które odpowiadają realnym ograniczeniom – w tym przykładzie suma podanych mocy wyjściowych daje 472,1 W, co jest poprawną wartością nominalnej mocy ciągłej zasilacza. Takie podejście pozwala uniknąć awarii i niepotrzebnego ryzyka, a to bardzo praktyczna lekcja na przyszłość.

Pytanie 16

Z jakim protokołem związane są terminy "Sequence number" oraz "Acknowledgment number"?

 Sequence number: 117752 (relative sequence number)
Acknowledgment number: 33678 (relative ack number)
Header Length: 20 bytes
Flags: 0x010 (ACK)
Window size value: 258
A. HTTP (Hypertext Transfer Protocol)
B. TCP (Transmission Control Protocol)
C. UDP (User Datagram Protocol)
D. IP (Internet Protocol)
Protokół TCP czyli Transmission Control Protocol jest kluczowy dla niezawodnej transmisji danych w sieciach komputerowych Ponieważ TCP zapewnia kontrolę przepływu i potwierdzanie danych Sequence number i Acknowledgment number są fundamentalnymi koncepcjami w TCP Sequence number określa kolejność bajtów które są przesyłane co pozwala odbiorcy na zrekomponowanie danych w ich pierwotnej kolejności Jest to niezbędne dla aplikacji które wymagają porządku w danych Acknowledgment number z kolei jest używany do potwierdzania odbioru danych przez odbiorcę co pozwala na wykrywanie utraty pakietów i retransmisję TCP jest protokołem połączeniowym co oznacza że przed rozpoczęciem transmisji danych nawiązywane jest połączenie między nadawcą a odbiorcą Zabezpiecza to integralność danych i pozwala na kontrolę nad przepływem danych co jest niezwykle ważne w środowiskach sieciowych gdzie mogą wystąpić zakłócenia lub utrata pakietów W praktyce TCP jest szeroko stosowany w aplikacjach wymagających wysokiej niezawodności takich jak przeglądarki internetowe klienty poczty elektronicznej i komunikatory internetowe Protokół TCP stosuje różne techniki optymalizacji takie jak kontrola przeciążeń co przyczynia się do jego powszechnego zastosowania w branży

Pytanie 17

Optyczna rozdzielczość to jeden z atrybutów

A. drukarki
B. modemu
C. monitora
D. skanera
Rozdzielczość optyczna to kluczowy parametr skanera, który definiuje, jak dokładnie urządzenie potrafi uchwycić szczegóły obrazu. Mierzy się ją w punktach na cal (dpi - dots per inch) i określa liczbę punktów, które skaner może zarejestrować w jednym calu. Wyższa rozdzielczość oznacza większą liczbę zarejestrowanych pikseli, co przekłada się na lepszą jakość zeskanowanego obrazu. Przykładowo, skanery o rozdzielczości 300 dpi są wystarczające do zeskanowania dokumentów tekstowych, podczas gdy skanery o rozdzielczości 1200 dpi lub wyższej są używane do archiwizacji zdjęć oraz skanowania materiałów, gdzie szczegóły są kluczowe, takich jak obrazy artystyczne. W kontekście standardów branżowych, organizacje takie jak ISO (Międzynarodowa Organizacja Normalizacyjna) zalecają określone rozdzielczości do różnych zastosowań, co stanowi dobą praktykę w dziedzinie skanowania dokumentów oraz archiwizacji.

Pytanie 18

Wynikiem działania (10101101)(2) − (10100)(2) jest

A. 10010101<sub>(2)</sub>
B. 10011011<sub>(2)</sub>
C. 10011001<sub>(2)</sub>
D. 10010111<sub>(2)</sub>
Odejmowanie liczb w systemie binarnym dla wielu osób wydaje się prostą czynnością, jednak nietrudno tu o błąd wynikający z mylnego przepisania pozycji bitów lub przeoczenia przeniesień podczas odejmowania. Z mojego doświadczenia, najczęściej osoby popełniają tutaj dwa rodzaje błędów. Pierwszy – niewłaściwe ustawienie wartości binarnych pod sobą, przez co przeniesienia są źle interpretowane, szczególnie przy odejmowaniu dłuższych ciągów binarnych. Drugi – zamiana kolejności odejmowanych liczb albo nieuważne przepisywanie wyniku bez sprawdzenia, czy przypadkiem nie zabrakło bitu na początku lub na końcu. Wielu uczniów intuicyjnie zamienia system dwójkowy na dziesiętny i odwrotnie, ale niestety czasem pomijają krok sprawdzenia, czy zamiana została poprawnie wykonana. Częstym problemem jest także źle rozumiane wyzerowanie bitów przy odejmowaniu, przez co wynik może być przesunięty o jedną pozycję w lewo lub prawo. W praktyce przemysłowej takie błędy prowadzą do poważnych konsekwencji – zła liczba w rejestrze sterującym czy w module arytmetycznym może skutkować awarią urządzenia lub niewłaściwą pracą programu. Standardem w inżynierii jest ręczne sprawdzanie działania na kilku różnych krokach, zanim zostanie ono zaimplementowane np. w mikrokontrolerze. Warto zapamiętać, że poprawne odejmowanie binarne wymaga skrupulatności i systematycznego podejścia – każda pomyłka na jednym bicie przekłada się na całkiem inny wynik końcowy. Stąd, nawet jeśli wynik wygląda poprawnie na pierwszy rzut oka, zawsze warto prześledzić całość krok po kroku, zwłaszcza przy większych liczbach. Praktyka pokazuje, że najczęściej spotykane pomyłki to błędne przeniesienie bitów i zamiana kolejności liczb, co prowadzi do błędnych odpowiedzi jak te w powyższym pytaniu.

