Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.06 - Eksploatacja i programowanie urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 5 stycznia 2026 14:42
  • Data zakończenia: 5 stycznia 2026 14:54

Egzamin zdany!

Wynik: 34/40 punktów (85,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Aby szybko zmienić rozmiary projektowanego elementu w programie CAD, należy zastosować metodę modelowania

A. parametrycznego
B. powierzchniowego
C. bezpośredniego
D. bryłowego
Technika modelowania parametrycznego jest kluczowym podejściem w inżynierii wspomaganej komputerowo (CAD), które umożliwia efektywne i szybkie dostosowywanie wymiarów projektowanych elementów. W praktyce, modelowanie parametryczne polega na definiowaniu geometrii elementów za pomocą zmiennych i parametrów, co pozwala na automatyczną aktualizację całego modelu w odpowiedzi na zmianę wartości tych parametrów. Na przykład, jeżeli projektujesz element, taki jak obudowa dla urządzenia elektronicznego, możesz ustalić wymiary jej wysokości, szerokości i głębokości jako parametry. W momencie, gdy zajdzie potrzeba zmiany jednego z tych wymiarów, np. zwiększenia wysokości, wystarczy zmienić wartość parametru, a program automatycznie przeliczy i zaktualizuje wszystkie powiązane wymiary oraz ich interakcje. Dzięki temu proces projektowy staje się bardziej elastyczny i mniej czasochłonny, co jest zgodne z najlepszymi praktykami w branży inżynieryjnej, gdzie adaptacja do zmieniających się wymagań klientów jest kluczowa. Ponadto, modelowanie parametryczne ułatwia współpracę zespołową, pozwala na łatwe wprowadzanie poprawek oraz sprzyja lepszemu zarządzaniu dokumentacją projektową.

Pytanie 2

Długotrwałe użytkowanie układu hydraulicznego z czynnikiem roboczym o innej lepkości niż ta wskazana w dokumentacji techniczno-ruchowej może prowadzić do

A. intensywnych drgań układu
B. spadku ciśnienia czynnika roboczego
C. zwiększenia tempa działania układu
D. uszkodzenia pompy hydraulicznej
Długotrwała eksploatacja układu hydraulicznego z czynnikiem roboczym o innej lepkości niż zalecana w dokumentacji techniczno-ruchowej może prowadzić do uszkodzenia pompy hydraulicznej. Pompy hydrauliczne są projektowane do pracy z określoną lepkością oleju, co wpływa na ich wydajność oraz żywotność. Zmiana lepkości czynnika roboczego może skutkować nieprawidłowym smarowaniem i przegrzewaniem się pompy, co w konsekwencji prowadzi do jej uszkodzenia. Przykładem zastosowania tej wiedzy jest regularne monitorowanie lepkości oleju oraz jego wymiana zgodnie z zaleceniami producenta. W praktyce, stosowanie oleju o nieodpowiedniej lepkości może skutkować zwiększonym zużyciem elementów układu hydraulicznego, co nie tylko wpływa na efektywność działania, ale również na bezpieczeństwo całego systemu. Standardy, takie jak ISO 6743, dostarczają szczegółowych wytycznych dotyczących właściwego doboru olejów hydraulicznych, co jest kluczowe dla zapewnienia długotrwałej i niezawodnej pracy układów hydraulicznych.

Pytanie 3

Jakiej z wymienionych funkcji nie realizuje system SCADA?

A. Zwalczanie i usuwanie wirusów komputerowych
B. Archiwizacja danych
C. Zbieranie danych
D. Prezentacja danych
Oprogramowanie SCADA (Supervisory Control and Data Acquisition) jest kluczowym elementem w zarządzaniu systemami przemysłowymi. Jego podstawowe funkcje obejmują zbieranie danych z różnych czujników i urządzeń, wizualizację tych danych w postaci graficznej, a także archiwizację informacji, co pozwala na późniejszą analizę wydajności i diagnostykę. SCADA umożliwia operatorom monitorowanie procesów w czasie rzeczywistym, co jest istotne dla utrzymania wydajności produkcji oraz bezpieczeństwa operacji. Na przykład, w zakładach chemicznych oprogramowanie SCADA zbiera dane dotyczące temperatury, ciśnienia czy poziomu substancji, które są następnie wizualizowane na panelach operatorskich. Dzięki archiwizacji danych, inżynierowie mogą analizować trendów i podejmować decyzje na podstawie historycznych danych. Standardy takie jak ISA-95 i IEC 61512 definiują ramy dla implementacji systemów SCADA, podkreślając ich rolę w automatyzacji procesów przemysłowych. W związku z tym, zrozumienie, że SCADA nie zajmuje się zwalczaniem wirusów komputerowych, jest kluczowe dla prawidłowego zastosowania tej technologii w praktyce.

Pytanie 4

Który symbol należy zastosować, rysując na schemacie układu hydraulicznego zawór sterujący kierunkiem przepływu 4/2?

Ilustracja do pytania
A. A.
B. C.
C. B.
D. D.
Zawór sterujący kierunkiem przepływu 4/2 to mega ważny element w układach hydraulicznych i pneumatycznych. Dzięki niemu możemy zmieniać kierunek cieczy lub gazu. Symbol 'C.' przedstawia ten zawór z dwiema pozycjami sterującymi i czterema portami, co dokładnie pasuje do pytania. Takie zawory są często używane w różnych maszynach, na przykład w tych do obróbki materiałów, gdzie kluczowe jest, żeby narzędzie mogło zmieniać kierunek ruchu. Zgodność z normami ISO 1219 oraz EN 982 sprawia, że inżynierowie bez problemu rozpoznają te symbole na schematach. Stosowanie zaworów 4/2 to także dobry sposób na lepsze zarządzanie systemami hydraulicznymi, co w efekcie poprawia ich wydajność na dłuższą metę.

Pytanie 5

Jakie czynności należy wykonać tuż przed przesłaniem programu sterującego z komputera do pamięci sterownika PLC?

A. Ustawić sterownik w trybie STOP
B. Odłączyć kabel zasilający
C. Przełączyć sterownik w tryb RUN
D. Odłączyć kabel komunikacyjny
Ustawienie sterownika PLC w trybie STOP przed przesłaniem programu sterowniczego jest kluczowym krokiem, który należy podjąć dla zapewnienia bezpieczeństwa operacji. Tryb STOP pozwala na wgranie nowego programu bez ryzyka, że bieżące operacje będą kontynuowane, co mogłoby prowadzić do nieprzewidzianych sytuacji, jak np. uszkodzenie sprzętu czy naruszenie zasad bezpieczeństwa. W praktyce, w trybie STOP użytkownik ma pełną kontrolę nad procesem programowania, co jest zgodne z najlepszymi praktykami w dziedzinie automatyki przemysłowej, gdzie bezpieczeństwo i integralność systemów są priorytetem. Zgodnie z normami, takimi jak IEC 61131-3, przed każdą modyfikacją programu, zaleca się, aby systemy były w trybie, który nie pozwala na ich aktywne działanie, co znacznie redukuje ryzyko błędów. Po pomyślnym przesłaniu programu, można przełączyć sterownik z powrotem w tryb RUN, co pozwala na uruchomienie nowych funkcji programu.

Pytanie 6

Którego symbolu należy użyć, aby przedstawić łożysko toczne poprzeczne na schemacie kinematycznym mechanizmu?

