Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik geodeta
  • Kwalifikacja: BUD.18 - Wykonywanie pomiarów sytuacyjnych, wysokościowych i realizacyjnych oraz opracowywanie wyników tych pomiarów
  • Data rozpoczęcia: 9 lutego 2026 08:32
  • Data zakończenia: 9 lutego 2026 08:46

Egzamin zdany!

Wynik: 26/40 punktów (65,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Dlaczego w geodezji ważna jest kalibracja przyrządów pomiarowych?

A. Aby ułatwić transport sprzętu na miejsce pomiaru.
B. Aby zredukować zużycie materiałów pomiarowych.
C. Aby zapewnić dokładność i wiarygodność pomiarów.
D. Aby przyspieszyć proces wykonywania pomiarów.
Kalibracja przyrządów pomiarowych jest kluczowa w geodezji, ponieważ zapewnia dokładność i wiarygodność wyników pomiarów. W geodezji precyzja pomiarów jest fundamentalna, gdyż nawet najmniejsze błędy mogą prowadzić do znaczących nieścisłości w odwzorowaniu terenu czy projektowaniu infrastruktury. Regularna kalibracja gwarantuje, że instrumenty pomiarowe działają zgodnie z ich specyfikacjami i są w stanie generować wyniki zgodne z wymaganiami projektowymi oraz normami branżowymi. Bez kalibracji, sprzęt mógłby generować błędne odczyty z powodu zużycia, zmian w warunkach środowiskowych czy niewłaściwej obsługi. Praktyczne zastosowanie kalibracji widoczne jest na przykład w budownictwie, gdzie precyzyjne pomiary są niezbędne do prawidłowego wykonania konstrukcji. Ponadto, kalibracja jest zgodna z dobrymi praktykami branżowymi i standardami ISO, które wymagają, by wszystkie urządzenia pomiarowe były regularnie kontrolowane i kalibrowane. Dzięki temu geodeci mogą być pewni, że ich praca jest dokładna i zgodna z oczekiwaniami klientów oraz przepisami prawa.

Pytanie 2

Topograficzny opis punktu osnowy pomiarowej nie zawiera

A. numeru punktu osnowy, który jest opisywany
B. miar umożliwiających lokalizację znaku
C. skali przygotowania opisu
D. nazwiska geodety, który sporządził opis
Zauważyłem, że w innych odpowiedziach były ważne rzeczy, które są potrzebne do dobrego opisu topograficznego punktu osnowy. Każdy punkt musi mieć swój numer identyfikacyjny, bo to dzięki niemu można go łatwo zlokalizować i znaleźć w terenie. To jest naprawdę kluczowe w geodezji. Oprócz tego, potrzebne są też miary, żeby określić, jak się dotrzeć do znaku - mogą to być odległości czy kierunki do pobliskich punktów. W trudnych warunkach terenowych jasne wskazanie lokalizacji jest mega ważne. No i nie zapominaj, że dobrze jest podać nazwisko geodety, który opisał ten punkt, bo to gwarantuje odpowiedzialność i rzetelność dokumentów. Powinno się sprawdzić każdy opis przez odpowiedzialnego geodetę. Takie podejście zapewnia, że wszystko jest zgodne z normami. Zrozumienie, jak te wszystkie elementy się do siebie odnoszą, jest ważne dla sprawnego działania systemu osnowy geodezyjnej oraz jakości danych pomiarowych.

Pytanie 3

Która technika pomiaru kątów poziomych jest najkorzystniejsza, gdy planowane jest obserwowanie pięciu celów?

A. Repetycyjna
B. Kierunkowa
C. Reiteracyjna
D. Sektorowa
Metoda kierunkowa jest najbardziej korzystna w przypadku, gdy obserwacji podlega pięć celowych, ponieważ pozwala na precyzyjne pomiary kątów poziomych z zachowaniem dużej efektywności. Ta technika polega na pomiarze kąta w odniesieniu do wybranego kierunku, co minimalizuje błędy pomiarowe, które mogą wystąpić przy wielokrotnych pomiarach. W praktyce, metoda kierunkowa umożliwia szybkie i dokładne zbieranie danych, co jest kluczowe w geodezji i inżynierii lądowej. W sytuacji, gdy mamy do czynienia z wieloma celami, jak w tym przypadku, podejście kierunkowe przyczynia się do optymalizacji procesu pomiarowego poprzez ograniczenie liczby pomiarów niezbędnych do uzyskania wymaganej precyzji. Warto również zaznaczyć, że ta metoda jest zgodna z normami lokacyjnymi oraz standardami pomiarów geodezyjnych, co stanowi dodatkowy atut w kontekście profesjonalnych aplikacji inżynieryjnych i budowlanych. Stosując metodę kierunkową, praktycy mogą skutecznie zarządzać czasem i zasobami, co jest szczególnie ważne w projektach o ograniczonym budżecie i czasie realizacji.

Pytanie 4

Zasięg terenowy sieci osnowy geodezyjnej w danym powiecie był niesymetryczny. W związku z tym geodeta otrzymał zadanie utworzenia nowej sieci szczegółowej osnowy geodezyjnej. Kto powinien zatwierdzić projekt tej osnowy?

A. Marszałek Województwa
B. Geodeta Powiatowy
C. Starosta
D. Geodeta uprawniony
Zatwierdzenie projektu sieci szczegółowej osnowy geodezyjnej przez starostę jest zgodne z przepisami prawa geodezyjnego i kartograficznego. Starosta, jako przedstawiciel lokalnych władz, ma odpowiedzialność za zagospodarowanie przestrzenne oraz planowanie w swoim powiecie. Proces zatwierdzania projektu osnowy geodezyjnej jest kluczowy, ponieważ wpływa na jakość danych geodezyjnych, które będą wykorzystywane w różnych zastosowaniach, takich jak planowanie inwestycji czy ochrona środowiska. W praktyce, po przygotowaniu projektu przez geodetę, dokumentacja zostaje przedstawiona staroście, który ocenia jego zgodność z obowiązującymi normami oraz celami rozwoju powiatu. Na przykład, w przypadku przewidywanej budowy infrastruktury, starosta może zlecić dodatkowe analizy dotyczące wpływu nowej osnowy na istniejące zasoby geodezyjne. Dobrą praktyką jest również współpraca starosty z geodetami uprawnionymi, aby zapewnić, że projekt jest zgodny z lokalnymi regulacjami i standardami branżowymi.

Pytanie 5

Który szkic odpowiada obserwacjom kierunków i odległości przedstawionym w tabelach?

Ilustracja do pytania
A. A.
B. C.
C. D.
D. B.
Szkic A naprawdę dobrze oddaje to, co widzimy w tabelach. Widać, że jest zgodny z regułami, które są ważne w geodezji. Każdy kąt i każda odległość są zgodne z normami, co daje nam pewność co do wyników. Jak mamy odpowiednie narzędzia, na przykład kompas czy dalmierz, to łatwiej nam precyzyjnie zlokalizować obiekty. To kluczowe, bo w inżynierii czy architekturze najdrobniejszy błąd może nas drogo kosztować. Musimy więc wiedzieć, jak dane się łączą i jak je dobrze przedstawić graficznie, żeby uniknąć problemów w projektach.

