Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 7 grudnia 2025 10:34
  • Data zakończenia: 7 grudnia 2025 10:55

Egzamin niezdany

Wynik: 13/40 punktów (32,5%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Który typ źródła światła przedstawiono na rysunku?

Ilustracja do pytania
A. Wolframowe.
B. Rtęciowe.
C. Halogenowe.
D. Diodowe.
Wybór jednego z pozostałych typów źródła światła, takich jak wolframowe, rtęciowe czy halogenowe, jest wynikiem nieporozumienia dotyczącego charakterystyki i konstrukcji żarówek. Źródła wolframowe, na przykład, działają na zasadzie podgrzewania włókna wolframowego, co prowadzi do emisji światła, ale ich efektywność energetyczna jest znacznie niższa niż w przypadku diod LED. Oprócz tego, żarówki te mają krótszą żywotność, wynoszącą średnio tylko około 1 000 godzin. Odpowiedzi oparte na żarówkach rtęciowych również są mylne, ponieważ choć te źródła światła charakteryzują się wysoką sprawnością, ich użycie jest ograniczone ze względu na obecność szkodliwej rtęci, co stawia je w niekorzystnej pozycji w kontekście ochrony środowiska. Wreszcie, żarówki halogenowe, będące wariantem żarówek wolframowych, oferują lepszą wydajność, ale wciąż nie dorównują LED-om pod względem efektywności i trwałości. Często myślenie o tych tradycyjnych źródłach światła jako bardziej znajomych i sprawdzonych powoduje, że użytkownicy mogą nie dostrzegać korzyści płynących z nowoczesnych rozwiązań, jakimi są diody LED. Zrozumienie różnic między tymi technologiami jest kluczowe dla dokonania świadomego wyboru, który nie tylko wpłynie na oszczędności, ale także na jakość oświetlenia w codziennym życiu.

Pytanie 2

Na którą z wymienionych przyczyn, występującą w obwodzie odbiorczym instalacji elektrycznej, musi reagować wyłącznik różnicowoprądowy poprzez samoczynne wyłączenie?

A. Przeciążenie
B. Przepięcie
C. Zwarcie międzyfazowe
D. Upływ prądu
Przeciążenie, zwarcie międzyfazowe i przepięcie to sytuacje, które nie są bezpośrednio związane z włączaniem wyłącznika różnicowoprądowego. Przeciążenie dotyczy sytuacji, w której obciążenie na linii elektrycznej przekracza dopuszczalny poziom, co może prowadzić do przegrzania przewodów i ich uszkodzenia, ale nie stanowi bezpośredniego zagrożenia dla życia. W takich przypadkach stosuje się wyłączniki nadprądowe, które reagują na wzrost natężenia prądu. Zwarcie międzyfazowe to awaria, która polega na bezpośrednim połączeniu dwóch przewodów fazowych, co prowadzi do znacznego wzrostu prądu i potencjalnie niebezpiecznych warunków, a także wymaga zastosowania wyłączników zabezpieczających. Przepięcie z kolei odnosi się do nagłych wzrostów napięcia, które mogą uszkodzić urządzenia, ale również nie są powodem do załączenia RCD. Zrozumienie różnicy pomiędzy tymi sytuacjami jest kluczowe dla prawidłowego projektowania i eksploatacji instalacji elektrycznych, a błędne przypisanie funkcji RCD do tych zagrożeń może prowadzić do niewłaściwej ochrony oraz zwiększonego ryzyka awarii instalacji.

Pytanie 3

W lokalu, który jest zasilany napięciem 400 V (3/N/PE 50Hz), zainstalowano następujące urządzenia:
1. przepływowy podgrzewacz wody (12 kW) - obwód trójfazowy
2. zmywarka do naczyń (3,5 kW) - obwód jednofazowy
3. kuchenka elektryczna (9,5 kW) - obwód trójfazowy
4. pralka automatyczna (4,5 kW) - obwód jednofazowy

Odbiorniki jednofazowe i trójfazowe są zasilane z dwóch różnych obwodów. W celu zabezpieczenia wykorzystano wyłączniki instalacyjne. Jakie wartości prądu znamionowego powinny być zastosowane dla zabezpieczeń obwodu jedno- i trójfazowego?

A. 25 A, 40 A
B. 40 A, 25 A
C. 40 A, 40 A
D. 25 A, 25 A
Wartości prądów znamionowych w niepoprawnych odpowiedziach mogą wprowadzać w błąd, ponieważ nie uwzględniają one rzeczywistych wymagań technicznych związanych z mocą odbiorników. W przypadku, gdy dla obwodu trójfazowego zastosowano by zabezpieczenie o wartości 25 A, to byłoby to niewystarczające dla podgrzewacza wody, który wymaga przynajmniej 17,32 A, co w połączeniu z marginesem bezpieczeństwa powinno skutkować zabezpieczeniem 40 A. Ponadto, zastosowanie zabezpieczenia 25 A dla obwodu jednofazowego zmywarki również jest nieodpowiednie, ponieważ przy mocy 3,5 kW pobór prądu wynosi 15 A, co nie jest wystarczające w kontekście dodatkowych obciążeń, które mogą wystąpić w czasie pracy. Takie podejście ignoruje zasady dotyczące projektowania zabezpieczeń, które zalecają dobieranie wartości zabezpieczeń z uwzględnieniem maksymalnych obciążeń oraz ewentualnych skoków chwilowych poboru prądu. Zbyt niskie wartości zabezpieczeń mogą prowadzić do częstych wyłączeń, co wpłynie na komfort użytkowania oraz w dłuższej perspektywie może uszkodzić urządzenia. Wartości 40 A dla obu obwodów są zgodne z dobrymi praktykami branżowymi oraz uwzględniają zasady ochrony przed przeciążeniem, co jest kluczowe dla zapewnienia bezpieczeństwa i niezawodności instalacji elektrycznych.

Pytanie 4

Który z poniższych sposobów ochrony przed porażeniem elektrycznym jest weryfikowany przez pomiar rezystancji pętli zwarcia w instalacji elektrycznej?

A. Samoczynne wyłączanie zasilania
B. Separacja elektryczna
C. Umieszczenie części dostępnych poza zasięgiem ręki
D. Uziemienie ochronne
Uziemienie ochronne jest istotnym elementem systemów ochrony przed porażeniem, jednak polega na stworzeniu niskooporowego połączenia z ziemią, a nie na pomiarze rezystancji pętli zwarcia. Jego głównym celem jest zapewnienie, że w przypadku awarii prądu, nadmiar energii zostanie bezpiecznie odprowadzony do ziemi. Choć ważne, nie jest to metoda, która sama w sobie gwarantuje szybkie odłączenie zasilania. Separacja elektryczna to inny środek, który ma na celu unikanie niebezpiecznych kontaktów między różnymi obwodami, ale również nie jest bezpośrednio związana z pomiarem rezystancji pętli zwarcia. Działa na zasadzie fizycznego oddzielenia części instalacji, co minimalizuje ryzyko porażenia, ale nie zmienia parametrów elektrycznych samej instalacji. Umieszczenie części dostępnych poza zasięgiem ręki, mimo że może zmniejszyć ryzyko kontaktu z niebezpiecznymi elementami, nie jest odpowiednim rozwiązaniem, gdyż nie eliminuje ryzyka porażenia w sytuacjach awaryjnych. W każdej z tych koncepcji brakuje kluczowego odniesienia do mechanizmu działania samoczynnego wyłączania zasilania, który jest bezpośrednio związany z pomiarem rezystancji pętli zwarcia. To pomiar ten dostarcza informacji, które są kluczowe dla oceny, czy instalacja elektryczna jest w stanie bezpiecznie odciąć zasilanie w sytuacji awaryjnej, co czyni go fundamentalnym dla zapewnienia bezpieczeństwa elektrycznego.

Pytanie 5

Na podstawie rysunku określ wymiar, który opisuje wysokość zawieszenia opraw oświetleniowych w sali lekcyjnej.