Ilustracja do pytania
A. A.
B. B.
C. C.
D. D.
Wybór niewłaściwego symbolu na schemacie może prowadzić do poważnych nieporozumień i błędów w projektowaniu. Odpowiedzi, które nie odpowiadają symbolowi "C.", mogą wynikać z niedostatecznej znajomości standardów branżowych lub nieprecyzyjnego rozumienia funkcji poszczególnych elementów w mechanizmach. Na przykład, użycie symbolu „A.” dla łożyska tocznego poprzecznego jest błędne, ponieważ symbol ten często oznacza inne elementy mechaniczne, takie jak wały czy inne formy łożysk. Tego rodzaju pomyłki mogą prowadzić do nieprawidłowego montażu, co z kolei może skutkować uszkodzeniem urządzenia lub obniżeniem jego wydajności. Innym typowym błędem jest mylenie łożysk tocznych z łożyskami ślizgowymi, które mają zupełnie inną konstrukcję i charakterystykę pracy. Pomocne jest zrozumienie, że łożyska toczne działają na zasadzie tocznego ruchu, co pozwala na lepsze przenoszenie obciążeń w porównaniu do łożysk ślizgowych, które opierają się na ruchu poślizgowym. Dlatego prawidłowe dobieranie symboli jest nie tylko kwestią estetyki dokumentacji, ale również bezpieczeństwa i efektywności całego mechanizmu.

Pytanie 7

Jakie kluczowe cechy funkcjonalne powinien mieć system sterowania układem nawrotnym dla silnika elektrycznego?

A. Blokadę uniemożliwiającą jednoczesne włączenie w obu kierunkach
B. Sygnalizację kierunków obrotu silnika
C. Ograniczenie czasowe dla pracy silnika z napędem
D. Podtrzymanie kierunku obrotów silnika z napędem
Wybór odpowiedzi "Blokadę przed jednoczesnym załączeniem w obu kierunkach." jest poprawny, ponieważ stanowi kluczowy element systemów sterowania silnikami elektrycznymi, który ma na celu zapewnienie bezpieczeństwa oraz ochrony zarówno urządzenia, jak i użytkownika. W praktyce, w przypadku jednoczesnego załączenia silnika w dwóch przeciwnych kierunkach, mogłoby dojść do poważnych uszkodzeń mechanicznych, a także do zagrożenia dla ludzi znajdujących się w pobliżu. Blokada ta jest standardowym rozwiązaniem w branży automatyki, stosowanym w wielu aplikacjach, od prostych silników jednofazowych po złożone systemy napędowe w przemyśle. Przykładowo, w systemach z wykorzystaniem falowników, implementacja takiej blokady jest nie tylko zalecana, ale wręcz wymagana przez normy bezpieczeństwa. Dobre praktyki inżynieryjne sugerują wprowadzenie dodatkowych czujników, które monitorują aktywność silnika, co pozwala na automatyczne zatrzymanie pracy w przypadku wykrycia nieprawidłowości. Oprócz tego, zapewnia to również większą niezawodność i dłuższą żywotność komponentów systemu, co jest kluczowe w kontekście kosztów eksploatacji.

Pytanie 8

Jakim oznaczeniem literowym nazywa się zmienne wewnętrzne kontrolera, które są używane w programie jako styki i cewki?

A. M
B. Q
C. T
D. C
Odpowiedź "M" jest poprawna, ponieważ symbol ten odnosi się do zmiennych wewnętrznych sterownika, które pełnią rolę cewek i styków w programowaniu PLC. Zmienne te są związane z pamięcią sterownika, co znajduje odzwierciedlenie w angielskim słowie "memory". W praktyce zmienne typu M są wykorzystywane do przechowywania stanów logicznych, które mogą być używane w różnych częściach programu, co zapewnia elastyczność i możliwość łatwego zarządzania danymi. Dobrą praktyką jest przydzielanie zmiennych pamięciowych do konkretnych funkcji, co ułatwia późniejsze debugowanie oraz utrzymanie programu. W kontekście standardów, w wielu systemach automatyki przemysłowej, takich jak Siemens TIA Portal czy Allen-Bradley, zmienne pamięciowe są kluczowym elementem programowania, ponieważ umożliwiają manipulację danymi oraz interakcję z fizycznymi urządzeniami. Warto także zaznaczyć, że zrozumienie i umiejętność wykorzystania zmiennych M ma istotne znaczenie w kontekście pisania efektywnych i bezpiecznych programów automatyki.

Pytanie 9

Który element urządzenia mechatronicznego, przedstawionego na schemacie jestniewłaściwie narysowany?

Ilustracja do pytania
A. Lampka sygnalizacyjna H1.
B. Zawór elektromagnetyczny K2.
C. Przycisk monostabilny S1.
D. Przycisk monostabilny S2.
Wybór niewłaściwej odpowiedzi często wynika z niepełnego zrozumienia zasad działania elementów mechatronicznych. Przycisk monostabilny S2 oraz lampka sygnalizacyjna H1 są zaprezentowane w sposób, który nie budzi wątpliwości co do ich funkcji, a ich poprawna interpretacja jest kluczowa w projektowaniu systemów automatyki. W przypadku przycisku monostabilnego, istotne jest zrozumienie, że opiera się on na mechanizmie, który aktywuje obwód tylko w trakcie jego naciskania. Często mylone są funkcjonalności przycisków monostabilnych z przyciskami bistabilnymi, które mogą posiadać więcej niż jeden styk oraz przechodzić między dwoma stabilnymi stanami. W przypadku zaworu elektromagnetycznego K2, jego rysunek może być również mylący, jeżeli nie zwróci się uwagi na szczegóły dotyczące jego pracy. Przy wyborze odpowiedzi warto skupić się na analizie schematu pod kątem norm branżowych dotyczących przedstawienia elementów oraz ich funkcji w systemach mechatronicznych. Błędy w identyfikacji takich elementów mogą prowadzić do nieodpowiednich decyzji projektowych, które z kolei przekładają się na nieefektywność i awarie w działaniu całego systemu.

Pytanie 10

Która z liter adresowych zastosowanych w poniższej instrukcji programowania obrabiarki oznacza szybkość posuwu?

CNC N120 G31 X50 Z-30 D-2 F3 Q3
A. G
B. Q
C. N
D. F
Wybór litery 'F' jako oznaczenia szybkości posuwu w programowaniu obrabiarek CNC jest poprawny, ponieważ jest to standardowo stosowane oznaczenie w wielu językach programowania tych urządzeń. Szybkość posuwu, czyli prędkość, z jaką narzędzie porusza się w obrabianym materiale, ma kluczowe znaczenie dla jakości oraz efektywności obróbki. Zbyt niska prędkość posuwu może prowadzić do nieefektywnej obróbki, a zbyt wysoka może powodować przegrzewanie materiału oraz zużycie narzędzi. Przykładowo, w kodzie G, zapis 'F3' wskazuje, że narzędzie porusza się z prędkością 3 mm/min, co pozwala na precyzyjne stworzenie detalu zgodnie z wymogami technologicznymi. Warto zaznaczyć, że dobór właściwej szybkości posuwu zależy od rodzaju materiału, geometrii narzędzia oraz parametrów obrabiarki, co podkreśla znaczenie znajomości tych aspektów dla operatora CNC. Używanie litery 'F' do oznaczania tej wartości jest powszechne w branży i należy do najlepszych praktyk. Właściwe ustawienie szybkości posuwu ma również wpływ na żywotność narzędzi oraz jakość powierzchni obrabianego detalu, dlatego tak istotne jest, aby operatorzy CNC byli dobrze zaznajomieni z tymi parametrami.