Pytanie 6

Godło mapy zasadniczej 6.115.27.4 w systemie współrzędnych PL-2000 wskazuje na mapę stworzoną w skali

A. 1:5000
B. 1:2000
C. 1:500
D. 1:1000
Odpowiedź 1:5000 jest poprawna, ponieważ w systemie oznaczeń map zasadniczych w Polsce, godło mapy 6.115.27.4 wskazuje na mapę opracowaną w skali 1:5000. Skala mapy to ważny aspekt, który wpływa na szczegółowość przedstawianych informacji geograficznych i ich zastosowanie w różnych dziedzinach, takich jak planowanie przestrzenne, budownictwo czy zarządzanie kryzysowe. W przypadku skali 1:5000, jeden centymetr na mapie odpowiada pięciu tysiącom centymetrów w rzeczywistości, co oznacza, że mapa jest stosunkowo szczegółowa i może być używana do analizy małych obszarów. Jest to standardowa skala dla map miejskich, co pozwala na dokładne odwzorowanie ulic, budynków oraz infrastruktury. W praktyce, takie mapy są wykorzystywane m.in. przez architektów, inżynierów oraz planistów, którzy potrzebują precyzyjnych danych do projektów budowlanych oraz rozwoju urbanistycznego. Rekomendacje dotyczące stosowania odpowiednich skal map są również zawarte w normach ISO dotyczących kartografii, co podkreśla ich znaczenie w profesjonalnym środowisku.

Pytanie 7

Wyznacz wysokość punktu 10, jeśli wysokość punktu RpA wynosi HRpA = 125,500 m. Odczyt na łacie tylniej to t = 1500, a z przodu p = 0500.

A. H10 = 124,500 m
B. H10 = 126,500 m
C. H10 = 142,500 m
D. H10 = 123,500 m
Poprawna odpowiedź to H10 = 126,500 m. Aby obliczyć wysokość punktu 10, musimy uwzględnić wysokość punktu RpA oraz odczyty dokonane na łacie. Wysokość punktu RpA wynosi 125,500 m. Odczyt wsteczny na łacie wynosi 1500, co oznacza, że musimy dodać tę wartość do wysokości RpA, ponieważ jest to odczyt z laty umieszczonej w wyższej pozycji. Następnie odczyt w przód na łacie wynosi 0500, co oznacza, że musimy odjąć tę wartość od wcześniejszego wyniku. Obliczenia przedstawiają się następująco: H10 = H<sub>RpA</sub> + t - p = 125,500 m + 1500 - 0500 = 126,500 m. Tego rodzaju obliczenia są powszechnie stosowane w geodezji i inżynierii lądowej, gdzie precyzyjne pomiary wysokości są kluczowe dla projektów budowlanych oraz do pomiarów terenowych. Warto wiedzieć, że stosowanie łaty jest standardową praktyką w pomiarach geodezyjnych, co pozwala na uzyskiwanie dokładnych wyników. Zrozumienie tych zasad jest niezbędne dla każdego geodety.

Pytanie 8

Jaki typ sieci poligonowej przedstawiono na rysunku?

Ilustracja do pytania
A. Niezależną.
B. Jednowęzłową.
C. Nawiązaną.
D. Kątową.
Wybór innych typów sieci poligonowej, jak nawiązana, kątowa czy jednowęzłowa, może trochę zamieszać w rozumieniu kluczowych cech sieci niezależnych. Sieci nawiązane są związane bezpośrednio z punktami osnowy geodezyjnej, co sprawia, że musisz odnosić pomiary do ustalonych punktów, a to ogranicza ich elastyczność. Z kolei sieci kątowe skupiają się na pomiarze kątów między punktami i mogą być powiązane z innymi systemami pomiarowymi, więc to też nie jest zgodne z tym, co charakteryzuje sieci niezależne. Jeśli chodzi o sieci jednowęzłowe, to one koncentrują się na pomiarach wokół jednego węzła, co znowu ogranicza ich niezależność i wpływa na dokładność wyników. Jak widzisz, błędne rozumienie tych typów sieci może prowadzić do złych metod pomiarowych, a to w efekcie psuje jakość i precyzję wyników. Wiedza o różnicach między tymi typami jest istotna, żeby dobrze zaplanować działania geodezyjne i je później analizować, dlatego ważne jest, żeby zrozumieć, że sieci niezależne są całkowicie autonomiczne i nie potrzebują odniesienia do już istniejących punktów osnowy.

Pytanie 9

Kto odpowiada za ustanowienie i prowadzenie krajowej geodezyjnej ewidencji sieci uzbrojenia terenu?

A. starosta
B. geodeta uprawniony
C. główny geodeta kraju
D. wojewoda
Główny geodeta kraju jest organem odpowiedzialnym za zakładanie i prowadzenie Krajowej geodezyjnej ewidencji sieci uzbrojenia terenu, co wynika z regulacji zawartych w Ustawie z dnia 17 maja 1989 r. - Prawo geodezyjne i kartograficzne. Jego zadaniem jest nadzór nad działalnością geodezyjną w kraju, w tym zapewnienie odpowiedniej jakości danych geodezyjnych oraz ich zgodności z obowiązującymi normami i standardami. W praktyce, główny geodeta kraju koordynuje prace związane z ewidencją infrastruktury, co jest kluczowe dla planowania przestrzennego oraz zarządzania zasobami naturalnymi. Działania te mają na celu utrzymanie aktualnej bazy danych, która jest podstawą podejmowania decyzji administracyjnych oraz inwestycyjnych. Umożliwia to również efektywne zarządzanie sieciami uzbrojenia terenu, co jest istotne w kontekście rozwoju infrastruktury i ochrony środowiska.

Pytanie 10

Jaką odległość mają punkty hektometrowe na osi trasy?

A. 150 m
B. 100 m
C. 50 m
D. 200 m
Punkty hektometrowe to standardowe punkty pomiarowe na trasie, które są oddalone od siebie o 100 m. Jest to istotne w kontekście nawigacji, planowania tras oraz w zarządzaniu ruchem drogowym. Umożliwia to precyzyjne określenie lokalizacji pojazdu lub obiektu na danej trasie. W praktyce, punkty te są wykorzystywane w różnych systemach transportowych, w tym w kolejnictwie, gdzie oznaczają konkretne odległości między stacjami. Przy ustalaniu rozkładów jazdy oraz w przypadku monitorowania postępu transportu, dokładne określenie odległości jest kluczowe. Standardy takie jak normy ISO w zakresie transportu i logistyki oraz dobre praktyki związane z oznaczaniem tras uwzględniają właśnie odległości określane w hektometrach, co ułatwia komunikację i zarządzanie procesami logistycznymi.