Pytanie 19

Jaki typ pamięci powinien być umieszczony na płycie głównej komputera w miejscu, które wskazuje strzałka?

Ilustracja do pytania
A. FLASH
B. SIMM
C. SD-RAM DDR3
D. SO-DIMM DDR2
SD-RAM DDR3 jest typem pamięci używanym w nowoczesnych komputerach osobistych i serwerach. Charakterystyczną cechą pamięci DDR3 jest szybsza prędkość przesyłania danych w porównaniu do jej poprzednich wersji, jak DDR2. DDR3 oferuje większe przepustowości i mniejsze zużycie energii, co czyni ją bardziej efektywną energetycznie. Pamięci DDR3 zazwyczaj pracują przy napięciu 1,5V, co jest niższe od DDR2, które pracuje przy 1,8V, co przekłada się na mniejsze zużycie energii i mniejsze wydzielanie ciepła. Dzięki temu, DDR3 jest idealnym wyborem do systemów, które wymagają wysokiej wydajności oraz stabilności. W praktyce, DDR3 jest stosowane w komputerach przeznaczonych do zadań takich jak przetwarzanie grafiki, gry komputerowe, czy też przy obróbce multimediów. Standardy takie jak JEDEC określają parametry techniczne i zgodność modułów DDR3, zapewniając, że każdy moduł spełnia określone wymagania jakości i wydajności. Wybór DDR3 dla miejsca wskazanego strzałką na płycie głównej jest właściwy, ponieważ sloty te są zaprojektowane specjalnie dla tego typu pamięci, zapewniając ich prawidłowe działanie i optymalną wydajność.

Pytanie 20

NOWY, GOTOWY, OCZEKUJĄCY oraz AKTYWNY to

A. stany programu.
B. cechy wykwalifikowanego pracownika.
C. stany procesu.
D. etapy życia projektowanej aplikacji.
Terminy NOWY, GOTOWY, OCZEKUJĄCY i AKTYWNY dotyczą tego, co dzieje się z procesami w systemach operacyjnych. Każdy z tych stanów to jakby etap w życiu procesu. Zaczynają się od NOWEGO, czyli momentu, gdy proces powstaje, potem mamy GOTOWY, kiedy już wszystko jest gotowe do działania, OCZEKUJĄCY, gdy czekają na to, co potrzebne, i na koniec AKTYWNY, kiedy proces właśnie wykonuje swoje zadania. W praktyce umiejętne zarządzanie tymi stanami jest super ważne, bo dzięki temu system operacyjny może lepiej wykorzystywać dostępne zasoby. Na przykład w systemie Unix mamy scheduler, który decyduje, który proces ma pracować w danej chwili. Jak dobrze rozumiemy te stany, to jako programiści czy administratorzy możemy lepiej optymalizować aplikacje i poprawiać ich wydajność. To zgodne z najlepszymi praktykami, na przykład w modelowaniu procesów czy analizie wydajności.

Pytanie 21

Aby utworzyć ukryty, udostępniony folder w systemie Windows Serwer, należy dodać na końcu jego nazwy odpowiedni znak

A. %
B. @
C. $
D. &
Wybór symbolu '@' jako końca nazwy katalogu wynika z nieporozumienia dotyczącego funkcji tego znaku w systemie Windows. W rzeczywistości '@' nie ma żadnego wpływu na widoczność folderów ani ich udostępnienie w sieci. W kontekście programowania i administracji systemami, '@' jest często używane w różnych sytuacjach, na przykład przy definiowaniu adresów e-mail, ale jego zastosowanie w kontekście nazwy katalogów w systemie Windows jest błędne. Z kolei użycie '%' w nazwie folderu jest również nieprawidłowe, gdyż znak ten jest używany jako symbol zmiennych środowiskowych w systemie Windows, co może prowadzić do nieoczekiwanych rezultatów podczas próby dostępu do tak nazwanych folderów. Dodatkowo, '&' jako znak końcowy dla folderu nie ma praktycznego zastosowania w kontekście ukrywania czy udostępniania zasobów; w systemach Unix-like może on mieć inne znaczenia, ale w Windows jego zastosowanie w nazwach katalogów jest mylące. Wybierając niewłaściwe symbole, użytkownicy mogą nieświadomie stwarzać problemy z dostępem do danych lub ich bezpieczeństwem. Kluczowe jest zrozumienie specyfiki znaków stosowanych w systemie operacyjnym, aby efektywnie zarządzać zasobami oraz zapewnić ich odpowiednie zabezpieczenie.