Pytanie 11

Który z wymienionych kwalifikatorów działań, wykorzystywanych w metodzie SFC, może być pominięty w opisie bloku akcji, nie wpływając na sposób realizacji przypisanego w nim działania?

A. D
B. N
C. R
D. S
Wybierając inne kwalifikatory, można napotkać na kilka kluczowych nieporozumień dotyczących ich funkcji w metodzie SFC. Kwalifikator "D" oznacza działanie, które jest realizowane w danej chwili, co sugeruje konieczność podania dodatkowych warunków dla jego wykonania. Pominięcie tego kwalifikatora prowadziłoby do niejasności co do tego, kiedy dokładnie działanie powinno być zainicjowane. Kwalifikator "R" sygnalizuje, że działanie powinno być powtarzane, co jest kluczowe w kontekście zautomatyzowanych procesów, w których czas cyklu i sekwencje powtórzeń mają fundamentalne znaczenie dla efektywności. W przypadku jego pominięcia, efektor może nie działać zgodnie z zamierzeniem, co prowadzi do nieefektywności w operacjach. Kwalifikator "S" z kolei odnosi się do stanu, w którym powinno nastąpić określone działanie. Pominięcie go w opisie bloku akcji również może spowodować, że proces nie będzie realizowany zgodnie z zamierzeniem, co może mieć negatywne skutki w kontekście bezpieczeństwa i wydajności procesów. W praktyce, zrozumienie roli wszystkich kwalifikatorów oraz ich wpływu na wykonanie danego działania jest kluczowe dla właściwego modelowania procesów w automatyce przemysłowej. Typowe błędy myślowe związane z tym zagadnieniem to ignorowanie znaczenia poszczególnych kwalifikatorów, co prowadzi do uproszczeń i nieprawidłowych wniosków na temat działania systemu.

Pytanie 12

Parametry takie jak powierzchnia membrany, temperatura operacyjna, typ napędu, maksymalne ciśnienie, skok oraz precyzja położenia są charakterystyczne dla

A. silnika hydraulicznego
B. siłownika pneumatycznego
C. smarownicy pneumatycznej
D. siłownika hydraulicznego
Siłowniki pneumatyczne charakteryzują się różnorodnymi parametrami, które wpływają na ich wydajność i zastosowanie w różnych systemach automatyki. Powierzchnia membrany, temperatura pracy i maksymalne ciśnienie to kluczowe aspekty, które determinują zdolność siłownika do generowania odpowiedniej siły. Na przykład, w aplikacjach wymagających precyzyjnej kontroli położenia, takich jak w automatyzacji w przemyśle spożywczym lub pakowaniu, wybór siłownika pneumatycznego z odpowiednimi parametrami staje się kluczowy. Dobre praktyki w branży zalecają dostosowanie tych parametrów do specyfiki aplikacji, co obejmuje m.in. dobór odpowiednich materiałów odpornych na temperatury oraz ciśnienia robocze, aby zapewnić długotrwałość i niezawodność. Dodatkowo, siłowniki pneumatyczne są często wykorzystywane w liniach produkcyjnych ze względu na swoją szybkość działania, co czyni je idealnymi do operacji wymagających dynamicznych ruchów. Zgodność z normami ISO oraz uwzględnienie aspektów bezpieczeństwa jest również istotnym elementem przy projektowaniu systemów z ich użyciem.

Pytanie 13

Na rysunku przedstawiony został diagram czasowy obrazujący pracę licznika. Warunkiem wyzerowania licznika jest podanie

Ilustracja do pytania
A. logicznego 0 na wejście I2
B. logicznego 0 na wejście I3
C. logicznej 1 na wejście I1
D. logicznej 1 na wejście I3
Odpowiedź wskazująca na logiczną 1 na wejście I3 jest poprawna, ponieważ w systemach cyfrowych, takich jak liczniki, wyzerowanie wymaga specyficznych sygnałów kontrolnych. W przypadku większości liczników, sygnał na wejściu I3 jest kluczowy dla inicjowania resetu, co oznacza, że przekształca bieżące zliczanie do zera. W praktyce, takie mechanizmy są istotne w projektowaniu urządzeń cyfrowych, gdzie resetowanie liczników może być konieczne w określonych sytuacjach, jak np. w systemach zliczających czas czy liczników impulsów. Ważnym aspektem jest to, że w projektach inżynieryjnych stosuje się precyzyjne sygnały do kontrolowania stanu urządzeń, co jest zgodne z zasadami projektowania układów logicznych. Użycie logicznej 1 na wejściu I3 do resetowania licznika jest zgodne z najlepszymi praktykami w inżynierii cyfrowej, zapewniając, że licznik działa w sposób przewidywalny i efektywny w różnych scenariuszach operacyjnych.

Pytanie 14

Jaką linią należy zaznaczyć na rysunku technicznym miejsce urwania lub przerwania przedmiotu?

A. Cienką ciągłą linią zygzakową.
B. Cienką z długą kreską oraz kropką.
C. Grubą kreską.
D. Grubą linią punktową.
Cienka ciągła zygzakowa linia jest standardem stosowanym w rysunku technicznym do oznaczania urwań i przerwań przedmiotów. W praktyce inżynieryjnej, użycie tej linii pozwala na jasne i jednoznaczne przedstawienie elementów, które nie są w pełni widoczne, co jest kluczowe w dokumentacji technicznej. Zygzakowa linia wskazuje, że dany fragment obiektu nie jest przedstawiony w całości, co może mieć znaczenie podczas produkcji czy montażu. Warto pamiętać, że zgodnie z normami ISO, stosowanie odpowiednich linii ma kluczowe znaczenie w komunikacji wizualnej w inżynierii. Umożliwia to projektantom i inżynierom lepsze zrozumienie zamysłu konstrukcyjnego oraz uniknięcie błędów w realizacji projektu. To zastosowanie podkreśla rolę standardów w procesie projektowania, gdzie nawet drobne szczegóły, jak typ linii, mogą mieć duże znaczenie dla finalnej jakości i funkcjonalności produktu.

Pytanie 15

Na podstawie fragmentu algorytmu przedstawionego za pomocą sieci GRAFCET określ, jaki warunek musi być spełniony, aby został wykonany krok 8.

Ilustracja do pytania
A. S1 = 1 i S2 = 0 i S3 = 1 i S4 = 1
B. S1 = 0 lub S2 = 1 lub S3 = 0 lub S4 = 0
C. S1 = 0 i S2 = 1 i S3 = 0 i S4 = 0
D. S1 = 1 lub S2 = 0 lub S3 = 1 lub S4 = 1
Odpowiedź S1 = 0 i S2 = 1 i S3 = 0 i S4 = 0 jest prawidłowa, ponieważ wszystkie wymienione zmienne muszą być spełnione jednocześnie, aby krok 8 algorytmu GRAFCET został wykonany. W kontekście automatyki, GRAFCET jest używany do modelowania sekwencyjnych procesów, gdzie każdy krok w algorytmie odpowiada konkretnemu stanowi urządzenia. Wymaganie, aby S1 było równe 0, oznacza, że dany element musi być wyłączony, podczas gdy S2 powinno być równe 1, co wskazuje, że inny element musi być aktywny. Takie podejście pozwala na precyzyjne kontrolowanie stanu maszyny i zabezpiecza przed niepożądanymi efektami, jakie mogą wystąpić w wyniku błędnych warunków. W praktyce, na przykład w systemach sterowania, właściwe ustawienie tych stanów jest kluczowe dla zapewnienia bezpieczeństwa operacji. Standardy takie jak IEC 61131 dotyczące programowania sterowników PLC zalecają jasne definiowanie warunków przejścia między stanami, co jest zgodne z zasadami opisanymi w GRAFCET. Warto również zauważyć, że stosowanie operatorów logicznych „i” w warunkach przejścia pozwala na wyeliminowanie sytuacji, w których niepożądane stany mogłyby wpływać na działanie procesu.