Ilustracja do pytania
A. Wymiar a
B. Wymiar b
C. Wymiar d
D. Wymiar c
Wybór innych wymiarów, takich jak wymiar a, c czy d, wskazuje na pewne nieporozumienia dotyczące interpretacji rysunku oraz podstawowych zasad projektowania oświetlenia. Wymiar a, zazwyczaj odnosi się do odległości poziomej w pomieszczeniu, co nie ma zastosowania przy ocenie wysokości zawieszenia opraw oświetleniowych. Podobnie wymiar c, mogący oznaczać wysokość mebli, lub wymiar d, który najprawdopodobniej przedstawia inne aspekty przestrzenne, nie odnoszą się do zagadnienia wysokości zawieszenia opraw. W praktyce, wysokość zawieszenia opraw ma kluczowe znaczenie dla efektywności oświetlenia oraz komfortu użytkowników. Typowym błędem jest skupienie się na wymiarach, które nie mają bezpośredniego wpływu na sposób, w jaki światło rozchodzi się w przestrzeni. Właściwe zrozumienie, że wysokość opraw oświetleniowych nie jest tylko kwestią estetyki, ale także funkcjonalności, jest niezbędne w projektowaniu efektywnych i ergonomicznych przestrzeni edukacyjnych. Zbyt niskie lub zbyt wysokie zawieszenie opraw może prowadzić do olśnień, cieni oraz niewystarczającego oświetlenia roboczego, co negatywnie wpływa na koncentrację i wyniki uczniów. Z tego powodu kluczowe jest, aby przy projektowaniu uwzględniać odpowiednie normy i wytyczne, aby uniknąć tych powszechnych problemów.

Pytanie 6

Poślizg silnika indukcyjnego osiągnie wartość 1, gdy

A. silnik znajdzie się w stanie jałowym.
B. silnik zostanie zasilony prądem przeciwnym.
C. wirnik silnika będzie w bezruchu.
D. wirnik silnika zostanie dogoniony.
Zrozumienie zasad działania silników indukcyjnych jest kluczowe dla efektywnej ich eksploatacji, dlatego warto przyjrzeć się błędnym koncepcjom, które mogą prowadzić do mylnych wniosków. W przypadku, gdy wirnik silnika zostaje dopędzony, oznacza to, że jego prędkość zbliża się do prędkości synchronizacyjnej, co prowadzi do zmniejszenia poślizgu, a nie do uzyskania wartości równej 1. Takie zjawisko występuje w silnikach, które są zasilane zmiennym prądem i wymagają odpowiedniego momentu obrotowego, aby zrównoważyć obciążenie. Z kolei pozostawienie silnika na biegu jałowym skutkuje poślizgiem mniejszym niż 1, ponieważ wirnik wciąż kręci się, choć bez obciążenia. Zasilanie silnika przeciwprądem to sytuacja, w której występuje odwrócenie kierunku prądu w uzwojeniach, co skutkuje przeciwnym działaniem momentu obrotowego, ale nie powoduje poślizgu równego 1 w klasycznym sensie. Typowym błędem myślowym jest zrozumienie poślizgu jako czegoś, co można kontrolować niezależnie od fizycznych parametrów pracy silnika. W rzeczywistości poślizg jest wskaźnikiem funkcjonowania silnika i jest ściśle powiązany z jego obciążeniem oraz dynamiką pracy. Wiedza na temat poślizgu jest zatem fundamentalna dla inżynierów i techników zajmujących się automatyką i energetyką.

Pytanie 7

Jaką minimalną wartość prądu powinno mieć wykonanie pomiaru ciągłości elektrycznej przewodów ochronnych w głównych i dodatkowych połączeniach wyrównawczych oraz przewodów czynnych w przypadku obwodów odbiorczych typu pierścieniowego?

A. 200 mA
B. 500 mA
C. 100 mA
D. 150 mA
Udzielenie odpowiedzi innej niż 200 mA może prowadzić do nieprawidłowej oceny stanu ciągłości przewodów ochronnych. Wartości takie jak 100 mA, 150 mA czy 500 mA nie są wystarczające lub nieadekwatne do przeprowadzenia rzetelnych pomiarów w kontekście ochrony przeciwporażeniowej. Wybór niższej wartości prądu, jak 100 mA, może skutkować sytuacją, w której nie zostaną wykryte niewielkie przerwy w ciągłości przewodu, co z kolei stwarza poważne zagrożenie dla bezpieczeństwa użytkowników. Z kolei wartość 150 mA, mimo że może wydawać się bardziej sensowna, wciąż nie spełnia wymagań dotyczących dokładności pomiarów, co może prowadzić do fałszywych odczytów. Zwiększenie prądu do 500 mA, choć teoretycznie może wydawać się korzystne, może w rzeczywistości prowadzić do uszkodzenia delikatnych elementów instalacji, a także może doprowadzić do niebezpiecznych sytuacji, takich jak przegrzanie przewodów. Kluczowe jest zrozumienie, że odpowiednie wartości prądu pomiarowego mają na celu nie tylko wykrycie ewentualnych usterek, ale także zapewnienie, że instalacja działa w sposób bezpieczny i niezawodny. Właściwe rozumienie norm oraz ich stosowanie jest niezbędne w praktyce inżynierskiej.

Pytanie 8

Do czego służy złączka przedstawiona na ilustracji?

Ilustracja do pytania
A. Do łączenia przewodów dowolnego typu.
B. Do zdejmowania izolacji z przewodów dwużyłowych.
C. Do zaciskania końcówek tulejkowych na przewodach.
D. Do wykonywania połączeń bez zdejmowania izolacji.
Wybór innej odpowiedzi może być spowodowany jakimś nieporozumieniem odnośnie funkcji złączek elektrycznych. Na przykład, mylenie łączenia bez zdejmowania izolacji to błąd, bo złączki WAGO wymagają, żeby izolacja była odpowiednio ścięta, żeby połączenie było pewne. Z kolei mówienie, że łączą przewody dowolnego typu jest trochę na wyrost, bo niektóre złączki są projektowane do konkretnych zastosowań. Poza tym, stosowanie ich do zaciskania końcówek tulejkowych to też nie najlepszy pomysł, bo WAGO do tego się nie nadają – mogą przez to wystąpić błędy w połączeniach i ryzyko awarii. No i sugerowanie, że złączka służy do zdejmowania izolacji z przewodów dwużyłowych, to chyba jakieś nieporozumienie, bo do tego trzeba użyć odpowiednich narzędzi, a nie złączek. Dlatego warto zrozumieć, jak te złączki działają w praktyce i jakie są podstawowe zasady ich stosowania w elektryce.

Pytanie 9

Jakim przyrządem dokonuje się pomiaru rezystancji izolacyjnej przewodu?

A. Omomierz
B. Miernik pętli zwarcia
C. Megaomomierz
D. Induktorowy miernik uziemień
Omomierz jest urządzeniem używanym do pomiaru niskich wartości rezystancji, co czyni go niewłaściwym wyborem do pomiarów izolacji przewodów. Mierzy on rezystancję w zakresie małych wartości, a jego zastosowanie w pomiarach izolacji może prowadzić do nieprawidłowych wyników. W przypadku izolacji, która powinna mieć bardzo wysoką rezystancję, omomierz może nie dostarczyć wystarczających informacji o stanie izolacji, ponieważ jego pomiar odbywa się przy znacznie niższym napięciu. Miernik pętli zwarcia jest przeznaczony do testowania impedancji pętli zwarcia w instalacjach elektrycznych, co jest całkowicie inną funkcjonalnością. Urządzenie to służy do pomiaru bezpieczeństwa, ale nie jest używane do oceny izolacji przewodów. Induktorowy miernik uziemień natomiast koncentruje się na pomiarze rezystancji uziemienia, a nie na izolacji przewodów. Błędne jest więc przypuszczenie, że jakiekolwiek z tych urządzeń mogłoby zastąpić megaomomierz w kontekście testów izolacyjnych. Użycie niewłaściwego miernika może prowadzić do błędnych diagnoz i poważnych problemów z bezpieczeństwem elektrycznym.

Pytanie 10

Którą rolę pełni w styczniku element wskazany na ilustracji czarną strzałką?

