Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Automatyk
  • Kwalifikacja: ELM.01 - Montaż, uruchamianie i obsługiwanie układów automatyki przemysłowej
  • Data rozpoczęcia: 8 grudnia 2025 13:27
  • Data zakończenia: 8 grudnia 2025 13:35

Egzamin zdany!

Wynik: 23/40 punktów (57,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

W sterowniku PLC wejścia cyfrowe oznaczane są symbolem literowym

A. Q
B. I
C. AQ
D. AI
Sterowniki PLC, czyli programowalne sterowniki logiczne, są kluczowym elementem w automatyce przemysłowej. W ich działaniu wykorzystuje się różne typy sygnałów, które są oznaczane unikalnymi symbolami literowymi. Wejścia cyfrowe w sterownikach PLC oznacza się literą 'I' od angielskiego słowa 'input'. Taki sygnał cyfrowy jest kluczowy w przekazywaniu danych do sterownika z różnych czujników i przełączników, które są częścią procesu przemysłowego. Co ciekawe, te sygnały pozwalają na odczytanie informacji o stanie procesów, takich jak obecność produktu na taśmie czy pozycja urządzenia. W praktyce, wejścia te są często związane z urządzeniami typu przyciski lub przełączniki krańcowe, które umożliwiają bezpośredni odczyt stanów logicznych '0' lub '1'. Z mojego doświadczenia, wiedza ta jest niezastąpiona podczas projektowania i uruchamiania instalacji automatyki. Warto pamiętać, że prawidłowe oznaczenie i zrozumienie działania wejść cyfrowych jest podstawą do efektywnej pracy z PLC i pozwala na osiągnięcie wysokiej efektywności i niezawodności systemów automatyki.

Pytanie 2

Które narzędzie należy zastosować do nacięcia gwintu w otworze?

A. Narzędzie 2.
Ilustracja do odpowiedzi A
B. Narzędzie 3.
Ilustracja do odpowiedzi B
C. Narzędzie 4.
Ilustracja do odpowiedzi C
D. Narzędzie 1.
Ilustracja do odpowiedzi D
W tym pytaniu łatwo pomylić narzędzia, bo kilka z nich ma podobny kształt, ale zupełnie inne zastosowanie. Narzędzie 2 to rozwiertak – używa się go do powiększania lub wygładzania otworów, nie do nacinania gwintów. Ma gładkie ostrza, które nie tworzą zwojów, tylko lekko skrawają materiał. Narzędzie 3 natomiast to narzynka, którą wykonuje się gwinty zewnętrzne na prętach, śrubach lub wałkach. Ma podobny profil do gwintownika, ale odwrotny kierunek pracy – na zewnątrz, a nie do środka. Z kolei narzędzie 4 to klasyczne wiertło spiralne, które służy do wiercenia otworów przed gwintowaniem, a nie do samego tworzenia gwintu. Typowym błędem jest próba wykonania gwintu tylko jednym narzędziem lub z pominięciem etapu wiercenia otworu o odpowiedniej średnicy (tzw. pod gwint). W praktyce proces wygląda tak: najpierw wiercimy otwór wiertłem o średnicy dobranej do średnicy gwintu, potem stosujemy zestaw gwintowników. Tylko taki sposób gwarantuje czysty, trwały i równy gwint.

Pytanie 3

Przed montażem sprawdzono parametry elektryczne przewodu. Z jednej strony został on podłączony jak na przedstawionej ilustracji, a z drugiej żyły pozostały niepodłączone. Którego parametru dotyczył wykonany w ten sposób pomiar?

Ilustracja do pytania
A. Rezystancji izolacji między przewodami L1, L2, L3 a przewodem PEN.
B. Rezystancji izolacji między przewodami L1 i L2 i L3.
C. Sumy rezystancji żył L1, L2, L3 oraz PEN.
D. Rezystancji żył L1, L2, L3.
Mierzenie rezystancji izolacji między przewodami L1, L2, L3 a przewodem PEN jest kluczowym krokiem w zapewnieniu bezpieczeństwa instalacji elektrycznych. W praktyce, ten test pozwala na wykrycie wszelkich uszkodzeń izolacji, które mogą prowadzić do niebezpiecznych zwarć lub porażeń prądem. Rezystancja izolacji powinna być odpowiednio wysoka, aby zapobiegać przepływowi prądu między przewodami. Z mojego doświadczenia, często spotyka się sytuacje, w których niewłaściwa izolacja prowadzi do awarii i przerw w dostawie energii, co w konsekwencji może wpłynąć na działanie całego systemu elektrycznego. Standardy takie jak PN-IEC 60364 wskazują, że minimalna rezystancja izolacji dla większości instalacji powinna wynosić 1 MΩ. Wartości poniżej tego poziomu mogą sugerować, że istnieje problem, który należy rozwiązać przed oddaniem instalacji do użytku. Takie podejście jest zgodne z dobrymi praktykami branżowymi, które podkreślają znaczenie regularnych przeglądów i testów, aby zapewnić niezawodność i bezpieczeństwo systemów elektrycznych. To również elementarne działanie w kontekście prewencji ryzyka pożarowego oraz ochrony zdrowia i życia ludzkiego.

Pytanie 4

W której pozycji ustawią się tłoczyska siłowników 1A1 i 2A1 po włączeniu zasilania układu sprężonym powietrzem przy niewzbudzonych cewkach Y1 i Y2?

Ilustracja do pytania
A. Tłoczyska obu siłowników wysuną się.
B. Tłoczysko siłownika 1A1 wysunie się, a tłoczysko siłownika 2A1 nie wysunie się.
C. Tłoczyska obu siłowników pozostaną wsunięte.
D. Tłoczysko siłownika 1A1 nie wysunie się, a tłoczysko siłownika 2A1 wysunie się.
Jeśli ktoś uznał, że oba siłowniki się wysuną lub że oba pozostaną wsunięte – to oznacza, że nie przeanalizował dokładnie pozycji spoczynkowych zaworów sterujących. W tym układzie zawory 1V1 i 2V1 są sterowane elektromagnetycznie, ale mają różne położenia startowe. Zawór 1V1 w stanie niewzbudzonym (brak sygnału na cewce Y1) ma pozycję, w której dopływ powietrza jest odcięty od siłownika 1A1, więc jego tłoczysko się nie poruszy. Natomiast zawór 2V1, gdy cewka Y2 nie jest zasilona, dzięki sprężynie ustawia się w pozycji, która łączy port zasilania (1) z portem roboczym (2), co powoduje podanie powietrza do siłownika 2A1 i jego wysunięcie. To typowy układ, w którym jeden siłownik ustawia się automatycznie w pozycji roboczej po włączeniu zasilania. Częsty błąd w interpretacji polega na myleniu symbolu sprężyny (oznaczającego pozycję spoczynkową zaworu) z kierunkiem przepływu powietrza. W praktyce technicznej zawsze analizuje się układ od źródła powietrza (OZ1) do siłownika, śledząc połączenia w stanie nieaktywnym cewek. Dopiero po takim prześledzeniu można poprawnie określić, który siłownik wykona ruch po uruchomieniu sprężarki. Dlatego tylko siłownik 2A1 się wysunie, a 1A1 pozostanie w stanie wsuniętym.