Pytanie 11

W której ćwiartce geodezyjnego układu współrzędnych prostokątnych ma miejsce azymut o wartości 375g55c60cc?

A. IV
B. II
C. III
D. I
Azymut o wartości 375°55'60'' oznacza kąt mierzony w kierunku zgodnym z ruchem wskazówek zegara od północy. Aby określić, w której ćwiartce geodezyjnego układu współrzędnych prostokątnych znajduje się ten azymut, należy zauważyć, że wartości azymutu powyżej 360° są często interpretowane poprzez odjęcie 360°. W naszym przypadku 375°55'60'' - 360° = 15°55'60''. Kąt ten jest zatem mierzony w kierunku wschodnim, co wskazuje na to, że znajduje się w pierwszej ćwiartce. Jednakże, z uwagi, że oszacowaliśmy to już na podstawie wartości kątowej i zrozumienia ćwiartek, 375°57'60'' przywraca nas do wartości, która jest w IV ćwiartce. Dlatego prawidłowa odpowiedź to IV. W praktyce azymut jest kluczowym elementem w nawigacji, geodezji oraz kartografii, gdzie precyzyjne określenie kierunku ma fundamentalne znaczenie dla dokładności pomiarów i analiz przestrzennych. Standardy takie jak ISO 19111 definiują metody pomiaru i reprezentacji azymutów w kontekście systemów informacji geograficznej.

Pytanie 12

Podczas pomiarów sytuacyjnych narożnika ogrodzenia przy zastosowaniu metody biegunowej, należy przeprowadzić obserwacje geodezyjne

A. kąta pionowego i odległości poziomej
B. kąta pionowego i odległości skośnej
C. kąta poziomego i odległości skośnej
D. kąta poziomego i odległości poziomej
Pojęcia związane z pomiarami geodezyjnymi są złożone i często mylone, co prowadzi do nieprawidłowych wniosków. Przykładowo, wybór kąta pionowego i odległości skośnej może wydawać się uzasadniony, jednak w kontekście pomiaru narożnika ogrodzenia nie jest to praktyka stosowana w geodezji. Kąt pionowy jest istotny w pomiarach, które wymagają określenia różnic wysokości lub w kontekście budownictwa, ale w przypadku, gdy celem jest ustalenie granic działek, kluczowe są pomiary w poziomie. Ponadto, odległość skośna nie ma zastosowania w sytuacji, gdy istotne jest dokładne określenie odległości między punktami na płaszczyźnie poziomej. Używanie tej metody może prowadzić do błędów w lokalizacji granic, co jest niezgodne z dobrymi praktykami w geodezji. W praktyce, pomiar odległości skośnej nie odpowiada rzeczywistym odległościom na poziomie, co może powodować problemy w dalszej interpretacji wyników. Tego rodzaju nieprawidłowe podejście może również wynikać z niepełnego zrozumienia różnicy między różnymi rodzajami pomiarów, co jest istotne w kontekście geodezyjnym. Niewłaściwe myślenie w zakresie pomiarów geodezyjnych prowadzi do poważnych błędów w dokumentacji i może mieć dalekosiężne konsekwencje dla przyszłych inwestycji.

Pytanie 13

Ile ciągów poligonowych tworzy sieć poligonową przedstawioną na rysunku?

Ilustracja do pytania
A. 2
B. 4
C. 3
D. 5
Poprawna odpowiedź to 3. Sieć poligonowa składa się z ciągów poligonowych, które są zamkniętymi łamanymi. Na przedstawionym rysunku można zidentyfikować trzy zamknięte łamane, co w praktyce oznacza, że mamy do czynienia z trzema odrębnymi elementami stanowiącymi podstawę analizy przestrzennej w geodezji oraz kartografii. Każdy z tych ciągów jest istotny dla określenia granic działek, obszarów do analizy urbanistycznej czy w planowaniu przestrzennym. Dobre praktyki w zakresie tworzenia sieci poligonowych wymuszają na nas precyzyjne zidentyfikowanie każdego ciągu, co jest niezbędne do prawidłowego pomiaru i analizy geodezyjnej. W dokumentacji geodezyjnej oraz planistycznej, zamknięte łamane pełnią kluczową rolę w przedstawianiu obiektów przestrzennych, co ma zastosowanie zarówno w projektach inżynieryjnych, jak i w opracowaniach dotyczących ochrony środowiska.

Pytanie 14

Na czym umieszcza się współrzędne X oraz Y punktów osnowy realizacyjnej?

A. mapie zasadniczej
B. szkicu dokumentacyjnym
C. mapie ewidencyjnej
D. szkicu inwentaryzacyjnym
Szkic dokumentacyjny to naprawdę przydatne narzędzie, które pomaga w wizualizacji i zapisywaniu współrzędnych punktów osnowy realizacyjnej. Te współrzędne X i Y są mega ważne, bo pozwalają określić, gdzie dokładnie znajdują się punkty w przestrzeni, co jest super istotne w geodezji i inżynierii. Jak masz taki szkic, to łatwiej analizować i interpretować te wszystkie geodezyjne dane. Przykładowo, przy inwentaryzacji gruntów, precyzyjne odzwierciedlenie punktów osnowy pozwala dokładnie ustalić granice działek. No i co ważne, według standardów geodezyjnych, dokumentacja musi być zrozumiała i przejrzysta, żeby każdy mógł to ogarnąć. Dlatego tak ważne jest, aby współrzędne były poprawnie naniesione na szkic, bo to wpływa na cały proces geodezyjny i zgodność z normami prawnymi i technicznymi.

Pytanie 15

Jakie oznaczenie literowe powinno znaleźć się na szkicu inwentaryzacji powykonawczej budynku, który ma być przekształcony w bibliotekę?

A. f
B. b
C. k
D. e
Oznaczenia literowe w inwentaryzacji są ważne, bo pomagają w klasyfikacji i organizacji pomieszczeń w budynkach. Odpowiedzi jak 'f', 'b' czy 'e' pokazują różne pomieszczenia, ale w kontekście biblioteki mogą być mylące. Oznaczenie 'f' może się kojarzyć z funkcjami, które w ogóle nie są związane z przestrzeniami publicznymi, takimi jak jakieś nagrody czy pomieszczenia techniczne. No i 'b' jest często używane w kontekście budynków publicznych, ale nie mówi nic konkretnego o funkcji biblioteki. A 'e' odnosi się do przestrzeni edukacyjnych, które też nie zawsze są w bibliotece. Warto pamiętać, żeby przy inwentaryzacji kierować się standardami branżowymi i wytycznymi do oznaczania pomieszczeń, bo złe klasyfikacje mogą potem powodować problemy w zarządzaniu budynkiem i jego rozwoju. Właściwe oznaczenia naprawdę wpływają na efektywność działania budynku.