Ilustracja do pytania
A. Zmniejsza napięcie podtrzymania cewki.
B. Likwiduje magnetyzm szczątkowy.
C. Zmniejsza siłę docisku zwory.
D. Likwiduje drgania zwory.
W kontekście analizowanej ilustracji oraz roli elementu w styczniku, ważne jest zrozumienie, dlaczego pozostałe opcje są nieprawidłowe. Pierwsza z błędnych odpowiedzi sugeruje, że element ten likwiduje magnetyzm szczątkowy. Magnetyzm szczątkowy to zjawisko, które występuje po odłączeniu zasilania i najczęściej jest związane z materiałem rdzenia elektromagnesu. Eliminacja tego efektu wymaga zastosowania odpowiednich materiałów magnetycznych oraz projektowania, a nie tłumika drgań. Kolejna opcja mówi o zmniejszeniu siły docisku zwory, co nie jest rolą opisanego elementu. Siła docisku zwory jest istotna dla prawidłowego działania stycznika i wpływa na jakość kontaktu elektrycznego. Zmniejszenie jej mogłoby prowadzić do przegrzewania lub niestabilności kontaktów. Ostatnia odpowiedź odnosi się do zmniejszenia napięcia podtrzymania cewki. Napięcie podtrzymania jest kluczowe dla utrzymania zwory w pozycji załączonej i jego zmniejszenie mogłoby skutkować przypadkowym wyłączeniem stycznika, co jest niepożądane w aplikacjach wymagających ciągłej pracy. Warto zauważyć, że poszczególne pomyłki w odpowiedziach wynikają często z niepełnego zrozumienia działania mechanizmów styczników oraz ich elementów składowych. Kluczowe jest, aby w procesie nauki zwracać uwagę na detale techniczne oraz zasady działania urządzeń, co pozwoli uniknąć mylnych interpretacji w przyszłości.

Pytanie 11

Jakie są przyczyny automatycznego wyłączenia wyłącznika instalacyjnego po mniej więcej 10 minutach od włączenia obwodu odbiorczego w instalacji elektrycznej?

A. Zwarcie bezimpedancyjne
B. Prąd błądzący
C. Przepięcie
D. Przeciążenie
Wybór odpowiedzi dotyczącej zwarcia bezimpedancyjnego sugeruje błędne zrozumienie mechanizmu działania wyłączników instalacyjnych. Zwarcie bezimpedancyjne, charakteryzujące się bardzo małą opornością, prowadzi do natychmiastowego wzrostu prądu, co skutkuje natychmiastowym zadziałaniem zabezpieczeń. Zazwyczaj przy zwarciu wyłącznik zadziała praktycznie od razu, a nie po 10 minutach. Z kolei przepięcia, które mogą być wynikiem działania pioruna bądź włączenia dużych urządzeń elektrycznych, również prowadzą do wyzwolenia zabezpieczeń, ale zazwyczaj w znacznie krótszym czasie. Prąd błądzący, który może występować w instalacji z uszkodzoną izolacją, także nie jest przyczyną samoczynnego zadziałania wyłącznika po tak długim czasie. Zwykle wykrycie prądu błądzącego skutkuje natychmiastową reakcją urządzeń zabezpieczających, takich jak wyłączniki różnicowoprądowe. Błędy w diagnozowaniu problemów mogą prowadzić do niepotrzebnych napraw czy kosztów, dlatego ważne jest, aby zrozumieć, że wyłączniki instalacyjne działają na podstawie określonych norm i nie reagują na przeciążenia w sposób, w jaki reagowałyby na zwarcia czy przepięcia. Kluczowe jest także stosowanie się do zasad doboru urządzeń zabezpieczających w instalacjach elektrycznych, aby zminimalizować ryzyko wystąpienia problemów związanych z przeciążeniem.

Pytanie 12

Do czego przeznaczone są kleszcze przedstawione na ilustracji?

Ilustracja do pytania
A. Do montażu zacisków zakleszczających.
B. Do formowania oczek na końcach żył jednodrutowych.
C. Do zaprasowywania końców przewodów w połączeniach wsuwanych.
D. Do zaciskania końcówek tulejkowych na żyłach wielodrutowych.
Kleszcze do przewodów elektrycznych mają różne zastosowania, ale nie każde narzędzie pasuje do wszystkich połączeń. Jak patrzymy na te odpowiedzi, ważne, żeby zrozumieć, że zaciskanie końcówek tulejkowych na żyłach wielodrutowych, montowanie zacisków zakleszczających czy zaprasowywanie końców przewodów wymagają różnych narzędzi i metod. Zaciskanie tulejek najczęściej robimy kleszczami, które mają szczęki przystosowane do tego, żeby dobrze uformować końcówki. Natomiast w przypadku zacisków zakleszczających potrzebne są kleszcze, które mają odpowiedni kształt, żeby wszystko pasowało idealnie i nie uszkodziło materiału. A zaprasowywanie końców przewodów w połączeniach wsuwanych to już inna bajka, bo potrzeba do tego specjalnych narzędzi, które są do tego stworzone, żeby połączenia były szczelne i stabilne. Wybierając złe narzędzia czy metody, można popełnić błędy, które później mogą prowadzić do awarii elektrycznych, więc warto trzymać się tych dobrych praktyk i norm. Zwracaj uwagę na specyfikacje narzędzi i ich zastosowania, bo to naprawdę istotne dla bezpieczeństwa i efektywności pracy z elektryką.

Pytanie 13

Jaką rolę odgrywa uzwojenie biegunów komutacyjnych w urządzeniach prądu stałego?

A. Generuje moment magnetyczny o stałym kierunku
B. Redukuje hałas podczas eksploatacji
C. Kompensuje SEM samoindukcji, co eliminuje iskrzenie na szczotkach
D. Tworzy nieruchome, stałe pole magnetyczne
Uzwojenie biegunów komutacyjnych w maszynach prądu stałego pełni kluczową rolę w kompensacji siły elektromotorycznej (SEM) samoindukcji, co jest istotne dla prawidłowego funkcjonowania silników. W trakcie pracy silnika, gdy zmienia się kierunek prądu, powstaje SEM samoindukcji, która może prowadzić do iskrzenia na szczotkach. Uzwojenie biegunów komutacyjnych, poprzez odpowiednie wytwarzanie pola magnetycznego, pomaga zminimalizować to zjawisko, co przekłada się na dłuższą żywotność szczotek oraz zmniejszenie strat energetycznych. Przykładem zastosowania tej zasady jest wykorzystanie silników prądu stałego w aplikacjach, gdzie wymagana jest duża niezawodność, jak w napędach elektrycznych tramwajów czy w robotyce. Dobre praktyki w projektowaniu maszyn prądu stałego uwzględniają parametry uzwojenia komutacyjnego, co umożliwia uzyskanie optymalnej charakterystyki pracy silnika oraz minimalizację zakłóceń.

Pytanie 14

W jakiej kolejności nastąpi zadziałanie styczników i przekaźników podczas rozruchu silnika pierścieniowego w układzie, którego schemat połączeń przedstawiono na rysunkach, po załączeniu wyłączników Q i Q1 oraz przycisku sterującego S1?

Ilustracja do pytania
A. K7, K2, K3, K6, K4, K5, K1
B. K1, K2, K3, K4, K5, K6, K7
C. K1, K5, K4, K6, K3, K7, K2
D. K1, K5, K4, K6, K3, K2, K7
Podczas analizy niepoprawnych odpowiedzi można zauważyć kilka kluczowych błędów myślowych, które mogą prowadzić do nieporozumień w kontekście działania styczników i przekaźników. Odpowiedzi takie jak K7, K2, K3, K6, K4, K5, K1 czy inne sekwencje z pominięciem K1 jako pierwszego stycznika pokazują, że użytkownik nie uwzględnił podstawowej zasady działania obwodów elektrycznych – aktywacja elementów musi być logiczna i zgodna z kolejnością zaprogramowaną w obwodzie. Prawidłowe sterowanie stycznikami zapewnia, że każdy kolejne element jest aktywowany w odpowiednim momencie, co jest niezbędne dla właściwego rozruchu silnika. W przypadku przedstawionych odpowiedzi brakuje zrozumienia, jak styk pomocniczy K1 wpływa na działanie K5. Ignorowanie tego faktu może prowadzić do nieefektywnego rozruchu silnika, co może skutkować uszkodzeniem sprzętu lub nawet zagrożeniem dla bezpieczeństwa. Kluczowym jest zrozumienie, dlaczego takie sekwencje są istotne w praktycznych zastosowaniach, zwłaszcza w kontekście norm i standardów branżowych. Właściwe zrozumienie logiki działania styczników oraz ich połączeń jest fundamentem w automatyce i elektrotechnice, a nieprzestrzeganie tych zasad może prowadzić do błędnych wniosków w projektowaniu układów rozruchowych.

