Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.05 - Eksploatacja maszyn, urządzeń i instalacji elektrycznych
  • Data rozpoczęcia: 7 grudnia 2025 21:30
  • Data zakończenia: 7 grudnia 2025 22:04

Egzamin zdany!

Wynik: 37/40 punktów (92,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

W instalacji trójfazowej prąd obciążenia w przewodach fazowych IB wynosi 21 A, natomiast obciążalność długotrwała tych przewodów Idd to 30 A. Który z wymienionych wyłączników nadprądowych powinien być użyty do zabezpieczenia tej instalacji?

A. B20
B. B16
C. B10
D. B25
Wyłącznik nadprądowy B25 jest odpowiedni do zabezpieczenia instalacji trójfazowej, gdzie prąd obciążenia przewodów fazowych wynosi 21 A, a obciążalność długotrwała tych przewodów to 30 A. Zgodnie z normami, wyłącznik nadprądowy powinien mieć wartość znamionową, która pozwala na przepuszczenie prądu obciążenia, ale jednocześnie dostateczną, aby skutecznie zareagować w przypadku przeciążenia. W tym przypadku, z wyłączników B20, B16 i B10, żaden z nich nie spełnia wymogu, gdyż ich nominalne wartości są zbyt niskie w odniesieniu do obciążenia 21 A. Wybór B25 oznacza, że wyłącznik nadprądowy nie włączy się w normalnych warunkach pracy, ale zadziała w przypadku wyższych wartości prądu. W praktyce, zastosowanie wyłączników o zbyt niskich wartościach nominalnych prowadzi do ich częstego wyzwalania, co może być uciążliwe i powodować przerwy w dostawie energii. Zgodnie z dobrą praktyką, zawsze należy wybierać wyłączniki, które mają większą wartość niż maksymalne przewidziane obciążenie, ale nie więcej niż ich długotrwała obciążalność.

Pytanie 2

Jakie będą konsekwencje zasilenia silnika asynchronicznego, którego znamionowa częstotliwość napięcia stojana wynosi 50 Hz, z sieci o częstotliwości 60 Hz?

A. Uszkodzenie wirnika silnika
B. Nawrót wirnika silnika
C. Zwiększenie prędkości obrotowej wirnika silnika
D. Zmniejszenie prędkości obrotowej wirnika silnika
Zwiększenie prędkości obrotowej wirnika silnika asynchronicznego zasilanego napięciem o częstotliwości 60 Hz w porównaniu do znamionowej częstotliwości 50 Hz jest wynikiem zjawiska zwanego poślizgiem. W przypadku silników asynchronicznych prędkość obrotowa wirnika jest zawsze niższa od prędkości synchronicznej, która zależy od częstotliwości zasilania oraz liczby par biegunów. Wzór na prędkość synchroniczną jest następujący: n_s = (120 * f) / P, gdzie n_s to prędkość synchroniczna w obrotach na minutę (RPM), f to częstotliwość zasilania w hercach, a P to liczba par biegunów. W przypadku zasilania 60 Hz, prędkość synchroniczna wzrośnie, co skutkuje wzrostem prędkości obrotowej wirnika. Praktycznie, dla silnika z dwiema parami biegunów zasilanego z sieci 50 Hz, prędkość będzie wynosić 1200 RPM, natomiast przy 60 Hz wzrośnie do 1440 RPM. Takie zjawisko może być wykorzystywane w aplikacjach, gdzie wymagana jest większa prędkość obrotowa, jednak należy pamiętać o możliwych konsekwencjach, takich jak zwiększone straty cieplne i ryzyko uszkodzenia silnika. W przemyśle standardem jest dostosowywanie zasilania do znamionowych parametrów silnika w celu zapewnienia jego długowieczności i efektywności.

Pytanie 3

Jakie wymagania muszą być spełnione podczas pomiaru rezystancji izolacyjnej w instalacji elektrycznej po wcześniejszym odłączeniu zasilania?

A. Włączone urządzenia do gniazd wtyczkowych, aktywne łączniki oświetleniowe, usunięte źródła światła
B. Wyłączone urządzenia z gniazd wtyczkowych, aktywne łączniki oświetleniowe, zamontowane źródła światła
C. Wyłączone urządzenia z gniazd wtyczkowych, aktywne łączniki oświetleniowe, usunięte źródła światła
D. Włączone urządzenia do gniazd wtyczkowych, aktywne łączniki oświetleniowe, zamontowane źródła światła
Prawidłowa odpowiedź wskazuje na konieczność wyłączenia odbiorników z gniazd wtyczkowych oraz wymontowania źródeł światła przed przystąpieniem do pomiaru rezystancji izolacji. To kluczowe kroki, które mają na celu zapewnienie bezpieczeństwa oraz dokładności pomiarów. W czasie testów rezystancji izolacji, włączenie odbiorników lub pozostawienie źródeł światła w obwodzie mogłoby prowadzić do błędnych wyników, które nie oddają rzeczywistego stanu izolacji. Przykładowo, podłączenie urządzeń może stworzyć drogę dla prądu, co zafałszuje pomiar rezystancji. W branży elektrycznej zaleca się, aby przed każdym pomiarem izolacji, upewnić się, że wszystkie urządzenia są odłączone, co jest zgodne z normą PN-EN 61557, która określa wymagania dotyczące pomiarów. Tylko w ten sposób można rzetelnie ocenić stan izolacji oraz wykryć ewentualne uszkodzenia, co jest kluczowe dla bezpieczeństwa użytkowników i integrności instalacji.

Pytanie 4

W tabeli przedstawiono parametry znamionowe silnika. Do jakiego rodzaju pracy jest on przeznaczony?

Typ silnikaSEh 80-4CF
Moc1,1 kW
Prędkość obrotowa1400 obr/min
ObudowaAluminium
Napięcie zasilania230 V, 50 Hz
Stopień ochronyIP 54
Rodzaj pracyS2
Sprawność74%
Pojemność kondensatora pracy30 μF
Pojemność kondensatora rozruchowego75 μF
A. Dorywczej.
B. Przerywanej z rozruchem.
C. Ciągłej.
D. Przerywanej z hamowaniem elektrycznym.
Silnik oznaczony jako przeznaczony do pracy dorywczej (S2) jest zaprojektowany do pracy przez określony czas, po którym konieczne jest schłodzenie. Przykładem zastosowania takiego silnika mogą być urządzenia, które pracują w cyklach, np. pompy, wentylatory czy maszyny przemysłowe, które nie wymagają ciągłej eksploatacji. W praktyce oznacza to, że silnik może pracować w trybie dorywczym przez kilka minut do kilku godzin, w zależności od jego parametrów znamionowych, a następnie musi zostać wyłączony, aby uniknąć przegrzania. Standardy normatywne, takie jak IEC 60034-1, definiują takie klasy pracy silników elektrycznych, co zapewnia, że inżynierowie projektujący systemy napędowe mogą odpowiednio dobierać silniki do wymagań aplikacji. Wiedza o tych oznaczeniach jest kluczowa dla zapewnienia efektywności energetycznej oraz długowieczności urządzeń, co ma bezpośredni wpływ na koszty eksploatacji.