Pytanie 16

W jakim zakresie znajduje się azymut boku AB, jeżeli różnice współrzędnych między punktem początkowym a końcowym boku AB są następujące: ΔXAB < 0, ΔYAB > 0?

A. 300÷400g
B. 200÷300g
C. 100÷200g
D. 0÷100g
Azymut boku AB można określić na podstawie różnic współrzędnych ΔX<sub>AB</sub> i ΔY<sub>AB</sub>. W tym przypadku ΔX<sub>AB</sub> jest ujemne, co oznacza, że punkt końcowy boku AB znajduje się na zachód od punktu początkowego. Z kolei ΔY<sub>AB</sub> jest dodatnie, co wskazuje, że punkt końcowy leży na północ od punktu początkowego. Taka kombinacja różnic współrzędnych sugeruje, że azymut boku AB mieści się w przedziale od 100° do 200°. To dlatego, że azymut 180° odpowiada kierunkowi południowemu, a wartości od 100° do 180° wskazują na kierunki północno-zachodnie. Praktyczne zastosowanie tej wiedzy znajduje zastosowanie w geodezji oraz inżynierii lądowej, gdzie precyzyjne określenie kierunków jest kluczowe w procesach pomiarowych i mapowania terenu. Zgodnie z normami geodezyjnymi, stosowanie azymutów w określonym zakresie pozwala na poprawne planowanie i realizację projektów budowlanych.

Pytanie 17

Która z podanych czynności nie dotyczy aktualizacji mapy zasadniczej?

A. Usunięcie sytuacji, która już nie istnieje w terenie
B. Dodanie nowych elementów treści mapy
C. Korekta zmian w nazewnictwie
D. Wprowadzenie jedynie wybranych danych
Odpowiedź 'naniesienie tylko wybranych danych' jest prawidłowa, ponieważ proces aktualizacji mapy zasadniczej wymaga kompleksowego podejścia do uzupełniania i weryfikacji danych. Mapa zasadnicza, jako dokument urzędowy, powinna odzwierciedlać pełny stan rzeczy w terenie, co oznacza, że każda istotna zmiana, w tym wprowadzenie nowych elementów, poprawa nazewnictwa oraz usunięcie nieaktualnych obiektów, powinny być wprowadzane w sposób kompleksowy. Na przykład, jeżeli na danym terenie zbudowano nową drogę, to nie wystarczy jedynie nanieść tej drogi – konieczne jest również zaktualizowanie nazw ulic, systemów adresowych oraz wszelkich powiązanych danych. Ponadto, zgodnie z obowiązującymi standardami, w tym normami ISO oraz krajowymi przepisami prawa geodezyjnego, aktualizacja mapy zasadniczej powinna być przeprowadzana w sposób systematyczny i całościowy, aby zapewnić jej rzetelność oraz aktualność. Tylko w ten sposób mapa może służyć jako wiarygodne źródło informacji dla różnych użytkowników, w tym instytucji publicznych, inwestorów oraz obywateli.

Pytanie 18

Godło mapy 6.115.27.25.3.4 w systemie współrzędnych PL-2000 reprezentuje mapę w skali

A. 1:2000
B. 1:1000
C. 1:500
D. 1:5000
Analizując inne skale, takie jak 1:1000, 1:2000 czy 1:500, warto zauważyć, że każda z nich odnosi się do różnych zakresów szczegółowości odwzorowania terenu. Skala 1:1000 jest znacznie bardziej szczegółowa i jest zazwyczaj stosowana w geodezji i projektowaniu budynków, jednak nie jest typowo używana w kontekście mapy o numerze 6.115.27.25.3.4. Z kolei skala 1:2000, mimo że również może być używana do przedstawiania terenów miejskich, nie odpowiada standardowi wskazanemu w godle. Skala 1:500 jest skrajnie szczegółowa, co czyni ją odpowiednią dla planów zagospodarowania terenu, lecz nie w kontekście ogólnych map topograficznych. Typowym błędem myślowym jest założenie, że im mniejsza liczba w skali, tym większa szczegółowość, co prowadzi do mylnej interpretacji. W rzeczywistości każda skala ma swoje zastosowanie w określonych kontekstach, dlatego kluczowe jest zrozumienie, jak poszczególne skale wpływają na przekazywaną informację. Standardy kartograficzne w Polsce wyraźnie definiują zastosowanie poszczególnych skal w zależności od ich celów i kontekstu, co podkreśla znaczenie znajomości tych zasad w pracy zawodowej.

Pytanie 19

Jak nazywają się konstrukcje drewniane przedstawione na rysunku, służące do utrwalenia wytyczonych osi konstrukcyjnych obiektu budowlanego?

Ilustracja do pytania
A. Ławy ciesielskie.
B. Trójkąty skarpowe.
C. Stopy fundamentowe.
D. Krzyże niwelacyjne.
Ławy ciesielskie to naprawdę ważne konstrukcje w budownictwie. Służą jako stabilne wsparcie, które pomaga w wyznaczaniu osi konstrukcyjnych, co jest kluczowe, żeby wszystko było zrobione porządnie. Dzięki nim łatwiej jest ustalić poziom fundamentów, co z kolei ma duże znaczenie dla dalszej budowy. Na przykład, gdy robisz podłoże pod schody czy strop, obecność ław ciesielskich pomaga zachować właściwe kąty i linie. Fajnie jest też wiedzieć, że stosowanie ich zgodnie z zasadami branżowymi to dobra praktyka, bo dzięki temu unikamy błędów, które mogą generować dodatkowe koszty. Z mojego doświadczenia, warto też sprawdzić stabilność tych ław przed rozpoczęciem kolejnych etapów budowy, żeby mieć pewność, że wszystko idzie jak należy.

Pytanie 20

Ile wynosi odczyt dla kreski górnej na zamieszczonym rysunku łaty niwelacyjnej?

Ilustracja do pytania
A. 2390 mm
B. 2464 mm
C. 2540 mm
D. 2615 mm
Odpowiedź 2540 mm jest poprawna, ponieważ odczyt dla górnej kreski na łacie niwelacyjnej wynosi dokładnie tyle. W praktyce, każda kreska na łacie reprezentuje jednostkę pomiaru, w tym przypadku 10 mm. Górna kreska znajduje się cztery kreski powyżej wartości 2500 mm, co daje nam 2540 mm. W kontekście niwelacji, precyzyjne odczyty są kluczowe dla zapewnienia dokładności pomiarów terenu. W standardach budowlanych oraz geodezyjnych niezbędne jest zachowanie odpowiednich technik odczytywania wartości z łaty niwelacyjnej, aby uniknąć błędów, które mogą wpłynąć na dalsze etapy prac, takie jak wyrównanie terenu, budowa fundamentów czy przebieg instalacji. Rekomendowane jest również posługiwanie się odpowiednimi narzędziami oraz przeszkolenie personelu, aby zapewnić, że pomiary są prowadzone zgodnie z obowiązującymi normami i standardami branżowymi.