Pytanie 22

Standard IEEE 802.11 określa typy sieci

A. światłowodowe LAN
B. bezprzewodowe LAN
C. Gigabit Ethernet
D. Fast Ethernet
Standard IEEE 802.11 to temat, który dotyczy technologii bezprzewodowych. W skrócie, chodzi o zasady i normy, które pozwalają na komunikację w sieciach lokalnych bez używania kabli. Praktycznie rzecz biorąc, dzięki tym standardom możemy tworzyć sieci, które łączą różne urządzenia, jak komputery, telefony czy drukarki, używając fal radiowych. Spotykamy to na co dzień – w Wi-Fi w domach, biurach czy w kawiarniach i na lotniskach. Standard ten oferuje różne prędkości przesyłu danych i zasięg, co sprawia, że można go dopasować do potrzeb użytkowników. Ważne jest też, jak skonfigurować routery i punkty dostępowe, bo to zapewnia dostęp do internetu i mobilność. Dobrze zaprojektowane sieci bezprzewodowe, które trzymają się tego standardu, naprawdę poprawiają efektywność komunikacji w różnych miejscach, więc są niezbędne w naszym nowoczesnym świecie informacyjnym.

Pytanie 23

Na diagramie przedstawione są symbole

Ilustracja do pytania
A. 8 przełączników i 3 ruterów
B. 4 przełączników i 8 ruterów
C. 3 przełączników i 4 ruterów
D. 4 przełączników i 3 ruterów
Odpowiedź 4 przełączników i 3 ruterów jest poprawna ponieważ schemat przedstawia typową topologię sieci komputerowej gdzie przełączniki łączą urządzenia w lokalnej sieci LAN a rutery kierują ruch między różnymi sieciami. Na schemacie można zidentyfikować cztery urządzenia pełniące funkcję przełączników które są zazwyczaj przedstawiane jako prostokąty i trzy urządzenia pełniące funkcję ruterów które są pokazane jako okrągłe. Rutery umożliwiają komunikację między różnymi segmentami sieci wykorzystując routowanie czyli proces który wybiera najefektywniejszą ścieżkę dla przesyłanych danych. Przełączniki natomiast działają w obrębie jednej sieci LAN zarządzając łącznością pomiędzy urządzeniami takimi jak komputery czy serwery. Dobre praktyki branżowe zalecają aby w dobrze zaprojektowanych sieciach lokalnych używać przełączników warstwy drugiej OSI do połączeń wewnętrznych a rutery wykorzystywać do komunikacji z innymi sieciami co poprawia wydajność i bezpieczeństwo. Taki podział ról i funkcji w sieci jest kluczowy dla jej stabilności i efektywności działania.

Pytanie 24

Program, który nie jest przeznaczony do analizy stanu komputera to

A. CPU-Z
B. HD Tune
C. Everest
D. Cryptic Disk
Cryptic Disk to oprogramowanie, które służy głównie do tworzenia i zarządzania wirtualnymi dyskami oraz szyfrowania danych, a nie do diagnostyki sprzętu komputerowego. Jego podstawowym zastosowaniem jest zapewnienie bezpieczeństwa danych poprzez szyfrowanie wirtualnych dysków, co umożliwia ochronę poufnych informacji przed nieautoryzowanym dostępem. W praktyce, Cryptic Disk może być wykorzystywane w organizacjach, gdzie ochrona danych jest kluczowa, np. w instytucjach finansowych czy w firmach przetwarzających dane osobowe. W przeciwieństwie do programów takich jak CPU-Z, Everest czy HD Tune, które są zaprojektowane do monitorowania i analizowania stanu sprzętu komputerowego, Cryptic Disk skupia się na ochronie danych. Zrozumienie różnic między tymi programami jest istotne dla każdego, kto chce skutecznie zarządzać bezpieczeństwem informacji i zasobami IT w swojej organizacji. Wybierając odpowiednie narzędzia do diagnostyki i ochrony, należy kierować się konkretnymi potrzebami operacyjnymi oraz standardami branżowymi, takimi jak ISO/IEC 27001, które podkreślają znaczenie ochrony informacji.

Pytanie 25

Jaki adres IPv6 jest poprawny?