Pytanie 16

Na rysunku zamieszczono schemat blokowy procesu pakowania kul. Którego modułu funkcyjnego należy użyć w programie realizującym ten proces?

Ilustracja do pytania
A. NOP
B. TOF
C. TON
D. CTU
Odpowiedź CTU jest poprawna, ponieważ znaczenie tego modułu funkcyjnego jako zlicznika rosnącego jest kluczowe w kontekście procesu pakowania kul. Proces ten polega na zliczaniu kolejnych kul, co czyni CTU idealnym rozwiązaniem. Moduł CTU działa na zasadzie zliczania impulsów, co jest niezwykle przydatne w automatyce przemysłowej, gdzie precyzyjne zliczanie elementów ma istotne znaczenie. Na przykład, w przypadku produkcji, gdzie wymagana jest kontrola ilości produktów, CTU umożliwia dokładne monitorowanie każdego kroku procesu. W praktyce, implementacja CTU w systemie sterowania pozwala na automatyczne zliczanie elementów, co zwiększa efektywność i dokładność operacji. Dobrą praktyką jest również integrowanie tego modułu z innymi urządzeniami pomiarowymi, aby uzyskać pełny obraz wydajności produkcji. W kontekście standardów branżowych, CTU znajduje zastosowanie w wielu systemach zgodnych z IEC 61131-3, co potwierdza jego znaczenie i uniwersalność w projektowaniu systemów automatyki.

Pytanie 17

Jaki będzie stan wyjść sterownika PLC realizującego przedstawiony program, jeżeli stan wejścia I1 ulegnie zmianie z 1 na 0, a wejście I2 = 0?

Ilustracja do pytania
A. Q1 = 0 i Q2 = 0
B. Q1 = 1 i Q2 = 1
C. Q1 = 0 i Q2 = 1
D. Q1 = 1 i Q2 = 0
Poprawna odpowiedź to Q1 = 1 i Q2 = 1. W przedstawionym schemacie drabinkowym, stan wyjść Q1 i Q2 jest zależny od stanów wejść I1 i I2 oraz od mechanizmu samopodtrzymania. Po zmianie stanu I1 z 1 na 0, Q1, które było wcześniej aktywne, utrzymuje swój stan dzięki obwodowi samopodtrzymania. To oznacza, że nawet po deaktywacji I1, Q1 pozostaje w stanie aktywnym. Z kolei Q2, które również korzysta z mechanizmu samopodtrzymania, zachowuje aktywność, ponieważ jego stan również był wcześniej 1. Takie podejście jest zgodne z praktykami w branży automatyki, gdzie obwody samopodtrzymania są powszechnie wykorzystywane do utrzymania wydajności systemów, minimalizując ryzyko niezamierzonych wyłączeń w krytycznych procesach. Wykorzystanie takich technik jest istotne w projektowaniu systemów sterowania, aby zapewnić ich niezawodność oraz odpowiednią reakcję na zmiany w otoczeniu.

Pytanie 18

Kierunek obrotu wirnika silnika indukcyjnego trójfazowego można zmienić poprzez

A. szeregowe podłączenie dodatkowego rezystora do jednego z uzwojeń
B. zmianę liczby par biegunów magnetycznych
C. zmianę częstotliwości napięcia zasilającego
D. zmianę kolejności faz w sieci zasilającej silnik
Odpowiedzi, które sugerują, że zmianę kierunku obrotów wirnika silnika indukcyjnego trójfazowego można osiągnąć poprzez inne metody, są nieprawidłowe z technicznego punktu widzenia. Zmiana częstotliwości napięcia zasilającego wpływa na prędkość obrotową silnika, lecz nie zmienia kierunku obrotów wirnika. Zmiana liczby par biegunów magnetycznych również wpływa na prędkość, ale nie na kierunek. Takie podejście może prowadzić do błędnych wniosków, gdyż zmiany w częstotliwości i liczbie biegunów są związane z regulacją prędkości i efektywnością energetyczną, co jest zupełnie inną kwestią. Co więcej, szeregowe włączenie dodatkowego rezystora do jednego z uzwojeń nie ma wpływu na zmianę kierunku obrotów, a może wręcz prowadzić do spadku wydajności silnika. W praktyce, takie rozwiązania mogą prowadzić do nieprawidłowego działania silnika oraz jego przedwczesnego uszkodzenia. Kluczowe jest zrozumienie, że kierunek obrotów w trójfazowym silniku indukcyjnym jest bezpośrednio związany z sekwencją faz, co jest fundamentalną zasadą w elektrotechnice. Przykłady z praktyki potwierdzają, że nieprzestrzeganie tej zasady może prowadzić do poważnych problemów w systemach automatyki przemysłowej.

Pytanie 19

Przedstawiony na rysunku element układu zasilającego urządzenie mechatroniczne jest pompą

Ilustracja do pytania
A. membranową.
B. obrotową.
C. strumieniową.
D. tłokową.
Pompa obrotowa, przedstawiona na rysunku, jest kluczowym elementem wielu systemów mechatronicznych. Działa na zasadzie przemieszczenia płynów za pomocą wirujących elementów, co zapewnia wysoką efektywność oraz dużą wydajność. W przeciwieństwie do pomp tłokowych, które działają w cyklu, pompy obrotowe nie wymagają okresowego zatrzymywania się na przyjmowanie płynu, co czyni je bardziej odpowiednimi do zastosowań wymagających ciągłego przepływu. Przykładem zastosowania pomp obrotowych mogą być układy chłodzenia w przemyśle, gdzie stały przepływ chłodziwa jest niezbędny do utrzymania odpowiednich temperatur w obrabiarkach. W przemyśle petrochemicznym pompy obrotowe używane są do transportu różnych cieczy, w tym olejów i paliw. Standardy branżowe, takie jak ISO 2858, definiują zasady projektowania i testowania takich urządzeń, co podkreśla ich znaczenie oraz konieczność przestrzegania norm jakościowych.

Pytanie 20

Jaki parametr oraz na jaką wartość powinien zostać ustawiony, aby regulator PD funkcjonował jako regulator P? (Kp – wzmocnienie części proporcjonalnej, Td - czas różniczkowania)

A. Td ustawić na minimalną wartość
B. Kp ustawić na minimalną wartość
C. Kp ustawić na maksymalną wartość
D. Td ustawić na maksymalną wartość
Ustawienie Td na maksymalną wartość wprowadza znaczną ilość składnika różniczkującego do działania regulatora, co prowadzi do zachowań, które mogą być trudne do kontrolowania, a także do wystąpienia oscylacji w odpowiedzi systemu. W takim przypadku regulator nie będzie w stanie skutecznie reagować na zmiany błędu, ponieważ reakcja będzie opóźniona, co może prowadzić do niestabilności systemu. Podobnie, ustawienie parametru Kp na maksymalną wartość nie eliminuje wpływu różniczkującego, lecz jedynie zwiększa intensywność reakcji na błąd, co w połączeniu z dużym Td może prowadzić do nadmiernej reakcji i oscylacji. Ustawienie Kp na minimalną wartość z kolei ogranicza wpływ działania regulatora, co może być nieodpowiednie w sytuacjach wymagających szybkiej reakcji. W praktyce, zastosowanie regulatora PD jest najbardziej efektywne w sytuacjach, gdzie zarówno reakcja na błąd, jak i szybkość odpowiedzi są istotne, jednak kluczowe jest zrozumienie, że element różniczkujący musi być stosowany z rozwagą. W przeciwnym razie, mogą pojawić się problemy związane z nadmiernym wzmocnieniem i stabilnością systemu, co jest częstym błędem w projektowaniu regulatorów. Dlatego ważne jest, aby stosować zasady inżynieryjne i dobre praktyki, aby unikać takich pułapek w procesie regulacji.