Pytanie 5

Jakie oznaczenia powinien posiadać wyłącznik różnicowoprądowy RCD przeznaczony do ochrony obwodu gniazd jednofazowych w pracowni komputerowej, gdzie używane są 15 zestawy komputerowe?

A. 16/2/010-A
B. 25/4/100-A
C. 40/2/030-A
D. 63/4/300-A
Wybór wyłącznika różnicowoprądowego do zabezpieczenia obwodu gniazd jednofazowych jest kluczowy dla zapewnienia bezpieczeństwa. Odpowiedzi zawierające oznaczenia 25/4/100-A, 63/4/300-A oraz 16/2/010-A są nieodpowiednie z kilku powodów. Oznaczenie 25/4/100-A wskazuje na nominalny prąd różnicowy 25 mA, co jest zbyt niską wartością dla obwodów gniazdowych, szczególnie w pracowni komputerowej, gdzie ryzyko porażenia prądem jest wyższe. Z kolei 63/4/300-A z nominalnym prądem różnicowym 300 mA może nie zapewnić wystarczającego poziomu ochrony, ponieważ tak wysoka wartość prądu różnicowego jest odpowiadająca bardziej obwodom przemysłowym, gdzie ryzyko jest mniejsze. Ostatnie oznaczenie 16/2/010-A, z nominalnym prądem 10 mA, jest niewystarczające dla takiej ilości urządzeń, co stwarza poważne zagrożenie, gdyż zastosowanie zbyt niskiego prądu różnicowego może prowadzić do częstych wyłączeń oraz problemów z użytkowaniem sprzętu komputerowego. Prawidłowy dobór wyłącznika powinien uwzględniać zarówno aspekty techniczne, jak i specyfikę użytkowania w danym środowisku, co jest kluczowe dla zapewnienia funkcjonalności oraz bezpieczeństwa.

Pytanie 6

Jakie jest maksymalne dopuszczalne wartości impedancji pętli zwarcia w instalacji elektrycznej o napięciu nominalnym 230 V działającej w układzie TN-S, zabezpieczonej wyłącznikiem nadprądowym C16, aby zapewnić samoczynne wyłączenie zasilania jako środek ochrony przeciwporażeniowej w przypadku awarii?

A. 0,71 Ω
B. 4,79 Ω
C. 2,87 Ω
D. 1,43 Ω
Maksymalna dopuszczalna impedancja pętli zwarcia dla instalacji z wyłącznikiem nadprądowym C16 w sieci TN-S wynosi 1,43 Ω, co zapewnia odpowiednie warunki do samoczynnego wyłączenia zasilania w przypadku uszkodzenia. Taki wyłącznik nadprądowy zadziała, gdy prąd zwarciowy osiągnie wartość wystarczającą do jego uruchomienia, co w przypadku C16 wynosi 16 A. Aby zapewnić skuteczną ochronę, impedancja pętli zwarcia powinna być tak dobrana, aby prąd zwarciowy przekraczał wartość zadziałania wyłącznika. Przy napięciu 230 V, zgodnie z zasadą Ohma (U = I * R), maksymalna impedancja wynosi: Z = U / I = 230 V / 16 A = 14,375 Ω, co daje duży margines, ale w praktyce akceptowana wartość dla bezpiecznego działania to 1,43 Ω. Przykłady praktycznych zastosowań obejmują instalacje w budynkach mieszkalnych, gdzie ważne jest zapewnienie szybkiego odłączenia prądu w przypadku awarii. Standardy PN-IEC 60364-4-41 oraz PN-EN 61140 określają wymagania dotyczące ochrony przeciwporażeniowej, a także metodyka obliczania impedancji pętli zwarcia, co pozwala na właściwe zabezpieczenie przed porażeniem elektrycznym.

Pytanie 7

Jakie grupy połączeń transformatorów trójfazowych działających w konfiguracji trójkąt-gwiazda są rekomendowane przez PN do zastosowań praktycznych?

A. Dy7 i Dy11
B. Dy1 i Dy5
C. Dy5 i Dy11
D. Dy3 i Dy9
Odpowiedź Dy5 i Dy11 jest prawidłowa, ponieważ te konfiguracje transformatorów trójfazowych są rekomendowane w Polskich Normach (PN) ze względu na swoje korzystne właściwości eksploatacyjne. Konfiguracja Dy5, czyli połączenie w gwiazdę z przesunięciem fazowym o 180°, jest często stosowana w systemach zasilających, ponieważ minimalizuje straty mocy i pozwala na stabilne zasilanie odbiorników w układzie nieuzwojonym. Z kolei Dy11, czyli połączenie w trójkąt z przesunięciem fazowym o 30°, jest powszechnie wykorzystywane w aplikacjach wymagających dużych wydajności oraz dobrej jakości energii. Oba połączenia zapewniają optymalne parametry pracy transformatorów, co przekłada się na ich długowieczność i niezawodność. Zastosowanie tych konfiguracji jest szczególnie ważne w przemysłowych systemach zasilających oraz w energetyce, gdzie skutkuje to obniżeniem harmonik prądu i poprawą jakości energii. Dlatego ich wybór jest zgodny z najlepszymi praktykami branżowymi oraz normami, co czyni je zalecanymi w projektach elektrycznych.