Pytanie 15

Do którego z rodzajów trzonków źródeł światła przeznaczona jest oprawka przedstawiona na ilustracji?

Ilustracja do pytania
A. G9
B. GU10
C. MR11
D. E27
Oprawka E27, którą widzisz na obrazku, to jedna z tych, które najczęściej spotyka się w domach i różnych lokalach. Ten duży gwint E27 sprawia, że montaż żarówek jest prosty jak dwa razy dwa. A jakbyś pomyślał o różnych rodzajach żarówek, to znajdziesz tu sporo opcji, jak energooszczędne czy LED – każdy sobie coś dobrego wybierze. Te oprawki są chętnie używane w lampach sufitowych, kinkietach i takich wolnostojących lampach, które dodają trochę charakteru. Ich popularność wynika z tego, że są wszędzie dostępne i pasują do różnych projektów oświetleniowych. Jak wymieniasz źródło światła, E27 to świetny wybór, bo wpasujesz to właściwie wszędzie, dzięki standardowym wymiarom.

Pytanie 16

Kontrola instalacji elektrycznych, które są narażone na szkodliwe działanie warunków atmosferycznych lub destrukcyjne oddziaływanie czynników występujących podczas eksploatacji budynku, powinna odbywać się nie rzadziej niż raz na

A. rok
B. kwartał
C. 4 lata
D. 2 lata
Wybór nieodpowiedniego okresu pomiędzy kontrolami instalacji elektrycznych może prowadzić do poważnych konsekwencji zarówno dla bezpieczeństwa użytkowników, jak i dla stanu technicznego budynku. Decydując się na kontrolę co kwartał, można błędnie zakładać, że tak częste inspekcje są niezbędne dla zapewnienia bezpieczeństwa. Takie podejście może prowadzić do niepotrzebnych kosztów i obciążenia dla właścicieli budynków, które mogą być nadmierne w porównaniu do rzeczywistych potrzeb. Z drugiej strony, wybierając okres dwóch lub czterech lat, użytkownicy mogą nie dostrzegać, że instalacje elektryczne, szczególnie te narażone na działanie czynników atmosferycznych, mogą ulegać szybkiemu zużyciu. Statystyki pokazują, że awarie elektryczne często występują w wyniku zaniedbania regularnych kontroli, co może skutkować nie tylko stratami materialnymi, ale i zagrożeniem dla życia ludzi. Dlatego istotne jest, aby nie opierać się na subiektywnych odczuciach co do stanu technicznego instalacji, lecz kierować się zaleceniami norm branżowych, które wskazują na konieczność przeprowadzania kontroli co roku. Umożliwia to nie tylko zachowanie bezpieczeństwa, ale również utrzymanie instalacji w odpowiednim stanie technicznym przez długi czas.

Pytanie 17

Wskaż symbol graficzny przycisku zwiernego.

Ilustracja do pytania
A. Symbol 2.
B. Symbol 1.
C. Symbol 3.
D. Symbol 4.
Wybór symbolu innego niż Symbol 1 wiąże się z nieporozumieniem w zakresie graficznych przedstawień przycisków zwiernych. Wiele osób może mylnie utożsamiać inne symbole z funkcjami przycisków, nie zwracając uwagi na szczegóły ich graficznej reprezentacji. Na przykład, niektóre symbole mogą przedstawiać przyciski rozwierne, które działają na przeciwnych zasadach – otwierają obwód w momencie naciśnięcia. Zrozumienie różnic między tymi symbolami jest kluczowe dla zapewnienia poprawności wizualizacji systemów elektrycznych i automatyzacyjnych. Często błędy te wynikają z braku znajomości standardów, takich jak IEC 60417, które dokładnie definiują sposób, w jaki różne typy przycisków powinny być przedstawiane graficznie. Niezrozumienie tej kwestii może prowadzić do poważnych problemów w projektowaniu systemów, które opierają się na prawidłowym użyciu przycisków. Dlatego istotne jest, aby każdy projektant lub inżynier miał solidne podstawy dotyczące symboli graficznych oraz ich zastosowania. Używanie nieodpowiednich symboli może wprowadzać w błąd zarówno użytkowników, jak i techników serwisowych, co w efekcie prowadzi do nieprawidłowej obsługi urządzeń i potencjalnych zagrożeń w pracy systemów elektrycznych.

Pytanie 18

Które z przedstawionych narzędzi jest przeznaczone do demontażu przewietrznika z wału silnika elektrycznego?

Ilustracja do pytania
A. Narzędzie 4.
B. Narzędzie 1.
C. Narzędzie 2.
D. Narzędzie 3.
Narzędzie 2, czyli ściągacz, jest kluczowym narzędziem wykorzystywanym w procesie demontażu przewietrznika z wału silnika elektrycznego. Jego konstrukcja umożliwia równomierne rozłożenie siły, co jest niezwykle istotne, aby uniknąć uszkodzenia elementów. W praktyce, ściągacz stosuje się w sytuacjach, gdy przewietrznik mocno przylega do wału, co może zdarzyć się w wyniku długotrwałego użytkowania silnika. Właściwe użycie ściągacza polega na umieszczeniu go tak, aby mocno, ale delikatnie, chwytał za brzegi demontowanego elementu. Zgodnie z najlepszymi praktykami branżowymi, przed przystąpieniem do demontażu należy zawsze upewnić się, że silnik jest odłączony od źródła zasilania. Użycie ściągacza w ten sposób minimalizuje ryzyko uszkodzenia zarówno przewietrznika, jak i wału silnika. Pozostałe narzędzia, takie jak narzędzie 1, 3 i 4, nie są dostosowane do tej specyficznej pracy, co może prowadzić do nieefektywnego demontażu i potencjalnych uszkodzeń.

Pytanie 19

Którego klucza należy użyć do przymocowania urządzenia elektrycznego do podłoża przy użyciu wkrętów, jak przedstawiony na ilustracji?

Ilustracja do pytania
A. Płaskiego.
B. Ampulowego.
C. Nasadowego.
D. Oczkowego.
Odpowiedź "Ampulowego" jest prawidłowa, ponieważ klucz ampulowy (inaczej klucz imbusowy) jest specjalnie zaprojektowany do pracy z wkrętami, które posiadają gniazdo sześciokątne wewnętrzne. Tego rodzaju wkręty są powszechnie stosowane w urządzeniach elektrycznych, co czyni klucz ampulowy niezwykle przydatnym narzędziem w wielu zastosowaniach. Dzięki konstrukcji klucza, który idealnie pasuje do gniazda wkrętu, można osiągnąć wysoki moment dokręcenia, co jest kluczowe dla zapewnienia stabilności zamocowanego urządzenia. W praktyce, użycie klucza ampulowego przy dokręcaniu wkrętów w urządzeniach elektrycznych zmniejsza ryzyko uszkodzenia elementów, ponieważ klucz nie zsuwa się z gniazda, co jest częstym problemem przy użyciu kluczy nasadowych czy oczkowych. Warto pamiętać, że nieodpowiednie narzędzie może prowadzić do uszkodzeń wkrętów oraz szkodliwych dla struktury zamocowanego urządzenia. Dlatego, wybierając odpowiedni klucz, należy kierować się jego specyfiką oraz standardami branżowymi dotyczącymi montażu i konserwacji urządzeń elektrycznych.

Pytanie 20

Który z przedstawionych na rysunkach zestawów narzędzi należy dobrać do montażu elementów mieszkaniowych instalacji elektrycznych?

Ilustracja do pytania
A. A.
B. C.
C. B.
D. D.
Zestaw narzędzi oznaczony literą C to właściwy wybór do montażu elementów mieszkaniowych instalacji elektrycznych, ponieważ zawiera narzędzia izolowane. Narzędzia te mają specjalną powłokę, która minimalizuje ryzyko porażenia prądem, co jest kluczowe, gdy pracujemy z instalacjami elektrycznymi. Przykładowo, obcęgi i szczypce izolowane pozwalają na precyzyjne manipulowanie przewodami bez obawy o kontakt z napięciem. Standardy bezpieczeństwa, takie jak normy IEC 60900, definiują wymagania dotyczące narzędzi używanych w środowiskach elektrycznych, w tym wymagania dotyczące izolacji. Ponadto, dobór narzędzi zgodnych z tymi normami jest często wymogiem w profesjonalnych pracach elektrycznych, co zapewnia nie tylko bezpieczeństwo, ale również efektywność pracy. Zastosowanie odpowiednich narzędzi może znacząco zwiększyć komfort oraz bezpieczeństwo w trakcie realizacji zadań montażowych.