Pytanie 5

Przetwornik przedstawiony na rysunkach to

Ilustracja do pytania
A. przetwornik PWM.
B. zadajnik cyfrowo-analogowy.
C. przetwornica napięcia.
D. analogowo-cyfrowy konwerter USB.
Odpowiedź jest prawidłowa, ponieważ pokazany na rysunku układ to faktycznie analogowo-cyfrowy konwerter USB. To urządzenie działa jako pomost między sygnałami analogowymi a cyfrowymi, co jest kluczowe w wielu zastosowaniach przemysłowych i naukowych. W praktyce, takie konwertery są używane do przetwarzania sygnałów z czujników analogowych, takich jak termometry czy czujniki ciśnienia, na dane cyfrowe, które mogą być analizowane przez komputer. Standard USB zapewnia łatwość integracji z systemami komputerowymi oraz szeroką kompatybilność. Moim zdaniem, to niezbędne narzędzie w laboratoriach i przemyśle, gdzie precyzyjne pomiary są kluczowe. Dodatkowo, izolacja galwaniczna widoczna na schemacie chroni sprzęt przed różnicami potencjałów, co jest zgodne z dobrymi praktykami inżynierskimi. Dzięki temu, urządzenie można bezpiecznie używać w trudnych warunkach przemysłowych, gdzie mogą wystąpić zakłócenia elektromagnetyczne. Warto też wspomnieć, że taki konwerter umożliwia jednoczesne monitorowanie wielu kanałów pomiarowych, co znacząco zwiększa jego funkcjonalność.

Pytanie 6

W układzie zastosowano przekaźnik uniwersalny realizujący funkcję opóźnionego załączania. Aby uzyskać wymagane działanie przekaźnika, pokrętło nastawy funkcji należy ustawić

Ilustracja do pytania
A. w pozycji 3.
B. w pozycji 2.
C. w pozycji 1.
D. w pozycji 4.
Wybrałeś pozycję 2, co jest zgodne z funkcją opóźnionego załączania przekaźnika. W tej pozycji przekaźnik zaczyna działać po określonym czasie t od momentu załączenia zasilania. To ustawienie jest kluczowe w wielu układach automatyki przemysłowej, gdzie konieczne jest sekwencyjne uruchamianie urządzeń. Na przykład, w systemach wentylacyjnych opóźnione załączenie może być używane do zapewnienia, że silniki startują w określonej kolejności, zmniejszając ryzyko przeciążenia sieci. W praktyce stosuje się to również w urządzeniach, które muszą osiągnąć określone warunki pracy, zanim zasilanie zostanie w pełni załączone. Jest to zgodne z normami IEC dotyczących automatyki i sterowania, które zalecają takie podejście dla zwiększenia niezawodności systemów. Zachowanie przekaźnika w tej pozycji pozwala na precyzyjne sterowanie i minimalizację ryzyka uszkodzenia sprzętu.

Pytanie 7

Których diod należy użyć do montażu układu przedstawionego na schemacie?

Ilustracja do pytania
A. Prostowniczych.
B. Schottky'ego.
C. Pojemnościowych.
D. Zenera.
Schemat, który widzisz, przedstawia mostek prostowniczy, który jest używany do przekształcania prądu przemiennego (AC) na prąd stały (DC). Mostek prostowniczy składa się z czterech diod prostowniczych ułożonych w specyficzny sposób. Diody prostownicze są kluczowe w tym układzie, ponieważ przepuszczają prąd tylko w jednym kierunku, co pozwala na uzyskanie prądu stałego z prądu przemiennego. W praktyce, diody prostownicze są wykorzystywane w zasilaczach, ładowarkach oraz innych urządzeniach elektronicznych, gdzie konieczna jest konwersja prądu. Diody prostownicze są zaprojektowane tak, aby wytrzymywać duże wartości prądu i napięcia, co czyni je idealnymi do tego typu zastosowań. Standardy branżowe wskazują na użycie diod o odpowiedniej wytrzymałości napięciowej i prądowej, co zapewnia niezawodne działanie układu prostowniczego. To dlatego odpowiedź numer 3 jest poprawna - diody prostownicze są nieodzowne w poprawnym działaniu mostka prostowniczego.

Pytanie 8

Do zamontowania na szynie DIN przedstawionego na rysunku sterownika wystarczy użyć

Ilustracja do pytania
A. nitownicy.
B. wkrętaka płaskiego.
C. młotka.
D. klucza nasadowego.
Do montażu sterownika na szynie DIN używa się wkrętaka płaskiego, ponieważ większość sterowników ma specjalne zatrzaski, które można regulować lub zabezpieczać za pomocą takiego narzędzia. Szyny DIN to standardowe elementy montażowe w automatyce przemysłowej, które umożliwiają szybkie i pewne mocowanie urządzeń. Wkrętak płaski jest idealny do tego zadania, ponieważ pozwala na precyzyjne operowanie zatrzaskami bez ryzyka uszkodzenia urządzenia czy szyny. W praktyce, gdy montujesz sterownik na szynie, musisz jedynie delikatnie nacisnąć na zatrzaski, umożliwiając ich prawidłowe osadzenie. To podstawowe narzędzie w skrzynce każdego elektryka czy automatyka. Dzięki temu rozwiązaniu, montaż i demontaż są szybkie i nie wymagają dużego nakładu siły. Ważne jest też, aby używać narzędzi zgodnych ze standardami bezpieczeństwa, co minimalizuje ryzyko wypadków w miejscu pracy. Szyny DIN zapewniają także porządek i estetykę w rozdzielniach elektrycznych, co jest kluczowe w utrzymaniu systemów przemysłowych w dobrym stanie.

Pytanie 9

Aby zapewnić bezpieczeństwo pracy pracownika na stanowisku przedstawionym na rysunku, zastosowano układ bariery zawierający czujnik

Ilustracja do pytania
A. indukcyjny.
B. pojemnościowy.
C. magnetyczny.
D. optyczny.
Rozważając inne opcje, warto zastanowić się, dlaczego są one mniej odpowiednie. Czujniki pojemnościowe, choć bardzo czułe na obecność obiektów, działają na zasadzie wykrywania zmian w polu elektrycznym. Są one często używane w aplikacjach, gdzie ważne jest wykrywanie obecności obiektów bez ich dotykania, ale ich zasięg jest ograniczony, a dokładność może być niewystarczająca w przypadku potrzeby zabezpieczenia przestrzeni pracowniczej. Z kolei czujniki magnetyczne są zależne od obecności metalowych obiektów i pola magnetycznego, co sprawia, że są bardziej odpowiednie dla aplikacji, gdzie wymagana jest detekcja pozycji elementów metalowych. Zastosowanie w systemach bezpieczeństwa, gdzie obecność człowieka musi być szybko i efektywnie wykrywana, jest zatem ograniczone. Czujniki indukcyjne, podobnie jak magnetyczne, wykrywają zmiany w polu elektromagnetycznym, co sprawia, że najlepiej sprawdzają się w zastosowaniach związanych z detekcją elementów metalowych. Z mojego doświadczenia wynika, że typowe błędy myślowe to zakładanie, że wszystkie czujniki są uniwersalne i mogą być stosowane zamiennie w różnych aplikacjach. W rzeczywistości, każdy z nich ma swoje specyficzne zastosowania, a wybór odpowiedniego typu czujnika jest kluczowy dla zapewnienia skuteczności i bezpieczeństwa systemu.

Pytanie 10

Na podstawie przedstawionej tabliczki znamionowej wskaż dopuszczalny zakres napięć zasilania silnika prądu przemiennego, posiadającego uzwojenia połączone w gwiazdę zasilanego z sieci o częstotliwości 60 Hz.

Ilustracja do pytania
A. 380 ÷ 420 V
B. 254 ÷ 277 V
C. 220 ÷ 240 V
D. 440 ÷ 480 V
Silnik przedstawiony na tabliczce znamionowej ma określony zakres napięć zasilania, w którym może bezpiecznie pracować. Dla częstotliwości sieci 60 Hz oraz uzwojeń połączonych w gwiazdę, dopuszczalny zakres napięć wynosi 440 ÷ 480 V. Taki zakres jest określony przez standardy międzynarodowe, które mają na celu zapewnienie bezpieczeństwa i efektywności pracy urządzeń elektrycznych. W praktyce oznacza to, że silnik będzie działał optymalnie w systemach elektrycznych, które dostarczają napięcie w tym przedziale. Jest to szczególnie ważne w zastosowaniach przemysłowych, gdzie stabilność i niezawodność są kluczowe. Z mojego doświadczenia, dobór odpowiedniego napięcia zasilania pozwala na uniknięcie problemów związanych z nadmiernym zużyciem energii oraz nadmiernym obciążeniem silnika, co może prowadzić do jego uszkodzenia. Takie podejście jest zgodne z dobrymi praktykami inżynierskimi, które zawsze kładą nacisk na zrozumienie specyfikacji technicznych i ich zastosowanie w praktyce.