Pytanie 21

Która z metod pomiarów sytuacyjnych szczegółów terenowych opiera się na pomiarze kątów oraz odległości przy użyciu tachimetru?

A. Biegunowa
B. Domiarów prostokątnych
C. Wcięć kątowych
D. Ortogonalna
Metoda biegunowa to naprawdę podstawowa rzecz w geodezji. Chodzi o to, żeby zmierzyć kąty i odległości przy pomocy tachimetru. Dzięki temu, można dokładnie ustalić, gdzie są punkty w terenie, w odniesieniu do jednego, wybranego punktu. Tachimetr łączy w sobie teodolity i dalmierze, co pozwala na jednoczesne odczyty kątów poziomych i pionowych oraz dystansów do różnych punktów. To wszystko sprawia, że pomiary są efektywniejsze i bardziej precyzyjne. Metoda biegunowa jest szczególnie przydatna, gdy teren jest trudny do ogarnięcia, albo gdy potrzebujemy szybko i dokładnie zarejestrować teren. W branży są też różne normy, jak te ISO dotyczące pomiarów, które mówią, jak ważne jest korzystanie z tej metody w geodezji i inżynierii, czy przy tworzeniu map.

Pytanie 22

System informacyjny, który umożliwia zbieranie, aktualizację i udostępnianie danych o sieciach uzbrojenia terenu GESUT, to

A. ewidencja geometryczna systemu uzbrojenia terenu
B. geodezyjna ewidencja sieci uzbrojenia terenu
C. ewidencja geometryczna sieci uzbrojenia terenu
D. ewidencja geodezyjna systemu urządzeń technicznych
Geodezyjna ewidencja sieci uzbrojenia terenu (GESUT) jest kluczowym narzędziem w zarządzaniu infrastrukturą przestrzenną. Odpowiedź, która wskazuje na geodezyjną ewidencję, jest prawidłowa, ponieważ koncentruje się na precyzyjnym zbieraniu i utrzymywaniu danych geodezyjnych dotyczących sieci uzbrojenia, takich jak wodociągi, kanalizacje czy linie energetyczne. GESUT umożliwia nie tylko aktualizację tych danych, ale także ich udostępnianie różnym użytkownikom, co ma istotne znaczenie w kontekście planowania przestrzennego i zarządzania kryzysowego. Przykładowo, w sytuacji awarii sieci wodociągowej, szybki dostęp do map GESUT może znacząco przyspieszyć działania naprawcze. Dodatkowo, zgodnie z dobrymi praktykami branżowymi, ewidencja ta powinna być zgodna z krajowymi standardami, co pozwala na jej integrację z innymi systemami informacyjnymi, w tym ewidencją gruntów i budynków. Takie zintegrowane podejście wspiera efektywne zarządzanie infrastrukturą oraz podnosi jakość świadczonych usług.

Pytanie 23

Dokumentacja dotycząca pracy geodezyjnej, którą należy wypełnić w ośrodku dokumentacji geodezyjnej i kartograficznej, powinna zawierać

A. informację o innych pracach prowadzonych w rejonie zgłaszanej pracy
B. dane dotyczące wykonawcy
C. datę zakończenia pracy
D. opis przedmiotu oraz lokalizacji i obszaru realizowanej pracy
W przypadku zgłoszenia pracy geodezyjnej, osoba wypełniająca dokumentację może mylnie sądzić, że inne elementy, takie jak termin zakończenia pracy, opis przedmiotu czy informacja o wykonawcy, są kluczowe dla ośrodka dokumentacji geodezyjnej i kartograficznej. Jednakże, w kontekście przeprowadzania takich prac, najważniejszym aspektem jest zrozumienie, jakie inne działania są prowadzone w tym samym czasie na danym obszarze. Termin zakończenia pracy, choć istotny z perspektywy zarządzania projektami, nie dostarcza istotnych informacji o wpływie na inne projekty, podczas gdy opis przedmiotu pracy może być zbyt ogólny i nie uwzględniać specyfiki lokalnych warunków. Informacja o wykonawcy również ma swoje miejsce w dokumentacji, jednakże sama w sobie nie odnosi się do kluczowych współzależności między różnymi pracami geodezyjnymi. Takie podejście do zgłoszenia może prowadzić do pomijania istotnych czynników, które mogą rzekomo kolidować z innymi projektami, co skutkuje problemami z koordynacją działań geodezyjnych. Dlatego zrozumienie znaczenia koordynacji prac w obszarze geodezyjnym oraz odpowiedniego dokumentowania tego aspektu jest kluczowym elementem skutecznego zarządzania projektami geodezyjnymi.

Pytanie 24

W terenie zmierzono odcinek AB o długości DAB = 33,00 m. Na mapie odległość pomiędzy punktami AB wynosi dAB = 66,00 mm. Jaką skalę ma mapa?

A. 1:500
B. 1:250
C. 1:1000
D. 1:2000
Skala mapy jest wyrażona jako stosunek odległości na mapie do rzeczywistej odległości w terenie. W tym przypadku zmierzone odcinki to D<sub>AB</sub> = 33,00 m (rzeczywista długość) oraz d<sub>AB</sub> = 66,00 mm (odległość na mapie). Aby obliczyć skalę, musimy przeliczyć odległość z milimetrów na metry. 66 mm to 0,066 m. Następnie, skala obliczana jest jako D<sub>AB</sub> / d<sub>AB</sub>, co daje: 33,00 m / 0,066 m = 500. Zatem skala mapy wynosi 1:500, co oznacza, że 1 metr w terenie odpowiada 500 mm (czyli 0,5 m) na mapie. Przykładowo, w praktyce skala 1:500 jest używana w planach urbanistycznych, gdzie istotne jest przedstawienie szczegółowych informacji o terenie. Współczesne systemy GIS oraz różne programy do tworzenia map bazują na takich obliczeniach, co jest zgodne z dobrą praktyką branżową.

Pytanie 25

Wskaż na podstawie rysunku wartość odczytu z łaty, którą należy wpisać w dzienniku niwelacyjnym.

Ilustracja do pytania
A. 1332
B. 1360
C. 1282
D. 1208
Poprawna odpowiedź to 1282 mm, ponieważ na podstawie rysunku najwyższa pełna linia na łacie niwelacyjnej wynosi 12 m, a dodatkowy odczyt to 82 mm. W praktyce, w procesie niwelacji kluczowe jest prawidłowe odczytanie danych z łaty, co ma bezpośredni wpływ na jakość pomiarów i planowanie prac budowlanych. Zgodnie z dobrymi praktykami, zawsze należy upewnić się, że łata jest ustawiona prosto i stabilnie, a odczyty należy rejestrować z odpowiednią dokładnością. Odczyt w milimetrach, który w tym przypadku wynosi 1282 mm, jest istotny do dalszego przetwarzania danych w dzienniku niwelacyjnym, który powinien być prowadzony zgodnie z normą PN-EN ISO 17123, co zapewnia rzetelność i dokładność wyników. Warto również podkreślić, że wiedza na temat odczytów z łaty niwelacyjnej jest podstawą w wielu dziedzinach inżynierii lądowej, w tym w geodezji i budownictwie, dlatego umiejętność prawidłowego odczytu wyników jest niezwykle cenna.

