Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 17 grudnia 2025 13:35
  • Data zakończenia: 17 grudnia 2025 13:52

Egzamin niezdany

Wynik: 18/40 punktów (45,0%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

W oprawie oświetleniowej pokazanej na zdjęciu została zamontowana żarówka

Ilustracja do pytania
A. żarowa.
B. rtęciowa.
C. sodowa.
D. halogenowa.
Wybór żarówki sodowej, rtęciowej lub żarowej jako odpowiedzi wskazuje na pewne nieporozumienia dotyczące budowy i zastosowania różnych typów źródeł światła. Żarówki sodowe, na przykład, są powszechnie stosowane w oświetleniu ulicznym i mają charakterystyczny żółty kolor światła, co czyni je mniej efektywnymi w kontekście oświetlenia wnętrz, w którym wymagane jest naturalne odwzorowanie kolorów. Z kolei żarówki rtęciowe były popularne w przeszłości, ale obecnie są coraz rzadziej stosowane ze względu na ich szkodliwość dla środowiska oraz znaczące zanieczyszczenie światłem. Te źródła światła mają również inną konstrukcję, co sprawia, że są łatwo rozpoznawalne. Żarówki żarowe, mimo że uznawane są za klasyczne rozwiązanie, charakteryzują się niską efektywnością energetyczną oraz krótką żywotnością. W praktyce, ich stosowanie w nowoczesnym oświetleniu jest coraz bardziej ograniczone, co ukazuje zmieniające się normy energetyczne i ekologiczne, które promują bardziej efektywne źródła światła, takie jak halogeny. Dlatego ważne jest, aby zrozumieć różnice między tymi technologiami i podejmować świadome decyzje dotyczące wyboru odpowiednich źródeł światła do danego zastosowania.

Pytanie 2

Który z podanych odbiorników energii elektrycznej charakteryzuje się najkorzystniejszym współczynnikiem mocy w aspekcie ekonomicznym?

A. Piec oporowy
B. Wzbudnik indukcyjny
C. Silnik asynchroniczny
D. Silnik uniwersalny
Wybór silnika uniwersalnego, wzbudnika indukcyjnego czy silnika asynchronicznego jako bardziej korzystnego z punktu widzenia współczynnika mocy jest mylny, ponieważ te urządzenia charakteryzują się istotnymi stratami energii i niższym współczynnikiem mocy, zazwyczaj wynoszącym od 0,6 do 0,9. Silnik uniwersalny, używany głównie w zastosowaniach domowych, takich jak odkurzacze, ma zdolność do pracy zarówno na prądzie stałym, jak i zmiennym, lecz jego zmienna charakterystyka obciążenia oraz niskie wartości współczynnika mocy w niektórych stanach roboczych obniżają jego efektywność energetyczną. Wzbudnik indukcyjny, stosowany głównie w aplikacjach wymagających regulacji, takich jak prądnice, może generować znaczące straty energii ze względu na zjawiska indukcyjne, co również wpływa na jego korzystność ekonomiczną. Silnik asynchroniczny, popularny w przemyśle, ma relatywnie dobry współczynnik mocy, ale wciąż nie osiąga efektywności pieca oporowego, a jego zastosowania często wymagają dodatkowych układów kompensacyjnych, które zwiększają koszty. Wybierając odpowiednie urządzenie, warto zwrócić uwagę na jego zastosowanie, a także na możliwe straty energii, które mogą znacząco wpłynąć na całkowity koszt eksploatacji.

Pytanie 3

W instalacjach elektrycznych w budynkach mieszkalnych o napięciu 230 V nie wolno używać opraw oświetleniowych zrealizowanych w klasie ochrony

A. 0
B. I
C. II
D. III
Odpowiedź 0 jest prawidłowa, ponieważ oprawy oświetleniowe w klasie ochronności 0 nie mają żadnego zabezpieczenia przed porażeniem elektrycznym. W instalacjach elektrycznych o napięciu 230 V, które są powszechnie stosowane w mieszkaniach, użycie opraw klasy 0 stwarza poważne ryzyko dla użytkowników. Oprawy te nie są wyposażone w żadne izolacje ani mechanizmy, które mogłyby zapobiec kontaktowi z częściami naładowanymi prądem. Przykładem zastosowania standardów bezpieczeństwa jest norma PN-HD 60364, która określa wymagania dotyczące ochrony przed porażeniem elektrycznym oraz klasyfikację urządzeń. W codziennym użytkowaniu, stosowanie opraw oświetleniowych klasy II, które posiadają dodatkowe źródła izolacji, jest kluczowe, aby zapewnić bezpieczeństwo w przypadku awarii. Właściwe dobieranie opraw oświetleniowych zgodnie z ich klasą ochronności ma na celu minimalizację ryzyka porażenia elektrycznego oraz poprawę ogólnego bezpieczeństwa instalacji elektrycznej w budynkach mieszkalnych.

Pytanie 4

Na którym rysunku przedstawiono pierścienie ślizgowe silnika?

Ilustracja do pytania
A. B.
B. C.
C. A.
D. D.
Wybór innych rysunków może wynikać z nieporozumienia co do roli pierścieni ślizgowych w konstrukcji silników elektrycznych. Rysunki, które nie przedstawiają pierścieni, mogą pokazywać inne istotne elementy silnika, takie jak wirnik czy stojan, ale nie są one odpowiednie w kontekście zadania. Niezrozumienie funkcji pierścieni ślizgowych często prowadzi do błędnej interpretacji ich lokalizacji i roli. Pierścienie ślizgowe są integralną częścią konstrukcji, umożliwiającą przekazywanie prądu do wirnika, co jest kluczowe dla funkcjonowania silnika. Wybierając rysunki, które nie pokazują tych elementów, można mylnie przyjąć, że inne części silnika pełnią tę funkcję, co jest niezgodne z rzeczywistością. Dodatkowo, w kontekście standardów branżowych, każdy element silnika ma swoją specyfikę i funkcję, co jest kluczowe w projektowaniu i eksploatacji. Ignorowanie tej zasady może prowadzić do nieprawidłowego działania maszyny, a w konsekwencji do poważnych awarii. Dlatego znajomość konstrukcji silników oraz poszczególnych komponentów jest niezbędna dla każdego inżyniera zajmującego się automatyką lub energetyką.

Pytanie 5

W pomieszczeniu przyłączowym budynku sprawdzono ciągłość głównego połączenia wyrównawczego między główną szyną wyrównawczą a czterema punktami, jak na rysunku. Który pomiar powinien wykazać brak ciągłości połączenia?

Ilustracja do pytania
A. 2
B. 4
C. 1
D. 3
Wybór odpowiedzi 1, 2 lub 3 może wydawać się logiczny, jednak opiera się na błędnym założeniu, że wszystkie punkty będą przewodzić prąd bez względu na ich połączenia. Punkty 1, 2 i 3 są podłączone do elementów metalowych, które powinny zapewniać ciągłość połączenia wyrównawczego. Kluczowym aspektem, który jest często mylnie rozumiany, jest zrozumienie, że izolacyjne materiały, takie jak plastik, nie przewodzą prądu. W przypadku punktu 4, jeśli rura gazowa jest wykonana z materiału nieprzewodzącego, to naturalnym jest, że nie może ona zapewnić ciągłości połączenia. Nieprzewodzące materiały nie mogą być używane jako część systemu wyrównawczego, co często prowadzi do błędnych interpretacji i wyborów. Przykładem błędnych wniosków może być przypuszczenie, że każda rura metalowa, niezależnie od połączeń, zawsze zapewnia ciągłość. Niezrozumienie zasady, według której materiał ma kluczowe znaczenie dla właściwego działania instalacji, może prowadzić do poważnych konsekwencji w instalacjach elektrycznych. W branży elektrycznej standardy, takie jak PN-EN 61439, podkreślają znaczenie prawidłowego doboru materiałów oraz sprawowania nad nimi kontroli, co ma istotny wpływ na bezpieczeństwo systemów elektrycznych.