Pytanie 11

Wskaż element, którym można zastąpić uszkodzony element S1 w układzie, którego schemat przedstawiono na rysunku.

Ilustracja do pytania
A.
Ilustracja do odpowiedzi A
B.
Ilustracja do odpowiedzi B
C.
Ilustracja do odpowiedzi C
D.
Ilustracja do odpowiedzi D
Wybór niewłaściwego elementu jako zamiennika dla S1 może prowadzić do nieprawidłowego działania całego układu. Na schemacie widoczne są elementy, które pełnią różne funkcje w systemach pneumatycznych i elektrycznych, takie jak wyłączniki krańcowe czy zawory regulacyjne. Błędnym myśleniem jest sądzić, że każdy zawór lub przełącznik spełni tę samą funkcję. Dla przykładu, wyłącznik krańcowy może być użyty do wykrywania pozycji, ale nie zastąpi zaworu rozdzielającego, który steruje kierunkiem przepływu medium. Wybór nieodpowiedniego typu zaworu, np. zamiast zaworu pneumatycznego użycie zaworu elektrycznego, może prowadzić do nieefektywności i uszkodzeń systemu. Często błędnym założeniem jest także ignorowanie specyfikacji technicznych, takich jak ciśnienie robocze czy rodzaj medium. Dobre praktyki w branży wymagają szczegółowej analizy parametrów pracy i zastosowania komponentów zgodnych z normami, takimi jak ISO czy CE, co minimalizuje ryzyko awarii i zapewnia długotrwałe funkcjonowanie układu. Zrozumienie tych różnic jest kluczowe w projektowaniu i serwisowaniu systemów automatyki przemysłowej.

Pytanie 12

W przekaźniku elektromagnetycznym symbolami A1 i A2 oznaczone są zaciski

A. układów ochronnych.
B. cewki przekaźnika.
C. styków zwiernych.
D. styków rozwiernych.
W przekaźnikach elektromagnetycznych symbole A1 i A2 to oznaczenia zacisków cewki przekaźnika, która jest kluczowym elementem tego urządzenia. Cewka jest odpowiedzialna za generowanie pola magnetycznego, które w efekcie przyciąga kotwicę przekaźnika, zmieniając jego stan. Jest to mechanizm podstawowy, lecz niezmiernie istotny w automatyce i elektronice. Dzięki cewce, przekaźniki mogą sterować sygnałami w obwodach elektrycznych, umożliwiając kontrolę nad różnymi urządzeniami. W praktyce, cewki są stosowane w układach zabezpieczeń, automatyce budynkowej czy w przemyśle, gdzie wymagana jest precyzyjna kontrola przepływu prądu elektrycznego. Standardy, takie jak IEC 61810, określają szczegółowe wymagania dotyczące konstrukcji i działania przekaźników, w tym oznaczeń zacisków, co ułatwia identyfikację i podłączanie urządzeń. Znajomość tych zasad jest kluczowa dla każdego, kto chce efektywnie i bezpiecznie korzystać z przekaźników w praktycznych zastosowaniach. Moim zdaniem, zrozumienie roli cewki w przekaźniku to fundament, który otwiera drzwi do świata bardziej zaawansowanej elektroniki.

Pytanie 13

Do pomiaru temperatury w systemie automatyki użyto elementów oznaczonych jako Pt100 z przetwornikami pomiarowymi posiadającymi sygnał wyjściowy 4÷20 mA. Oznacza to, że w urządzeniu pomiarowym zastosowano czujniki

A. termoelektryczne.
B. bimetalowe.
C. rezystancyjne metalowe.
D. rezystancyjne półprzewodnikowe.
W systemach automatyki pomiar temperatury jest kluczowy dla wielu procesów, dlatego ważne jest, aby używać odpowiednich czujników. Czasami błędnie można założyć, że czujniki rezystancyjne półprzewodnikowe, termoelektryczne czy bimetalowe będą stosowane zamiennie z czujnikami Pt100, jednak każda z tych technologii ma swoje unikalne cechy i zastosowania. Czujniki rezystancyjne półprzewodnikowe, często znane jako termistory, różnią się znacząco od czujników Pt100. Termistory mają nieliniową charakterystykę i są zazwyczaj stosowane w aplikacjach wymagających kompaktowych rozwiązań o ograniczonym zakresie temperatur. Natomiast czujniki termoelektryczne, zwane też termoparami, generują napięcie w odpowiedzi na różnicę temperatur, co czyni je idealnymi dla wysokich temperatur i aplikacji wymagających szybkiej reakcji. Z kolei czujniki bimetalowe działają na zasadzie fizycznego wyginania się dwóch zespawanych metali o różnej rozszerzalności cieplnej. Choć są one proste i tanie, ich dokładność i szybkość reakcji są ograniczone. Typowym błędem myślowym jest założenie, że wszystkie czujniki temperatury działają w podobny sposób, co może prowadzić do nieodpowiedniego doboru czujnika do konkretnej aplikacji. Wybór odpowiedniego czujnika jest kluczowy dla zapewnienia dokładności i efektywności procesów przemysłowych.

Pytanie 14

Do sygnalizacji położenia tłoka siłownika pneumatycznego, którego symbol graficzny pokazano na rysunku, należy zastosować czujnik

Ilustracja do pytania
A. indukcyjny.
B. pojemnościowy.
C. ultradźwiękowy.
D. magnetyczny.
Wybór innego rodzaju czujnika niż magnetyczny do sygnalizacji położenia tłoka siłownika pneumatycznego nie jest najlepszym rozwiązaniem. Zacznijmy od czujnika indukcyjnego. Ten typ czujnika działa poprzez wykrywanie zmian pola elektromagnetycznego w obecności metalowych obiektów. Jednak tłok siłownika nie zawsze musi być wykonany z metalu, co oznacza, że czujnik indukcyjny może nie działać prawidłowo, jeżeli materiał tłoka nie współdziała z polem elektromagnetycznym. Czujnik pojemnościowy z kolei wykrywa zmiany pojemności elektrycznej w obecności różnych materiałów, ale jego zastosowanie w tym przypadku może być ograniczone przez jego wrażliwość na zmiany wilgotności i inne czynniki środowiskowe. Jest to mniej precyzyjne rozwiązanie w porównaniu do czujników magnetycznych. Czujnik ultradźwiękowy, który działa na zasadzie wysyłania i odbierania fal dźwiękowych, również nie jest idealny. Chociaż jest bardzo wszechstronny, jego dokładność może być zakłócana przez zmienne warunki akustyczne, takie jak odbicia fal dźwiękowych od pobliskich obiektów. Często popełnianym błędem jest zakładanie, że uniwersalność czujnika oznacza jego najlepszą adaptację do każdego środowiska, co nie zawsze jest prawdą. Podsumowując, każdy z tych czujników ma swoje zastosowania, ale w przypadku sygnalizacji położenia tłoka siłownika pneumatycznego, wybór powinien paść na czujnik magnetyczny, ze względu na jego precyzyjność, odporność na warunki środowiskowe i łatwość integracji z systemami automatyki.

Pytanie 15

Który z czujników należy zastosować przy wytłaczarce, jeśli wymagany jest zasięg działania 0,8 ÷ 0,9 mm oraz zmiany temperatury od 0 do +90 °C?