Pytanie 26

Która z map przedstawia rozmieszczenie infrastruktury terenu?

A. Topograficzna
B. Zasadnicza
C. Ewidencyjna
D. Sozologiczna
Mapa zasadnicza jest kluczowym narzędziem w inżynierii i planowaniu przestrzennym, które przedstawia szczegółowe informacje o przestrzennym usytuowaniu sieci uzbrojenia terenu, takich jak drogi, sieci wodociągowe, kanalizacyjne i energetyczne. Mapa ta bazuje na normach i standardach geodezyjnych, takich jak PN-ISO 19131, które określają sposób przedstawiania i gromadzenia danych przestrzennych. Przykładem zastosowania mapy zasadniczej może być projektowanie nowych osiedli mieszkalnych, gdzie dokładna wiedza o już istniejącej infrastrukturze jest niezbędna do uniknięcia kolizji z istniejącymi sieciami. Mapa zasadnicza umożliwia także planowanie urbanistyczne oraz prowadzenie działań związanych z ochroną środowiska, ponieważ dostarcza ważnych informacji na temat lokalizacji istniejącej zabudowy oraz infrastruktury, co jest zgodne z dobrą praktyką w zakresie zrównoważonego rozwoju i planowania przestrzennego.

Pytanie 27

W jakim zakresie znajduje się wartość azymutu boku AB, gdy różnice współrzędnych między punktem początkowym a końcowym boku AB wynoszą ΔXAB < 0 oraz ΔYAB < 0?

A. 0÷100g
B. 300÷400g
C. 200÷300g
D. 100÷200g
Wartość azymutu boku AB wyznacza kierunek, w którym leży ten bok w układzie współrzędnych. Różnice współrzędnych ΔX<sub>AB</sub> < 0 oraz ΔY<sub>AB</sub> < 0 oznaczają, że zarówno współrzędna X, jak i Y punktu końcowego boku AB są mniejsze niż współrzędne punktu początkowego. W takim przypadku, punkt końcowy znajduje się w lewym dolnym ćwiartce układu współrzędnych, co sugeruje, że azymut boku AB powinien wynosić między 180 a 270 stopni. Wartość azymutu 200÷300g odpowiada właśnie temu przedziałowi, co oznacza, że boki skierowane w tym kierunku mają większy kąt od poziomu. Przykładem zastosowania azymutu w praktyce jest nawigacja, gdzie precyzyjne określenie kierunku może być kluczowe dla wytyczenia trasy w terenie. W inżynierii lądowej czy geodezji, prawidłowe obliczenie azymutu ma fundamentalne znaczenie dla dokładności pomiarów oraz w późniejszym projektowaniu i realizacji budowli.

Pytanie 28

Na podstawie przedstawionego raportu z wyrównania współrzędnych punktów osnowy realizacyjnej określ, ile wynosi błąd średni położenia punktu 1005.

Lp.Nr PX [m]Y [m]Mx [m]My [m]Mp [m]KL
11000843729.5930255814.63260.00790.01820.0198
21004843905.8055255769.88160.01440.01830.0233
31003843923.6493255717.15190.01660.01850.0248
41002843906.0657255712.58920.01790.01860.0258
51005843936.8654255729.41120.01580.01850.0243
61221843726.5500255606.63000.00000.00000.0000
7767845301.9800255940.35000.00000.00000.0000s
81336845312.2400255012.03000.00000.00000.0000s
91228844953.2000257194.25000.00000.00000.0000s
A. 23,4 mm
B. 24,3 mm
C. 15,8 mm
D. 18,5 mm
Poprawna odpowiedź to 24,3 mm, co odpowiada wartości 0,0243 m przedstawionej w raporcie z wyrównania współrzędnych punktów osnowy realizacyjnej. Błąd średni położenia punktu jest kluczowym parametrem w geodezji, ponieważ odzwierciedla precyzję i dokładność pomiarów. W praktyce, błąd średni pokazuje, jak daleko średnio zmierzone punkty odchylają się od rzeczywistej pozycji. Wartość 24,3 mm mieści się w akceptowalnym zakresie błędów dla pomiarów geodezyjnych, co jest zgodne z normami przyjętymi w branży, takimi jak ISO 17123. W przypadku pomiarów terenowych, odpowiedni błąd średni jest istotny, aby zapewnić wiarygodność i użyteczność danych geodezyjnych, które są wykorzystywane w projektach budowlanych, mapowaniu, a także w systemach informacji geograficznej (GIS). Dlatego umiejętność poprawnego odczytywania raportów z wyrównania i interpretacji błędów jest niezwykle cenna dla każdego geodety.

Pytanie 29

Jaką literą geodeta oznaczył na szkicu studzienkę wodociągową po dokonaniu jej pomiaru?

A. s
B. w
C. z
D. k
Odpowiedź 'w' to strzał w dziesiątkę. W geodezji studzienka wodociągowa ma oznaczenie 'w' na szkicach. To ważne, bo dzięki temu w dokumentach geodezyjnych łatwiej zidentyfikować różne obiekty. Na przykład, gdy geodeta robi mapę sytuacyjną dla gminy, musi oznaczyć studzienki, hydranty i inne miejsca związane z wodą. Dobre oznaczenia to podstawa, żeby różne działy, które zajmują się infrastrukturą wodociągową, dobrze działały razem. Jak coś jest źle oznaczone, to może być chaos i nieporozumienia, co wpływa na to, jak dobrze zarządzamy infrastrukturą. W skrócie, trzymanie się reguł jest kluczowe w tej branży.

Pytanie 30

Przeprowadzając pomiar kąta w dwóch pozycjach lunety, możliwe jest zredukowanie błędu

A. kolimacji
B. urządzenia odczytowego
C. pionu optycznego
D. libelli okrągłej
Odpowiedź "kolimacji" jest poprawna, ponieważ kolimacja odnosi się do procesu ustawiania instrumentów pomiarowych w taki sposób, aby ich osie były zgodne z osią referencyjną. W kontekście pomiarów kątowych, wykonywanie pomiaru w dwóch położeniach lunety pozwala na eliminację błędów związanych z niewłaściwą kolimacją lunety. Przykładowo, jeśli luneta jest źle skalibrowana, można to uwidocznić i skorygować, wykonując pomiar w dwóch różnych położeniach, co zapewnia lepszą dokładność i powtarzalność wyników. W praktyce, takie działania są zgodne z najlepszymi praktykami stosowanymi w geodezji i inżynierii, gdzie precyzyjne pomiary są kluczowe dla uzyskania wiarygodnych danych. Ponadto, standardy takie jak normy ISO dla instrumentów pomiarowych kładą duży nacisk na kalibrację i kolimację jako podstawowe elementy zapewnienia jakości pomiarów.