A. 1234:9ABC::123:DEF4
B. 1234-9ABC-123-DEF4
C. 1234.9ABC.123.DEF4
D. 1234:9ABC::123::DEF4
Odpowiedź '1234:9ABC::123:DEF4' jest prawidłowym adresem IPv6, ponieważ spełnia wszystkie wymagania formalne tego standardu. Adres IPv6 składa się z ośmiu grup, z których każda zawiera cztery znaki szesnastkowe, oddzielone dwukropkami. W przypadku użycia podwójnego dwukropka (::), co oznacza zredukowaną sekwencję zer, może on występować tylko raz w adresie, co zostało poprawnie zastosowane w tej odpowiedzi. W tym przypadku podwójny dwukropek zastępuje jedną grupę zer, co jest zgodne z definicją adresacji IPv6. Przykładowe zastosowanie poprawnego adresu IPv6 może obejmować konfigurację sieci lokalnej, gdzie każdy element infrastruktury, taki jak routery czy serwery, będzie miał unikalny adres IPv6. Stosowanie takiej adresacji jest kluczowe w kontekście wyczerpywania się adresów IPv4 oraz rosnących potrzeb na większą przestrzeń adresową w Internecie.

Pytanie 26

Komputer dysponuje adresem IP 192.168.0.1, a jego maska podsieci wynosi 255.255.255.0. Który adres stanowi adres rozgłoszeniowy dla podsieci, do której ten komputer przynależy?

A. 192.168.0.255
B. 192.168.0.63
C. 192.168.0.31
D. 192.168.0.127
Adresy 192.168.0.31, 192.168.0.63 i 192.168.0.127 to przykłady błędnych odpowiedzi na temat adresu rozgłoszeniowego dla podsieci 192.168.0.0 z maską 255.255.255.0. Kluczowe jest to, że adres rozgłoszeniowy ma zawsze najwyższą wartość w danej podsieci. Z tą maską, dostępne adresy IP w podsieci 192.168.0.0 są od 192.168.0.1 do 192.168.0.254, więc 192.168.0.255 jest jedynym poprawnym adresem rozgłoszeniowym. Błędne odpowiedzi często wynikają z błędnego określenia zakresu adresów IP lub mylnego przekonania, że adresy rozgłoszeniowe mogą być mniejsze od najwyższego. Ważne jest też, że w każdej podsieci jeden adres jest zarezerwowany dla identyfikacji sieci (czyli 192.168.0.0), a inny do rozgłaszania. Dlatego, jak się projektuje sieci, trzeba na to uważać, bo ma to wpływ na działanie protokołów sieciowych oraz komunikację między urządzeniami.

Pytanie 27

Jak nazywa się seria procesorów produkowanych przez firmę Intel, charakteryzująca się małymi wymiarami oraz niskim zużyciem energii, zaprojektowana z myślą o urządzeniach mobilnych?

A. Alpha
B. Athlon
C. Radeon
D. Atom
Wybór niewłaściwej odpowiedzi może wynikać z mylenia różnych producentów i rodzajów procesorów. Athlon to linia procesorów stworzona przez firmę AMD, a nie Intel. Procesory te są często stosowane w komputerach stacjonarnych i laptopach, które wymagają większej mocy obliczeniowej, a więc nie odpowiadają na potrzeby rozwiązań mobilnych, w których kluczowe są niskie zużycie energii i kompaktowe wymiary. Radeon to rodzina kart graficznych również produkowana przez AMD, co podkreśla, że nie ma związku z procesorami mobilnymi Intela. Alpha to natomiast architektura procesorów opracowana przez firmę Digital Equipment Corporation (DEC), która była używana głównie w serwerach i stacjach roboczych, a nie w małych, mobilnych urządzeniach. Te błędne odpowiedzi mogą sugerować, że użytkownik nie do końca zrozumiał klasyfikację oraz różnice między różnymi rodzajami procesorów na rynku, co może prowadzić do nieporozumień podczas wyboru sprzętu odpowiedniego do określonych zastosowań. Kluczem do skutecznego doboru sprzętu jest zrozumienie specyfiki i przeznaczenia różnych linii procesorów, co z pewnością wpłynie na efektywność ich zastosowania w danym kontekście.

Pytanie 28

W systemie Linux narzędzie iptables jest wykorzystywane do

A. ustawiania zapory sieciowej
B. konfigurowania karty sieciowej
C. konfigurowania zdalnego dostępu do serwera
D. zarządzania serwerem pocztowym
Iptables to narzędzie w systemie Linux, które służy do konfiguracji zapory sieciowej, co jest kluczowym elementem zabezpieczeń sieciowych. Dzięki iptables administratorzy mogą kontrolować ruch sieciowy na podstawie reguł, które definiują, jakie pakiety powinny być akceptowane, a które odrzucane. Przykładowo, można zablokować ruch z określonego adresu IP, co jest szczególnie przydatne w przypadku prób ataku z zewnątrz. W praktyce, iptables może być używany do tworzenia złożonych reguł, które pozwalają na filtrowanie ruchu w zależności od protokołu (np. TCP, UDP), portu oraz adresu źródłowego i docelowego. Dobre praktyki branżowe zalecają regularne przeglądanie i aktualizowanie reguł zapory, aby dostosować je do zmieniających się potrzeb bezpieczeństwa. Ponadto, iptables jest często używany w połączeniu z innymi narzędziami bezpieczeństwa, takimi jak fail2ban, aby automatycznie reagować na podejrzane aktywności. Zrozumienie i umiejętność konfiguracji iptables jest istotna w każdej organizacji dbającej o bezpieczeństwo swojej infrastruktury IT.