Pytanie 8

W miejscu pracy, gdzie wykonywana jest naprawa urządzenia grzewczego, działają równocześnie elektrycy oraz hydraulicy. Jeśli instalacja elektryczna urządzenia została odłączona od zasilania za pomocą głównego odłącznika, który znajduje się w innym pomieszczeniu niż naprawiane urządzenie, to aby zabezpieczyć się przed niezamierzonym włączeniem napięcia, należy

A. pozostawić odłącznik w pozycji otwartej bez blokady, ale umieścić obok niego tabliczkę ostrzegawczą o zakazie włączania napięcia
B. użyć dwóch kłódek do zablokowania odłącznika w pozycji otwartej, każdą z nich zakładając osobno przez różne zespoły pracowników
C. zablokować odłącznik w pozycji otwartej kłódką założoną przez zespół elektryków
D. zablokować odłącznik w pozycji otwartej kłódką założoną przez ekipę hydraulików
Odpowiedź, w której zastosowano dwie kłódki do zablokowania odłącznika w stanie otwartym, jest prawidłowa, ponieważ w sytuacji, gdy w jednym miejscu pracują elektrycy i hydraulicy, konieczne jest zapewnienie maksymalnego bezpieczeństwa. Blokowanie odłącznika za pomocą kłódek, które są zakładane przez każdą z grup pracowników, jest zgodne z zasadami blokady i wyłączania (Lockout-Tagout - LOTO), które są kluczowe w zarządzaniu ryzykiem w miejscu pracy. Takie działanie gwarantuje, że żadna grupa nie może włączyć napięcia bez wiedzy drugiej grupy, a tym samym minimalizuje ryzyko porażenia prądem w trakcie naprawy. Przykładem zastosowania tej procedury jest sytuacja, w której hydraulik wykonuje prace przy rurach zasilających, podczas gdy elektryk zajmuje się instalacją elektryczną. Zastosowanie podwójnej blokady zapewnia, że obie grupy muszą współpracować, aby zdjąć blokadę, co zwiększa bezpieczeństwo i skuteczność. Tego typu praktyki są normą w branży, a ich stosowanie jest regulowane przez przepisy BHP oraz normy OSHA, co podkreśla ich znaczenie w codziennym funkcjonowaniu zakładów pracy.

Pytanie 9

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 10

Jaki sprzęt gaśniczy powinien zostać użyty do gaszenia pożaru w rozdzielnicy elektrycznej, której nie można odłączyć od zasilania?

A. Hydronetkę
B. Tłumicę
C. Gaśnicę płynową
D. Gaśnicę proszkową
Gaśnica proszkowa jest najskuteczniejszym narzędziem do gaszenia pożarów, które mają miejsce w obszarze rozdzielnic elektrycznych, zwłaszcza gdy nie można ich wyłączyć spod napięcia. Działa na zasadzie przerwania reakcji chemicznej, a jej proszek gaśniczy skutecznie tłumi ogień, nie przewodząc prądu elektrycznego. W przypadku pożaru rozdzielnicy elektrycznej, klasyfikowanego jako pożar klasy C, gaśnice proszkowe są rekomendowane przez normy PN-EN 2 oraz PN-EN 3, które określają środki gaśnicze odpowiednie do różnych rodzajów pożarów. Użycie gaśnicy proszkowej nie tylko minimalizuje ryzyko porażenia prądem, ale także nie powoduje uszkodzeń sprzętu elektrycznego, co jest kluczowe w przypadkach, gdy urządzenia muszą pozostać w ruchu. Przykłady zastosowania obejmują sytuacje w zakładach przemysłowych, gdzie pożar rozdzielnicy może prowadzić do poważnych strat materialnych, a zastosowanie odpowiednich środków gaśniczych jest kluczowe dla szybkiej reakcji oraz minimalizacji strat.

Pytanie 11

Podczas użytkowania standardowej instalacji z żarowym źródłem światła zaobserwowano po kilku minutach działania częste wahania natężenia oświetlenia (migotanie światła). Najrzadziej występującą przyczyną usterki może być

A. zwarcie między przewodem fazowym a neutralnym
B. wypalenie styków w łączniku
C. zwarcie między przewodem ochronnym a neutralnym
D. wilgotna izolacja przewodów zasilających
Zwarcie pomiędzy przewodem ochronnym a neutralnym jest nieprawidłowym podejściem do analizy problemu z miganiem światła. Tego rodzaju zwarcie może prowadzić do niebezpiecznych sytuacji, ale nie jest bezpośrednią przyczyną oscylacji natężenia światła. W rzeczywistości, przewód ochronny jest zaprojektowany, aby przewodzić prąd tylko w sytuacjach awaryjnych, a jego uszkodzenie nie wpływa na normalne funkcjonowanie instalacji. Dodatkowo, zawilgocona izolacja przewodów zasilających może powodować problemy, takie jak zwarcia, ale objawy, jakie generuje, są zazwyczaj bardziej poważne, takie jak iskrzenie czy całkowity brak zasilania, a nie zmiany natężenia światła. Z kolei zwarcie między przewodem fazowym a neutralnym prowadziłoby do przeciążeń, co również skutkowałoby innymi objawami niż miganie. Typowe błędy w myśleniu o tych problemach to pomijanie specyfikacji technicznych i norm, które jasno określają, jak zachowują się różne komponenty w instalacji. Właściwe zrozumienie tego, jak działają poszczególne elementy instalacji elektrycznej, jest kluczowe dla skutecznej diagnozy i eliminacji problemów.

Pytanie 12

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 13

Jakie czynności oraz w jakiej kolejności powinny zostać dokonane podczas wymiany uszkodzonego łącznika elektrycznego?

A. Odłączyć zasilanie, sprawdzić brak napięcia, wymontować uszkodzony łącznik
B. Wymontować uszkodzony łącznik, odłączyć zasilanie, sprawdzić ciągłość połączeń
C. Odłączyć zasilanie, wymontować uszkodzony łącznik, sprawdzić ciągłość połączeń
D. Załączyć zasilanie, sprawdzić ciągłość połączeń, wymontować uszkodzony łącznik
Odpowiedź "Odłączyć napięcie, sprawdzić brak napięcia, wymontować uszkodzony łącznik" jest prawidłowa, ponieważ obejmuje kluczowe kroki niezbędne do bezpiecznej wymiany łącznika elektrycznego. Pierwszym krokiem jest odłączenie napięcia, co jest absolutnie konieczne, aby zapobiec porażeniu prądem. Takie działanie jest zgodne z zasadą bezpieczeństwa elektrycznego, zgodnej z normą PN-IEC 60364. Następnie, sprawdzenie braku napięcia za pomocą odpowiednich narzędzi, takich jak wskaźnik napięcia, pozwala upewnić się, że instalacja jest całkowicie bezpieczna do pracy. To kluczowy krok, który chroni technika przed niebezpieczeństwem. Po potwierdzeniu braku napięcia można przystąpić do demontażu uszkodzonego łącznika. Dobrą praktyką jest również sprawdzenie stanu przewodów, co zapewnia, że nowy łącznik będzie poprawnie funkcjonować. Przykład zastosowania tej procedury można zaobserwować podczas serwisów i konserwacji instalacji elektrycznych w domach i biurach, gdzie przestrzeganie zasad bezpieczeństwa może zapobiec poważnym wypadkom.