Pytanie 6

Który typ przewodu przedstawiono na ilustracji?

Ilustracja do pytania
A. YLY
B. YALY
C. YAKY
D. YKY
Odpowiedź YKY jest poprawna, ponieważ przewód ten charakteryzuje się izolacją wykonaną z polichlorku winylu (PVC), co zapewnia mu odpowiednią odporność na działanie warunków atmosferycznych oraz chemikaliów. Przewody YKY są powszechnie stosowane w instalacjach elektrycznych w budynkach, gdzie kluczowe jest zabezpieczenie przed uszkodzeniem i zapewnienie bezpieczeństwa użytkowania. Dodatkowo, przewód ten posiada trzy żyły miedziane, co umożliwia przesył energii elektrycznej w systemach trójfazowych. W zastosowaniach praktycznych, YKY wykorzystywany jest do zasilania maszyn, urządzeń oraz w instalacjach oświetleniowych, gdzie wymagana jest trwałość i odporność na różne czynniki. Standardy branżowe, takie jak PN-EN 50525-2-21, określają wymagania dla przewodów tego typu, podkreślając ich zastosowanie w budownictwie i przemyśle. Wiedza o typach przewodów i ich zastosowaniach jest kluczowa dla każdego specjalisty w dziedzinie elektroinstalacji, co pozwala na właściwy dobór materiałów do konkretnego zadania.

Pytanie 7

W jakim układzie sieciowym punkt neutralny transformatora zasilającego sieć nie jest metalicznie połączony z ziemią?

A. IT
B. TT
C. TN-C
D. TN-S
Układy TN-C, TN-S oraz TT różnią się od systemu IT pod względem połączenia punktu neutralnego z ziemią oraz sposobu uziemienia. W systemie TN-C punkt neutralny jest połączony z ziemią, co oznacza, że w przypadku uszkodzenia izolacji, prąd może przepływać do ziemi, co stwarza ryzyko porażenia prądem elektrycznym. System ten, mimo że dobrze sprawdza się w standardowych zastosowaniach, nie jest zalecany w obiektach o wysokim ryzyku, ponieważ awaria może prowadzić do poważnych konsekwencji. Z kolei w układzie TN-S występuje oddzielne uziemienie dla przewodu ochronnego i neutralnego, co poprawia bezpieczeństwo, ale nadal zakłada połączenie z ziemią. W przypadku systemu TT, gdzie również punkt neutralny jest uziemiony, występuje możliwość wystąpienia prądów upływowych, które mogą prowadzić do porażenia. Typowe błędy w rozumieniu tych układów to mylenie izolacji z bezpieczeństwem. W rzeczywistości, systemy TN i TT, mimo że stosowane są szeroko, nie oferują tego samego poziomu ochrony jak system IT, zwłaszcza w sytuacjach awaryjnych. Dlatego, chcąc zapewnić najwyższy poziom bezpieczeństwa, warto rozważyć zastosowanie układu IT w obiektach o krytycznym znaczeniu."

Pytanie 8

Jakie źródło światła przedstawiono na rysunku?

Ilustracja do pytania
A. Świetlówkę kompaktową.
B. Żarówkę halogenową.
C. Lampę indukcyjną.
D. Lampę metalohalogenkową.
Świetlówka kompaktowa, przedstawiona na zdjęciu, charakteryzuje się unikalnym kształtem, który opiera się na zwiniętej rurze zawierającej gaz fluorescencyjny, co pozwala na efektywne generowanie światła. W przeciwieństwie do tradycyjnych żarówek, świetlówki kompaktowe oferują znacznie wyższą efektywność energetyczną, co przekłada się na dłuższy czas życia oraz niższe zużycie energii. Używane są powszechnie w domach oraz biurach jako odpowiednik standardowych żarówek, zwłaszcza w sytuacjach, gdy zależy nam na oszczędności energii. Dodatkowo, świetlówki kompaktowe są często stosowane w ogrodach i na zewnątrz budynków, ponieważ oferują wysoką jakość światła przy niskim poborze mocy. Warto również zauważyć, że ich ograniczona emisja ciepła sprawia, że są bezpieczniejsze w użytkowaniu, zwłaszcza w zamkniętych przestrzeniach. Zgodnie z normami energetycznymi, ich zastosowanie przyczynia się do zmniejszenia emisji dwutlenku węgla, co jest zgodne z globalnymi dążeniami do ochrony środowiska.

Pytanie 9

Który element przedstawiono na ilustracji?

Ilustracja do pytania
A. Wkładkę kalibrową.
B. Oprawkę źródła światła.
C. Gniazdo zapłonnika.
D. Wkładkę topikową bezpiecznika.
Oprawka źródła światła jest kluczowym elementem w instalacjach elektrycznych, umożliwiającym prawidłowe podłączenie i utrzymanie źródła światła, takiego jak żarówka. Jej główną funkcją jest nie tylko mechaniczne wsparcie, ale także zapewnienie odpowiedniej izolacji elektrycznej. Oprawki są projektowane zgodnie z normami, takimi jak PN-EN 60238, które określają wymagania techniczne dla oprawek żarówek. Przykłady zastosowania obejmują różnorodne instalacje oświetleniowe w domach, biurach i zakładach przemysłowych. Warto również zauważyć, że odpowiedni dobór oprawki ma znaczenie dla efektywności energetycznej systemu oświetleniowego, co jest kluczowe w kontekście nowoczesnych standardów zrównoważonego rozwoju. Właściwa instalacja i użytkowanie oprawki przyczyniają się do dłuższej żywotności źródła światła oraz minimalizują ryzyko awarii, co jest istotne w kontekście bezpieczeństwa użytkowników oraz ochrony mienia.

Pytanie 10

Jakie narzędzia są konieczne do wytyczenia trasy instalacji przewodów elektrycznych montowanych na powierzchni?

A. Kątownik, ołówek traserski, sznurek traserski
B. Kątownik, młotek, punktak
C. Ołówek traserski, poziomnica, przymiar taśmowy
D. Ołówek traserski, przymiar kreskowy, rysik
Ołówek traserski, poziomnica i przymiar taśmowy to świetny wybór! Te narzędzia naprawdę są niezbędne, gdy chodzi o trasowanie drogi do układania przewodów natynkowych. Ołówek traserski pozwala na dokładne oznaczanie punktów i linii, co jest podstawą do dalszej roboty. Poziomnica zaś to must-have, żeby upewnić się, że wszystko jest równo i w odpowiednich nachyleniach. To ważne, bo estetyka i funkcjonalność idą w parze. Przymiar taśmowy z kolei umożliwia precyzyjne mierzenie, co też jest kluczowe, żeby dobrze rozmieścić przewody na ścianach. W branży mamy różne standardy, jak normy PN-IEC, które podkreślają, jak ważna jest dokładność i planowanie przy instalacjach elektrycznych. Używanie właściwych narzędzi zwiększa wydajność, a także zmniejsza ryzyko błędów, które mogą skończyć się problemami, jak zwarcia czy uszkodzenia sprzętu. Na przykład, korzystając z poziomnicy przy układaniu przewodów, mamy pewność, że będą one prosto, co będzie miało znaczenie przy montażu osprzętu elektrycznego.

Pytanie 11

Który układ połączeń watomierza jest zgodny ze schematem pomiarowym pokazanym na rysunku?