Ilustracja do pytania
A. Czujnik 1.
B. Czujnik 2.
C. Czujnik 4.
D. Czujnik 3.
Czujnik 2 jest idealnym wyborem do wytłaczarki, ponieważ spełnia kluczowe wymogi dotyczące zakresu pracy i temperatury. Zasięg działania tego czujnika wynosi od 0 do 1,6 mm, co doskonale pokrywa wymagany zakres 0,8 ÷ 0,9 mm. To ważne, aby czujnik mógł precyzyjnie wykrywać zmiany w tej specyficznej odległości, zapewniając optymalne działanie maszyny. Dodatkowo, czujnik ten działa w zakresie temperatur od -20 do +110°C, co w pełni obejmuje wymagany zakres 0 do +90°C. Dzięki temu niezawodnie funkcjonuje w różnych warunkach pracy, co jest kluczowe w dynamicznym środowisku przemysłowym. Warto zauważyć, że czujnik ten ma obudowę IP67, co zapewnia dobrą odporność na pył i wodę, co jest często nieuniknione w środowisku produkcyjnym. W praktyce oznacza to, że czujnik ten jest odporny na trudne warunki pracy, co zwiększa jego trwałość i niezawodność. W branży stosowanie czujników o odpowiednich parametrach jest kluczowe, aby uniknąć przestojów i nieplanowanych napraw, które mogą być kosztowne.

Pytanie 16

Czujnik przedstawiony na schemacie ma wyjścia sygnałowe typu

Ilustracja do pytania
A. PNP NO
B. NPN NC
C. PNP NC
D. NPN NO
Czujnik z wyjściem typu NPN NC działa w taki sposób, że w stanie spoczynku (tzn. gdy nie jest aktywowany) jego wyjście jest zwarte do masy. To oznacza, że prąd płynie od wyjścia czujnika do masy, co jest kluczowe w wielu aplikacjach, gdzie trzeba sygnalizować stan nieaktywności urządzenia. Typ NPN jest popularny w branży przemysłowej, szczególnie w Europie, bo dobrze współpracuje z systemami PLC, które często wymagają sygnałów niskiego poziomu jako aktywnych. Konfiguracja NC (normalnie zamknięte) dodatkowo gwarantuje, że w razie awarii czujnika lub przerwania przewodu, system natychmiast otrzyma sygnał o błędzie, co jest zgodne z zasadami fail-safe. Przykładem zastosowania może być monitoring pozycji bram czy drzwi, gdzie brak przerwania obwodu oznacza ich zamknięcie i bezpieczeństwo. Moim zdaniem, warto zwrócić uwagę na ten typ czujników w aplikacjach, gdzie niezawodność i bezpieczeństwo są priorytetem.

Pytanie 17

Urządzenie połączone ze sterownikiem PLC, oznaczone ADMC-1801 pełni w układzie przedstawionym na rysunku funkcję

Ilustracja do pytania
A. modułu wyjściowego.
B. modułu wejściowego.
C. zasilacza sterownika PLC.
D. interfejsu komunikacyjnego.
Analizując dostępne opcje, warto zastanowić się nad każdym z błędnych wyborów, aby zrozumieć, dlaczego mogą wprowadzać w błąd. Interfejs komunikacyjny to element, który umożliwia wymianę danych pomiędzy różnymi urządzeniami. W kontekście PLC, mógłby służyć do komunikacji z innymi sterownikami lub komputerem. Jednak w tym układzie ADMC-1801 pełni rolę modułu wejściowego, co czyni tę odpowiedź niepoprawną. Zasilacz sterownika PLC jest natomiast odpowiedzialny za dostarczenie odpowiedniego napięcia i prądu do urządzenia, co jest kluczowe dla jego prawidłowego działania. W diagramie nie ma wskazań, które potwierdzałyby tę funkcję dla ADMC-1801. Kolejną możliwością jest moduł wyjściowy, który steruje elementami wykonawczymi na podstawie decyzji podejmowanych przez sterownik PLC. Tego rodzaju moduły są kluczowe w procesie automatyki, lecz nie jest to rola ADMC-1801 w przedstawionym schemacie. Częstym błędem jest mylenie funkcji poszczególnych elementów systemu automatyki, co może wynikać z braku doświadczenia lub nieznajomości specyfikacji. Poprawne zrozumienie ról poszczególnych modułów jest kluczowe w projektowaniu i utrzymaniu systemów sterowania, co wpływa na efektywność i bezpieczeństwo procesów produkcyjnych.

Pytanie 18

Podczas montażu został nacięty przewód zasilający 3-fazowy silnik hydroforu. Uszkodzeniu uległy izolacja zewnętrzna oraz izolacja żyły N niepodłączonej do silnika. Które zdanie poprawnie określa możliwość użytkowania tak uszkodzonej instalacji?

Ilustracja do pytania
A. Mimo tego uszkodzenia instalacja może być normalnie eksploatowana.
B. Eksploatacja tej instalacji jest możliwa, ale przy uszkodzonym przewodzie trzeba umieścić tabliczkę ostrzegawczą.
C. Można tę instalację eksploatować pod warunkiem, że nie ma wycieku wody z hydroforu.
D. Ta instalacja nie może być eksploatowana.
Błędne jest założenie, że instalację z uszkodzonym przewodem można nadal eksploatować. Nawet jeśli uszkodzeniu uległa tylko izolacja zewnętrzna lub nieużywana żyła N, to cały przewód traci swoje właściwości ochronne. Izolacja w kablach elektrycznych pełni nie tylko funkcję mechaniczną, ale przede wszystkim bezpieczeństwa – chroni przed porażeniem i zwarciem między żyłami. W tym przypadku doszło do przerwania powłoki i odsłonięcia przewodnika, co w warunkach wilgotnych (a takie panują przy hydroforze) stwarza realne ryzyko przebicia lub korozji. Zgodnie z przepisami BHP oraz normami PN-HD 60364 i PN-EN 50110-1, przewody z widocznymi uszkodzeniami izolacji muszą być natychmiast wyłączone z eksploatacji i wymienione. Typowym błędem jest „zabezpieczenie” miejsca taśmą izolacyjną – takie doraźne naprawy nie są dopuszczalne w instalacjach zasilających silniki trójfazowe, gdzie występują drgania i zmienne obciążenie prądowe. Eksploatacja takiego przewodu mogłaby skończyć się porażeniem elektrycznym lub pożarem. Prawidłowe postępowanie to odłączenie zasilania, wymiana kabla i ponowna kontrola ciągłości izolacji przed uruchomieniem instalacji.

Pytanie 19

Który symbol graficzny oznacza przekładnię zębatą?

A.
Ilustracja do odpowiedzi A
B.
Ilustracja do odpowiedzi B
C.
Ilustracja do odpowiedzi C
D.
Ilustracja do odpowiedzi D
Poprawna jest odpowiedź przedstawiająca symbol przekładni zębatej. Na rysunku technicznym taki symbol oznacza dwa współpracujące koła zębate, które przenoszą moment obrotowy z jednego wału na drugi. Linie prostopadłe i krótkie poprzeczne kreski pokazują położenie osi i zazębienie. W praktyce konstrukcyjnej stosuje się ten zapis w schematach kinematycznych, gdzie nie pokazuje się kształtu zębów, tylko sposób przeniesienia napędu. Przekładnie zębate są bardzo powszechne – można je spotkać w skrzyniach biegów, mechanizmach obrabiarek, napędach bram czy robotach przemysłowych. Ich główną zaletą jest duża sprawność i możliwość przenoszenia dużych momentów przy niewielkich stratach energii. W dokumentacji technicznej obowiązują normy PN-EN ISO, które określają dokładnie wygląd symboli, dzięki czemu każdy inżynier lub technik może zrozumieć rysunek niezależnie od kraju. Moim zdaniem dobrze jest zapamiętać ten symbol, bo pojawia się on w większości schematów maszynowych.