Pytanie 14

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 15

Kontrola instalacji elektrycznych w obiektach użyteczności publicznej powinna być przeprowadzana nie rzadziej niż co

A. 4 lata
B. 3 lata
C. 5 lat
D. 2 lata
Wiesz, przeglądy instalacji elektrycznej w budynkach publicznych powinny być robione co 5 lat. To ważne, bo chodzi o bezpieczeństwo ludzi i to, by wszystko działało jak należy. Jak robisz to regularnie, to można szybciej zauważyć różne usterki, takie jak uszkodzone kable czy korozja. Na przykład, w teatrach czy halach sportowych jest mnóstwo ludzi, więc tam warto być szczególnie czujnym, żeby nie było awarii, które mogą być niebezpieczne. Fajnie też mieć dokumentację tych przeglądów, bo widać, co się działo z instalacją przez lata. Ważne, żeby przeglądami zajmowali się fachowcy, którzy potrafią ocenić, co jest do zrobienia. W Polsce można znaleźć przepisy na ten temat w Kodeksie Pracy i normach PN-IEC.

Pytanie 16

Jaka przyczyna powoduje rozbieżność w działaniu silnika bocznikowego prądu stałego?

A. Luzy w łożyskach
B. Przerwa w uzwojeniu wzbudzenia
C. Przerwa w uzwojeniu twornika
D. Brak obciążenia
Jak masz przerwę w uzwojeniu wzbudzenia silnika bocznikowego prądu stałego, to silnik zaczyna się rozbiegać. Dlaczego? No bo to uzwojenie odpowiada za wytwarzanie pola magnetycznego, które jest potrzebne, żeby silnik działał. Bez tego pola, silnik nie ma żadnego oporu, a to skutkuje tym, że kręci się bez kontroli. To może być naprawdę niebezpieczne, bo prowadzi do uszkodzeń. Żeby tego uniknąć, ważne są regularne kontrole i konserwacje. W przemyśle, według norm IEC 60034, trzeba monitorować stan uzwojeń i mieć systemy ochrony, które coś wykryją, gdy coś się popsuje. W silnikach używanych w różnych sprzętach, jak taśmociągi, warto też pomyśleć o dodatkowych zabezpieczeniach, żeby nie było niekontrolowanego działania silnika, gdy uzwojenie zawiedzie.

Pytanie 17

Dla układu o parametrach U0 = 230 V, Ia = 100 A oraz Zs = 3,1 Ω działającego w systemie TN-C nie działa efektywnie dodatkowa ochrona przed porażeniem prądem, ponieważ

A. opór uziemienia jest zbyt niski
B. impedancja pętli zwarcia jest zbyt duża
C. opór izolacji miejsca pracy jest zbyt duży
D. impedancja sieci zasilającej jest zbyt niska
Impedancja pętli zwarcia jest kluczowym parametrem w systemach elektroenergetycznych, który wpływa na skuteczność ochrony przed porażeniem prądem elektrycznym. W przypadku układu TN-C, wysoka impedancja pętli zwarcia oznacza, że prąd zwarciowy, który może wyniknąć z uszkodzenia, jest zbyt niski, aby zadziałały zabezpieczenia, takie jak wyłączniki różnicowoprądowe czy bezpieczniki. Standardy, takie jak PN-IEC 60364, określają maksymalne wartości impedancji pętli zwarcia, aby zapewnić szybkie wyłączenie zasilania w przypadku awarii. W praktyce, dla instalacji niskonapięciowych, impedancja pętli zwarcia powinna być na tyle niska, aby prąd zwarciowy mógł osiągnąć wartość, która aktywuje zabezpieczenia w krótkim czasie, co minimalizuje ryzyko porażenia prądem. Przykładem może być obliczenie impedancji pętli w instalacji o zainstalowanych zabezpieczeniach, gdzie impedancja nie powinna przekraczać 1 Ω, aby zapewnić efektywność ochrony.

Pytanie 18

Jaki przyrząd jest wykorzystywany do pomiarów rezystancji izolacyjnej kabli elektrycznych?

A. Anemometr
B. Megaomomierz
C. Pirometr
D. Waromierz
Megaomomierz to naprawdę ważne urządzenie, które pomaga mierzyć rezystancję izolacji, zwłaszcza w elektryce. Jego głównym zadaniem jest sprawdzanie, w jakim stanie są przewody, co jest mega istotne dla bezpieczeństwa naszych instalacji. Zazwyczaj działa przy napięciach od 250 do 5000 V, co daje nam pewność, że jakość izolacji jest na odpowiednim poziomie. Z mojego doświadczenia, regularne pomiary rezystancji izolacji są kluczowe. Powinno się to robić według norm, jak PN-EN 61557, bo to może pomóc w wykryciu problemów, takich jak zwarcia czy upływy prądu. Przecież nikt nie chce mieć nieprzyjemności związanych z awariami czy zagrożeniem dla bezpieczeństwa. Dobrze jest więc pamiętać o konserwacji i systematycznych kontrolach, bo to pozwala uniknąć drogich napraw i utrzymać instalację elektryczną w dobrym stanie.

Pytanie 19

Osoby wykonujące wymianę instalacji elektrycznej o napięciu 230/400 V w obiekcie przemysłowym powinny mieć kwalifikacje potwierdzone świadectwem, które jest co najmniej typu

A. D do 15 kV
B. E do 1 kV
C. E do 30 kV
D. D do 1 kV
Odpowiedź E do 1 kV jest prawidłowa, ponieważ osoby wykonujące prace przy instalacjach elektrycznych o napięciu do 1 kV muszą posiadać odpowiednie kwalifikacje. W Polsce, zgodnie z przepisami prawa, uprawnienia te potwierdzane są świadectwem kwalifikacyjnym, które powinno być wydane przez odpowiednie instytucje. Prace w obiektach przemysłowych, w których napięcie wynosi 230/400 V, są najczęściej związane z instalacjami niskonapięciowymi. Wymagania dotyczące szkoleń i certyfikacji osób zajmujących się instalacjami elektrycznymi są ściśle określone w normach, takich jak PN-EN 50110-1, która odnosi się do eksploatacji urządzeń elektrycznych. Pracownicy muszą być świadomi zagrożeń związanych z elektrycznością oraz umieć stosować odpowiednie środki ochrony osobistej. Przykładowo, osoby z uprawnieniami E do 1 kV będą w stanie wykonać wymianę osprzętu elektrycznego, takich jak gniazda, włączniki czy oświetlenie, zapewniając jednocześnie bezpieczeństwo pracy oraz zgodność z obowiązującymi normami.