Ilustracja do pytania
A. B.
B. D.
C. A.
D. C.
Wybór innej opcji niż C wynika z nieporozumienia dotyczącego zasad prawidłowego pomiaru mocy czynnej przy użyciu watomierza. W wielu przypadkach, osoby uczące się mylnie zakładają, że cewka prądowa powinna być połączona równolegle z obciążeniem, co jest błędne. Równoległe połączenie cewki prądowej wprowadzałoby do pomiaru dodatkowe zmiany, prowadząc do błędnych wyników. Cewka prądowa ma za zadanie mierzyć prąd płynący przez obciążenie, a jej poprawne połączenie szeregowe zapewnia, że cały prąd, który jest mierzony przez watomierz, jest tym, który rzeczywiście przepływa przez obciążenie. Ponadto, błędne połączenie cewki napięciowej również wprowadzałoby istotne zniekształcenia w pomiarze, ponieważ nie mierzyłaby ona napięcia na obciążeniu, co jest kluczowe dla obliczenia mocy czynnej. W praktyce, każdy z tych błędów może prowadzić do nieprawidłowych obliczeń i nieefektywnego zarządzania energią elektryczną. Zrozumienie podstawowych zasad związanych z pomiarem mocy czynnej oraz zastosowanie ich w praktyce jest kluczowe dla uzyskania dokładnych wyników oraz zapewnienia odpowiedniego zarządzania systemami elektrycznymi.

Pytanie 12

W zakres oględzin instalacji elektrycznych nie wchodzi weryfikacja

A. stanu osłon zabezpieczających przewody przed uszkodzeniami mechanicznymi
B. metody zabezpieczenia przed porażeniem prądem elektrycznym
C. stanu widocznych elementów przewodów, izolatorów oraz ich mocowania
D. ciągłości przewodów ochronnych i neutralnych
Oględziny instalacji elektrycznych obejmują szereg kluczowych aspektów, które są niezbędne do zapewnienia bezpieczeństwa i efektywności systemów elektrycznych. W kontekście podanych odpowiedzi, istnieje szereg nieporozumień dotyczących tego, co powinno być przedmiotem takich oględzin. Stan widocznych części przewodów oraz izolatorów, a także ich mocowania, to kluczowy element oceny bezpieczeństwa instalacji. Właściwe mocowanie przewodów i ich izolacja są niezbędne, aby zapobiec potencjalnym uszkodzeniom mechanicznym, które mogą prowadzić do zwarć czy pożarów. Kolejnym istotnym aspektem jest sposób ochrony przed porażeniem prądem elektrycznym. Ochrona ta obejmuje nie tylko zastosowanie odpowiednich zabezpieczeń, ale także ich regularne sprawdzanie, aby upewnić się, że nie uległy one uszkodzeniu. Zastosowanie ciągłości przewodów ochronnych i neutralnych w kontekście oględzin jest mylące, ponieważ tego typu pomiary są zazwyczaj realizowane podczas testów diagnostycznych, a nie wizualnych inspekcji. W praktyce, błędem jest zakładanie, że inspekcje mogą zastąpić bardziej szczegółowe badania, takie jak pomiary rezystancji i ciągłości. Istotne jest, aby dla bezpieczeństwa instalacji elektrycznych przestrzegać konkretnych standardów, takich jak PN-IEC 60364, które wyraźnie określają, jakie elementy powinny być poddawane ocenie w trakcie oględzin oraz jakie metody pomiarowe należy stosować.

Pytanie 13

Który z wymienionych systemów powinien być zainstalowany w instalacji elektrycznej zasilającej istotne odbiory niskiego napięcia, aby w momencie utraty zasilania nastąpiło automatyczne przełączenie pomiędzy podstawowym źródłem a rezerwowym źródłem zasilania?

A. SCO
B. SRN
C. SZR
D. SPZ
Odpowiedź SZR (System Zasilania Rezerwowego) jest prawidłowa, ponieważ ten układ jest zaprojektowany do automatycznego przełączania źródeł zasilania w przypadku zaniku zasilania z głównego źródła. Działa on na zasadzie monitorowania napięcia w sieci zasilającej; w momencie wykrycia spadku napięcia lub całkowitego braku zasilania, SZR automatycznie uruchamia rezerwowe źródło zasilania, co zapewnia ciągłość pracy ważnych odbiorników niskiego napięcia, takich jak systemy alarmowe, oświetlenie awaryjne czy urządzenia medyczne. Przykładowo, w szpitalach i centrach danych, gdzie nieprzerwane zasilanie jest kluczowe, SZR eliminuje ryzyko przestojów. Stosowanie SZR jest zgodne z normami PN-EN 50171 oraz PN-EN 62040, które określają wymagania dotyczące systemów zasilania awaryjnego oraz UPS. Dzięki temu, instalacje z SZR nie tylko zwiększają bezpieczeństwo, ale też poprawiają efektywność operacyjną, co jest niezbędne w obiektach o krytycznym znaczeniu.

Pytanie 14

Na którym schemacie połączeń przedstawiono zgodne z zamieszczonym planem instalacji podłączenie przewodów w puszce numer 3?

Ilustracja do pytania
A. B.
B. A.
C. D.
D. C.
Niepoprawne odpowiedzi mogą wynikać z kilku typowych błędów myślowych i nieporozumień związanych z instalacjami elektrycznymi. Przede wszystkim, w schematach A, B i C często błędnie umieszczany jest przewód fazowy L, co może prowadzić do niewłaściwego działania obwodu oświetleniowego. W przypadku schematu A, przewód fazowy został połączony z przewodem neutralnym, co stwarza ryzyko zwarcia. W praktyce, takie połączenie nie tylko uniemożliwi załączenie światła, ale także może doprowadzić do uszkodzenia urządzeń elektrycznych oraz stanowić poważne zagrożenie dla bezpieczeństwa osób korzystających z instalacji. Schemat B z kolei mógłby sugerować, że przewód NE jest poprowadzony przez łącznik, co jest niezgodne z zasadami, gdyż neutralny przewód powinien być zawsze bezpośrednio połączony do źródła zasilania. Wreszcie, schemat C nie uwzględnia prawidłowego uziemienia, co jest niezbędne dla zapewnienia bezpieczeństwa użytkowników. Każde z tych podejść pokazuje, jak ważne jest przestrzeganie standardów, takich jak PN-IEC 60364, które nakładają obowiązek stosowania odpowiednich metod podłączeń oraz zabezpieczeń w instalacjach elektrycznych. Właściwe zrozumienie i przestrzeganie tych zasad jest kluczowe dla bezpieczeństwa oraz funkcjonalności instalacji elektrycznych.

Pytanie 15

Przedstawiona na ilustracji oprawka jest przeznaczona do źródeł światła z trzonkiem

Ilustracja do pytania
A. GU10
B. E14
C. MR11
D. G9
Odpowiedź GU10 jest prawidłowa, ponieważ oprawka przedstawiona na ilustracji jest zgodna z charakterystyką trzonka bajonetowego typu GU10. Trzonek ten zawiera dwie wypustki, które umożliwiają łatwe wsunięcie żarówki oraz jej zablokowanie poprzez obrót. To rozwiązanie jest powszechnie stosowane w nowoczesnych systemach oświetleniowych, gdzie wymagane jest szybkie i efektywne montowanie źródeł światła. Trzonki GU10 są często wykorzystywane w lampach sufitowych oraz reflektorach, co czyni je wszechstronnym wyborem w projektowaniu oświetlenia. Warto również zauważyć, że źródła światła z trzonkiem GU10 mogą być zarówno halogenowe, jak i LED, co pozwala na elastyczny dobór technologii w zależności od potrzeb użytkownika. Dzięki zastosowaniu standardów takich jak IEC 60400, trzonek GU10 zyskał akceptację w branży oświetleniowej, co zapewnia jego szeroką dostępność i kompatybilność z różnorodnymi systemami oświetleniowymi.

Pytanie 16

Jakie narzędzia, poza przymiaru kreskowego i młotka, należy wybrać do instalacji sztywnych rur elektroinstalacyjnych z PVC?