Pytanie 31

Jaki wzór powinien być użyty do obliczenia sumy kątów wewnętrznych w zamkniętym poligonie?

A. [β]t = (n - 2) · 200g
B. [β]t = Ak – Ap + n · 200g
C. [β]t = (n + 2) · 200g
D. [β]t = Ap – Ak + n · 200g
Wzór [β]t = (n - 2) · 200g jest kluczowy do obliczenia sumy kątów wewnętrznych w poligonie zamkniętym, gdzie n oznacza liczbę boków. W przypadku wielokątów, suma kątów wewnętrznych wynika z faktu, że każdy dodatkowy bok wprowadza dodatkowe kąty. W praktyce, dla trójkąta, który ma 3 boki, suma kątów wynosi 180°, co odpowiada wzorowi (3 - 2) · 180° = 180°. Dla czworokąta (4 boki) suma kątów wynosi 360° – (4 - 2) · 180° = 360°. Wzór ten jest szeroko stosowany w geometrii i architekturze, a także w inżynierii, gdzie dokładne obliczenia kątów są niezbędne do projektowania struktur. Zrozumienie tego wzoru pozwala na lepsze planowanie i realizację projektów, a także unikanie błędów konstrukcyjnych.

Pytanie 32

Jakiej czynności nie przeprowadza się na stanowisku przed zrealizowaniem pomiaru kątów poziomych?

A. Regulacji ostrości obrazu
B. Regulacji ostrości krzyża kresek
C. Dokonania pomiaru wysokości teodolitu
D. Centrowania teodolitu
Pomiar wysokości teodolitu przed rozpoczęciem pomiarów kątów poziomych nie jest czynnością standardowo wykonywaną na stanowisku. W rzeczywistości, pomiar wysokości teodolitu stosuje się w kontekście pomiarów wysokościowych, które są oddzielnym procesem. W praktyce, przed pomiarem kątów poziomych, kluczowymi działaniami są ustawienie teodolitu w odpowiedniej pozycji, centrowanie instrumentu nad punktem pomiarowym, ustawienie ostrości obrazu oraz ostrości krzyża kresek. Te czynności zapewniają dokładność i precyzję pomiarów kątowych, co jest szczególnie istotne w pracach geodezyjnych i inżynieryjnych, gdzie niewielkie błędy mogą prowadzić do istotnych nieprawidłowości. W dobrych praktykach geodezyjnych zawsze należy upewnić się, że instrument jest prawidłowo wypoziomowany i ustawiony, zanim przystąpi się do właściwych pomiarów. Przykładem może być pomiar kątów w celu ustalenia lokalizacji punktów w terenie, gdzie każda nieprecyzyjność może skutkować błędami w projekcie.

Pytanie 33

Niwelacja trygonometryczna polega na określaniu różnic wysokości wybranych lokalizacji na podstawie obserwacji

A. odległości pionowej i kąta poziomego
B. odległości poziomej i kąta pionowego
C. odległości poziomej i kąta poziomego
D. odległości pionowej i kąta pionowego

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Niwelacja trygonometryczna polega na wyznaczaniu różnic wysokości wybranych punktów na podstawie obserwacji odległości poziomej i kąta pionowego. W praktyce, metoda ta wykorzystuje triangulację, gdzie pomiar kąta pionowego, a także odległości między punktami, pozwala na obliczenie różnic wysokości. Zastosowanie tej metody jest szerokie w inżynierii lądowej, geodezji oraz budownictwie. Na przykład, w przypadku budowy dróg czy mostów, niezbędne jest precyzyjne ustalenie różnic wysokości, aby zapewnić odpowiednią infrastrukturę i bezpieczeństwo. W kontekście standardów branżowych, zgodnie z normami ISO 17123-1:2001, pomiary niwelacji trygonometrycznej muszą być wykonywane z zachowaniem odpowiedniej staranności, co minimalizuje błędy pomiarowe i zwiększa dokładność wyników. Warto również zauważyć, że umiejętność wykonywania niwelacji trygonometrycznej jest kluczowa dla geodetów, którzy muszą podejmować decyzje na podstawie dokładnych danych o wysokościach.

Pytanie 34

Na podstawie informacji zawartych w dzienniku oblicz wysokość osi celowej na stanowisku drugim (w kolumnie 8).

A. 303,919 m
B. 303,387 m
C. 303,971 m
D. 303,946 m

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 303,919 m jest prawidłowa, ponieważ dokładnie odpowiada na wymagania związane z pomiarem wysokości osi celowej na stanowisku drugim, które zostały określone w dokumentacji projektu. Wysokość osi celowej jest jednym z kluczowych parametrów w geodezji i inżynierii lądowej, który ma bezpośredni wpływ na precyzję dalszych pomiarów oraz obliczeń związanych z tworzeniem map i planów. W praktyce, wysokość ta powinna być ustalana z uwzględnieniem lokalnych warunków geodezyjnych oraz standardów takich jak norma PN-EN ISO 19111 dotycząca geoinformacji. Wysokość osi celowej jest również istotna w kontekście przepisów budowlanych, gdyż błędy w jej pomiarach mogą prowadzić do poważnych konsekwencji w procesie budowy. Przykładowo, jeśli wysokość osi celowej zostanie błędnie oszacowana, może to skutkować nierównym fundamentem lub źle zaprojektowanym systemem odwodnienia. Dlatego tak ważne jest, aby pomiary były przeprowadzane zgodnie z najlepszymi praktykami i z użyciem odpowiednich narzędzi geodezyjnych.

Pytanie 35

Jaką metodą powinno się ustalić wysokość stanowiska instrumentu w niwelacji punktów rozrzuconych?

A. Ortogonalną
B. Niwelacji reperów
C. Biegunową
D. Niwelacji siatkowej

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Niwelacja reperów to metoda, która pozwala na precyzyjne wyznaczenie wysokości stanowiska instrumentu niwelacyjnego w kontekście pomiarów punktów rozproszonych. Ta technika polega na pomiarze różnic wysokości pomiędzy reperami, które są wcześniej ustalone w terenie i mają znaną wysokość. Dzięki temu, operator instrumentu może łatwo określić wysokość punktów, do których będą odniesione inne pomiary. Praktycznym przykładem zastosowania tej metody jest budowa infrastruktury, gdzie precyzyjne ustalenie poziomu terenu jest kluczowe dla dalszych prac budowlanych. W branży inżynieryjnej i geodezyjnej, zgodnie z normami ISO 17123, niwelacja reperów jest uznawana za jedno z podstawowych narzędzi do zapewnienia dokładności pomiarów. Dobre praktyki wskazują na konieczność regularnej kalibracji instrumentów oraz stosowanie sprawdzonych reperów, co podnosi wiarygodność wyników pomiarów.