Pytanie 20

Który z podanych środków można uznać za metodę ochrony przed porażeniem w przypadku uszkodzenia?

A. Obudowa
B. Umieszczenie części czynnych poza zasięgiem ręki
C. Samoczynne wyłączenie zasilania
D. Ogrodzenie
Samoczynne wyłączenie zasilania jest kluczowym środkiem ochrony przeciwporażeniowej, który automatycznie przerywa dopływ energii elektrycznej w przypadku wykrycia nieprawidłowości, takich jak zwarcie czy przeciążenie. To działanie jest zgodne z normami bezpieczeństwa, takimi jak PN-EN 61140, które określają wymagania dotyczące ochrony przed porażeniem prądem elektrycznym. Samoczynne wyłączenie zasilania minimalizuje ryzyko wystąpienia niebezpiecznych sytuacji, a jego zastosowanie jest powszechne w instalacjach elektrycznych, w których występują urządzenia o podwyższonym ryzyku. Przykładem zastosowania może być automatyczny wyłącznik różnicowoprądowy, który nie tylko wyłącza zasilanie, ale także monitoruje różnicę prądów, co jest istotne w ochronie osób pracujących w pobliżu urządzeń elektrycznych. Dzięki takiemu rozwiązaniu, w przypadku wystąpienia niebezpiecznego prądu różnicowego, zasilanie jest natychmiastowo odłączane, co znacznie zwiększa bezpieczeństwo użytkowników.

Pytanie 21

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 22

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 23

Jeżeli silnik prądu stałego z komutatorem po włączeniu zasilania nie zaczyna pracować, to możliwą przyczyną tej sytuacji może być

A. zaśmiecenie komutatora pyłem węglowym
B. brak kontaktu szczotek z komutatorem
C. zbyt mocny nacisk szczotek na komutator
D. umiejscowienie szczotek poza obszarem neutralnym
Brak przylegania szczotek do komutatora jest kluczowym problemem w silnikach komutatorowych prądu stałego. Gdy szczotki nie mają odpowiedniego kontaktu z komutatorem, nie dochodzi do przekazywania prądu do wirnika, co skutkuje brakiem obrotów silnika. Regularne kontrole stanu szczotek oraz komutatora są częścią dobrej praktyki w konserwacji tych urządzeń. W przypadku, gdy szczotki są zbyt zużyte, mogą nie przylegać wystarczająco, co uniemożliwia silnikowi uruchomienie. Właściwe ciśnienie szczotek na komutatorze oraz ich właściwe ustawienie w odpowiedniej strefie neutralnej są istotne dla efektywności działania silnika. Przykładem zastosowania tej wiedzy jest rutynowe serwisowanie silników w aplikacjach przemysłowych, gdzie ich awaria może prowadzić do znacznych przestojów. Zgodnie z normami branżowymi, regularne czyszczenie komutatora i kontrola stanu szczotek powinny być częścią harmonogramu konserwacji, aby zapewnić niezawodność i długowieczność urządzeń."

Pytanie 24

W jakim zakresie powinien znajdować się mierzony rzeczywisty prąd różnicowy IN wyłącznika różnicowoprądowego typu AC w odniesieniu do jego wartości znamionowej, aby był dopuszczony do użytkowania?

A. Od 0,5 IN do 1,2 IN
B. Od 0,3 IN do 1,0 IN
C. Od 0,5 IN do 1,0 IN
D. Od 0,3 IN do 0,8 IN
Pomierzony rzeczywisty prąd różnicowy I_N wyłącznika różnicowoprądowego typu AC powinien mieścić się w granicach od 0,5 I_N do 1,0 I_N, co zapewnia jego prawidłowe działanie i bezpieczeństwo użytkowania. Zgodnie z normami, takimi jak PN-EN 61008-1, wyłączniki różnicowoprądowe powinny wykazywać zdolność do prawidłowego działania w tym zakresie, aby skutecznie chronić przed porażeniem prądem elektrycznym. W praktyce, jeśli zmierzony prąd różnicowy mieści się w tych granicach, to oznacza, że urządzenie działa w optymalnym zakresie i jest w stanie skutecznie wykrywać niewielkie prądy upływowe, które mogą wskazywać na uszkodzenia izolacji lub inne problemy w instalacji elektrycznej. Przykładowo, w przypadku instalacji w budynkach mieszkalnych, regularne testowanie wyłączników różnicowoprądowych na poziomie 0,5 I_N do 1,0 I_N pozwala na zapewnienie bezpieczeństwa mieszkańców oraz utrzymanie instalacji w dobrym stanie technicznym.

Pytanie 25

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 26

Jaki stopień ochrony powinny mieć oprawy oświetleniowe w silnie zapylonych pomieszczeniach?

A. IP2X
B. IP5X
C. IP4X
D. IP3X
Stopień ochrony IP5X oznacza, że oprawa oświetleniowa jest pyłoszczelna, co jest kluczowe w pomieszczeniach mocno zapylonych. Oznaczenie IP (Ingress Protection) jest standardem międzynarodowym, który określa poziom ochrony urządzeń elektrycznych przed ciałami stałymi oraz cieczami. W przypadku IP5X urządzenie jest całkowicie chronione przed pyłem, co zapewnia jego niezawodność i długowieczność w trudnych warunkach. Przykładem zastosowania IP5X mogą być zakłady przemysłowe, magazyny, czy strefy produkcyjne, gdzie obecność pyłów może wpływać na działanie oświetlenia. Stosowanie opraw oświetleniowych z tym stopniem ochrony minimalizuje ryzyko uszkodzenia komponentów elektrycznych i zwiększa bezpieczeństwo pracy. Dodatkowo, zastosowanie opraw oświetleniowych z wysokim stopniem ochrony jest zgodne z normami takimi jak EN 60529, które regulują wymagania dotyczące stopni ochrony w sprzęcie elektrycznym. W praktyce, wybierając oświetlenie do zapylonych pomieszczeń, warto zawsze kierować się tymi standardami, aby zapewnić zarówno efektywność, jak i bezpieczeństwo działania urządzeń.