A. Wiertarka, płaskoszczypce, pion, poziomica
B. Cęgi do izolacji, obcinaczki, wkrętarka, płaskoszczypce
C. Cęgi do izolacji, pion, piła do cięcia, obcinaczki
D. Wiertarka, piła do cięcia, poziomica, wkrętarka
Wybór narzędzi w pozostałych odpowiedziach może wydawać się odpowiedni na pierwszy rzut oka, ale w rzeczywistości nie spełniają one kluczowych wymagań montażu rur sztywnych z PVC. Cęgi do izolacji, choć są przydatne w pracy z przewodami elektrycznymi, nie mają zastosowania przy montażu rur, które wymagają precyzyjnego cięcia i mocowania. Obcinaczki mogą być przydatne do pewnych rodzajów cięcia, ale nie zastąpią funkcji wiertarki i piły, które są kluczowe w obróbce PVC. Wiertarka, jako narzędzie do wiercenia, pozwala na tworzenie otworów na śruby mocujące lub w uchwytach, co jest niezbędne dla stabilności instalacji. Poziomica jest równie ważna, ponieważ nieprawidłowe ustawienie rur może prowadzić do problemów z odpływem lub niewłaściwym funkcjonowaniem instalacji. Przy montażu rur, precyzyjne cięcia są kluczowe, a piła do cięcia zapewnia, że krawędzie są gładkie i równe, co jest istotne dla uzyskania właściwej szczelności złączek. Zastosowanie wkrętarki ułatwia szybkie i efektywne mocowanie rur, co jest kluczowe zwłaszcza w obiektach, gdzie czas montażu ma znaczenie. Dlatego wybór narzędzi musi być przemyślany i dostosowany do specyfiki pracy, aby zapewnić wysoką jakość i trwałość instalacji.

Pytanie 17

Który rodzaj źródła światła pokazano na rysunku?

Ilustracja do pytania
A. Fluorescencyjne.
B. Elektroluminescencyjne.
C. Żarowe.
D. Wyładowcze.
Wybór jednego z pozostałych rodzajów źródeł światła, takich jak żarowe, wyładowcze czy fluorescencyjne, może prowadzić do kilku nieporozumień, które warto wyjaśnić. Źródła światła żarowego działają na zasadzie podgrzewania włókna, co jest procesem nieefektywnym i generującym dużą ilość ciepła, a nie światła. Takie podejście do oświetlenia, chociaż powszechnie znane, nie tylko zużywa dużo energii, ale także wymaga częstej wymiany żarówek, co nie jest korzystne pod kątem praktycznym i ekonomicznym. Źródła wyładowcze, takie jak lampy rtęciowe czy sodowe, emitują światło w wyniku wyładowania elektrycznego w gazie. Choć są stosunkowo wydajne, mają swoje ograniczenia, takie jak długi czas zapłonu oraz konieczność ich utylizacji w sposób zgodny z przepisami, co nie zawsze jest praktyczne. Z kolei lampy fluorescencyjne, które działają na zasadzie emisji światła z gazu po naświetleniu go promieniowaniem ultrafioletowym, również nie dorównują diodom LED pod względem efektywności energetycznej oraz żywotności. Zrozumienie różnic między tymi technologiami jest kluczowe dla wyboru odpowiednich źródeł światła, które będą nie tylko bardziej efektywne energetycznie, lecz także przyjazne dla środowiska. W kontekście standardów branżowych, większość nowoczesnych projektów oświetleniowych zaleca stosowanie diod LED, które spełniają najwyższe normy dotyczące efektywności i użytkowania energii.

Pytanie 18

Który łącznik elektryczny ma dwa przyciski oraz trzy terminale?

A. Dwubiegunowy
B. Schodowy
C. Świecznikowy
D. Krzyżowy
Krzyżowy łącznik instalacyjny, mimo iż jest powszechnie stosowany w instalacjach elektrycznych, nie posiada dwóch klawiszy i trzech zacisków, lecz jest używany w połączeniu z innymi łącznikami, aby umożliwić sterowanie oświetleniem z więcej niż dwóch miejsc. W praktyce, krzyżowy łącznik jest wykorzystywany w układach, gdzie już istnieją dwa lub więcej łączników schodowych, co pozwala na bardziej skomplikowane sterowanie oświetleniem, a nie jako samodzielne rozwiązanie. Schodowy łącznik, z drugiej strony, również nie odpowiada opisowi, ponieważ jego funkcją jest kontrolowanie jednego obwodu z dwóch miejsc, ale posiada tylko dwa zaciski. Użytkownicy często mylą ten typ łącznika ze świecznikowym w kontekście aplikacji, co może prowadzić do błędnych decyzji przy projektowaniu instalacji. Dwubiegunowy łącznik jest przeznaczony do kontroli obwodów elektrycznych, które wymagają rozłączania dwóch przewodów fazowych, ale także nie spełnia kryteriów podanych w pytaniu. Typowe błędy myślowe w tym przypadku polegają na utożsamianiu różnych typów łączników z ich funkcjonalnościami, co prowadzi do nieprawidłowych wniosków o ich zastosowaniu w konkretnej sytuacji.

Pytanie 19

Jakie urządzenie AGD oznaczamy w dokumentacji elektrycznej przedstawionym na rysunku symbolem?

Ilustracja do pytania
A. Grzejnik elektryczny
B. Pralkę elektryczną.
C. Zmywarkę do naczyń.
D. Kuchenkę elektryczną.
Kuchenki elektryczne, pralki i grzejniki, wszystkie mają swoje symbole w dokumentach elektrycznych według normy PN-EN 60617. Ale zmywarki do naczyń często są mylone z innymi urządzeniami. Na przykład kuchenki mają inny symbol, bo mówią o gotowaniu, a nie myciu naczyń. Pralki też mają swoje symbole, które odnoszą się do prania, więc to w ogóle nie to samo. Grzejniki za to są związane z ogrzewaniem, co nie ma nic wspólnego z myciem. Chyba to trochę wynika z tego, że nie każdy zna się na różnicach w symbolach lub po prostu nie zwraca na to uwagi. Ważne jest, by umieć rozpoznać te symbole, bo błędy w dokumentacji mogą prowadzić do naprawdę poważnych problemów, a tego nikt nie chce. Dlatego lepiej zrozumieć te symbole i wiedzieć, jak ich używać.

Pytanie 20

Jaki jest minimalny dopuszczalny przekrój przewodów miedzianych stosowanych w budynkach jako wewnętrzne linie zasilające (WLZ)?

A. 4 mm2
B. 16 mm2
C. 6 mm2
D. 10 mm2
Wybór nieodpowiedniego przekroju przewodów miedzianych w instalacjach elektrycznych może prowadzić do poważnych problemów technicznych i bezpieczeństwa. W przypadku, gdy ktoś wybiera przekrój 6 mm2, może nie spełniać wymagań dotyczących obciążeń prądowych w instalacjach zasilających, co naraża na ryzyko przegrzania przewodów. Przewody o mniejszym przekroju, takie jak 4 mm2, mogą być stosowane w niezbyt obciążonych obwodach, ale w kontekście wewnętrznych linii zasilających, ich zastosowanie może być nieadekwatne, szczególnie w przypadku obciążenia większego niż nominalne. Również przekrój 16 mm2, mimo że wyższy, nie jest wymagany w standardowych warunkach domowych, co prowadzi do nieuzasadnionych kosztów instalacyjnych. Takie podejście może wynikać z błędnego założenia, że większy przekrój zawsze owocuje większym bezpieczeństwem, podczas gdy kluczowe jest dobranie odpowiedniego przekroju do konkretnego zastosowania i wymagań technicznych. W praktyce, wdrożenie norm i standardów, takich jak PN-IEC 60364, jest kluczowe dla zapewnienia efektywności i bezpieczeństwa instalacji elektrycznych.

Pytanie 21

Jaki rodzaj uziomu zastosowano w instalacji piorunochronnej przedstawionej na rysunku?