Pytanie 21

W sprężarce pneumatycznej nie ma możliwości regulacji ciśnienia powietrza. Jakie jest najbardziej prawdopodobne źródło awarii?

A. Zabrudzenie zaworu zasysającego powietrze
B. Uszkodzenie uszczelki w zaworze zwrotnym łączącym zbiornik z rurą tłoczącą.
C. Uszkodzenie membrany w reduktorze sprężarki.
D. Przerwanie obwodu elektrycznego, który zasila silnik sprężarki.
Uszkodzenie membrany w reduktorze sprężarki jest jedną z najczęstszych przyczyn problemów z regulowaniem ciśnienia powietrza. Membrana pełni istotną rolę w kontrolowaniu przepływu powietrza oraz jego ciśnienia w systemie pneumatycznym. W przypadku jej uszkodzenia może dojść do nieprawidłowego działania reduktora, co prowadzi do braku możliwości regulacji ciśnienia. W praktyce, jeśli membrana jest nieszczelna lub pęknięta, powietrze może uciekać, a użytkownik nie będzie w stanie osiągnąć wymaganych parametrów roboczych. W branży pneumatycznej standardem jest regularne sprawdzanie oraz konserwacja elementów reduktora, aby zapobiec takim awariom. Warto także pamiętać, że nieprawidłowe ciśnienie może prowadzić do uszkodzeń innych komponentów systemu, takich jak narzędzia pneumatyczne, co może generować dodatkowe koszty eksploatacyjne.

Pytanie 22

Na rysunku przedstawiono diagram stanów dla układu dwóch siłowników 1A i 2A. Który sposób opisu działania układu jest prawidłowy?

Ilustracja do pytania
A. Wysuwa się siłownik 2A, wraca 2A, wysuwa się 1 A, wraca 1A.
B. Wysuwa się siłownik 1 A, wysuwa się siłownik 2A, wraca 2A, wraca 1A.
C. Wysuwa się siłownik 2A, wysuwa się 1A, wraca 1 A, wraca 2A.
D. Wysuwa się siłownik 1A, wraca 1A, wysuwa się siłownik 2A, wraca 2A.
Wybór prawidłowej odpowiedzi wynika z analizy diagramu stanów, który jasno ilustruje sekwencję działań siłowników. W pierwszym etapie aktywowany jest siłownik 1A, co skutkuje jego wysunięciem, a następnie następuje jego powrót do pozycji wyjściowej. Ta sekwencja jest zgodna z normami dotyczącymi działania siłowników, które zakładają, że w układach pneumatycznych czy hydraulicznych, operacje są realizowane w ściśle określonej kolejności, aby zapewnić bezpieczeństwo i efektywność działania. W praktyce, właściwe zrozumienie działania siłowników jest kluczowe w automatyce i robotyce, gdzie sekwencje operacji muszą być precyzyjnie kontrolowane. W przypadku nieprawidłowego zrozumienia działania siłowników może dojść do kolizji mechanizmów, co naraża na straty materialne i czasowe. Przykładowo, w procesach produkcyjnych, gdzie używane są siłowniki do podnoszenia lub transportu ciężkich elementów, poprawność sekwencji działania jest kluczowa dla bezpieczeństwa pracy. Zrozumienie prawidłowej kolejności działania siłowników pozwala również na optymalizację procesów oraz minimalizację zużycia energii.

Pytanie 23

Gdzie nie powinno się stosować urządzeń mechatronicznych z silnikiem komutatorowym?

A. W lakierni
B. W suszarni
C. W mleczarni
D. W chłodni
Urządzenia mechatroniczne wyposażone w silnik komutatorowy powinny unikać stosowania w lakierniach ze względu na ryzyko wytwarzania iskier podczas ich pracy. Izolacja wymagana w tych środowiskach jest kluczowa, ponieważ iskrzenie może prowadzić do zapłonu substancji łatwopalnych, co stwarza poważne zagrożenie pożarowe. Standardy bezpieczeństwa w przemyśle, takie jak ATEX lub IECEx, wyraźnie wskazują na konieczność unikania takich urządzeń w obszarach z potencjalnym ryzykiem wybuchowym. W praktyce, w lakierniach często korzysta się z urządzeń napędzanych silnikami bezkomutatorowymi lub pneumatycznymi, które eliminują ryzyko iskrzenia. Przykładowo, w systemach malarskich stosuje się automatyczne roboty lakiernicze z silnikami serwo, które zapewniają precyzyjne i bezpieczne nałożenie powłok bez ryzyka wywołania pożaru. Przestrzeganie tych zasad jest kluczowe dla bezpieczeństwa pracy oraz ochrony jakości produkcji.

Pytanie 24

W jakich częściach sieci SFC wykorzystuje się oznaczenia literowe N, S, D?

A. W opisach zmiennych.
B. W oznaczeniach tranzycji.
C. W symbolach kroków.
D. W kwalifikatorach działania.
Kwalifikatory działania w sieci SFC (Sequential Function Chart) pełnią kluczową rolę w definiowaniu warunków, które muszą być spełnione, aby dany krok mógł zostać aktywowany. Symbole literowe N, S i D oznaczają kolejno: N - normalny, S - startowy, D - definitywny. W praktyce, te symbole są wykorzystywane do oznaczania różnych stanów i przejść w procesie automatyzacji, co jest zgodne z normą IEC 61131-3, definiującą języki programowania dla urządzeń automatyki. Przykładem zastosowania może być system sterowania w zakładzie produkcyjnym, gdzie kwalifikatory te pomagają określić, czy urządzenie powinno być uruchomione w konkretnych warunkach, co zwiększa bezpieczeństwo operacji i efektywność działania. Zrozumienie tych symboli jest istotne dla każdego inżyniera automatyki, aby odpowiednio implementować logikę sterowania i dostosowywać ją do wymagań procesów przemysłowych.

Pytanie 25

Jaki blok powinien być użyty w systemie sterującym do zliczania impulsów, które występują w odstępach krótszych niż czas jednego cyklu programu sterownika?

A. Dzielnik częstotliwości
B. Czasowy TON (o opóźnionym załączaniu)
C. Czasowy TOF (o opóźnionym wyłączaniu)
D. Szybki licznika (HSC)
Szybki licznik (HSC) jest idealnym rozwiązaniem w sytuacjach, gdy konieczne jest zliczanie impulsów, które występują w odstępach krótszych niż cykl programowy sterownika. Blok HSC wykorzystuje sprzętowy licznik zegara, co pozwala na rejestrację impulsów z dużą częstotliwością bez straty danych. W praktyce, zastosowanie HSC można zauważyć w systemach automatyki, gdzie monitorowane są sygnały z czujników, takich jak enkodery czy czujniki przepływu. Dzięki temu, HSC umożliwia szybkie reagowanie na zmiany w procesie, co jest niezbędne w aplikacjach wymagających precyzyjnego zarządzania czasem. Warto również zaznaczyć, że wykorzystanie HSC jest zgodne z najlepszymi praktykami w inżynierii, które zalecają stosowanie rozwiązań sprzętowych do zadań czasowo krytycznych dla maksymalizacji wydajności i niezawodności systemu. Użycie HSC pozwala także na optymalizację obciążenia CPU sterownika, co jest kluczowe w bardziej złożonych aplikacjach, gdzie liczne operacje wymagają precyzyjnego zarządzania cyklem programowym.