Pytanie 27

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 28

Aby zabezpieczyć silnik o parametrach znamionowych podanych poniżej, należy dobrać wyłącznik silnikowy według oznaczenia producenta

Silnik 3~ Typ MAS063-2BA90-Z
0,25 kW 0,69 A Izol. F
IP 54 2755 obr/min cosφ 0,81
400 V (Y) 50 Hz

A. MMS-32S – 4A
B. PKZM01 – 0,63
C. MMS-32S – 1,6A
D. PKZM01 – 1
Wybór wyłącznika silnikowego PKZM01 – 1 jest poprawny, ponieważ jego znamionowy prąd 1 A jest zgodny z wymaganiami silnika o mocy 0,25 kW i prądzie znamionowym 0,69 A. Wyłączniki silnikowe powinny być dobierane na podstawie prądu znamionowego silnika, co w tym przypadku oznacza, że wymagany prąd roboczy wyłącznika powinien być nieco wyższy niż prąd znamionowy silnika, aby zapewnić odpowiednią ochronę. PKZM01 – 1, przy prądzie 1 A, zapewnia odpowiedni margines bezpieczeństwa, co jest zgodne z dobrymi praktykami w branży. Dodatkowo, wyłączniki serii PKZ są wyposażone w funkcję zabezpieczenia przeciążeniowego i zwarciowego, co czyni je odpowiednim wyborem do ochrony silników. W przypadku awarii, wyłącznik ten zadziała szybko, chroniąc zarówno silnik, jak i podłączone instalacje. Wykorzystując wyłączniki zgodne z normami IEC 60947-4-1, można być pewnym ich niezawodności i efektywności działania.

Pytanie 29

Kto jest zobowiązany do opracowania planów regularnych przeglądów oraz konserwacji instalacji elektrycznej w obiekcie mieszkalnym?

A. Właściciel lub zarządca nieruchomości
B. Dostawca energii elektrycznej
C. Użytkownicy mieszkań
D. Organ inspekcji technicznej
Właściciel lub zarządca budynku jest odpowiedzialny za sporządzenie planów okresowych kontroli i napraw instalacji elektrycznej, co wynika z przepisów prawa budowlanego oraz standardów dotyczących zarządzania budynkami. Właściciel budynku ma obowiązek zapewnienia bezpieczeństwa instalacji elektrycznej, co obejmuje regularne przeglądy, które mogą wykryć potencjalne zagrożenia, takie jak przestarzałe komponenty, uszkodzenia mechaniczne czy nieprawidłowe połączenia. W praktyce, właściciele i zarządcy często korzystają z usług wyspecjalizowanych firm zajmujących się audytem i konserwacją instalacji elektrycznych. Dobre praktyki branżowe wskazują, że takie kontrole powinny być przeprowadzane co najmniej raz w roku, a szczególnie w przypadku starszych budynków, gdzie ryzyko awarii jest wyższe. Dodatkowo, zgodnie z normą PN-IEC 60364-6, regularne inspekcje są kluczowe dla zapewnienia bezpieczeństwa użytkowników oraz minimalizacji ryzyka pożarowego. Właściciele powinni również prowadzić dokumentację tych przeglądów, co jest istotne nie tylko dla utrzymania standardów, ale także w kontekście ewentualnych roszczeń ubezpieczeniowych.

Pytanie 30

Korzystając z tabeli podaj jakimi przewodami, według sposobu A1, należy wykonać instalację podtynkową gniazd jednofazowych zabezpieczonych wyłącznikiem nadprądowym B16A w sieci typu TN-S?

Przekrój przewodów, mm²Obciążalność długotrwała przewodów, A
AYDYp 2×1,514,5
BYDYp 2×2,519,5
CYDYp 3×1,513,5
DYDYp 3×2,518
A. C.
B. B.
C. D.
D. A.
Odpowiedź D jest prawidłowa, ponieważ wybór przewodów YDYp 3×2,5 mm² do instalacji podtynkowej gniazd jednofazowych zabezpieczonych wyłącznikiem nadprądowym B16A w sieci typu TN-S spełnia wszystkie wymogi bezpieczeństwa i normy obciążalności. Zgodnie z normą PN-IEC 60364, przewody muszą być dobrane w taki sposób, aby ich obciążalność długotrwała była wyższa od prądu znamionowego zabezpieczenia, w tym przypadku 16A. Przewody YDYp 3×2,5 mm² charakteryzują się obciążalnością długotrwałą wynoszącą 18A, co sprawia, że są odpowiednie do tego zastosowania. Takie podejście zapewnia nie tylko zgodność z przepisami, ale również minimalizuje ryzyko przegrzania oraz uszkodzenia instalacji. W praktyce, dobra jakość przewodów oraz ich odpowiedni dobór mają kluczowe znaczenie dla bezpieczeństwa użytkowników oraz niezawodności instalacji. Przewody podtynkowe powinny być również odpowiednio zabezpieczone przed uszkodzeniami mechanicznymi oraz działaniem wilgoci, co potwierdza znaczenie staranności w realizacji projektów elektrycznych.

Pytanie 31

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 32

Jaką liczbę należy użyć do pomnożenia wartości znamionowego prądu silnika trójfazowego klatkowego, który napędza pompę, aby obliczyć maksymalną dopuszczalną wartość nastawy prądu na jego zabezpieczeniu termicznym?

A. 2,2
B. 0,8
C. 1,4
D. 1,1
Odpowiedź 1,1 jest poprawna, ponieważ przy obliczaniu maksymalnej dopuszczalnej wartości nastawy prądu na zabezpieczeniu termicznym silników trójfazowych, stosuje się współczynnik 1,1. Ten współczynnik uwzględnia zwiększone obciążenie silnika w przypadku jego rozruchu oraz wpływ na jego pracę w warunkach długotrwałego obciążenia. Przyjmuje się, że silniki trójfazowe mogą być obciążane do wartości 10% powyżej znamionowej przez krótki czas, co jest kluczowe dla ochrony silnika oraz zapewnienia jego efektywności. W praktyce oznacza to, że jeżeli znamionowy prąd silnika wynosi na przykład 10 A, to maksymalna wartość nastawy na zabezpieczeniu termicznym powinna wynosić 11 A. Zastosowanie tego współczynnika jest zgodne z normami IEC 60034 oraz wytycznymi producentów urządzeń, co jest kluczowe dla zabezpieczenia silników i zapewnienia ich prawidłowej pracy.