Ilustracja do pytania
A. Otokowy.
B. Promieniowy.
C. Pionowy.
D. Fundamentowy.
Uziom otokowy w instalacji piorunochronnej to naprawdę ważny element, który zapewnia ochronę budynków przed wyładowaniami. Widzisz, na rysunku dokładnie widać czerwoną linię, która pokazuje uziom wokół budynku, co jest zupełnie normalne w takiej ochronie. Tworzy się go z przewodów zakopanych wokół, które mają za zadanie odprowadzać energię elektryczną w razie uderzenia pioruna. Dzięki temu szansa na uszkodzenie budynku lub sprzętu elektronicznego jest znacznie mniejsza. Jak wiadomo, normy mówią, że uziomy otokowe są najlepszym rozwiązaniem, zwłaszcza w wysokich obiektach, bo lepiej rozkładają prąd piorunowy. Korzystanie z tego typu uziomu nie tylko jest zgodne z inżynieryjnymi standardami, ale także chroni życie i mienie, co jest przecież najważniejsze.

Pytanie 22

Co symbolizuje kod literowo-cyfrowy C10, umieszczony na wyłączniku nadmiarowo-prądowym?

A. Najwyższy czas zadziałania
B. Rodzaj charakterystyki czasowo-prądowej oraz prąd wyłączeniowy
C. Rodzaj charakterystyki czasowo-prądowej oraz prąd znamionowy
D. Maksymalny prąd zwarciowy
Kod literowo-cyfrowy C10 umieszczony na wyłączniku nadmiarowo-prądowym odnosi się do charakterystyki czasowo-prądowej oraz prądu znamionowego wyłącznika. W przypadku 'C' oznacza to, że wyłącznik jest przeznaczony do ochrony urządzeń, które mogą mieć duże prądy rozruchowe, jak silniki elektryczne. Liczba '10' wskazuje, że prąd znamionowy wynosi 10 A. Tego rodzaju wyłączniki są powszechnie stosowane w instalacjach elektrycznych, gdzie konieczne jest zabezpieczenie przed przeciążeniem oraz zwarciami, a jednocześnie umożliwienie chwilowego przepływu większego prądu, co jest istotne w przypadku urządzeń indukcyjnych. Dobrze dobrany wyłącznik nadmiarowo-prądowy chroni instalację przed uszkodzeniami, a także zapewnia bezpieczeństwo użytkowników. Warto zaznaczyć, że wybór odpowiedniego wyłącznika powinien być zgodny z normami PN-EN 60898, które regulują wymagania i metody badań związanych z wyłącznikami nadmiarowo-prądowymi.

Pytanie 23

Obwód oświetleniowy zasilany z rozdzielnicy przedstawionej na rysunku może pobierać długotrwale prąd nieprzekraczający

Ilustracja do pytania
A. 16 A
B. 20 A
C. 6 A
D. 32 A
Wybierając odpowiedzi inne niż 20 A, można łatwo popaść w pułapkę błędnego myślenia dotyczącego doboru prądów znamionowych w obwodach elektrycznych. Odpowiedzi takie jak 6 A lub 16 A są nieodpowiednie, ponieważ nie uwzględniają rzeczywistych parametrów stycznika SM-320, który jest kluczowym elementem w tym obwodzie. Osoby mogące wybrać 6 A mogą nie rozumieć, że wartość ta odnosi się do prądu znamionowego wyłącznika nadprądowego B6, który jednak nie powinien być brany pod uwagę jako decydujący przy określaniu maksymalnego obciążenia obwodu oświetleniowego. W rzeczywistości wyłącznik nadprądowy jest urządzeniem zabezpieczającym, którego zadaniem jest ochrona obwodu przed przeciążeniem, ale to stycznik określa, jakie obciążenie można podłączyć w sposób ciągły. Wybór 32 A jest również błędny, jako że sugeruje znacznie wyższe obciążenie, które może prowadzić do niewłaściwego doboru pozostałych komponentów instalacji elektrycznej, co w efekcie stwarza ryzyko przegrzania i uszkodzenia instalacji. Zrozumienie różnicy między wartościami nominalnymi różnych elementów jest kluczowe dla zapewnienia bezpieczeństwa i efektywności obwodu elektrycznego. Właściwe podejście do doboru prądów znamionowych w instalacjach elektrycznych nie tylko chroni urządzenia, ale także zapobiega sytuacjom awaryjnym, które mogą być wynikiem nieodpowiednich ustawień prądowych.

Pytanie 24

Który rodzaj sterowania zapewnia układ silnika przedstawiony na schemacie?

Ilustracja do pytania
A. Regulację obrotów przez zmianę napięcia twornika.
B. Hamowanie dynamiczne.
C. Hamowanie prądnicowe.
D. Regulację obrotów przez bocznikowanie uzwojenia wzbudzenia.
Regulacja obrotów silnika przez zmianę napięcia twornika to jedna z najczęściej stosowanych metod w praktyce inżynieryjnej. Na schemacie widać rezystory R1, R2 i R3, które, działając na zasadzie zmiany rezystancji, wpływają na napięcie na tworniku silnika elektrycznego. Zmniejszając rezystancję, zwiększamy napięcie, co prowadzi do wzrostu prędkości obrotowej silnika, natomiast zwiększając rezystancję, napięcie maleje, co skutkuje spowolnieniem obrotów. Tego rodzaju regulacja znajduje zastosowanie w różnych aplikacjach, takich jak napędy elektryczne w przemyśle, gdzie precyzyjna kontrola prędkości jest kluczowa. Dobre praktyki w tej dziedzinie obejmują zastosowanie kontrolerów napięcia oraz odpowiednich układów zasilających, które zapewniają stabilność i bezpieczeństwo pracy silnika. Dodatkowo, warto zwrócić uwagę na wpływ zmian obciążenia na pracę silnika oraz na konieczność stosowania zabezpieczeń przed przeciążeniem, co jest zgodne z normami IEC dotyczących układów napędowych.

Pytanie 25

Wiatrołap jest oświetlany dwoma żarówkami. Żarówki w oprawach są włączane przez wyłącznik zmierzchowy. Gdy jedna z żarówek przestała świecić, jakie kroki należy podjąć, aby zidentyfikować i usunąć potencjalne przyczyny tej usterki?

A. Zweryfikować przewody, sprawdzić działanie wyłącznika, wymienić żarówkę
B. Sprawdzić działanie wyłącznika, zweryfikować oprawę i przewody
C. Wymienić żarówkę, która się nie świeci, sprawdzić przewody i oprawę oświetleniową
D. Zamienić żarówkę, która nie świeci, sprawdzić funkcjonowanie wyłącznika oraz oprawy oświetleniowej
Analizując inne odpowiedzi, można zauważyć, że skupiają się one na fragmentarycznych rozwiązaniach, co może prowadzić do niepełnej diagnozy problemu. Na przykład, wymiana tylko żarówki, bez sprawdzenia innych elementów instalacji, może spowodować, że użytkownik nie zauważyłby dalszych problemów, na przykład uszkodzenia przewodów lub wyłącznika. Zignorowanie konieczności weryfikacji przewodów może prowadzić do sytuacji, w której nowa żarówka również przestanie działać z powodu braku zasilania, co byłoby nieefektywnym i kosztownym rozwiązaniem. Podobnie, choć sprawdzenie działania wyłącznika jest istotne, nie powinno być to jedyne działanie, ponieważ uszkodzenie oprawy oświetleniowej też może być przyczyną problemu. Takie podejście jest typowe dla błędów myślowych, gdzie użytkownicy koncentrują się na jednym elemencie systemu, zaniedbując jego całościową analizę. Praktyczne podejście do diagnozowania usterek elektrycznych wymaga holistycznego spojrzenia na całą instalację, co zapewnia skuteczną identyfikację i eliminację problemów. Właściwe postępowanie zgodne z zasadami bezpieczeństwa i dobrymi praktykami branżowymi powinno obejmować kompleksowe sprawdzenie wszystkich komponentów systemu oświetleniowego, co jest kluczowe dla utrzymania efektywności energetycznej i niezawodności instalacji.