Pytanie 29

Rozmiar plamki na monitorze LCD wynosi

A. odległości między początkiem jednego piksela a początkiem kolejnego
B. wielkości pojedynczego piksela wyświetlanego na ekranie
C. wielkości obszaru, na którym wyświetlane jest 1024 piksele
D. wielkości obszaru, na którym można pokazać jedną składową koloru RGB
Wybór odpowiedzi dotyczącej wielkości jednego piksela wyświetlanego na ekranie wprowadza w błąd, ponieważ plamka nie jest równoznaczna z pojedynczym pikselem. Plamka odnosi się do odległości między pikselami, a nie do ich pojedynczej wielkości. Pojęcie plamki jest istotne w kontekście rozdzielczości ekranu oraz możliwości wyświetlania szczegółowych obrazów. Z kolei odpowiedź sugerująca, że plamka to obszar, w którym wyświetla się 1024 piksele, jest niepoprawna, ponieważ liczba pikseli nie określa wielkości plamki. Obszar wyświetlania pikseli zależy od rozdzielczości oraz technologii wyświetlania, a nie od założonej liczby pikseli. Ostatnia odpowiedź, mówiąca o wielkości obszaru, na którym można wyświetlić jedną składową koloru RGB, również jest nieadekwatna, ponieważ plamka nie odnosi się bezpośrednio do składowych kolorów, ale do przestrzeni pikselowej na ekranie. Typowe błędy myślowe prowadzące do takich niepoprawnych wniosków obejmują mylenie jednostek i ich funkcji oraz niepełne zrozumienie fizycznych zasad działania ekranów LCD. Właściwe zrozumienie rozdzielczości i wielkości plamki jest kluczowe dla oceny jakości wyświetlanych obrazów, co jest istotne dla grafików, projektantów oraz inżynierów zajmujących się technologią wyświetlania.

Pytanie 30

Jakie polecenie jest używane do ustawienia konfiguracji interfejsu sieciowego w systemie Linux?

A. ifconfig
B. interfaces
C. ipconfig
D. networking
Odpowiedzi takie jak 'ipconfig', 'interfaces' oraz 'networking' nie są poprawne w kontekście konfiguracji interfejsu sieciowego w systemie Linux. 'ipconfig' to polecenie specyficzne dla systemów operacyjnych Windows i jest używane do wyświetlania i zarządzania ustawieniami IP. Użytkownicy Linuxa mogą się mylić, zakładając, że polecenia z Windowsa mają analogiczne odpowiedniki w Linuxie, co jest błędem. Z kolei 'interfaces' odnosi się do pliku konfiguracyjnego w systemie Debian i jego pochodnych, gdzie definiowane są ustawienia interfejsów sieciowych, ale samo słowo 'interfaces' nie jest poleceniem, które można wykonać w terminalu. Jest to raczej element większej konfiguracji, co może być mylące dla tych, którzy nie mają wystarczającej wiedzy o strukturyzacji systemu. 'networking' również nie jest odpowiednim poleceniem, a może być używane w kontekście ogólnym dla konfiguracji sieci, jednak w praktyce nie odpowiada na konkretne zapytanie dotyczące zarządzania interfejsami. Poprawne podejście do nauki o systemach Linux wymaga znajomości różnic między systemami oraz rozumienia kontekstu, w jakim dane polecenia są używane, co jest kluczowe dla skutecznego zarządzania siecią.

Pytanie 31

Aby komputery mogły udostępniać swoje zasoby w sieci, muszą mieć przypisane różne

A. grupy robocze.
B. maski podsieci.
C. adresy IP.
D. serwery DNS.
Adres IP (Internet Protocol Address) jest unikalnym identyfikatorem przypisywanym każdemu urządzeniu podłączonemu do sieci komputerowej. Aby komputery mogły komunikować się w Internecie, każdy z nich musi mieć przypisany unikalny adres IP. W przeciwnym razie, gdy dwa urządzenia mają ten sam adres IP, dochodzi do konfliktu adresów, co uniemożliwia prawidłowe przesyłanie danych. W praktyce, na przykład w sieciach domowych, router przypisuje adresy IP urządzeniom za pomocą DHCP (Dynamic Host Configuration Protocol), co zapewnia unikalność adresów. Dobre praktyki w zarządzaniu sieciami zalecają użycie rezerwacji DHCP dla urządzeń, które muszą mieć stały adres IP, co zapobiega konfliktom. Zrozumienie roli adresów IP jest kluczowe dla administrowania sieciami i zapewnienia ich prawidłowego działania, co jest istotne szczególnie w kontekście coraz bardziej złożonych systemów informatycznych i Internetu Rzeczy (IoT).