Pytanie 21

Zgodnie z danymi przestawionymi w tabeli dobierz minimalny przekrój przewodu miedzianego jednożyłowego do wykonania jednofazowej natynkowej instalacji o napięciu 230 V, zasilającej piec rezystancyjny o mocy 5 000 W.

Ilustracja do pytania
A. 2,5 mm2
B. 4 mm2
C. 6 mm2
D. 1,5 mm2
Wybór niewłaściwego przekroju przewodu może przynieść poważne problemy, zarówno pod względem bezpieczeństwa jak i wydajności. Odpowiedzi 1,5 mm2 i 6 mm2 są zupełnie nietrafione przy zasilaniu pieca rezystancyjnego o mocy 5000 W. Przewód 1,5 mm2 po prostu nie jest w stanie przeprowadzić prądu 21,74 A, co stwarza ryzyko przegrzania i różnych uszkodzeń. Przewody o zbyt małym przekroju mogą powodować spadki napięcia, co negatywnie wpłynie na działanie pieca. Z kolei przewód 6 mm2 jest za duży na to obciążenie, co zwiększa koszty materiałów i może sprawić problemy z montażem oraz wyglądem całej instalacji. Często ludzie przy wyborze przekroju skupiają się tylko na maksymalnej mocy, a zapominają o innych ważnych rzeczach, takich jak długość przewodu, temperatura otoczenia czy rodzaj izolacji. Takie błędne podejście do doboru przewodu to prosta droga do kłopotów i zagraża bezpieczeństwu użytkowników oraz poprawnemu działaniu systemu elektrycznego. Dlatego warto kierować się normami i wytycznymi branżowymi, by nie popełniać takich błędów.

Pytanie 22

Na którym rysunku przedstawiono poprawny sposób podłączenia dwóch wyłączników RCD zgodnie ze schematem?

Ilustracja do pytania
A. A.
B. C.
C. B.
D. D.
Schematy przedstawione w odpowiedziach A, B i D zawierają poważne błędy w podejściu do podłączania wyłączników RCD, które mogą prowadzić do niebezpieczeństw w eksploatacji instalacji elektrycznej. W przypadku odpowiedzi A, wyłączniki RCD są połączone w sposób, który nie oddziela obwodów, co narusza zasadę zapewnienia niezależnej ochrony. Taki układ może prowadzić do sytuacji, w której awaria w jednym obwodzie spowoduje wyłączenie zasilania w obu, co jest niepraktyczne i niebezpieczne. W odpowiedzi B, połączenie RCD nie zapewnia właściwego odseparowania obwodów, co jest kluczowe w lokalizacjach o zwiększonym ryzyku, jak łazienki. Odpowiedź D z kolei również nie spełnia wymagań dotyczących ochrony, ponieważ nie uwzględnia specyficznych potrzeb bezpieczeństwa w różnych pomieszczeniach. W każdej z tych odpowiedzi brak jest zrozumienia podstawowych zasad dotyczących ochrony przed porażeniem elektrycznym, co może prowadzić do poważnych konsekwencji zdrowotnych. W kontekście norm PN-IEC 61008, kluczowe jest, aby każdy obwód był chroniony oddzielnie, co nie tylko zwiększa bezpieczeństwo, ale także ułatwia identyfikację problemów w instalacji. Niezrozumienie tego aspektu prowadzi do błędnych wniosków i, co gorsza, do niebezpiecznych układów elektrycznych.

Pytanie 23

Który parametr instalacji elektrycznej można sprawdzić za pomocą testera przedstawionego na rysunku?

Ilustracja do pytania
A. Prąd upływu.
B. Kolejność faz zasilających.
C. Rezystancję uziemienia odbiornika.
D. Ciągłość przewodów.
Dobra robota z wyborem odpowiedzi! To narzędzie, które widzisz na zdjęciu, to tester kolejności faz. Jest naprawdę ważny w elektryce, bo sprawdza, czy fazy są odpowiednio podłączone w instalacjach trójfazowych. Zrozumienie tej kolejności jest kluczowe, bo jak fazy się zamienią, to mogą być problemy z działaniem urządzeń, szczególnie silników. Bezpieczne uruchamianie nowych instalacji to podstawa, a ten tester naprawdę się przydaje. W branży elektrycznej normy mówią, że musimy pilnować tej kolejności, żeby uniknąć nieprawidłowości i niebezpieczeństw. Poza tym, jeśli w systemie jest nierównomierne obciążenie, to ten tester też może pomóc to zdiagnozować, a to ważne dla oszczędności energii.

Pytanie 24

Co oznacza symbol PE na przewodach elektrycznych?

A. Przewód ochronny
B. Przewód neutralny
C. Przewód uziemiający
D. Przewód fazowy
Pozostałe odpowiedzi na pytanie o symbol <em>PE</em> na przewodach elektrycznych są błędne, choć mogą wydawać się logiczne dla osób mniej zorientowanych w tematyce elektrycznej. Przewód neutralny, często oznaczany jako <em>N</em>, pełni zupełnie inną funkcję niż przewód ochronny. Jego zadaniem jest zamykanie obwodu elektrycznego, co umożliwia przepływ prądu do urządzeń podłączonych do sieci. Z kolei przewód fazowy, oznaczany literą <em>L</em> lub numerami jeśli jest więcej faz, jest przewodem, którym płynie prąd elektryczny z sieci do odbiornika. Przewody fazowe są najczęściej koloru brązowego, czarnego lub szarego. Odpowiedź dotycząca przewodu uziemiającego jest również błędna w tym kontekście, ponieważ w standardowych instalacjach domowych oraz przemysłowych, pojęcie przewodu uziemiającego zazwyczaj odnosi się do funkcji realizowanej przez przewód ochronny (PE). Wszystkie te przewody pełnią istotne funkcje w obwodach elektrycznych, ale różnią się zastosowaniami i wymaganiami technicznymi. Pomyłki w tym zakresie mogą prowadzić do nieprawidłowego wykonania instalacji oraz potencjalnie niebezpiecznych sytuacji, dlatego tak ważne jest, aby rozumieć różnice między nimi i stosować się do obowiązujących norm i standardów.

Pytanie 25

Jak często powinny być wykonywane konserwacje urządzeń w instalacji elektrycznej w budynkach mieszkalnych?

A. Co najmniej raz na dwa lata
B. Każdorazowo podczas badań okresowych instalacji
C. Przed każdym uruchomieniem urządzenia
D. Zgodnie z instrukcją obsługi danego odbiornika
Częstość przeprowadzania konserwacji odbiorników elektrycznych w mieszkaniach nie może być uogólniana na podstawie arbitralnych okresów czasu, jak sugerują inne odpowiedzi. Odpowiedź wskazująca na przeprowadzanie konserwacji 'co najmniej raz na dwa lata' może prowadzić do niebezpiecznych sytuacji, ponieważ nie uwzględnia specyfiki danego odbiornika oraz jego warunków pracy. Odbiorniki mogą być narażone na różnorodne czynniki, takie jak temperatura, wilgotność, obecność zanieczyszczeń czy intensywność użytkowania, które wpływają na ich stan techniczny i bezpieczeństwo. Ponadto, odpowiedź sugerująca, że konserwacja powinna się odbywać 'przed każdorazowym uruchomieniem odbiornika' jest niepraktyczna, ponieważ wiele odbiorników, jak np. sprzęt AGD, nie wymaga codziennych kontroli przed użyciem. Wprowadza to błąd myślowy, że wszystkie urządzenia wymagają takiej samej uwagi. Argument zakładający, że konserwacja powinna się odbywać 'każdorazowo w czasie badań okresowych instalacji' ignoruje fakt, że badania okresowe dotyczą całej instalacji, a nie pojedynczych odbiorników. Takie podejście może prowadzić do zaniedbań, gdyż niektóre odbiorniki mogą nie być objęte przeglądami w odpowiednich interwałach. Dlatego kluczowe jest, aby użytkownicy odbiorników kierowali się instrukcjami producentów, co pozwala na odpowiednią i bezpieczną eksploatację urządzeń.

Pytanie 26

Którego narzędzia nie należy stosować przy wykonywaniu montażu lub demontażu elementów instalacji elektrycznych?