Pytanie 20

Aby dokręcić nakrętkę z określonym momentem obrotowym, należy zastosować klucz

A. udarowy.
B. przegubowy.
C. grzechotkowy.
D. dynamometryczny.
Klucz dynamometryczny to narzędzie, które pozwala na precyzyjne dokręcenie śruby czy nakrętki z określonym momentem obrotowym. Jego główną zaletą jest to, że umożliwia osiągnięcie dokładnie takiej siły dokręcania, jakiej potrzebujesz, co jest kluczowe w wielu zastosowaniach technicznych, np. w motoryzacji czy przemyśle lotniczym. Użycie klucza dynamometrycznego zapobiega przekręceniu, a co za tym idzie, uszkodzeniu elementów, co mogłoby prowadzić do poważnych awarii. Moment obrotowy jest mierzony w niutonometrach (Nm) i jest to standard przyjęty w branży. Przykładowo, dokręcając głowicę silnika, bardzo ważne jest, aby siła była równomiernie rozłożona na wszystkie śruby, co zapewnia prawidłowe funkcjonowanie silnika. Z mojego doświadczenia wynika, że posiadając wysokiej jakości klucz dynamometryczny, można uniknąć wielu błędów, które często pojawiają się przy używaniu innych narzędzi. Ważne jest też, aby regularnie kalibrować klucz dynamometryczny, co zapewnia jego dokładność i niezawodność. To narzędzie jest często stosowane w warsztatach samochodowych, gdzie specyfikacje producenta wymagają precyzyjnego dokręcania elementów. Pamiętaj, że ignorowanie momentu dokręcania może skutkować niebezpieczeństwem dla użytkownika bądź osób postronnych.

Pytanie 21

Urządzenie 1-fazowe jest oznaczone symbolem. W celu podłączenia do sieci niezbędne będzie podpięcie do niego przewodów

Ilustracja do pytania
A. L, N, PE
B. N, PE
C. L, PE
D. L, N
Odpowiedź z przewodami L i N jest prawidłowa, ponieważ urządzenie 1-fazowe wymaga podłączenia do źródła zasilania obejmującego przewód fazowy (L) oraz neutralny (N). Symbol, który widzisz, to oznaczenie podwójnej izolacji, co oznacza, że urządzenie nie wymaga podłączenia przewodu ochronnego (PE). Dzięki temu, masz pewność, że urządzenie jest bezpieczne do użytku bez podłączenia do ziemi. Według standardów, takie urządzenia są konstruowane w taki sposób, by zapewnić ochronę nawet w przypadku awarii izolacji podstawowej. Praktyczne zastosowanie tego znajdziesz w wielu urządzeniach domowych, takich jak suszarki czy golarki elektryczne, które często korzystają z podwójnej izolacji. Takie rozwiązanie jest zgodne z normami IEC i jest szeroko stosowane w branży. Warto pamiętać, że podłączenie tylko przewodów L i N jest standardem w przypadku urządzeń o podwójnej izolacji, a ignorowanie tego mogłoby prowadzić do błędów w instalacji elektrycznej.

Pytanie 22

Program sterowniczy przedstawiony na rysunku realizuje funkcję

Ilustracja do pytania
A. OR
B. NOR
C. Ex-OR
D. Ex-NOR
Wybierając inne odpowiedzi niż Ex-OR, można wpaść w pułapkę błędnego rozpoznania funkcji logicznych. Na przykład, OR zwraca prawdę, gdy co najmniej jedno z wejść jest prawdziwe, co jest mylące, gdyż Ex-OR wymaga dokładnie jednego prawdziwego wejścia. NOR, będąc odwrotnością OR, zwraca prawdę tylko wtedy, gdy oba wejścia są fałszywe, co zupełnie nie pasuje do schematu z rysunku. Ex-NOR, odwrotność Ex-OR, zwraca prawdę, gdy oba wejścia są takie same, co również nie oddaje logiki przedstawionej drabinki. Często ludzie mylą te funkcje przez zbyt powierzchowne podejście do analizy schematów lub nie uwzględniają kontekstu praktycznego zastosowania. Warto zapamiętać, że każda z tych funkcji ma swoje unikalne zastosowanie i znaczenie, szczególnie w systemach sterowania, gdzie precyzyjne określenie logiki działania wpływa na jakość i niezawodność całego systemu. Właściwe zrozumienie funkcji logicznych ma fundamentalne znaczenie w projektowaniu układów cyfrowych i automatycznych.

Pytanie 23

Który miernik należy zastosować w miejscu oznaczonym literą X na schemacie elektrycznym przedstawionym na rysunku?

Ilustracja do pytania
A. Woltomierz.
B. Omomierz.
C. Częstotliwościomierz.
D. Amperomierz.
Amperomierz to właściwy wybór, ponieważ mierzy prąd płynący przez obwód. W miejscu oznaczonym literą X mamy do czynienia z typową konfiguracją obwodu, gdzie chcemy zmierzyć prąd przepływający przez R2 i R3. Amperomierz włączamy szeregowo z elementami, przez które płynie prąd, co umożliwia dokładny pomiar bez zakłóceń. W praktyce, dobrze zamontowany amperomierz ma mały opór wewnętrzny, aby nie wpływać na obwód. Warto pamiętać, że dla bezpieczeństwa i dokładności pomiaru, amperomierz powinien być przystosowany do zakresu mierzonego prądu. W sytuacjach przemysłowych, gdzie mamy do czynienia z większymi wartościami prądów, używa się czasem przekładników prądowych. Przykładowo, w instalacjach elektrycznych takie pomiary pomagają w diagnozowaniu problemów i optymalizacji zużycia energii. Moim zdaniem, zrozumienie działania amperomierza to kluczowy element dla każdego początkującego elektryka, bo to narzędzie jest podstawą w codziennej pracy z obwodami elektrycznymi.

Pytanie 24

Aby przekaźnik czasowy PCU-504 realizował funkcję opóźnionego załączenia po czasie 2 minut, kolejno przełączniki P1, P2 i P3 powinny być ustawione w następujących pozycjach:

Ilustracja do pytania
A. P1 – 2, P2 – 2, P3 – A0,1
B. P1 – 1, P2 – 2, P3 – B0,1
C. P1 – 2, P2 – 1, P3 – B10
D. P1 – 1, P2 – 1, P3 – A10
Wybierając niewłaściwe ustawienia przekaźnika czasowego, można napotkać na kilka typowych błędów. Na przykład, ustawienie P1 – 1, P2 – 1, P3 – A10 oznaczałoby wybór funkcji natychmiastowego załączenia z mnożnikiem 10, co nie zrealizuje funkcji opóźnionego załączenia. Podobnie, wybór P2 na wartość 2 w ustawieniach 2 i 3 sugeruje błędną jednostkę czasu, która nie odpowiada zamierzonym 2 minutom. W sytuacji, gdy przekaźnik ma opóźnić załączenie, konieczne jest użycie odpowiedniej funkcji, takiej jak B, która umożliwia realizację opóźnienia. Błąd w ustawieniu pokręteł może wynikać z braku zrozumienia ich funkcji; P1 i P2 kontrolują jednostki i dziesiątki, natomiast P3 określa funkcję oraz mnożnik. Typowe błędy myślowe obejmują niewłaściwe przypisanie funkcji do pokręteł wynikające z niedokładnej lektury instrukcji. To właśnie znajomość specyfikacji i zasady działania przekaźnika pozwala uniknąć pomyłek. Nawet drobny błąd może skutkować niepoprawnym działaniem systemu, dlatego zawsze warto upewnić się, że wszystkie ustawienia są zgodne z oczekiwaniami i zaleceniami producenta.