Pytanie 32

Jaka jest binarna reprezentacja adresu IP 192.168.1.12?

A. 11000001,10111000,00000011,00001110
B. 11000100,10101010,00000101,00001001
C. 11000000.10101000,00000001,00001100
D. 11000010,10101100,00000111,00001101
Błędne odpowiedzi są wynikiem niepoprawnej konwersji adresu IP z formatu dziesiętnego na binarny. Wiele osób myli się w procesie zamiany, co prowadzi do powstawania nieprawidłowych reprezentacji binarnych. Na przykład, w jednym z błędnych zapisów, 11000001.10111000.00000011.00001110, pierwsza część adresu '11000001' reprezentuje liczbę 193, a nie 192, co jest kluczowym błędem. Podobnie, octet '10111000' odpowiada 184, co również nie jest zgodne z danymi. W przypadku adresu IP 192.168.1.12, każdy z octetów powinien być dokładnie przeliczone zgodnie z potęgami liczby 2, co jest fundamentalnym zadaniem przy pracy z adresowaniem w sieciach. Zrozumienie, jak działają adresy IP w kontekście protokołów sieciowych, jest kluczowe, a pomyłki w konwersji mogą prowadzić do nieprawidłowej konfiguracji, co może wpłynąć na całą sieć. Wiele osób również nie rozumie, że każdy octet jest oddzielany kropkami, co jest istotne dla poprawnego odczytu adresu. Warto przy tym zwrócić uwagę na standardy, takie jak RFC 791, które określają sposób adresowania w protokole Internet Protocol Version 4 (IPv4). Takie błędy mogą wynikać z niezrozumienia podstaw systemu liczbowego lub pośpiechu w realizacji zadań, przez co warto zwracać uwagę na szczegóły, aby uniknąć problemów w praktycznych zastosowaniach.

Pytanie 33

Elementem, który umożliwia wymianę informacji pomiędzy procesorem a magistralą PCI-E, jest

A. pamięć RAM
B. cache procesora
C. chipset
D. układ Super I/O
Chipset jest kluczowym elementem płyty głównej, który zarządza komunikacją między procesorem a innymi komponentami, w tym magistralą PCI-E. Jego zadaniem jest koordynacja transferu danych, co jest niezbędne do efektywnego działania systemu komputerowego. Chipset działa jako swoisty punkt pośredni, umożliwiając synchronizację i optymalizację przepływu informacji między procesorem, pamięcią RAM, a urządzeniami peryferyjnymi podłączonymi do magistrali PCI-E, takimi jak karty graficzne czy dyski SSD. W praktyce oznacza to, że dobrze zaprojektowany chipset może znacznie poprawić wydajność systemu, umożliwiając szybki i niezawodny transfer danych. Na przykład, w systemach z intensywnym przetwarzaniem grafiki, odpowiedni chipset pozwala na efektywne wykorzystanie możliwości nowoczesnych kart graficznych, co jest kluczowe dla zadań takich jak renderowanie 3D czy obróbka wideo. W branży IT standardem stało się projektowanie chipsetów, które wspierają najnowsze technologie komunikacyjne, takie jak PCIe 4.0 czy 5.0, co pozwala na jeszcze wyższe prędkości transferu danych.

Pytanie 34

Element na karcie graficznej, który ma za zadanie przekształcenie cyfrowego sygnału wytwarzanego przez kartę na analogowy sygnał, zdolny do wyświetlenia na monitorze to

A. głowica FM
B. RAMBUS
C. multiplekser
D. RAMDAC
Odpowiedź RAMDAC (RAM Digital-to-Analog Converter) jest poprawna, ponieważ ten układ jest odpowiedzialny za konwersję cyfrowego sygnału graficznego generowanego przez kartę graficzną na analogowy sygnał wideo, który może być wyświetlany przez monitor. RAMDAC odgrywa kluczową rolę w procesie renderowania obrazu, umożliwiając wyświetlanie grafiki w wysokiej jakości na monitorach analogowych, takich jak CRT. Dzięki RAMDAC, informacje o kolorach i pikselach są przetwarzane i przekształcane w sygnały analogowe, co pozwala na prawidłowe wyświetlenie obrazu. W praktyce zastosowanie RAMDAC jest szczególnie istotne w starszych systemach komputerowych, gdzie monitory analogowe były standardem. Chociaż dzisiejsze technologie przechodzą na cyfrowe interfejsy, takich jak HDMI czy DisplayPort, zrozumienie funkcji RAMDAC jest ważne dla osób interesujących się historią rozwoju technologii graficznych oraz dla tych, którzy pracują z różnorodnymi rozwiązaniami wyświetlania obrazu. Warto również zauważyć, że zrozumienie procesów konwersji sygnału jest fundamentem dla wielu zastosowań w branży technologicznej, w tym w inżynierii oprogramowania oraz projektowaniu systemów wideo.