Ilustracja do pytania
A. A.
B. C.
C. D.
D. B.
Wybór jednej z innych odpowiedzi na to pytanie może prowadzić do poważnych konsekwencji w kontekście bezpieczeństwa pracy z instalacjami elektrycznymi. Nóż, szczypce izolowane i kombinerki są narzędziami, które mogą być używane w odpowiednich sytuacjach, ale ich zastosowanie wymaga szczególnej ostrożności i zrozumienia ich funkcji. Użycie noża podczas pracy z przewodami elektrycznymi wiąże się z ryzykiem uszkodzenia izolacji, co może prowadzić do zwarcia lub porażenia prądem. Narzędzia, które nie są izolowane, mogą stwarzać dodatkowe zagrożenie, zwłaszcza jeżeli są używane w wilgotnym środowisku. Ponadto, błędne założenie, że każde narzędzie, które może przecinać lub manipulować przewodami, nadaje się do pracy z instalacjami elektrycznymi, jest typowym błędem myślowym. W rzeczywistości, narzędzia izolowane są zaprojektowane w taki sposób, aby minimalizować ryzyko porażenia prądem, a ich użycie jest zgodne z zasadami bezpieczeństwa i normami branżowymi. Ważne jest, aby zawsze stosować odpowiednie narzędzia do danego zadania oraz dokładnie przestrzegać najlepszych praktyk, co nie tylko zwiększa efektywność pracy, ale również chroni zdrowie i życie osób wykonujących te zadania.

Pytanie 27

Którą oprawę oświetleniową należy zastosować w piwnicy o zwiększonej wilgotności powietrza?

Ilustracja do pytania
A. A.
B. B.
C. D.
D. C.
Oprawa oświetleniowa oznaczona jako D. jest odpowiednia do zastosowania w piwnicy o zwiększonej wilgotności powietrza, ponieważ spełnia normy dotyczące szczelności i odporności na działanie wilgoci. W takich warunkach, zastosowanie oprawy z wyższym stopniem ochrony, jak IP65 lub IP67, jest kluczowe, aby uniknąć ryzyka uszkodzenia instalacji elektrycznej oraz zapewnić bezpieczeństwo użytkowników. Dobrą praktyką jest wybór opraw wyekwipowanych w zatrzaski, co zwiększa ich szczelność i zapobiega przedostawaniu się pary wodnej oraz zanieczyszczeń. W piwnicach, gdzie może występować wilgoć, szczególnie istotne jest regularne sprawdzanie stanu technicznego oświetlenia, a także stosowanie źródeł światła odpornych na wahania temperatury oraz wilgotności, takich jak diody LED. Przykładem mogą być instalacje oświetleniowe w magazynach lub piwnicach, które wymagają nie tylko właściwego doboru opraw, ale także odpowiedniego montażu, aby zapewnić ich długotrwałą i bezpieczną eksploatację.

Pytanie 28

Które urządzenie oznacza się na schematach przedstawionym symbolem graficznym?

Ilustracja do pytania
A. Odłącznik.
B. Rozłącznik.
C. Bezpiecznik.
D. Wyłącznik.
Odpowiedź 'Wyłącznik' jest prawidłowa, ponieważ symbol przedstawiony na schemacie doskonale ilustruje funkcję wyłącznika w obwodach elektrycznych. Wyłącznik to kluczowe urządzenie, które pozwala na manualne lub automatyczne rozłączanie obwodu, co ma istotne znaczenie dla bezpieczeństwa instalacji oraz jej obsługi. Zastosowanie wyłączników pozwala na szybką reakcję w sytuacjach awaryjnych, takich jak zwarcia czy przeciążenia, co zabezpiecza przed uszkodzeniem urządzeń i instalacji. Wyłączniki są powszechnie stosowane w różnych aplikacjach, od domowych po przemysłowe, gdzie kontrola nad przepływem prądu jest kluczowa. Przykładem są wyłączniki nadprądowe, które automatycznie odcinają zasilanie w przypadku przekroczenia dopuszczalnego prądu, zgodnie z normami PN-EN 60898. Dobrą praktyką jest również regularne testowanie i konserwacja wyłączników, co wpływa na ich niezawodność oraz bezpieczeństwo użytkowników.

Pytanie 29

Wybierz zestaw narzędzi koniecznych do zamocowania listew instalacyjnych w natynkowej instalacji elektrycznej z użyciem kołków szybkiego montażu?

A. Wiertarka z zestawem wierteł, szczypce płaskie, piła
B. Osadzak gazowy, wkrętak, obcinaczki
C. Osadzak gazowy, młotek, obcinaczki
D. Wiertarka z zestawem wierteł, młotek, piła
Analizując błędne odpowiedzi, można zauważyć, że nie wszystkie narzędzia wymienione w odpowiedziach są odpowiednie do zamocowania listew instalacyjnych natynkowej instalacji elektrycznej. Na przykład, osadzak gazowy jest narzędziem przeznaczonym do wykonywania otworów w materiałach budowlanych, jednak jego użycie w kontekście kołków szybkiego montażu może być zbędne, a w niektórych przypadkach nawet niebezpieczne, zwłaszcza gdy jest stosowany przez osoby niedoświadczone. Wkrętaki i obcinaczki, choć przydatne w wielu sytuacjach, nie są kluczowymi narzędziami do montażu listew, a ich obecność w zestawie może wprowadzać w błąd co do właściwego doboru narzędzi. Ponadto, piła jako narzędzie tnące, choć może być użyteczna w przypadku przycinania listew, nie jest kluczowym narzędziem dla montażu kołków, co sugeruje, że odpowiedzi te nie uwzględniają wszystkich aspektów procesu instalacyjnego. Typowym błędem myślowym jest zakładanie, że każde narzędzie może być użyte do wielu zadań, co nie zawsze jest prawdą i może prowadzić do nieefektywności oraz zwiększonego ryzyka uszkodzeń. Zrozumienie specyfiki narzędzi i ich zastosowań jest kluczowe w pracy instalatora, a wybór odpowiednich narzędzi powinien opierać się na praktycznym doświadczeniu oraz znajomości standardów branżowych.

Pytanie 30

Jakie elementy nie są kontrolowane podczas oględzin urządzeń napędowych w czasie ich postoju?

A. stanu przewodów ochronnych oraz ich połączeń
B. poziomu drgań i skuteczności układu chłodzenia
C. ustawienia zabezpieczeń i stanu osłon części wirujących
D. stanu pierścieni ślizgowych oraz komutatorów
W kontekście oględzin urządzeń napędowych w czasie postoju, istotne jest zrozumienie zakresu przeglądów i ich celów. Sprawdzanie stanu przewodów ochronnych i ich podłączenia to kluczowy aspekt zapewnienia bezpieczeństwa. Przewody te pełnią istotną rolę w ochronie operatorów przed porażeniem prądem elektrycznym oraz awariami urządzeń. Oprócz tego, poziom drgań jest ważnym wskaźnikiem stanu mechanicznego urządzeń; nadmierne drgania mogą wskazywać na niewłaściwe wyważenie, zużycie łożysk lub inne problemy, które mogą prowadzić do krytycznych awarii. Układ chłodzenia także zasługuje na szczególną uwagę, ponieważ jego nieprawidłowe działanie może prowadzić do przegrzewania się maszyn i ich uszkodzeń, co wymagałoby kosztownych napraw. Z kolei kontrola ustawienia zabezpieczeń oraz stanu osłon części wirujących jest kluczowa dla ochrony personelu i zapobiegania wypadkom. Często pomija się te aspekty, co prowadzi do niebezpiecznych sytuacji. Prawidłowe podejście do oględzin urządzeń napędowych wymaga zatem kompleksowej analizy wszystkich wymienionych elementów, aby zapewnić nieprzerwaną operacyjność i bezpieczeństwo. Zatem zrozumienie, które elementy wymagają regularnych kontroli, a które są mniej krytyczne, jest niezbędne dla efektywnego zarządzania bezpieczeństwem i wydajnością urządzeń.

Pytanie 31

W jakim układzie sieciowym znajduje się bezpiecznik iskiernikowy podłączony pomiędzy punkt neutralny strony wtórnej transformatora, który zasila ten układ, a uziom roboczy?