Pytanie 36

Jeśli bok kwadratu zmierzonego w terenie ma długość 10 m, to na mapie w skali 1:1000 jego pole powierzchni wyniesie

A. 0,1 cm2
B. 1,0 cm2
C. 10,0 cm2
D. 100,0 cm2

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 1,0 cm2 jest poprawna, ponieważ aby obliczyć pole powierzchni kwadratu na mapie w skali 1:1000, najpierw należy obliczyć jego rzeczywistą powierzchnię. Bok kwadratu ma długość 10 m, więc jego pole powierzchni wynosi 10 m x 10 m = 100 m2. Następnie przelicza się to pole na jednostki odpowiadające skali mapy, co oznacza, że 1 cm na mapie odpowiada 10 m w terenie (1:1000). Zatem 100 m2 w rzeczywistości przekłada się na jednostki mapowe, co daje 100 m2 = 10000 cm2. W skali 1:1000, powierzchnia mapowa wynosi 10000 cm2 / (1000^2) = 1,0 cm2. To pokazuje, jak ważne jest rozumienie przeliczeń skali w kontekście geodezji oraz kartografii, gdzie precyzja jest kluczowa. W praktyce, takie obliczenia są niezbędne przy tworzeniu map i planów zagospodarowania przestrzennego, a także w inżynierii i budownictwie, gdzie dokładne odwzorowanie rzeczywistości ma ogromne znaczenie.

Pytanie 37

Na mapach naturalne formy rzeźby terenu zaznacza się kolorem

A. czarnym
B. szarym
C. żółtym
D. brązowym

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Naturalne formy rzeźby terenu, takie jak góry, doliny, wzgórza czy inne ukształtowania, są na mapach topograficznych zazwyczaj przedstawiane kolorem brązowym. To ustalenie wynika z międzynarodowych standardów kartograficznych, które wskazują, że brąz jest najbardziej adekwatnym kolorem do reprezentacji ukształtowania terenu, ponieważ kojarzy się z ziemią oraz jest najlepiej widoczny na tle innych kolorów używanych do oznaczania wód (niebieski) oraz terenów zabudowanych (czarny). Przykładowo, w przypadku analiz geograficznych i ekologicznych, używanie brązowych odcieni na mapach pozwala nie tylko na łatwiejszą interpretację rzeźby terenu, ale również na identyfikację obszarów potencjalnego zagrożenia erozją czy osuwiskami. Dodatkowo, w kontekście planowania przestrzennego, zrozumienie ukształtowania terenu jest kluczowe dla podejmowania decyzji o lokalizacji infrastruktury, co czyni znajomość zasad przedstawiania rzeźby terenu niezbędną umiejętnością w wielu dziedzinach związanych z geografią i urbanistyką.

Pytanie 38

Nie można użyć do trwałego oznaczania punktów osnowy poziomej

A. znaków z kamienia.
B. palików drewnianych.
C. trzpieni.
D. bolców.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Paliki drewniane, mimo że są popularnym materiałem w budownictwie oraz w transporcie geodezyjnym, nie są zalecane do trwałego zaznaczania punktów osnowy poziomej z powodu ich niskiej odporności na warunki atmosferyczne oraz degradację. W praktyce, takie paliki mogą ulegać rozkładowi, co prowadzi do zniekształcenia lub zniknięcia punktów pomiarowych. Z tego powodu, w geodezji, preferuje się stosowanie bardziej trwałych materiałów, takich jak trzpienie, znaki z kamienia czy bolce, które wykazują znacznie większą odporność na czynniki zewnętrzne. Trzpienie, na przykład, są osadzane na stałe w gruncie, a ich metalowa konstrukcja zapewnia długotrwałość i stabilność. Z kolei znaki z kamienia stanowią naturalne punkty odniesienia, które mogą przetrwać wiele lat, przy minimalnym ryzyku uszkodzenia. Zastosowanie odpowiednich materiałów do trwałego zaznaczania punktów osnowy poziomej jest kluczowe dla zapewnienia precyzji i wiarygodności pomiarów geodezyjnych, co jest zgodne z obowiązującymi normami w tej dziedzinie.

Pytanie 39

Wyznacz przyrost Ayi_2 w osi Y, jeśli zmierzona odległość między punktami 1 i 2 d1-2 = 100,00 m, sinAz1-2 = 0,760400, cosAz1-2 = 0,649455.

A. 64,94 m
B. 7,60 m
C. 6,49 m
D. 76,04 m

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Aby obliczyć przyrost Ayi_2 współrzędnych Y, należy skorzystać z długości pomierzonej między punktami 1 i 2 oraz wartości sinus i cosinus kąta azymutalnego. Obliczenia sprowadzają się do zastosowania wzoru: Ayi_2 = d_1-2 * sin(Az_1-2). Wstawiając wartości: Ayi_2 = 100,00 m * 0,760400 = 76,04 m. Otrzymany wynik jest zgodny z praktycznymi standardami pomiarowymi, które nakazują stosowanie funkcji trygonometrycznych do określenia przyrostów współrzędnych w geodezji. Tego typu obliczenia są kluczowe w pracach inżynieryjnych oraz w geodezyjnych, gdzie precyzyjne określenie pozycji jest niezbędne. Wiedza ta jest również istotna w kontekście wykonywania map, które wymagają dokładnych danych o lokalizacji obiektów. Użycie sinusa kąta azymutalnego wskazuje na orientację w przestrzeni, co pozwala na odpowiednie planowanie i wykonywanie działań terenowych.

Pytanie 40

Błąd, który nie wpływa na kartometryczną precyzję mapy, to

A. deformacji papieru
B. przeniesienia punktów z materiału wyjściowego na oryginał mapy
C. wysokościowych pomiarów terenowych
D. materiału wyjściowego, na podstawie którego powstała mapa

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wybór odpowiedzi dotyczącej wysokościowych pomiarów terenowych jako elementu, który nie wpływa na kartometryczną dokładność mapy, jest trafny. Kartometryczna dokładność odnosi się do precyzji i dokładności odwzorowania rzeczywistych położenia obiektów na mapie, co jest determinowane przez wiele czynników, ale nie przez błędy pomiarów wysokościowych. Wysokościowe pomiary terenowe są istotne w kontekście modelowania powierzchni terenu i kształtowania trójwymiarowych przedstawień, lecz nie wpływają na dwuwymiarowe odwzorowanie przestrzenne, które jest kluczowe w kontekście kartometrycznej dokładności. Na przykład, w sytuacjach, gdy mapa jest używana do nawigacji na poziomie gruntu, to błędy w pomiarach wysokości nie mają wpływu na lokalizację punktów na mapie. Również w praktyce kartograficznej, przy zastosowaniu standardów takich jak ISO 19111 dotyczących geograficznych informacji przestrzennych, kluczowe są pomiary poziome, a nie wysokościowe. Zatem, w kontekście kartometrycznej dokładności, błędy w wysokościowych pomiarach terenowych są drugorzędne.