Pytanie 26

Który sposób adresowania zmiennych zastosowano w przedstawionym fragmencie programu?

Ilustracja do pytania
A. Bajtowo-bitowy.
B. Absolutny.
C. Symboliczny.
D. Bitowo-bajtowy.
Adresowanie symboliczne jest kluczowym aspektem w programowaniu, zwłaszcza w kontekście systemów automatyki i sterowania. W przedstawionym fragmencie programu mamy do czynienia z oznaczeniami S1, S2 oraz K1, które są logicznymi nazwami dla elementów programu, takich jak styki i cewki. Zastosowanie adresowania symbolicznego pozwala programiście na łatwiejsze zarządzanie kodem, ponieważ zamiast trudnych do zapamiętania adresów sprzętowych, używa on opisowych nazw. Daje to nie tylko lepszą czytelność, ale także ułatwia późniejsze modyfikacje i debugowanie programu. W praktyce, programy pisane z użyciem adresowania symbolicznego są bardziej zrozumiałe dla zespołów projektowych i mogą być łatwiej przenoszone między różnymi platformami. Przykładem dobrych praktyk w branży jest stosowanie konwencji nazewnictwa, które jasno wskazują na funkcjonalność elementów, co znacznie zwiększa efektywność pracy zespołowej. Warto zaznaczyć, że adresowanie symboliczne jest również zgodne z zasadami programowania strukturalnego, które zalecają minimalizację złożoności i zwiększenie modularności kodu.

Pytanie 27

Po przeprowadzeniu naprawy układu pneumatycznego zszywacza tapicerskiego zauważono, że zszywki nie są całkowicie wbite w drewno. Co należy zrobić w pierwszej kolejności?

A. zmierzyć siłę zszywania
B. ocenić działanie układu roboczego zszywacza
C. ustawić odpowiednie ciśnienie robocze
D. sprawdzić jakość zszywek
Regulacja ciśnienia roboczego jest kluczowym krokiem w diagnostyce problemów z niepełnym wbijaniem zszywek w drewno. W układzie pneumatycznym, odpowiednie ciśnienie powietrza wpływa bezpośrednio na siłę zszywania oraz efektywność pracy zszywacza. Zbyt niskie ciśnienie może spowodować, że zszywki nie będą miały wystarczającej energii do wniknięcia w materiał, co skutkuje ich niepełnym wbijaniem. Z kolei zbyt wysokie ciśnienie może prowadzić do uszkodzenia materiału lub zszywek, a także do niestabilnego działania narzędzia. W praktyce, aby zapewnić optymalne parametry pracy, powinno się regularnie kontrolować ciśnienie w układzie, zgodnie z zaleceniami producenta narzędzia. Warto również przeprowadzać okresowe przeglądy i konserwację układu pneumatycznego, co pozwoli na uniknięcie wielu problemów związanych z jakością zszywania. Prawidłowe ustawienie ciśnienia to zatem nie tylko element diagnostyki, ale także kluczowy aspekt utrzymania wysokiej jakości pracy zszywacza.

Pytanie 28

W układzie, którego schemat przestawiony został na rysunku, po wciśnięciu przycisku S1 lampka świeci światłem ciągłym. Wynika z tego, że najprawdopodobniej uszkodzony jest

Ilustracja do pytania
A. przycisk S1.
B. przekaźnik czasowy K2.
C. zestyk rozwierny K1.
D. zasilacz zasilający układ.
Odpowiedź wskazująca na przekaźnik czasowy K2 jako uszkodzony jest prawidłowa. W sytuacji, gdy po wciśnięciu przycisku S1 lampka świeci światłem ciągłym, oznacza to, że obwód elektryczny jest zamknięty, a inne elementy układu działają poprawnie. Działający przekaźnik K1, zestyk rozwierny oraz przycisk S1 zapewniają, że sygnał jest przekazywany, a zasilacz zasila lampkę. Przekaźnik czasowy K2 powinien wprowadzać przerywanie w świeceniu lampki, co wskazuje, że jego uszkodzenie powoduje, iż lampka świeci w sposób ciągły. Przekaźniki czasowe są kluczowymi elementami w automatyce, używanymi do kontrolowania cykli pracy urządzeń. Ich poprawne działanie jest niezbędne w systemach automatyzacji, takich jak systemy oświetleniowe, gdzie wymagana jest zmiana stanu w określonych interwałach czasowych. Zrozumienie funkcji przekaźników czasowych oraz ich zastosowań w praktyce inżynieryjnej jest istotne, aby skutecznie projektować i diagnozować systemy elektromechaniczne.

Pytanie 29

Jakie czujniki mogą dostarczać dane do sterownika PLC o poziomie cieczy nieprzewodzącej w zbiorniku mechatronicznym działającym jako niezależny system napełniania i dozowania?

A. Magnetyczne
B. Indukcyjne
C. Pojemnościowe
D. Termoelektryczne
Czujnik pojemnościowy to urządzenie, które mierzy poziom cieczy nieprzewodzącej poprzez pomiar zmiany pojemności elektrycznej między elektrodami, która zmienia się w zależności od poziomu cieczy. W przypadku cieczy nieprzewodzących, takich jak oleje czy niektóre chemikalia, czujnik pojemnościowy jest idealnym rozwiązaniem, ponieważ nie wymaga kontaktu z cieczą, co eliminuje ryzyko korozji czy zanieczyszczenia. Zastosowanie czujników pojemnościowych w systemach mechatronicznych, takich jak autonomiczne układy napełniania i dozowania, jest powszechne ze względu na ich dużą precyzję oraz niezawodność. Przykładowo, w przemyśle spożywczym, czujniki te mogą być wykorzystywane do monitorowania poziomu oleju w maszynach do pakowania, co zapewnia optymalne warunki pracy urządzenia. Stosowanie czujników pojemnościowych jest zgodne z normami ISO 9001 dotyczącymi zapewnienia jakości w procesach produkcyjnych.

Pytanie 30

Podczas przeglądu silnika trójfazowego frezarki numerycznej wykonano pomiary rezystancji uzwojeń i rezystancji izolacji, zamieszczone w tabeli. Wyniki te wskazują na

Pomiar między zaciskamiU1-U2V1-V2W1-W2U1-V1V1-W1U1-W1U1-PEV1-PEW1-PE
Wynik22 Ω21,5 Ω22,2 Ω52 MΩ49 MΩ30 Ω
A. zwarcie między uzwojeniami U1-U2 oraz W1-W2.
B. przerwę w uzwojeniu U1-U2.
C. zwarcie między uzwojeniem W1-W2, a obudową silnika.
D. przerwę w uzwojeniu V1-V2.
Odpowiedź wskazująca na zwarcie między uzwojeniem W1-W2 a obudową silnika jest prawidłowa, ponieważ analizy wyników pomiarów rezystancji izolacji ujawniają niską wartość rezystancji wynoszącą 30 Ω. Taka wartość wskazuje na poważne problemy z izolacją, które mogą prowadzić do zwarcia. W warunkach normalnych, dla dobrze działających silników, rezystancja izolacji powinna wynosić przynajmniej kilka megaomów, co zapewnia wystarczającą ochronę przed przepływem prądu do obudowy. W przypadku stwierdzenia niskiej rezystancji, konieczne jest przeprowadzenie szczegółowej analizy oraz podjęcie działań naprawczych, które mogą obejmować wymianę uszkodzonych uzwojeń. Dobrą praktyką jest regularne wykonywanie pomiarów rezystancji izolacji, zwłaszcza przed rozpoczęciem długotrwałej eksploatacji maszyn. Tylko dzięki tym pomiarom można uniknąć potencjalnych awarii i zagrożeń dla bezpieczeństwa. W kontekście standardów branżowych, np. IEC 60034, zaleca się, aby rezystancja izolacji przekraczała 1 MΩ dla silników o napięciu do 1000 V, co podkreśla konieczność utrzymywania właściwych parametrów izolacyjnych.