Pytanie 33

W ramach badań eksploatacyjnych silnika indukcyjnego, wykonuje się pomiar

A. oporu rdzenia stojana
B. okresu jego działania
C. intensywności pola magnetycznego
D. oporu uzwojeń stojana
Pomiar rezystancji uzwojeń stojana silnika indukcyjnego jest kluczowym elementem badań eksploatacyjnych, ponieważ pozwala na ocenę stanu uzwojeń, co jest istotne dla efektywności oraz niezawodności pracy silnika. Wysoka rezystancja może wskazywać na uszkodzenia, takie jak przegrzanie czy korozja. Regularne pomiary rezystancji uzwojeń pomagają w identyfikacji potencjalnych problemów zanim doprowadzą one do poważniejszych awarii, co w konsekwencji przyczynia się do obniżenia kosztów eksploatacji oraz zwiększenia czasu pracy silników. Przykładowo, w przemyśle motoryzacyjnym i w aplikacjach przemysłowych, gdzie silniki są kluczowym elementem pracy, monitorowanie parametrów jak rezystancja uzwojeń pozwala na optymalizację procesów produkcyjnych. Dobre praktyki w zakresie diagnostyki silników przewidują systematyczne wykonywanie tego typu pomiarów, co jest zgodne z normami ISO 9001, które podkreślają znaczenie jakości i monitorowania procesów.

Pytanie 34

Jakie będą konsekwencje zmiany w instalacji elektrycznej w budynku mieszkalnym przewodów ADG 1,5 mm2 na przewody DY 1,5 mm2?

A. Osłabienie wytrzymałości mechanicznej przewodów
B. Zwiększenie rezystancji pętli zwarcia
C. Obniżenie napięcia roboczego
D. Zwiększenie obciążalności prądowej instalacji
Wymiana przewodów ADG 1,5 mm² na przewody DY 1,5 mm² w elektrycznej instalacji mieszkaniowej prowadzi do zwiększenia obciążalności prądowej instalacji. Przewody DY, w przeciwieństwie do przewodów ADG, charakteryzują się lepszymi właściwościami przewodzenia prądu oraz wyższą odpornością na wpływy mechaniczne i chemiczne. Dzięki zastosowaniu materiałów wysokiej jakości oraz odpowiedniej konstrukcji, przewody DY mogą przenieść większe obciążenia prądowe, co jest szczególnie istotne w kontekście rosnącego zapotrzebowania na energię elektryczną w nowoczesnych gospodarstwach domowych. Przykładem zastosowania przewodów DY może być zainstalowanie w domach systemów inteligentnego zarządzania energią, gdzie stabilność i wydajność przewodów mają kluczowe znaczenie. Warto zauważyć, że zgodnie z obowiązującymi normami, takich jak PN-IEC 60364, zaleca się użycie przewodów o wyższej obciążalności w instalacjach, w których przewiduje się duże obciążenia prądowe.

Pytanie 35

Jakie powinno być znamionowe natężenie prądu dla instalacyjnego wyłącznika nadprądowego używanego w systemie z napięciem 230 V, 50 Hz, jako zabezpieczenie obwodu wykonanego z przewodu 3x2,5 mm2, który zasila 1-fazowy piec elektryczny o mocy 3 kW?

A. 16 A
B. 6 A
C. 10 A
D. 25 A
Wybór znamionowego prądu instalacyjnego wyłącznika nadprądowego na poziomie 16 A w przypadku obwodu zasilającego piec elektryczny o mocy 3 kW jest zgodny z zasadami zabezpieczeń elektrycznych. Przy napięciu 230 V, prąd pobierany przez piec można obliczyć, korzystając ze wzoru P = U * I, co daje I = P / U, a w naszym przypadku I = 3000 W / 230 V = 13,04 A. Z tego wynika, że wyłącznik nadprądowy o znamionowym prądzie 16 A będzie odpowiedni, zapewniając odpowiedni margines bezpieczeństwa oraz uwzględniając warunki pracy, takie jak prądy rozruchowe. Zgodnie z normą PN-IEC 60364-4-41, zabezpieczenia instalacyjne powinny być dobrane z odpowiednim zapasem, aby zminimalizować ryzyko wyzwolenia wyłącznika w normalnych warunkach eksploatacyjnych. Dodatkowo, zastosowanie przewodu 3x2,5 mm², który ma odpowiednią zdolność prądową, sprzyja bezpieczeństwu i niezawodności instalacji. W praktyce, 16 A jest powszechnie stosowane dla podobnych obwodów, co czyni tę odpowiedź właściwą.

Pytanie 36

Jaką maksymalną wartość prądu zadziałania można ustawić na przekaźniku termobimetalowym w obwodzie zasilającym silnik asynchroniczny o parametrach UN = 400 V, PN = 0,37 kW, I = 1,05 A, n = 2710 l/min, aby zapewnić skuteczną ochronę przed przeciążeniem?

A. It=1,33 A
B. It=0,88 A
C. It=1,05 A
D. It=1,15 A
Prąd zadziałania 1,15 A na przekaźniku termobimetalowym to naprawdę dobry wybór do ochrony silnika asynchronicznego o takich danych jak U<sub>N</sub> = 400 V, P<sub>N</sub> = 0,37 kW oraz I = 1,05 A. W praktyce przekaźniki termobimetalowe ustawiamy na wartość trochę wyższą od prądu znamionowego silnika. W tym przypadku 1,15 A to dobra decyzja, bo zapewnia odpowiednią ochronę przed przeciążeniem, a jednocześnie daje trochę luzu na krótkie wzrosty prądu, które mogą wystąpić na przykład podczas rozruchu. Ta zasada jest zgodna z normą PN-EN 60204-1, która mówi o bezpieczeństwie w instalacjach elektrycznych maszyn. Dzięki temu silnik nie będzie miał problemów z uszkodzeniami spowodowanymi długotrwałym przeciążeniem, co w efekcie wydłuża jego żywotność i zwiększa niezawodność całego systemu. Na przykład, w przemyśle silnik napędzający wentylator potrzebuje odpowiednio ustawionych przekaźników, żeby wszystko działało bez zarzutu i żeby zminimalizować ryzyko awarii.

Pytanie 37

W jakim układzie sieciowym wyłączniki różnicowoprądowe nie mogą być używane jako elementy ochrony przed porażeniem w przypadku awarii?