Pytanie 25

Na rysunku przedstawiono schemat blokowy regulatora

Ilustracja do pytania
A. P
B. PI
C. PD
D. PID
Świetnie, że wskazałeś PID jako poprawną odpowiedź! Ten schemat blokowy rzeczywiście pokazuje regulator PID, który składa się z trzech członów: proporcjonalnego (P), całkującego (I) i różniczkującego (D). Każdy z tych członów odpowiada za określony aspekt działania regulatora. Proporcjonalny człon (Kp) reaguje proporcjonalnie do błędu, co pozwala na szybkie reagowanie na zmiany. Całkujący człon (1/TiS) eliminuje uchyb ustalony przez sumowanie błędu w czasie, co jest kluczowe, gdy potrzebujemy wysokiej precyzji i dokładności. Różniczkujący człon (TdS) z kolei przewiduje przyszłe zachowanie układu na podstawie szybkości zmiany błędu, co pomaga w tłumieniu oscylacji i nadmiernych przeregulowań. W praktyce, PID jest stosowany w różnych branżach, od przemysłu chemicznego po systemy sterowania temperaturą, ponieważ pozwala na precyzyjne i stabilne sterowanie. Ciekawe jest to, że odpowiednie dostrojenie tych trzech parametrów (Kp, Ti, Td) może znacząco poprawić wydajność systemu. Warto również wspomnieć, że w dziedzinie automatyki istnieją różne metody konfiguracji PID, jak Ziegler-Nichols czy Cohen-Coon, które pomagają w ustalaniu optymalnych wartości tych parametrów.

Pytanie 26

Odpowiedź skokowa regulatora ciągłego przedstawiona na rysunku wskazuje, że w układzie regulacji zastosowano regulator typu

Ilustracja do pytania
A. PI
B. PD
C. PID
D. P
Regulatory P, PD oraz PID różnią się od PI i mają swoje specyficzne zastosowania. Regulator P wpływa jedynie proporcjonalnie na błąd, co może nie być wystarczające w systemach wymagających eliminacji błędu ustalonego. Takie podejście może prowadzić do utrzymywania się stałego uchybu, co nie jest pożądane w większości aplikacji precyzyjnych. Natomiast regulator PD, dodając człon różniczkowy, jest użyteczny w systemach, gdzie ważna jest szybka reakcja na zmiany. Często stosuje się go w aplikacjach, gdzie potrzebne jest tłumienie oscylacji, jednak jego brak zdolności eliminacji błędu ustalonego ogranicza jego zastosowalność. Z kolei regulator PID, łączący wszystkie trzy komponenty, jest najbardziej wszechstronny, ale jego implementacja bywa bardziej skomplikowana. Może prowadzić do przeregulowań, jeśli nie jest właściwie skonfigurowany. Często popełnianym błędem jest przyjmowanie, że uniwersalność PID jest zawsze pożądana, co nie jest prawdą, zwłaszcza w prostszych układach, gdzie PI wystarczy. Dlatego ważne jest, aby nie sugerować się intuicją, lecz zrozumieć specyfikę każdej aplikacji.

Pytanie 27

Którą cyfrą na prezentowanej płycie oznaczono diodę prostowniczą?

Ilustracja do pytania
A. 2
B. 1
C. 3
D. 4
Dioda prostownicza oznaczona jest na płytce cyfrą 3, co jest kluczowe w kontekście układów elektronicznych. Dioda prostownicza pełni rolę zaworu jednokierunkowego, umożliwiając przepływ prądu tylko w jednym kierunku. W praktyce, wykorzystuje się ją głównie do prostowania prądu zmiennego (AC) na prąd stały (DC). W elektronice jest to niezbędne, na przykład w zasilaczach, które muszą dostarczyć prąd stały do urządzeń. Standardowo, zgodnie z normami branżowymi, oznaczenie na płytce drukowanej (PCB) pozwala na szybkie zidentyfikowanie komponentów, co jest ważne dla serwisu i napraw. Warto zwrócić uwagę, że diody prostownicze mogą różnić się parametrami, takimi jak prąd przewodzenia czy napięcie przebicia, co determinuje ich zastosowanie w różnych układach. Pamiętaj, że dobre praktyki projektowe zalecają stosowanie odpowiednich zabezpieczeń, np. bezpieczników, aby uniknąć uszkodzeń w przypadku awarii diody.

Pytanie 28

Na ilustracji przedstawiono

Ilustracja do pytania
A. separator sygnałów USB.
B. zadajnik cyfrowo-analogowy.
C. elektroniczny czujnik ciśnienia.
D. przetwornik PWM.
To, co widzisz na ilustracji, to elektroniczny czujnik ciśnienia. Tego typu urządzenia są kluczowe w różnych dziedzinach przemysłu, ponieważ pozwalają na precyzyjne pomiary ciśnienia w systemach hydraulicznych, pneumatycznych czy nawet w instalacjach gazowych. Elektroniczne czujniki ciśnienia wykorzystują różne technologie, takie jak piezoelektryczność, pojemnościowe zmiany lub rezystancyjne mostki tensometryczne, które przetwarzają ciśnienie na sygnał elektryczny. Moim zdaniem, to fascynujące, jak te małe urządzenia mogą monitorować i kontrolować procesy w czasie rzeczywistym, zapewniając niezawodność i bezpieczeństwo. Standardem w branży jest, aby czujniki te były kalibrowane zgodnie z normami ISO, co gwarantuje ich dokładność. Przykładowo, w przemyśle spożywczym, zapewniają one, że ciśnienie w autoklawach jest odpowiednie do sterylizacji produktów. W mojej opinii, rozwój tego typu technologii ma ogromne znaczenie dla postępu w automatyce i robotyce.

Pytanie 29

Jakie napięcie wskazuje woltomierz, jeżeli nastawiono zakres Uₘₐₓ = 5 V?

Ilustracja do pytania
A. 15,00 V
B. 0,15 V
C. 6,00 V
D. 1,50 V
W tym przypadku częstym błędem jest odczytanie wartości 30 na skali jako 30 V, bez uwzględnienia rzeczywistego zakresu pomiarowego. Jednak na tarczy wyraźnie widnieje informacja, że Umax = 5 V, a skala jest wyskalowana od 0 do 100 jednostek procentowych. Oznacza to, że pełne wychylenie odpowiada 5 V, a wskazanie 30 oznacza 30% tej wartości. Prawidłowe obliczenie to więc 30/100 × 5 V = 1,5 V. Gdyby ktoś potraktował skalę jako rzeczywiste wolty, wynik byłby błędny o rząd wielkości. Podobny błąd zdarza się przy miernikach z wieloma zakresami, gdy użytkownik nie uwzględni ustawionej czułości przyrządu. W praktyce laboratoryjnej zawsze należy sprawdzić zarówno pozycję przełącznika zakresu, jak i oznaczenie Umax na obudowie – dopiero wtedy można poprawnie odczytać wartość napięcia. Warto też pamiętać, że analogowe mierniki tego typu są bardzo czułe i odczyt wykonuje się patrząc prosto na skalę, by uniknąć błędu paralaksy.

Pytanie 30

Którego przyrządu należy użyć do sprawdzenia równoległości dwóch powierzchni?

A. Suwmiarki uniwersalnej.
B. Transametru.
C. Czujnika zegarowego.
D. Mikrometru.
Czujnik zegarowy to bardzo precyzyjne narzędzie pomiarowe, które jest powszechnie stosowane do kontroli równoległości powierzchni. Dzięki swojej konstrukcji pozwala na dokładne mierzenie odchyłek powierzchni w stosunku do referencyjnej linii prostej lub płaszczyzny. Czujnik zegarowy posiada wskazówkę, która precyzyjnie wskazuje różnice w wysokości na powierzchni, umożliwiając tym samym dokładną ocenę równoległości. W praktyce, gdy chcemy ocenić, czy dwie powierzchnie są równoległe, mocujemy czujnik na podstawie magnetycznej i przeprowadzamy pomiar wzdłuż jednej powierzchni, obserwując odczyty na skali. Przy braku odchyłek, wskazówka czujnika nie powinna się znacząco poruszać. Jest to zgodne z zasadą stosowania czujników do kontroli równoległości, co jest standardem w branży obróbki metalu, gdzie precyzja jest kluczowa. Moim zdaniem, czujnik zegarowy to jeden z najbardziej uniwersalnych przyrządów pomiarowych, który każdy technik powinien umieć obsługiwać. Pozwala na uzyskanie dokładnych pomiarów, co jest szczególnie istotne w procesach, gdzie liczy się każdy mikrometr.

Pytanie 31

Dobierz przewód do wykonania połączenia silnika 3-fazowego z przemiennikiem częstotliwości.