Pytanie 35

W interfejsie graficznym systemów Ubuntu lub SuSE Linux, aby zainstalować aktualizacje programów systemowych, można zastosować aplikacje

A. Synaptic lub YaST
B. Shutter lub J-Pilot
C. Pocket lub Dolphin
D. Chromium lub XyGrib
Wybór odpowiedzi związanych z Shutter, J-Pilot, Pocket, Dolphin, Chromium czy XyGrib świadczy o nieporozumieniu w zakresie funkcji poszczególnych aplikacji w kontekście zarządzania oprogramowaniem w systemie Linux. Shutter to aplikacja do zrzutów ekranu, która umożliwia tworzenie, edytowanie i udostępnianie zrzutów ekranowych, jednak nie ma nic wspólnego z aktualizacjami systemu. J-Pilot to narzędzie do synchronizacji danych z urządzeniami Palm, co ma niewielkie znaczenie dla aktualizacji oprogramowania systemowego. Pocket to aplikacja do zarządzania artykułami w trybie offline, a Dolphin to menedżer plików używany w środowisku KDE, który również nie zajmuje się aktualizowaniem systemu. Z kolei Chromium to przeglądarka internetowa, a XyGrib to oprogramowanie do analizy danych meteorologicznych, co w żadnym wypadku nie odnosi się do zarządzania pakietami w systemie Linux. Mylenie tych aplikacji z narzędziami do zarządzania oprogramowaniem może wynikać z braku zrozumienia ich podstawowych funkcji oraz przeznaczenia. W kontekście Linuxa, kluczowe jest, aby użytkownicy korzystali z odpowiednich narzędzi, jak Synaptic czy YaST, które są zaprojektowane specjalnie do instalacji i aktualizacji oprogramowania, co jest zgodne z najlepszymi praktykami w zakresie bezpieczeństwa i zarządzania systemem.

Pytanie 36

Jakie polecenie w systemie Windows należy użyć, aby ustalić liczbę ruterów pośrednich znajdujących się pomiędzy hostem źródłowym a celem?

A. arp
B. tracert
C. routeprint
D. ipconfig
Aby zrozumieć, dlaczego inne polecenia nie działają tak jak 'tracert', musisz przyjrzeć się, co one właściwie robią. Na przykład, komenda 'arp' pokazuje tablicę ARP, która mapuje adresy IP na adresy MAC. To jest przydatne w małych sieciach, ale nie powie ci nic o trasie pakietów w Internecie. Czasem ludzie mogą pomyśleć, że 'arp' śledzi trasę, ale to całkowicie błędne. Działa tylko w sieci lokalnej. Z kolei 'ipconfig' pokazuje, jakie masz ustawienia interfejsów sieciowych, takie jak adresy IP czy maski podsieci. To też jest przydatne, ale nie ukazuje trasy pakietów przez ruterów. Może to prowadzić do złych wniosków, że da ci wgląd w trasę. Na koniec, 'route print' pokazuje lokalną tabelę routingu, co pomaga zrozumieć, jakie trasy są dostępne, lecz również nie obrazuje rzeczywistej trasy do celu. Wiele osób myli te funkcje z funkcją śledzenia trasy, co jest błędem.

Pytanie 37

Narzędziem systemu Linux OpenSUSE dedykowanym między innymi do zarządzania systemem jest

A. Monitor systemu.
B. YaST.
C. System Log.
D. Menedżer zadań.
YaST to chyba jedno z najbardziej rozpoznawalnych i praktycznych narzędzi systemowych w OpenSUSE. To potężny interfejs (działa zarówno graficznie, jak i w trybie tekstowym), który pozwala zarządzać praktycznie wszystkimi istotnymi aspektami systemu operacyjnego. Możesz za jego pomocą konfigurować sieć, zarządzać użytkownikami, partycjami dysków, usługami systemowymi, aktualizacjami, firewallami, a nawet instalować czy usuwać oprogramowanie. Z mojego doświadczenia, YaST przydaje się szczególnie początkującym administratorom, bo pozwala na konfigurację bez żmudnego grzebania w plikach konfiguracyjnych i szukania komend. Co ciekawe, to narzędzie jest praktycznie standardem w dystrybucji OpenSUSE – bardzo rzadko spotykane w innych systemach Linux, więc warto je dobrze poznać, jeśli pracujesz właśnie na tej platformie. Przykład praktyczny: konfiguracja serwera WWW albo ustawienie automatycznych kopii zapasowych przez YaST to kwestia kilku kliknięć, podczas gdy w innych systemach wymagałoby to ręcznej edycji plików. Moim zdaniem narzędzie to świetnie wpisuje się w podejście "user-friendly", ale jednocześnie pozwala zachować pełną kontrolę techniczną nad systemem, co docenią też bardziej zaawansowani użytkownicy. YaST jest też zgodny ze standardami branżowymi dotyczącymi bezpieczeństwa i zarządzania systemem, bo wszystkie zmiany są realizowane z zachowaniem uprawnień administracyjnych i można je łatwo śledzić.