Pytanie 26

Wyznacz całkowity względny błąd pomiarowy rezystancji izolacyjnej przewodów, jeśli wskazania miernika wyniosły 200,0 MΩ, a jego niepewność to ± (3% w.w. + 8 cyfr)?

A. 3,0%
B. 3,4%
C. 6,8%
D. 8,3%
Wiele osób może pomylić pojęcie błędu pomiarowego, nie dostrzegając, jak ważne jest zrozumienie różnorodnych źródeł niedokładności. Odpowiedzi 3,0% oraz 6,8% mogą wydawać się kuszące, ponieważ mogą wynikać z niepoprawnych założeń dotyczących obliczenia błędów. W przypadku błędu 3,0%, można błędnie założyć, że tylko błąd procentowy jest istotny, podczas gdy nie uwzględnia się wpływu cyfr, co prowadzi do zaniżenia rzeczywistego błędu. Z kolei odpowiedź 6,8% może sugerować, że błąd wyrażony w cyfrach jest tak samo istotny jak błąd procentowy, co jest mylnym podejściem. W rzeczywistości, aby uzyskać całkowity względny błąd, musimy zrozumieć, że oba te błędy mają różne jednostki i nie można ich po prostu dodać. Dodatkowo, należy pamiętać, że przy pomiarach elektrycznych, takich jak rezystancja, ważne jest, aby znać granice dokładności urządzeń pomiarowych oraz ich wpływ na ostateczne wyniki. Przy pomiarach dużych wartości, jak w tym przypadku 200,0 MΩ, błąd wyrażony w cyfrach jest znacząco mniejszy niż błąd procentowy, co wskazuje na konieczność dokładnej analizy sytuacji. Z takich powodów, pomiar rezystancji izolacji wymaga staranności i przestrzegania norm metrologicznych, aby uzyskać wiarygodne wyniki.

Pytanie 27

W dokumentacji dotyczącej instalacji elektrycznej w wielopiętrowym budynku mieszkalnym wskazano, że konieczne jest użycie ochronników przeciwprzepięciowych klasy C. Gdzie powinny one zostać zamontowane?

A. w puszkach instalacyjnych gniazd odbiorczych
B. na linii zasilającej budynek
C. w złączu budynku
D. w rozdzielnicach mieszkaniowych
Odpowiedź wskazująca na rozdzielnice mieszkaniowe jako miejsce instalacji ochronników przeciwprzepięciowych klasy C jest poprawna, ponieważ rozdzielnice te pełnią kluczową rolę w zarządzaniu i dystrybucji energii elektrycznej w budynku. Ochronniki klasy C są projektowane do ochrony przed przepięciami wynikającymi z różnorodnych zjawisk, takich jak wyładowania atmosferyczne czy zakłócenia w sieci. Montaż tych urządzeń w rozdzielnicach mieszkaniowych pozwala na skuteczną ochronę wszystkich obwodów, które z nich zasilają, co jest zgodne z normą PN-EN 61643-11 oraz wytycznymi zawartymi w dokumentach technicznych dotyczących instalacji elektrycznych. Przykładowo, w przypadku wyładowania atmosferycznego, przepięcia mogą przedostać się do instalacji, co może prowadzić do uszkodzenia sprzętu elektronicznego. Umiejscowienie ochronników w rozdzielnicach minimalizuje te ryzyka, zapewniając bezpieczeństwo i ciągłość działania urządzeń w gospodarstwie domowym.

Pytanie 28

Który schemat montażowy łącznika odpowiada symbolowi graficznemu przedstawionemu na rysunku?

Ilustracja do pytania
A. C.
B. D.
C. A.
D. B.
Wybrana odpowiedź jest poprawna, ponieważ symbol graficzny przedstawiony na rysunku rzeczywiście odnosi się do łącznika jednobiegunowego, znanego również jako przełącznik jednobiegunowy. Tego rodzaju łączniki są powszechnie używane w instalacjach elektrycznych do sterowania oświetleniem w pojedynczych obwodach. Schemat oznaczony literą "A" dokładnie ilustruje sposób podłączenia takiego łącznika, w którym jeden przewód zasilający jest połączony z jednym przewodem wyjściowym do źródła światła. W praktyce, przy instalacji należy zwrócić uwagę na odpowiednie oznaczenia i zgodność z normami, takimi jak PN-IEC 60446, które określają zasady oznaczania przewodów i urządzeń elektrycznych. Właściwe zrozumienie symboli graficznych jest kluczowe przy projektowaniu oraz realizacji bezpiecznych i funkcjonalnych instalacji elektrycznych.

Pytanie 29

Symbol graficzny którego przewodu przedstawiono na ilustracji?

Ilustracja do pytania
A. Ochronnego.
B. Uziemiającego.
C. Fazowego.
D. Neutralnego.
Odpowiedź wskazująca na przewód neutralny jest prawidłowa, ponieważ symbol przedstawiony na ilustracji jest zgodny z normami IEC (Międzynarodowej Komisji Elektrotechnicznej), które określają oznaczenia przewodów w instalacjach elektrycznych. Przewód neutralny, oznaczony symbolem 'N', pełni kluczową rolę w systemach zasilania, umożliwiając powrót prądu do źródła zasilania. W praktyce przewód neutralny jest stosowany w instalacjach jednofazowych oraz trójfazowych, gdzie jego obecność zapewnia stabilność pracy urządzeń elektrycznych. Ważnym aspektem jest również odpowiednie podłączenie przewodu neutralnego do uziemienia w rozdzielnicy, co zwiększa bezpieczeństwo użytkowania instalacji oraz minimalizuje ryzyko porażenia prądem. Wszelkie prace związane z instalacjami elektrycznymi powinny być przeprowadzane zgodnie z normami PN-IEC, a także z zasadami BHP, co podkreśla znaczenie właściwego rozpoznawania i stosowania symboli przewodów.

Pytanie 30

Co może być przyczyną usterki na przedstawionym schemacie, jeżeli: żarówka E2 świeci się, a żarówka E1 nie świeci się, obie żarówki są sprawne, zmierzone napięcie U12 = 228 V, oprawy E1 i E2 są sprawne?

Ilustracja do pytania
A. Uszkodzone przewody pomiędzy W2 a W3
B. Uszkodzone przewody pomiędzy W1 a W2
C. Uszkodzony przewód pomiędzy W1 a S191B10
D. Uszkodzony przewód pomiędzy W3 a E1
Nieprawidłowe odpowiedzi wskazują na różne nieporozumienia dotyczące działania obwodów elektrycznych. Wybór uszkodzonego przewodu pomiędzy W1 a S191B10 sugeruje, że uczestnik testu nie zrozumiał, jak obwody szeregowe działają w kontekście świecenia żarówek. W przypadku uszkodzenia przewodu w tej lokalizacji, obie żarówki E1 i E2 nie mogłyby świecić, ponieważ brakowałoby pełnego obwodu. Kolejny błąd dotyczy wskazania uszkodzonych przewodów pomiędzy W1 a W2. Gdyby ten przewód był uszkodzony, żarówka E2 również nie mogłaby świecić, co jest sprzeczne z danymi. Również wybór uszkodzenia przewodów pomiędzy W2 a W3 jest mylny, ponieważ zgodnie z pomiarem napięcia U12 na poziomie 228 V, nie ma tam przerwy. To wskazuje na sprawność tej sekcji obwodu. Kluczowe jest zrozumienie, że w obwodach elektrycznych prąd płynie w zamkniętej pętli, a każde uszkodzenie w dowolnym miejscu wyłącza cały obwód. W praktyce, aby uniknąć takich błędów, zaleca się dokładne badanie schematów oraz logiczne rozumowanie związane z kierunkiem przepływu prądu i funkcjonowaniem poszczególnych komponentów. Warto pamiętać, że analiza problemów elektrycznych wymaga nie tylko wiedzy teoretycznej, ale także umiejętności praktycznych w diagnostyce i naprawie instalacji.