Pytanie 31

Jaki będzie stan na wyjściu Q0.3 w przypadku jednoczesnego podania sygnału logicznego "1″ na wejście 10.0 i 10.2?

Ilustracja do pytania
A. Wysoki.
B. Nieustalony.
C. Zabroniony.
D. Niski.
Odpowiedź "Wysoki" jest poprawna, ponieważ na wyjściu Q0.3 bramka logiczna OR generuje stan wysoki, gdy przynajmniej jedno z jej wejść znajduje się w stanie logicznym "1". W przedstawionym przypadku, sygnały logiczne "1" są jednocześnie podawane na wejścia 10.0 i 10.2, co potwierdza zasadę działania bramki OR. W praktyce, takie podejście jest powszechnie stosowane w systemach automatyki przemysłowej, gdzie wielokrotne źródła sygnałów muszą być monitorowane i odpowiednio przetwarzane. Zastosowanie bramek logicznych zgodnych z normami IEC 61131-3 umożliwia tworzenie niezawodnych i elastycznych systemów kontrolnych. Przykładem mogą być aplikacje w automatyce budowlanej, gdzie wiele czujników może sygnalizować alarm lub aktywować systemy bezpieczeństwa w przypadku wykrycia nieprawidłowości. Wiedza na temat logiki bramek jest kluczowa dla projektantów systemów, aby zapewnić ich prawidłowe działanie i efektywność.

Pytanie 32

Przegląd instalacji hydraulicznej urządzenia mechatronicznego obejmuje

A. sprawdzenie stanu przewodów
B. zmierzenie natężenia prądu w obciążeniu pompy
C. wymianę rozdzielacza
D. oczyszczenie filtra oleju w układzie
Odpowiedź "sprawdzenie stanu przewodów" jest prawidłowa, ponieważ oględziny instalacji hydraulicznej są kluczowym etapem zapewnienia bezpieczeństwa i efektywności urządzeń mechatronicznych. Podczas tych oględzin istotne jest, aby dokładnie ocenić stan przewodów, ponieważ to one odpowiadają za transport medium, takiego jak olej hydrauliczny. Uszkodzenia, przecieki czy zanieczyszczenia w przewodach mogą prowadzić do poważnych awarii, co skutkuje kosztownymi naprawami i przestojami w pracy urządzenia. Przykładem zastosowania tej wiedzy może być audyt stanu technicznego maszyn w zakładzie produkcyjnym, gdzie regularne kontrole przewodów hydraulicznych są częścią procedur utrzymania ruchu i zgodności z normami bezpieczeństwa, takimi jak ISO 9001. Dbanie o ich kondycję pozwala na uniknięcie nieprzewidzianych awarii oraz zwiększa żywotność całego systemu hydraulicznego.

Pytanie 33

Jaką funkcję logiczną realizuje blok przedstawiony na rysunku?

Ilustracja do pytania
A. NOT
B. AND
C. OR
D. NOR
Blok przedstawiony na rysunku realizuje funkcję logiczną NOR, co jest kluczowe dla zrozumienia logiki cyfrowej. Bramka NOR to kombinacja bramki OR i NOT, co oznacza, że jej wyjście jest w stanie wysokim (1) tylko wtedy, gdy wszystkie wejścia są w stanie niskim (0). Na przykład, w zastosowaniach w systemach cyfrowych, bramki NOR można wykorzystać do budowy pamięci, a także jako elementy w bardziej złożonych układach logicznych. W praktyce, układ NOR jest często stosowany w realizacji funkcji negacji oraz w budowie pamięci RAM. Dobrą praktyką w projektowaniu układów cyfrowych jest rozumienie, jak można używać podstawowych elementów logicznych, takich jak NOR, do tworzenia bardziej złożonych funkcji logicznych, co pozwala na efektywne projektowanie i optymalizację układów. Zrozumienie działania bramki NOR jest również istotne w kontekście analizy i projektowania układów sekwencyjnych oraz asynchronicznych.

Pytanie 34

Na podstawie przedstawionych danych katalogowych narzędzia skrawającego wskaż wartość głębokości warstwy skrawanej, którą należy ustawić w obrabiarce CNC dla obróbki zgrubnej.

Rodzaj obróbkiDokładność obróbkiChropowatość powierzchni
(Ra) μm
Zakres posuwów
mm/obr
Zakres
głębokości
mm
Obróbka dokładnaIT6-IT90,32÷1,250,05÷0,30,5÷2
Obróbka średniodokładnaIT9-IT112,5÷50,2÷0,52÷4
Obróbka zgrubnaIT12-IT1410÷40≥0,4≥4
A. 0,8 mm
B. 2,0 mm
C. 0,5 mm
D. 5,0 mm
Wartość głębokości warstwy skrawanej, którą należy ustawić w obrabiarce CNC dla obróbki zgrubnej, wynosi 5,0 mm. Zgodnie z danymi katalogowymi, podczas obróbki zgrubnej zaleca się głębokości skrawania wynoszące co najmniej 4 mm, co czyni tę odpowiedź poprawną. Ustalenie optymalnej głębokości skrawania jest kluczowe dla efektywności procesu obróbczy. Zbyt mała głębokość może prowadzić do wydłużenia czasu obróbki oraz niższej efektywności materiałowej, podczas gdy zbyt duża głębokość może powodować nadmierne obciążenie narzędzia, co w skrajnych przypadkach prowadzi do jego uszkodzenia. W praktyce, głębokość skrawania powinna być dostosowywana do rodzaju materiału oraz rodzaju narzędzia. Przykładowo, w obróbce stali narzędziowej często stosuje się głębokości skrawania w zakresie 5-10 mm, co zwiększa wydajność procesu i zmniejsza ryzyko przegrzania narzędzi. Dla zachowania wysokiej jakości obróbki, warto również monitorować stan narzędzia podczas pracy oraz stosować odpowiednie chłodziwa, co wpływa na jego trwałość i efektywność skrawania.

Pytanie 35

Które z mediów roboczych należy doprowadzić do układu, którego schemat przedstawiono na rysunku?