Pytanie 38

Aby prawidłowo uzupełnić składnię przedstawionego polecenia, które dzieli folder Dane pod nazwą test, w miejscu kropek należy wpisać słowo ```net ... test=C:\Dane```

A. link
B. display
C. apply
D. share
Słowo 'share' jest poprawną odpowiedzią w kontekście polecenia udostępniania folderów w systemie Windows. W systemach operacyjnych, aby udostępnić folder innym użytkownikom w sieci, należy użyć odpowiednich poleceń, które umożliwiają dzielenie się zasobami. Polecenie 'net share' jest standardowym sposobem na udostępnianie folderów, a jego składnia wymaga podania nazwy udostępnianego folderu oraz ścieżki do niego. Przykładowo, komenda 'net share test=C:\Dane' udostępnia folder 'Dane' pod nazwą 'test'. Użytkownicy w sieci mogą następnie uzyskać dostęp do tego folderu, co jest przydatne w wielu scenariuszach, takich jak współpraca w biurze czy dzielenie się plikami w grupie projektowej. Korzystanie z polecenia 'net share' jest zgodne z najlepszymi praktykami zarządzania zasobami w sieciach komputerowych, a jego znajomość jest niezbędna dla administratorów systemów operacyjnych.

Pytanie 39

Program antywirusowy oferowany przez Microsoft bezpłatnie dla posiadaczy legalnych wersji systemu operacyjnego Windows to

A. Microsoft Free Antywirus
B. Windows Antywirus
C. Windows Defender
D. Microsoft Security Essentials
Nie ma czegoś takiego jak Windows Antywirus od Microsoftu, więc wybór tej opcji nie jest dobry. Możliwe, że ludzie mylą to z innymi programami, które nie są ich własnością. Często zdarza się, że szukając zabezpieczeń, natykają się na nieoficjalne aplikacje, które mogą wydawać się ok, ale nie spełniają standardów branżowych. Teraz mamy Windows Defender, który jest już wbudowany w Windows 10 i 11, więc takie mylenie nazw może sprawiać problemy. Z kolei Microsoft Free Antywirus sugeruje, że jest jakaś inna darmowa wersja antywirusowa, co jest nieprawdą. To błędne wyobrażenie o dostępnych narzędziach może prowadzić do złych decyzji, a to może narażać na poważne problemy, jak infekcje. Lepiej korzystać z uznanych rozwiązań zabezpieczających, które są wspierane przez producentów systemów i przestrzegają aktualnych norm bezpieczeństwa, żeby mieć pewność, że nasze urządzenia są dobrze chronione.

Pytanie 40

Funkcja Intel Turbo Boost w mikroprocesorze umożliwia

A. automatyczne dostosowywanie częstotliwości działania mikroprocesora w zależności od obciążenia
B. wykonywanie skomplikowanych obliczeń przez dwa niezależne rdzenie, z których każdy może realizować do czterech pełnych instrukcji równocześnie
C. aktywizację oraz dezaktywizację komponentów mikroprocesora w celu oszczędzania energii
D. przeprowadzanie większej liczby instrukcji w jednym cyklu zegara
Funkcje mikroprocesorów są złożonymi mechanizmami, które wymagają precyzyjnego zrozumienia ich działania. Odpowiedzi, które sugerują, że Turbo Boost wiąże się z włączaniem i wyłączaniem elementów mikroprocesora w celu oszczędzania energii, są mylne. Choć oszczędzanie energii jest ważnym aspektem nowoczesnych mikroprocesorów, Turbo Boost nie polega na prostym włączaniu lub wyłączaniu rdzeni. Zamiast tego, technologia ta wpływa na regulację częstotliwości pracy istniejących rdzeni, co pozwala na elastyczne dopasowanie do obciążenia. Kiedy procesor nie potrzebuje pełnej mocy, nie oznacza to, że można go po prostu wyłączyć; zamiast tego, jego częstotliwość jest obniżana, co prowadzi do zmniejszenia zużycia energii. Inna odpowiedź wskazująca na wykonywanie rozległych obliczeń przez dwa niezależne rdzenie jest również błędna. Turbo Boost nie zwiększa liczby rdzeni, lecz optymalizuje wydajność już istniejących rdzeni poprzez zwiększenie ich częstotliwości. Ponadto, stwierdzenie, że pozwala na wykonywanie większej liczby instrukcji w jednym cyklu zegara, jest nieprecyzyjne. W rzeczywistości, Turbo Boost nie zmienia architektury procesora ani nie pozwala na równoległe przetwarzanie w sposób, który zwiększa liczbę wykonywanych instrukcji na cykl. Zrozumienie tych mechanizmów jest kluczowe dla efektywnego wykorzystania technologii mikroprocesorowej oraz prawidłowego podejścia do optymalizacji wydajności systemów komputerowych.