Pytanie 31

Jaką z wymienionych czynności należy wykonać podczas inspekcji działającego transformatora?

A. Obsługa przełącznika zaczepów
B. Czyszczenie izolatorów
C. Serwis styków oraz połączeń śrubowych
D. Weryfikacja poziomu oleju w olejowskazie konserwatora
Podczas oceny konserwacji transformatorów wiele osób może błędnie zinterpretować działania, które powinny być podejmowane w trakcie oględzin. Konserwacja przełącznika zaczepów jest z pewnością istotnym aspektem obsługi transformatora, jednak nie jest to czynność bezpośrednio związana z bieżącym nadzorowaniem jego pracy. Przełączniki zaczepów są kluczowe dla regulacji napięcia, ale ich konserwację przeprowadza się w innych cyklach czasowych, a nie w trakcie standardowych oględzin. Również czyszczenie izolatorów jest istotne, jednak skupia się na usuwaniu osadów oraz zanieczyszczeń, które mogą wpływać na właściwości izolacyjne. Ta czynność również nie jest bezpośrednio związana z monitorowaniem poziomu oleju. Konserwacja styków i połączeń śrubowych jest ważna, aby zapewnić stabilne połączenia elektryczne, ale nie jest to czynność, która powinna być przeprowadzana w czasie standardowych oględzin operacyjnych. Mylne podejście do tych czynności wynika często z braku zrozumienia ich priorytetów w kontekście bieżącej eksploatacji transformatora. Ostatecznie, kluczowym aspektem w pracy z transformatorami jest zapewnienie ich bezpieczeństwa i stabilności działania, co jest realizowane poprzez systematyczne monitorowanie i konserwację, gdzie sprawdzanie poziomu oleju stanowi fundament tej procedury.

Pytanie 32

Ile wynosi wartość mocy biernej w symetrycznym układzie trójfazowym przedstawionym na rysunku, jeżeli watomierz wskazuje 100 W?

Ilustracja do pytania
A. 173 var
B. 519 var
C. 100 var
D. 300 var
W przypadku odpowiedzi innych niż 173 var, pojawiają się typowe nieporozumienia dotyczące relacji między mocą czynną a mocą bierną w układach trójfazowych. Wartości takie jak 519 var, 100 var czy 300 var są wynikiem błędnej interpretacji wzorów związanych z mocą elektryczną. Na przykład, odpowiedzi 519 var i 300 var mogą wynikać z niepoprawnego zastosowania wzoru, w którym zignorowano czynnik √3, prowadząc do zawyżenia wyniku. Z kolei 100 var może być mylone z mocą czynną, co pokazuje nieporozumienie między pojęciami mocy czynnej i biernej. Moc czynna, mierzona przez watomierz, odnosi się do energii, która jest rzeczywiście wykorzystywana do wykonania pracy, podczas gdy moc bierna jest związana z energią, która oscyluje między źródłem a obciążeniem, nie wykonując przy tym żadnej pracy. Zrozumienie tych różnic jest kluczowe w kontekście norm i standardów branżowych, takich jak IEC 61000, które definiują wymagania dotyczące jakości energii i jej wpływu na urządzenia elektryczne. Dlatego ważne jest, aby przy rozwiązywaniu podobnych problemów zawsze odnosić się do odpowiednich wzorów i zachować ostrożność w interpretacji wyników pomiarów mocy.

Pytanie 33

Który przewód oznacza symbol PE?

A. Ochronny
B. Wyrównawczy
C. Ochronno-neutralny
D. Uziemiający
Odpowiedź "Ochronny" jest prawidłowa, ponieważ przewód oznaczony symbolem PE (ang. Protective Earth) jest kluczowym elementem systemów ochrony przed porażeniem elektrycznym. Przewód PE ma za zadanie prowadzenie prądu doziemnego w przypadku awarii urządzenia, co minimalizuje ryzyko porażenia prądem użytkowników. W praktyce, przewód ten jest integralną częścią instalacji elektrycznych w budynkach, a jego właściwe podłączenie do uziemienia jest niezbędne dla zapewnienia bezpieczeństwa. Zgodnie z normami, takimi jak PN-IEC 60364, przewód PE powinien być stosowany w każdym obwodzie elektrycznym, w którym zainstalowane są urządzenia elektryczne. Jego zastosowanie obejmuje zarówno instalacje przemysłowe, jak i domowe, gdzie uziemienie urządzeń, takich jak lodówki czy pralki, jest niezbędne dla ochrony przed skutkami zwarcia. Warto również podkreślić, że stosowanie przewodu PE w instalacjach elektrycznych jest wymagane przez przepisy prawa budowlanego, co dodatkowo podkreśla jego znaczenie w kontekście bezpieczeństwa użytkowników.

Pytanie 34

Przed dokonaniem pomiaru rezystancji izolacji w instalacji elektrycznej najpierw należy odciąć napięcie zasilające, a potem

A. zamontować do opraw źródła światła, wyłączyć odbiorniki jednofazowe z gniazd wtyczkowych, włączyć silniki trójfazowe
B. usunąć z opraw źródła światła, włączyć odbiorniki jednofazowe do gniazd wtyczkowych, odłączyć silniki trójfazowe
C. zamontować do opraw źródła światła, włączyć odbiorniki jednofazowe do gniazd wtyczkowych, włączyć silniki trójfazowe
D. usunąć z opraw źródła światła, wyłączyć odbiorniki jednofazowe z gniazd wtyczkowych, odłączyć silniki trójfazowe
To, co napisałeś, jest trochę nie tak. Wybór złej sekwencji działań przed pomiarem rezystancji izolacji może prowadzić do różnych kłopotów, zarówno z bezpieczeństwem, jak i z jakością wyników. Na przykład, jeśli nie wymontujesz źródeł światła i nie wyłączysz jednofazowych odbiorników, to narażasz się na ryzyko porażenia prądem. Włączenie ich przed testem może dać złe wyniki i stwarza niebezpieczeństwo dla osoby przeprowadzającej pomiar. To jest sprzeczne z zasadą, że trzeba upewnić się, że wszystko jest odcięte od prądu. Dobrze jest pamiętać, że podłączanie urządzeń bez wcześniejszego ich rozłączenia może wprowadzić niechciane napięcia do obwodu, co grozi uszkodzeniem sprzętu pomiarowego i może wprowadzić zamieszanie w diagnozowaniu stanu izolacji. Często takie pomyłki wynikają z braku wiedzy o odpowiednich zasadach bezpieczeństwa oraz testów elektrycznych, co może prowadzić do błędów w pomiarach, a nawet do zagrożenia dla zdrowia i życia. Dlatego ważne jest, żeby zawsze trzymać się ustalonych norm i dobrych praktyk przed przystąpieniem do jakichkolwiek prac związanych z instalacją elektryczną.

Pytanie 35

W instalacji elektrycznej wykorzystującej przekaźnik priorytetowy, po osiągnięciu ustawionej w tym przekaźniku wartości natężenia prądu w obwodzie

A. niepriorytetowym, zostaje wyłączony obwód niepriorytetowy
B. priorytetowym, zostaje wyłączony obwód priorytetowy
C. niepriorytetowym, zostaje wyłączony obwód priorytetowy
D. priorytetowym, zostaje wyłączony obwód niepriorytetowy
Odpowiedź dotycząca wyłączenia obwodu niepriorytetowego w przypadku przekroczenia ustawionej wartości natężenia prądu w obwodzie priorytetowym jest poprawna. Przekaźniki priorytetowe są kluczowymi elementami w systemach zarządzania energią, gdzie zapewniają odpowiednie gospodarowanie dostępnymi zasobami elektrycznymi. W praktyce oznacza to, że gdy prąd w obwodzie priorytetowym osiąga niebezpieczny poziom, przekaźnik automatycznie odłącza obwód niepriorytetowy, aby zminimalizować ryzyko przeciążenia oraz uszkodzenia urządzeń. Takie rozwiązanie jest szczególnie istotne w instalacjach przemysłowych, gdzie obciążenie elektryczne może być dynamiczne. Normy, takie jak PN-IEC 60947, określają zasady projektowania i użytkowania takich urządzeń, a ich przestrzeganie zapewnia większe bezpieczeństwo oraz efektywność energetyczną systemów elektrycznych. Dobrą praktyką jest również regularne monitorowanie stanu przekaźników i ich konfiguracji, aby zapewnić ich prawidłowe funkcjonowanie.