Ilustracja do pytania
A. Tylko sprężone powietrze.
B. Olej hydrauliczny i sprężone powietrze.
C. Sprężone powietrze i napięcie elektryczne.
D. Olej hydrauliczny i napięcie elektryczne.
Poprawna odpowiedź to "Olej hydrauliczny i napięcie elektryczne", ponieważ schemat przedstawia układ hydrauliczny, który wymaga zasilania olejem hydraulicznym w celu napędzenia jego elementów, takich jak pompa i siłownik. Pompy hydrauliczne, które są kluczowymi komponentami takich systemów, wymagają odpowiedniego medium roboczego, które w tym przypadku jest olejem hydraulicznym. Zasilanie układu elektrycznego jest równie istotne, ponieważ silnik elektryczny, który często steruje pracą pompy, potrzebuje napięcia elektrycznego do działania. W praktyce, w układach hydraulicznych często stosuje się oleje hydrauliczne o określonych parametrach, zgodnych z normami ISO, aby zapewnić efektywność oraz bezpieczeństwo pracy systemu. Dobre praktyki w projektowaniu takich układów uwzględniają zarówno dobór odpowiedniego medium, jak i zapewnienie stabilnego zasilania elektrycznego dla zapewnienia niezawodności oraz wydajności operacyjnej.

Pytanie 36

Którą funkcję logiczną realizuje program napisany w języku listy instrukcji?

LD (%I0.1
ANDN%I0.2
)
OR (%I0.2
ANDN%I0.1
)
ST%Q0.1
A. XOR
B. NOR
C. NAND
D. OR
Niepoprawne odpowiedzi, takie jak NAND, NOR czy OR, reprezentują inne funkcje logiczne, które mają zupełnie odmienne zastosowania i wyniki. Funkcja NAND zwraca prawdę, gdy co najmniej jedna z wejściowych zmiennych jest fałszywa, co czyni ją podstawą wielu układów cyfrowych i może prowadzić do błędnych wniosków, jeśli zastosujemy ją w sytuacjach wymagających ekskluzywnego wykluczenia. Z kolei NOR zwraca prawdę tylko wtedy, gdy wszystkie wejścia są fałszywe. Ta funkcja logiczna jest często stosowana w projektach wymagających negacji, ale nie ma zastosowania w scenariuszu, w którym potrzebujemy stanu prawdy dla jednego z dwóch stanów. Funkcja OR jest bardziej podstawowa, ponieważ aktywuje wyjście, gdy przynajmniej jedno z wejść jest prawdziwe, co również różni się od działania XOR. Te różnice w logice mogą prowadzić do znaczących błędów w programowaniu oraz w projektowaniu układów cyfrowych. Użytkownicy często mylą te funkcje, nie rozumiejąc ich specyficznych właściwości, co w rezultacie prowadzi do nieprawidłowych analiz i błędów w implementacji. W związku z tym, ważne jest, aby dokładnie rozumieć różnice między tymi funkcjami, aby móc świadomie je stosować w praktyce.

Pytanie 37

Jakiej z wymienionych funkcji nie może realizować pracownik obsługujący prasę hydrauliczną, która jest sterowana przy pomocy sterownika PLC?

A. Inicjować programu sterującego
B. Weryfikować stanu osłon urządzenia
C. Modernizować urządzenia
D. Konfigurować parametrów urządzenia
Modernizacja sprzętu, jak na przykład pras hydraulicznych z PLC, to złożony proces, który wymaga sporej wiedzy technicznej i odpowiednich uprawnień. Operator maszyny skupia się głównie na jej obsłudze, a nie na wprowadzaniu większych zmian konstrukcyjnych. Wiesz, że według norm bezpieczeństwa, modyfikacje powinny być przeprowadzane przez osoby z odpowiednimi kwalifikacjami? Na przykład, zmiany w parametrach hydraulicznych czy wymiana kluczowych części to rzeczy, które wymagają dokładnych analiz, a do tego operatorzy nie są przeszkoleni. To oni uruchamiają programy sterujące, ustawiają parametry i monitorują stan osłon. Dbają o codzienną eksploatację maszyny, co przekłada się na bezpieczeństwo i efektywność pracy. Dlatego stwierdzenie "Modernizować urządzenia." jest jak najbardziej słuszne, bo w końcu to nie jest zadanie dla każdego.

Pytanie 38

Jakiej litery używamy do oznaczania na schematach systemów sterowania wyjść sterownika PLC?

A. I
B. Q
C. X
D. W
Litera Q jest standardowo używana do oznaczania wyjść w systemach sterowania opartych na sterownikach PLC, ponieważ pochodzi od angielskiego słowa "output". W praktyce oznaczenie to jest niezwykle ważne dla zachowania przejrzystości oraz jednoznaczności schematów. Użycie litery Q pomaga inżynierom i technikom w szybkiej identyfikacji elementów wyjściowych w skomplikowanych układach sterujących. Na przykład, w wielu projektach automatyzacji przemysłowej, takich jak sterowanie silnikami, zaworami czy innymi urządzeniami wykonawczymi, oznaczenia Q ułatwiają dokumentację oraz diagnostykę. Stosowanie standardów w oznaczeniach, takich jak IEC 61131-3, gwarantuje, że schematy są zgodne z przyjętymi normami branżowymi, co ułatwia współpracę między zespołami inżynieryjnymi oraz zapewnia efektywność komunikacji w projektach. Dodatkowo, stosując jednolite oznaczenia, inżynierowie mogą szybciej wprowadzać zmiany w układzie, co zwiększa elastyczność i skraca czas realizacji projektów.

Pytanie 39

Który z przedstawionych symboli graficznych odnosi się do przycisku bistabilnego?

Ilustracja do pytania
A. D.
B. A.
C. B.
D. C.
Symbol przedstawiony w odpowiedzi A. jest charakterystyczny dla przycisków bistabilnych, które są kluczowymi elementami w wielu systemach elektronicznych i automatyce. W przeciwieństwie do przycisków monostabilnych, które wymagają ciągłego nacisku, przycisk bistabilny utrzymuje aktywowany stan po zwolnieniu nacisku. Przykładem zastosowania przycisków bistabilnych mogą być włączniki światła, które po naciśnięciu pozostają w stanie 'włączone' aż do kolejnego naciśnięcia, co jest wygodne w codziennym użytkowaniu. Zgodnie z normą IEC 61058, przyciski bistabilne powinny spełniać określone wymagania dotyczące trwałości i bezpieczeństwa. Dlatego ich użycie jest powszechne w instalacjach domowych oraz w systemach przemysłowych, gdzie niezawodność przełączania jest kluczowa. Zrozumienie różnicy między typami przełączników oraz ich zastosowaniem jest niezbędne dla projektantów systemów elektronicznych oraz inżynierów zajmujących się automatyką.

Pytanie 40

Jaka liczba w systemie heksadecymalnym odpowiada liczbie binarnej 1010110011BIN?

A. 10EH
B. 2B3H
C. 1A4H
D. 1F3H
Odpowiedź 2B3H jest poprawna, ponieważ liczba binarna 1010110011 składa się z 10 cyfr binarnych, co odpowiada potrzebie przekształcenia jej na 2 cyfry szesnastkowe. W systemie heksadecymalnym każda cyfra reprezentuje 4 bity, co oznacza, że do reprezentacji 10 bitów (2^10 = 1024) wystarczą 3 cyfry szesnastkowe, ale w tym przypadku zdefiniowaliśmy ją w sposób, który dokładnie odpowiada. Pierwsza cyfra '2' w heksadecymalnym systemie reprezentuje wartość 2 * 16^1, a druga cyfra 'B' oznacza 11 * 16^0, co daje 2*16 + 11 = 32 + 11 = 43 w systemie dziesiętnym. Kolejnym krokiem jest zrozumienie, jak swobodnie można przechodzić pomiędzy systemami liczbowymi, co jest kluczową umiejętnością w informatyce, szczególnie w programowaniu i projektowaniu systemów cyfrowych. Przykładowo, umiejętność konwersji między tymi systemami jest niezbędna w pracy z adresami pamięci w komputerach czy komunikacji w sieciach komputerowych.