A. TN-C
B. TN-S
C. IT
D. TT
Odpowiedź TN-C jest poprawna, ponieważ w tym układzie sieciowym nie można stosować wyłączników różnicowoprądowych (WRP) jako elementów ochrony przeciwporażeniowej. W systemie TN-C, gdzie neutralny przewód (N) oraz ochronny przewód (PE) są połączone w jeden przewód (PEN), istnieje ryzyko, że WRP nie zadziała w przypadku uszkodzenia. Dzieje się tak, ponieważ wszelkie prądy upływowe mogą być zrównoważone przez prąd neutralny i nie będą rejestrowane przez wyłącznik. Przykładowo, w instalacjach przemysłowych lub budowlanych z układem TN-C, zastosowanie WRP może prowadzić do sytuacji, w których osoba dotykająca części metalowe staje się narażona na porażenie prądem, ponieważ WRP nie wykryje niewielkich różnic prądowych. Dobrymi praktykami w systemach TN-C są stosowanie dodatkowych środków ochrony, takich jak zabezpieczenia przez izolację oraz odpowiednie uziemienie, które mogą zminimalizować ryzyko porażenia. Zgodnie z normą PN-IEC 60364, zaleca się użycie układów TN-S lub TT, gdzie separacja przewodów PE i N pozwala na skuteczne działanie WRP.

Pytanie 38

Aby ocenić efektywność ochrony przeciwporażeniowej w silniku trójfazowym działającym w systemie TN-S, konieczne jest przeprowadzenie pomiaru

A. prądu zadziałania wyłącznika instalacyjnego nadprądowego
B. czasu reakcji przekaźnika termobimetalowego
C. rezystancji uzwojeń fazowych silnika
D. impedancji pętli zwarcia w instalacji
Pomiar impedancji pętli zwarcia jest kluczowym elementem oceny skuteczności ochrony przeciwporażeniowej w systemach TN-S. W systemach tych, ochrona przed porażeniem elektrycznym opiera się na zastosowaniu bardzo niskiej impedancji pętli zwarcia, co zapewnia szybkie zadziałanie wyłączników nadprądowych w przypadku zwarcia. Zgodnie z normą PN-EN 60364, impedancja pętli zwarcia powinna być na tyle niska, aby czas zadziałania zabezpieczeń nie przekraczał 0,4 sekundy w obwodach zasilających urządzenia o dużych mocach. W praktyce, pomiar ten wykonuje się za pomocą specjalistycznych urządzeń pomiarowych, które pozwalają na określenie wartości impedancji oraz ocenę stanu instalacji. Regularne kontrole tej wartości są istotne, gdyż zmiany w instalacji, takie jak korozja połączeń czy uszkodzenia izolacji, mogą prowadzić do wzrostu impedancji, co z kolei zwiększa ryzyko porażenia prądem. Dzięki pomiarom impedancji pętli zwarcia można szybko zdiagnozować potencjalne zagrożenia oraz podjąć odpowiednie działania naprawcze, co przyczynia się do poprawy bezpieczeństwa użytkowników.

Pytanie 39

Podczas przeprowadzania okresowych pomiarów instalacji elektrycznej w układzie TN-S, w jednym z obwodów gniazd jednofazowych 230 V stwierdzono zbyt wysoką wartość impedancji pętli zwarcia. Jakie działania należy podjąć w pierwszej kolejności, aby zidentyfikować problem?

A. Sprawdzić funkcję przycisku "TEST" na wyłączniku RCD
B. Sprawdzić kondycję połączeń przewodów w puszkach oraz aparatach
C. Zmierzyć rezystancję izolacji przewodów w tym obwodzie
D. Zmierzyć ciągłość przewodów ochronnych PE
Wybór opcji sprawdzenia stanu połączeń przewodów w puszkach i aparatach jest kluczowy przy identyfikacji problemów z impedancją pętli zwarcia w instalacji elektrycznej. Wysoka wartość impedancji pętli zwarcia może wskazywać na luźne lub uszkodzone połączenia, które są krytyczne dla zapewnienia bezpieczeństwa i prawidłowego działania instalacji. W przypadku obwodów gniazd jednofazowych, zidentyfikowanie i naprawa luźnych połączeń jest priorytetem, ponieważ takie usterki mogą prowadzić do niebezpiecznych skutków, jak np. nieprawidłowe działanie zabezpieczeń, a w skrajnych przypadkach do porażenia prądem. Dobre praktyki przewidują regularne sprawdzanie stanu połączeń oraz ich poprawności zgodnie z obowiązującymi normami, takimi jak PN-IEC 60364. W praktyce, zweryfikowanie stanu połączeń powinno obejmować nie tylko wizualną inspekcję, ale także testy pomocnicze, które mogą potwierdzić ich integralność i ciągłość.

Pytanie 40

Na podstawie zamieszczonych w tabeli danych łożysk dobierz łożysko do silnika o średnicy wału d = 12 mm, średnicy wewnętrznej tarczy łożyskowej D = 28 mm i szerokości tarczy łożyskowej B = 8 mm.

SymbolWymiary podstawowe
d [mm]D [mm]B [mm]r [mm]
6700101530,1
62003090,6
6001122880,3
630137121
A. 6001
B. 6700
C. 6200
D. 6301
Odpowiedź 6001 jest poprawna, ponieważ jej wymiary są zgodne z wymaganiami określonymi w pytaniu. Średnica wewnętrzna łożyska 6001 wynosi 12 mm, co odpowiada średnicy wału, a średnica zewnętrzna wynosi 28 mm oraz szerokość 8 mm. W praktyce, wybór odpowiedniego łożyska jest kluczowy dla zapewnienia prawidłowego działania silnika oraz jego długowieczności. Użycie odpowiednich łożysk minimalizuje tarcie, co z kolei przekłada się na mniejsze straty energii i wysoką efektywność pracy. Dodatkowo, łożyska są projektowane z myślą o określonych zastosowaniach, dlatego znajomość ich parametrów jest niezbędna. W branży mechanicznej, standardy takie jak ISO 355, które dotyczą wymiarów i tolerancji łożysk tocznych, powinny być stosowane w celu zapewnienia jakości i niezawodności komponentów. W przypadku łożysk, warto również zwrócić uwagę na ich zastosowanie w różnych środowiskach pracy, co może wpływać na wybór materiałów i rodzaju uszczelnienia, co z kolei wpływa na ich trwałość oraz efektywność eksploatacyjną.