Pytanie 36

Na którym rysunku przedstawiono przyrząd do lokalizowania trasy przebiegu przewodów instalacyjnych pod tynkiem?

Ilustracja do pytania
A. A.
B. B.
C. C.
D. D.
Odpowiedź C jest w porządku, bo na tym rysunku widzimy detektor przewodów, który jest super ważnym narzędziem w elektryce. Detektory, takie jak te od Boscha, pomagają znaleźć ukryte kable pod tynkiem, co jest mega przydatne, gdy robimy remonty lub zakładamy nowe systemy elektryczne. Dzięki detektorowi możemy uniknąć uszkodzenia już istniejących instalacji, co może prowadzić do naprawdę poważnych problemów, jak zwarcia czy uszkodzenie sprzętu. W branży ważne jest, żeby dokładnie lokalizować przewody, co mówi norma IEC 60364. Poza tym, te urządzenia potrafią też rozpoznać różne typy przewodów, co bardzo ułatwia planowanie prac budowlanych i remontowych, moim zdaniem to spora oszczędność czasu.

Pytanie 37

Narzędzie przedstawione na ilustracji przeznaczone jest

Ilustracja do pytania
A. do docinania przewodów.
B. do ściągania izolacji z żył przewodów.
C. do zaciskania końcówek oczkowych.
D. do zaciskania końcówek tulejkowych.
Podane odpowiedzi sugerują różne funkcje narzędzia, które nie są zgodne z jego rzeczywistym przeznaczeniem. Zaciskanie końcówek tulejkowych czy oczkowych wymaga użycia innych narzędzi, takich jak szczypce zaciskowe, które mają zupełnie inną budowę i mechanizm działania. Narzędzia te są projektowane tak, aby zapewnić odpowiednie ciśnienie na końcówki, co jest kluczowe dla prawidłowego połączenia elektrycznego. Z kolei ściąganie izolacji z żył przewodów różni się od prostego cięcia przewodów, które powinno być realizowane narzędziami takimi jak nożyce do przewodów, które są dedykowane do tego celu. Typowe błędy myślowe w tym kontekście mogą wynikać z nieznajomości specyfikacji technicznych narzędzi czy mylenia ich funkcji. Zrozumienie różnicy między tymi narzędziami oraz ich zastosowaniem w praktyce jest kluczowe dla właściwego wykonania prac elektrycznych oraz zapewnienia bezpieczeństwa w instalacjach. Każde z tych narzędzi ma swoją unikalną rolę i stosowanie niewłaściwego narzędzia może prowadzić do uszkodzeń oraz zagrożeń dla bezpieczeństwa.

Pytanie 38

Na podstawie wybranych informacji dobierz wyłącznik nadprądowy do zabezpieczenia obwodu silnika trójfazowego klatkowego o prądzie znamionowym In = 5,5 A?

A. In = 6 A, charakterystyka B, krotność In = 3 do 5
B. In = 16 A, charakterystyka B, krotność In = 3 do 5
C. In = 16 A, charakterystyka C, krotność In = 5 do 10
D. In = 6 A, charakterystyka C, krotność In = 5 do 10
Wybór wyłączników nadprądowych dla silników trójfazowych wymaga zrozumienia kilku kluczowych aspektów, które niestety nie zostały uwzględnione w niepoprawnych odpowiedziach. Po pierwsze, wyłącznik o prądzie znamionowym 16 A jest zdecydowanie zbyt wysoki dla silnika o prądzie znamionowym 5,5 A. Taki wybór może prowadzić do braku odpowiedniego zabezpieczenia obwodu, co skutkuje ryzykiem uszkodzenia silnika w przypadku przeciążenia lub zwarcia. Wyłącznik powinien być dostosowany do wartości prądu roboczego, aby szybko reagował na niebezpieczne warunki. Kolejnym aspektem jest charakterystyka wyłącznika. Wybór charakterystyki B jest niewłaściwy, ponieważ jest ona zaprojektowana tak, aby zadziałać przy znacznie mniejszych prądach rozruchowych, co może prowadzić do fałszywych zadziałań podczas normalnej pracy silnika. Silniki klatkowe, zwłaszcza podczas rozruchu, mogą generować wysokie prądy, a charakterystyka C jest odpowiednia do ich tolerowania. Ponadto, krotności In w przedziale 3 do 5 mogą nie uwzględniać wszystkich wymagań bezpieczeństwa i wydajności. W praktyce, niewłaściwe dobranie wyłącznika może prowadzić do częstych awarii instalacji oraz zwiększonego ryzyka uszkodzenia urządzeń. Dlatego kluczowe jest przestrzeganie norm i zasad doboru zabezpieczeń, aby zapewnić optymalne funkcjonowanie systemu elektrycznego.

Pytanie 39

Czy na obudowie urządzenia elektrycznego oznaczenie IP00 wskazuje na

A. brak zabezpieczenia przed kurzem i wilgocią
B. stosowanie separacji ochronnej
C. zerową klasę ochrony przed porażeniem
D. najwyższy poziom ochronności
Oznaczenie IP00 zgodnie z normą IEC 60529 wskazuje na brak ochrony przed pyłem oraz wilgocią. Pierwsza cyfra '0' oznacza, że urządzenie nie oferuje żadnej ochrony przed wnikaniem ciał stałych, co może prowadzić do uszkodzeń mechanicznych lub zanieczyszczenia wewnętrznych komponentów. Druga cyfra również '0' informuje użytkownika, że urządzenie nie jest odporne na działanie cieczy. W praktyce oznacza to, że takie urządzenia powinny być używane wyłącznie w suchych i czystych środowiskach, gdzie nie ma ryzyka kontaktu z wodą lub pyłem. Przykładem mogą być niektóre urządzenia biurowe, które są projektowane do pracy w kontrolowanych warunkach. Zastosowanie tych informacji w praktyce jest kluczowe dla zapewnienia długowieczności i bezpieczeństwa użytkowania urządzeń elektrycznych, dlatego zaleca się, aby przed zakupem sprawdzić stopień ochrony IP urządzenia, aby dobrać je odpowiednio do warunków pracy.

Pytanie 40

Rysunek przedstawia schemat lampy z układem zapłonowym. Jaka to lampa?

Ilustracja do pytania
A. Żarowa.
B. Rtęciowa wysokoprężna.
C. Sodowa niskoprężna.
D. Fluorescencyjna.
Lampa rtęciowa wysokoprężna, jak sugeruje poprawna odpowiedź, charakteryzuje się specyficznym układem zapłonowym, który obejmuje dławik, kondensator oraz elektrody. Te elementy są kluczowe dla prawidłowego działania lampy, ponieważ dławik stabilizuje prąd i napięcie, a kondensator wspomaga zapłon, co jest istotne w przypadku lamp o dużym napięciu. Lampy te znajdują szerokie zastosowanie, szczególnie w oświetleniu ulicznym, gdzie ich wysoka wydajność świetlna oraz długi czas eksploatacji są niezwykle cenne. Warto również zauważyć, że lampy rtęciowe wysokoprężne emitują światło o charakterystycznym niebieskawym odcieniu, co sprawia, że są popularne w przestrzeniach przemysłowych i na zewnątrz. W kontekście standardów, zgodność z normami IEC 61167 i IEC 62035 zapewnia wysoką jakość i niezawodność tych źródeł światła, co czyni je odpowiednim wyborem dla wielu zastosowań komercyjnych i publicznych.