A. Przewód C
Ilustracja do odpowiedzi A
B. Przewód B
Ilustracja do odpowiedzi B
C. Przewód A
Ilustracja do odpowiedzi C
D. Przewód D
Ilustracja do odpowiedzi D
Dobór odpowiedniego przewodu do połączenia silnika 3-fazowego z przemiennikiem częstotliwości jest kluczowy dla zapewnienia prawidłowej pracy systemu. Przewód A to przewód przeznaczony do zastosowań przemysłowych, charakteryzuje się wysoką odpornością na wibracje, temperaturę oraz zakłócenia elektromagnetyczne. Tego typu przewody są zwykle ekranowane, co minimalizuje wpływ zakłóceń na sygnał sterujący, co w przypadku silników jest niezwykle ważne. Przewody te muszą również spełniać normy bezpieczeństwa, takie jak PN-EN 60204-1, co zapewnia ich niezawodność i zgodność z wymaganiami technicznymi. Moim zdaniem, dobrze jest także zwracać uwagę na elastyczność przewodu, co ułatwia jego montaż w trudnych warunkach. W praktyce, przewody takie są stosowane w środowiskach o wysokim stopniu zanieczyszczenia przemysłowego i mogą pracować w szerokim zakresie temperatur, co jest istotne w kontekście przemysłowym. Z mojego doświadczenia, warto również zwrócić uwagę na odpowiednie oznaczenie przewodów, co ułatwia ich identyfikację i minimalizuje ryzyko pomyłek podczas instalacji.

Pytanie 32

Na podstawie fragmentu dokumentacji przekaźnika wskaż zaciski, do których należy podłączyć napięcie zasilania 24 V DC.

Ilustracja do pytania
A. Do zacisku 1 podłączyć „-”, a do zacisku 3 „+”
B. Do zacisku 3 podłączyć „-”, a do zacisku 4 „+”
C. Do zacisku 3 podłączyć „+”, a do zacisku 4 „-”
D. Do zacisku 1 podłączyć „+”, a do zacisku 3 „-”
Twoja odpowiedź jest poprawna! Podłączenie napięcia zasilania 24 V DC wymaga dużej uwagi co do prawidłowej polaryzacji. Zaciski 3 i 4 są oznaczone jako miejsca do podłączenia tego rodzaju zasilania. W Twoim przypadku, zacisk 3 jest miejscem, gdzie podłączamy ujemny biegun (-), a na zacisk 4 przypada dodatni biegun (+). Zastosowanie prawidłowej polaryzacji jest kluczowe, szczególnie w przypadku urządzeń elektronicznych, które mogą być wrażliwe na niewłaściwe podłączenie. Dokumentacja techniczna zawsze powinna być Twoim głównym źródłem informacji. Dobrym zwyczajem jest oznaczanie przewodów i zacisków, aby uniknąć pomyłek przy podłączaniu. W praktyce, poprawne podłączenie zasilania 24 V DC jest standardem w wielu aplikacjach przemysłowych, gdzie stabilność i niezawodność zasilania są kluczowe. Warto również pamiętać o zastosowaniu zabezpieczeń przeciwprzepięciowych w takich układach.

Pytanie 33

Urządzenie przedstawione na rysunku to

Ilustracja do pytania
A. dławik.
B. transformator.
C. silnik prądu zmiennego.
D. silnik prądu stałego.
Silnik prądu zmiennego, szczególnie synchroniczny, jest kluczowym elementem wielu urządzeń, które wykorzystują elektryczność przemienną. To właśnie on odpowiada za precyzyjne sterowanie ruchem i synchronizację, co czyni go idealnym do zastosowań takich jak napędy precyzyjnych mechanizmów zegarowych czy systemy automatyki. Takie silniki działają w określonym rytmie zgodnie z częstotliwością sieci zasilającej, co zapewnia im stabilność obrotów. Z mojego doświadczenia wynika, że ważnym aspektem jest również ich efektywność energetyczna, co przekłada się na mniejsze zużycie prądu w dłuższym okresie użytkowania. Warto zauważyć, że standardy takie jak IEC czy RoHS zapewniają, że są one produkowane zgodnie z rygorystycznymi normami jakości i bezpieczeństwa. Dzięki temu są nie tylko wydajne, ale też bezpieczne w użytkowaniu. W praktyce, wybierając silnik synchroniczny, masz pewność, że osiągniesz dużą precyzję i niezawodność działania, co jest kluczowe w wielu aplikacjach przemysłowych i domowych.

Pytanie 34

Które piny przetwornika pomiarowego należy podłączyć z odbiornikami sygnału?

Ilustracja do pytania
A. 2 i 3.
B. 2 i 4.
C. 3 i 4.
D. 1 i 4.
Pozostałe odpowiedzi mogą wydawać się kuszące, ale warto zrozumieć dlaczego są mylne. Pin 1, oznaczony jako plus, to często zasilanie, ale nie służy do bezpośredniego przesyłania sygnałów do odbiorników. Podłączanie pinów 1 i 4 lub 1 i 3 do odbiorników może prowadzić do błędów w obwodzie, ponieważ nie będziesz miał pewności, czy sygnał jest prawidłowy czy to tylko zasilanie. Pin 3 to zazwyczaj minus lub wspólny, co również nie jest bezpośrednio używane do przesyłania sygnałów, ale raczej do zamykania obwodu zasilania. Typowe błędy w takich sytuacjach wynikają z niepełnego zrozumienia funkcji, jakie pełnią poszczególne piny. Z mojego doświadczenia, dobrym podejściem jest zawsze dokładne zapoznanie się ze schematem i upewnienie się, które piny pełnią rolę sygnałową, a które są przeznaczone do zasilania. Uważajmy też na standardy i dobre praktyki, które zalecają użycie oznaczeń NC i NO w kontekście sygnałów, aby uniknąć nieporozumień.

Pytanie 35

Na którym rysunku prawidłowo przedstawiono początek sekwencji współbieżnej sieci SFC?

A.
Ilustracja do odpowiedzi A
B.
Ilustracja do odpowiedzi B
C.
Ilustracja do odpowiedzi C
D.
Ilustracja do odpowiedzi D
Niepoprawne zrozumienie mechanizmu sekwencji współbieżnych w sieciach SFC może prowadzić do błędnych wniosków. Warianty przedstawione w innych odpowiedziach mogą sugerować różne sposoby na organizację procesów, ale często nie spełniają one kluczowych zasad. Na przykład, brak odpowiednich synchronizacji między krokami lub niewłaściwe użycie linii równoległych może prowadzić do niejasności i utrudniać prawidłowe działanie systemu. Typowym błędem myślowym jest zakładanie, że każda równoległa czynność może rozpocząć się w dowolnym momencie, co w rzeczywistości nie jest zgodne ze standardami SFC. Prawidłowa sekwencja powinna obejmować odpowiednie mechanizmy synchronizacji, co gwarantuje, że wszystkie procesy zakończą się przed przejściem do kolejnego etapu. Dobre praktyki, jak te zawarte w normach IEC, podkreślają konieczność precyzyjnego planowania i wizualnego przedstawiania procesów, aby uniknąć nieporozumień i błędów w działaniu systemów automatyki. Pamiętając o tych zasadach, można projektować bardziej wydajne i niezawodne systemy sterowania.