A. TN-S
B. IT
C. TT
D. TN-C
Odpowiedź 'IT' jest prawidłowa, ponieważ w układzie IT, system neutralny nie jest bezpośrednio uziemiony, co oznacza, że wszystkie części przewodzące, z wyjątkiem punktu neutralnego, są uziemione. Bezpiecznik iskiernikowy, który jest włączony między punkt neutralny transformatora a uziom roboczy, działa jako mechanizm zabezpieczający przed niebezpiecznymi przepięciami i wyładowaniami elektrycznymi. W praktyce, układ IT jest często stosowany w obiektach, gdzie ciągłość zasilania jest kluczowa, takich jak szpitale czy centra danych. Zgodnie z normą IEC 60364, zaleca się stosowanie tego typu systemów w celu minimalizacji ryzyka porażenia prądem elektrycznym, co czyni je bardziej bezpiecznymi w porównaniu do układów z uziemionym punktem neutralnym. Dodatkowo, zastosowanie bezpiecznika iskiernikowego w tym kontekście zapewnia ochronę przed przepięciami, co może być kluczowe dla bezpieczeństwa sprzętu oraz ludzi.

Pytanie 32

Który rodzaj przewodu przedstawiono na rysunku?

Ilustracja do pytania
A. Wielodrutowy nieuzbrojony.
B. Jednożyłowy uzbrojony.
C. Jednodrutowy nieuzbrojony.
D. Wielożyłowy uzbrojony.
Wybór niepoprawnej odpowiedzi może wynikać z nieporozumienia w interpretacji konstrukcji przewodów elektrycznych. Odpowiedź "Jednożyłowy uzbrojony" sugeruje, że przewód składa się z jednej, grubej żyły otoczonej metalowym pancerzem. Przewody jednożyłowe są często używane w instalacjach, gdzie wymagana jest wysoka odporność na mechaniczne uszkodzenia, jednak w przypadku przedstawionego rysunku nie ma żadnych oznak uzbrojenia. To prowadzi do kolejnego błędnego wniosku, który wskazuje na "Wielożyłowy uzbrojony". Takie przewody posiadają wiele żył, ale ich konstrukcja wskazuje na obecność zabezpieczeń mechanicznych, co nie ma miejsca w analizowanym przypadku. Z kolei "Jednodrutowy nieuzbrojony" nie odzwierciedla budowy przewodu, ponieważ sugeruje, że przewód składa się z jednego drutu, co jest sprzeczne z widocznym przekrojem. W praktyce, przewody uzbrojone często stosowane są w miejscach, gdzie mogą być narażone na uszkodzenia, co również wyklucza ich obecność w tym przypadku. Kluczowym aspektem w rozróżnieniu tych przewodów jest znajomość ich struktury i przeznaczenia, co jest niezbędne do prawidłowego wyboru materiałów w instalacjach elektrycznych, aby zapewnić bezpieczeństwo oraz efektywność energetyczną. Zrozumienie różnicy między różnymi typami przewodów pomoże uniknąć poważnych błędów w projektach elektrycznych.

Pytanie 33

Do którego rodzaju ochrony przeciwporażeniowej zaliczane są środki ochrony opisane w ramce?

1.Urządzenia ochronne różnicowoprądowe o znamionowym prądzie różnicowym nieprzekraczającym 30 mA.
2.Dodatkowe połączenia wyrównawcze ochronne.
A. Ochrony podstawowej.
B. Ochrony przez zastosowanie bardzo niskiego napięcia.
C. Ochrony uzupełniającej.
D. Ochrony przy uszkodzeniu (dodatkowej).
Wybór ochrony podstawowej, ochrony przy uszkodzeniu (dodatkowej) lub ochrony przez zastosowanie bardzo niskiego napięcia jako odpowiedzi na to pytanie jest błędny, ponieważ te kategorie ochrony nie obejmują środków opisanych w ramce. Ochrona podstawowa opiera się na właściwej konstrukcji instalacji i jej komponentów, a nie na dodatkowych urządzeniach zabezpieczających. Kluczowym elementem ochrony podstawowej jest odpowiednie uziemienie oraz izolacja przewodów, co nie jest wystarczające w przypadku, gdy pojawia się ryzyko porażenia prądem. Ochrona przy uszkodzeniu, często utożsamiana z dodatkowymi metodami zabezpieczeń, również nie ma zastosowania do urządzeń różnicowoprądowych, które są zaprojektowane z myślą o działaniu w sytuacjach awaryjnych. Z kolei ochrona przez zastosowanie bardzo niskiego napięcia nie odnosi się do standardowych metod ochrony w instalacjach zasilających, lecz dotyczy specyficznych zastosowań, na przykład w systemach automatyki lub w przypadku zasilania LED. Wybór nieodpowiednich kategorii ochrony świadczy o niepełnym zrozumieniu mechanizmów, które stoją za funkcjonowaniem systemów zabezpieczeń w instalacjach elektrycznych. Kluczowe jest zrozumienie, że ochrona uzupełniająca ma na celu zapewnienie dodatkowego poziomu bezpieczeństwa, który jest niezbędny, gdy inne metody ochrony zawiodą. Dlatego wybór ochrony uzupełniającej powinien być preferowany w każdej nowoczesnej instalacji elektrycznej.

Pytanie 34

Które z poniższych elementów nie są częścią dokumentacji technicznej urządzeń elektrycznych?

A. Szczegółowe rysunki techniczne poszczególnych elementów urządzenia
B. Opis metod użytych do eliminacji zagrożeń stwarzanych przez urządzenie
C. Instrukcja obsługi urządzenia
D. Rysunek ogólny urządzenia wraz ze schematami obwodów zasilających
Rysunek ogólny urządzenia wraz ze schematami obwodów zasilania, szczegółowe rysunki techniczne poszczególnych elementów urządzenia oraz instrukcja obsługi są kluczowymi komponentami dokumentacji technicznej, ale nie wszystkie odpowiadają wymogom formalnym. Rysunek ogólny ma na celu przedstawienie całości urządzenia, uwzględniając jego główne komponenty. Schematy obwodów zasilania są niezbędne dla zrozumienia, jak energia elektryczna jest dostarczana i przetwarzana w urządzeniu, co jest istotne dla diagnostyki i napraw. Instrukcja obsługi z kolei dostarcza użytkownikom informacji nie tylko o obsludze, ale także o wymaganiach bezpieczeństwa oraz wskazówkach dotyczących eksploatacji. Opis metod zastosowanych do wyeliminowania zagrożeń stwarzanych przez urządzenie podkreśla znaczenie bezpieczeństwa w projektowaniu urządzeń elektrycznych, co jest zgodne z normami ISO 12100 i IEC 61508, które koncentrują się na ocenie ryzyka. Wiele osób mylnie uważa, że szczegółowe rysunki techniczne są konieczne do pełnej dokumentacji, jednak w kontekście ogólnej dokumentacji technicznej, najważniejsze jest, aby skupić się na aspektach ogólnych i bezpieczeństwie, które są bardziej istotne dla użytkowników i serwisantów. Dlatego istotne jest, aby zrozumieć, które elementy są kluczowe dla dokumentacji w kontekście przepisów i praktyk inżynieryjnych.

Pytanie 35

Który kolor izolacji przewodu w instalacjach elektrycznych jest przypisany do przewodu neutralnego?

A. Czerwony
B. Zielony
C. Żółty
D. Niebieski
Kolor niebieski jest zastrzeżony dla przewodu neutralnego w instalacjach elektrycznych, zgodnie z międzynarodowymi standardami, takimi jak IEC 60446. Przewód neutralny pełni kluczową rolę w systemach elektrycznych, ponieważ służy do zamykania obwodu i umożliwia przepływ prądu z powrotem do źródła. Użycie koloru niebieskiego dla przewodów neutralnych pozwala na ich łatwe zidentyfikowanie, co jest istotne w kontekście bezpieczeństwa oraz efektywności pracy elektryków. W praktyce, podczas instalacji systemów elektrycznych, korzystanie z ustalonych kolorów przewodów ma na celu minimalizację ryzyka błędów przy podłączaniu urządzeń, co jest kluczowe dla zapewnienia ich prawidłowego funkcjonowania oraz ochrony przed porażeniem prądem. Dodatkowo, w przypadku konserwacji lub naprawy, wyraźne oznaczenie przewodów neutralnych znacząco ułatwia pracę elektryków, co podkreśla znaczenie standardyzacji w branży elektrycznej.

Pytanie 36

Który z przedstawionych wyłączników należy zastosować do wykrywania prądów różnicowych przemiennych o zwiększonej częstotliwości, zawierających wyższe harmoniczne w układach energoelektronicznych?

Ilustracja do pytania
A. C.
B. B.
C. D.
D. A.
Wybór niewłaściwego wyłącznika różnicowoprądowego w aplikacjach z prądami o zwiększonej częstotliwości prowadzi do poważnych konsekwencji w zakresie bezpieczeństwa i efektywności energetycznej. Wyłączniki oznaczone literami A i B nie są przystosowane do detekcji prądów różnicowych w systemach, gdzie występują znaczne harmoniczne, co może prowadzić do fałszywych alarmów lub, co gorsza, do braku reakcji na rzeczywisty prąd różnicowy. Wyłączniki te zazwyczaj są zaprojektowane do standardowych warunków pracy, a ich parametry techniczne nie uwzględniają szczególnych wymagań układów energoelektronicznych. Użycie wyłączników bez odpowiednich specyfikacji może prowadzić do poważnych zagrożeń, takich jak porażenie prądem elektrycznym lub pożary spowodowane niewłaściwym działaniem systemów zabezpieczeń. Ponadto, w kontekście norm i standardów, wyłączniki te mogą nie spełniać wymogów określonych w normach EN 61008 i EN 61009, co dodatkowo podkreśla ich nieadekwatność w stosunku do potrzeb nowoczesnych instalacji elektrycznych. Dlatego kluczowe jest, aby w takich aplikacjach stosować wyłączniki, które są zaprojektowane z myślą o pracy z harmonicznymi i zwiększonymi częstotliwościami, jak w przypadku wyłącznika C.

Pytanie 37

W obwodzie odbiorczym zastosowano wyłącznik typu CLS6 o prądzie znamionowym 13 A i charakterystyce B. Jaki najmniejszy prąd znamionowy powinna mieć wkładka bezpiecznikowa typu gL/gG w zabezpieczeniu poprzedzającym wyłącznik, jeżeli prąd zwarcia jest nie większy niż 1 kA?

Ilustracja do pytania
A. 25 A
B. 20 A
C. 35 A
D. 16 A
Wybór odpowiedzi 35 A jako najmniejszego prądu znamionowego wkładki bezpiecznikowej typu gL/gG jest właściwy, ponieważ zgodnie z tabelą selektywności dla wyłączników CLS6, konieczne jest zapewnienie, aby wkładka bezpiecznikowa miała odpowiednią wartość prądu, aby zachować selektywność działania. Wyłącznik o prądzie znamionowym 13 A i charakterystyce B zadziała przy prądzie zwarcia, ale aby uniknąć wyłączenia całego obwodu, wkładka musi mieć wyższy prąd znamionowy. Wartość 35 A pozwala na to, by w przypadku zwarcia zadziałał najpierw wyłącznik, a nie wkładka bezpiecznikowa, co jest kluczowe w systemach, gdzie ważne jest utrzymanie ciągłości zasilania dla pozostałych obwodów. Przykładowo, w instalacjach przemysłowych, gdzie wiele maszyn pracuje równocześnie, taki dobór zabezpieczeń może zapobiec poważnym przestojom w produkcji. Dobrze dobrane zabezpieczenia są zgodne z normami PN-EN 60947-2, które regulują wymagania dotyczące wyłączników i zabezpieczeń.

Pytanie 38

Jakie akcesoria są wymagane do podłączenia gniazda wtyczkowego do instalacji zrealizowanej przewodami LY?

A. Ściągacz izolacji, wkrętak, próbnik
B. Ściągacz izolacji, lutownica, tester
C. Tester, wkrętak, lutownica
D. Szczypce, wkrętak, lutownica
Aby prawidłowo podłączyć gniazdo wtyczkowe do sieci wykonanej przewodami LY, niezbędne są trzy podstawowe narzędzia: ściągacz izolacji, wkrętak oraz próbnik. Ściągacz izolacji pozwala na bezpieczne usunięcie izolacji z końców przewodów, co jest kluczowe dla uzyskania dobrego kontaktu elektrycznego. Użycie ściągacza jest zalecane, aby uniknąć uszkodzenia miedzi wewnątrz przewodu. Wkrętak jest niezbędny do mocowania gniazda oraz łączenia przewodów w zaciskach. Próbnik z kolei umożliwia sprawdzenie, czy w obwodzie znajduje się napięcie, co jest niezwykle istotne dla zapewnienia bezpieczeństwa podczas pracy. Stosując te narzędzia, wykonawcy mogą zapewnić, że instalacja będzie zgodna z obowiązującymi normami, takimi jak PN-IEC 60364, które określają zasady dotyczące instalacji elektrycznych. Prawidłowe użycie tych narzędzi poprawia niezawodność całego systemu elektrycznego oraz minimalizuje ryzyko awarii.

Pytanie 39

Przewód zastosowany na odcinku obwodu elektrycznego wskazanym strzałką powinien mieć żyły o izolacjach w kolorze

Ilustracja do pytania
A. żółtozielonym, niebieskim i czarnym lub brązowym.
B. niebieskim i czarnym lub brązowym.
C. tylko czarnym lub brązowym.
D. żółtozielonym i czarnym lub brązowym.
Wybór niewłaściwych kolorów izolacji przewodów, takich jak niebieski lub żółtozielony, jest błędem, który wynika często z nieporozumienia dotyczącego klasyfikacji przewodów w instalacjach elektrycznych. Przewód niebieski jest zgodnie z normami przeznaczony jako przewód neutralny, a przewód o izolacji żółtozielonej oznacza przewód ochronny (uziemiający). Użycie tych kolorów w kontekście przewodów fazowych może prowadzić do poważnych pomyłek, szczególnie podczas prac serwisowych lub instalacyjnych. W sytuacji, gdy elektryk zidentyfikuje przewód niezgodnie z jego rzeczywistą funkcją, ryzykuje nie tylko uszkodzenie sprzętu, ale również swoje zdrowie. Kolejnym błędnym podejściem jest sugerowanie, że przewody mogą mieć różne kombinacje kolorów, co jest sprzeczne z ustalonymi normami. Odpowiednia kolorystyka przewodów ma kluczowe znaczenie dla bezpieczeństwa, a każdy odstępstwo od tych zasad może prowadzić do niebezpiecznych sytuacji. Dlatego ważne jest, aby wszyscy użytkownicy instalacji elektrycznych byli świadomi obowiązujących norm i praktyk, aby uniknąć niebezpieczeństw związanych z nieprawidłowym oznaczeniem przewodów.

Pytanie 40

Podczas wymiany uszkodzonego gniazda wtykowego w instalacji podtynkowej, prowadzonej w rurach karbowanych, zauważono, że w wyniku poluzowania zacisku, izolacja jednego z przewodów na długości kilku centymetrów straciła swoją elastyczność i zmieniła kolor. Jak powinno się naprawić to uszkodzenie?

A. Polakierować uszkodzoną izolację przewodu
B. Wymienić uszkodzony przewód na nowy o takim samym przekroju
C. Nałożyć gumowy wąż na uszkodzoną izolację przewodu
D. Wymienić wszystkie przewody na nowe o większym przekroju
Wymiana uszkodzonego przewodu na nowy o takim samym przekroju jest prawidłowym rozwiązaniem, ponieważ uszkodzenie izolacji przewodu może prowadzić do poważnych zagrożeń, takich jak zwarcia, przegrzewanie się oraz porażenia prądem. Przewody elektryczne muszą spełniać określone normy techniczne, a ich izolacja powinna być w dobrym stanie, aby zapewnić bezpieczeństwo użytkowania instalacji. W przypadku uszkodzenia izolacji, jak w tym przypadku, zaleca się wymianę całego przewodu, aby uniknąć ryzyka. Przykład zastosowania tej zasady można znaleźć w przepisach elektrycznych, takich jak normy PN-IEC dotyczące instalacji elektrycznych. Warto również pamiętać o tym, że przewody o różnym przekroju mają różne właściwości prądowe, co oznacza, że wymiana na przewód o innym przekroju może prowadzić do przekroczenia dopuszczalnych obciążeń prądowych. Dobrą praktyką w takich sytuacjach jest również przeprowadzenie przeglądu całej instalacji, aby zidentyfikować inne potencjalne problemy.