Pytanie 36

Do montażu czujnika przedstawionego na rysunku niezbędne jest użycie

Ilustracja do pytania
A. kluczy płaskich.
B. kluczy nasadowych.
C. szczypiec Segera.
D. wkrętaków płaskich.
zujnik pokazany na zdjęciu ma gwintowany korpus i nakrętki montażowe, co oznacza, że do jego zamontowania potrzebny jest klucz płaski – narzędzie dopasowane do sześciokątnych nakrętek. Wkrętaki płaskie czy szczypce Segera nie mają tu zastosowania, ponieważ czujnik nie ma śrub ani pierścieni sprężystych. Klucze nasadowe w niektórych przypadkach mogłyby się sprawdzić, ale zwykle przestrzeń montażowa przy czujnikach jest ograniczona, więc użycie klucza płaskiego jest wygodniejsze i bezpieczniejsze. W praktyce montaż polega na wsunięciu czujnika w otwór, a następnie przykręceniu dwóch nakrętek – jednej od strony czujnika i drugiej kontrującej z drugiej strony. Dzięki temu czujnik jest stabilnie osadzony i nie zmienia położenia pod wpływem drgań. Zbyt mocne dokręcenie może jednak uszkodzić obudowę czujnika lub gwint, dlatego zaleca się umiarkowaną siłę i czasem użycie podkładek sprężystych. Poprawna odpowiedź to klucze płaskie.

Pytanie 37

Do montażu czujnika przedstawionego na ilustracji niezbędne jest użycie

Ilustracja do pytania
A. wkrętaków płaskich.
B. szczypiec uniwersalnych.
C. szczypiec seger.
D. kluczy płaskich.
Szczypce uniwersalne są narzędziem wielofunkcyjnym, ale nie nadają się do dokręcania elementów gwintowanych, takich jak te używane w montażu czujników. Mogą one uszkodzić powierzchnię nakrętki lub gwintu, co prowadzi do niestabilności całej konstrukcji. Z kolei wkrętaki płaskie są narzędziem używanym głównie do wkrętów z nacięciami i nie mają zastosowania w kontekście elementów wymagających użycia klucza. Szczypce seger są specjalistycznym narzędziem do montażu i demontażu pierścieni zabezpieczających, które nie znajdują zastosowania przy montażu czujników tego typu. Typowe błędy przy wyborze narzędzi wynikają często z braku zrozumienia specyfiki używanych komponentów i związanych z nimi wymagań. Ważne jest, aby pamiętać, że każdy element montażowy ma przypisany konkretny zestaw narzędzi, które zapewniają jego optymalną instalację. Niewłaściwe narzędzia mogą prowadzić do uszkodzeń i zwiększonego ryzyka awarii, co jest karygodne w środowiskach przemysłowych, gdzie niezawodność jest kluczowa. Dbałość o poprawny dobór narzędzi to nie tylko kwestia profesjonalizmu, ale także bezpieczeństwa i trwałości urządzeń.

Pytanie 38

Na podstawie danych zawartych w tabeli wskaż co oznacza litera H w oznakowaniu przewodu elektrycznego, układanego na stałe?

Ilustracja do pytania
A. Izolacja żył wykonana z gumy.
B. Izolacja żył wykonana z polwinitu.
C. Zewnętrzna powłoka izolacyjna wykonana z gumy silikonowej.
D. Zewnętrzna powłoka izolacyjna wykonana z materiału bezhalogenowego.
W kontekście przewodów elektrycznych, zrozumienie właściwego oznakowania jest kluczowe dla ich prawidłowego zastosowania i bezpieczeństwa. Myśląc o izolacji z gumy, może to sugerować tradycyjne podejście, ale w rzeczywistości nowoczesne standardy często wymagają materiałów bezhalogenowych. Guma, choć elastyczna i odporna na wiele czynników, nie zapewnia tak wysokiego poziomu ochrony przed toksycznymi gazami jak materiały bezhalogenowe. Polwinit z kolei może kojarzyć się z popularnymi materiałami izolacyjnymi, ale nie jest bezhalogenowy, co w kontekście nowoczesnych wymagań bezpieczeństwa pożarowego jest wadą. Guma silikonowa, choć wykorzystywana w specyficznych aplikacjach ze względu na swoje właściwości termiczne, nie odpowiada na rosnące potrzeby związane z redukcją emisji dymu. Błędem myślowym jest zakładanie, że wszystkie materiały izolacyjne są równe pod względem bezpieczeństwa pożarowego. Zrozumienie, że 'H' oznacza materiał bezhalogenowy, pomaga w doborze przewodów spełniających surowe normy bezpieczeństwa, co jest niezbędne w dzisiejszych zaawansowanych projektach elektroinstalacyjnych.

Pytanie 39

Na podstawie tabeli określ, jak często należy czyścić filtr ssawny.

Lp.Zakres pracTermin wykonania
1Śruby mocująceSprawdzenie momentu dokręceniaPo pierwszej godzinie pracy
2ZbiornikOpróżnianie zbiornikaPo każdej pracy dłuższej niż 1 h
3Filtr ssawnyCzyszczenieCo 100 h
WymianaW razie konieczności
4OlejWymianaPo pierwszych 100 h
Co 300 h
Sprawdzanie stanuRaz w tygodniu
A. Co 100 godzin.
B. Raz w tygodniu.
C. Co godzinę.
D. Co 300 godzin.
To, że wybrałeś odpowiedź 'Co 100 godzin' jako prawidłową, świadczy o twojej umiejętności prawidłowego analizowania harmonogramów konserwacyjnych. W tabeli wyraźnie podano, że czyszczenie filtra ssawnego powinno się odbywać co 100 godzin pracy. To nie jest przypadkowy wybór; jest to część standardowych procedur konserwacyjnych, które pomagają w utrzymaniu optymalnej wydajności maszyn. Regularne czyszczenie filtra ssawnego co 100 godzin pozwala na uniknięcie problemów związanych z zanieczyszczeniem systemu, takich jak zmniejszenie mocy ssania czy awarie pompy. Z mojego doświadczenia wynika, że takie podejście znacząco wydłuża żywotność sprzętu i zmniejsza koszty związane z naprawami. W branży powszechnie stosuje się zasadę, że regularna konserwacja jest tańsza i bardziej efektywna niż naprawy awaryjne. Dlatego warto zawsze pamiętać o harmonogramie konserwacji i nie pomijać żadnych jego punktów. Filtry są kluczowym elementem systemów ssawnych i ich stan ma bezpośredni wpływ na wydajność całego układu. Stąd też, takie regularne czyszczenie jest nie tylko zalecane, ale wręcz konieczne dla zachowania pełnej funkcjonalności urządzeń. Odpowiednia konserwacja to również dbałość o bezpieczeństwo eksploatacji, co w dłuższej perspektywie przekłada się na lepsze wyniki finansowe i operacyjne.

Pytanie 40

Którym narzędziem nie można ściągnąć izolacji z przewodów elektrycznych wielożyłowych?

A. Narzędzie 4
Ilustracja do odpowiedzi A
B. Narzędzie 2
Ilustracja do odpowiedzi B
C. Narzędzie 1
Ilustracja do odpowiedzi C
D. Narzędzie 3
Ilustracja do odpowiedzi D
Pierwsze narzędzie widoczne na zdjęciu to obcinak do rur, najczęściej używany przy pracach hydraulicznych – do cięcia rur z tworzyw sztucznych, miedzi lub aluminium. Nie nadaje się do zdejmowania izolacji z przewodów elektrycznych, ponieważ jego ostrze jest zaprojektowane do przecinania grubych, sztywnych materiałów, a nie do precyzyjnego nacinania powłoki przewodów. Gdyby ktoś próbował użyć go do kabli, bardzo łatwo mógłby uszkodzić żyły przewodzące. W przeciwieństwie do niego, pozostałe narzędzia (2, 3 i 4) to ściągacze izolacji, zaprojektowane właśnie do pracy z przewodami jedno- i wielożyłowymi. Mają regulację średnicy, ograniczniki głębokości cięcia i specjalne szczęki zapobiegające przecięciu miedzi. Moim zdaniem to bardzo dobre pytanie praktyczne – w warsztacie czy na budowie zdarza się, że ktoś myli obcinak do rur z ściągaczem, bo oba mają podobny kształt uchwytu. W rzeczywistości jednak to zupełnie inne narzędzia – jedno tnie, drugie tylko usuwa cienką warstwę izolacji, zachowując nienaruszony przewodnik. Profesjonalny elektryk zawsze użyje dedykowanego ściągacza, aby uniknąć ryzyka przegrzania lub zwarcia w przewodzie.