Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.03 - Montaż, uruchamianie i konserwacja urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 20 stycznia 2026 19:08
  • Data zakończenia: 20 stycznia 2026 19:29

Egzamin zdany!

Wynik: 32/40 punktów (80,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Przedstawione narzędzie służy do

Ilustracja do pytania
A. ściągania izolacji z przewodów.
B. zarabiania łączówek telekomunikacyjnych.
C. zaciskania końcówek kablowych elektrycznych.
D. zaciskania opasek kablowych.
Odpowiedź "ściągania izolacji z przewodów" jest poprawna, ponieważ narzędzie przedstawione na zdjęciu to ściągacz izolacji, które służy do precyzyjnego usuwania izolacji z przewodów elektrycznych. Narzędzia te są standardowym wyposażeniem w pracach elektrycznych, stosowanym w instalacjach domowych oraz przemysłowych. ściągacze izolacji posiadają regulowane szczęki, co umożliwia dostosowanie ich do różnych średnic przewodów, co jest kluczowe w zapewnieniu efektywności i bezpieczeństwa pracy. Używanie tego narzędzia pozwala na uniknięcie uszkodzeń przewodów, co jest szczególnie istotne w kontekście zachowania wysokich standardów bezpieczeństwa zgodnych z normami IEC 60364. Warto również nadmienić, że prawidłowe ściąganie izolacji ma na celu nie tylko ułatwienie dalszych prac, ale również zapewnienie optymalnego przewodzenia prądu, co jest kluczowe dla funkcjonowania instalacji elektrycznych.

Pytanie 2

Napięcie testowe, strata dielektryczna, maksymalne napięcie, opór izolacji, temperatury współczynnik pojemności - to parametry znamionowe

A. kondensatora
B. solenoidu
C. diody pojemnościowej
D. rezystora
Wybór rezystora jako odpowiedzi na to pytanie jest błędny, ponieważ parametry wymienione w pytaniu nie są typowe dla tego elementu. Rezystory są elementami, które służą do ograniczania przepływu prądu w obwodach elektrycznych, a ich podstawowe parametry to rezystancja, moc znamionowa oraz tolerancja. Rezystancja jest miarą oporu, który rezystor stawia przepływającemu prądowi, a moc znamionowa odnosi się do maksymalnej mocy, jaką rezystor może rozproszyć bez ryzyka uszkodzenia. W kontekście solenoidu, który jest również niewłaściwym wyborem, jego parametry dotyczą głównie indukcyjności oraz maksymalnego prądu, a nie napięcia probierczego czy stratności dielektrycznej. Dioda pojemnościowa, z drugiej strony, jest elementem, który może wykazywać pewne właściwości pojemnościowe, jednak nie jest odpowiednia w kontekście wymienionych parametrów, które są typowe dla kondensatorów. Typowe błędy myślowe prowadzące do takich niepoprawnych wniosków to pomylenie funkcji elementów elektronicznych; zrozumienie różnic w zastosowaniach rezystorów, solenoidów i kondensatorów jest kluczowe dla właściwego doboru komponentów do projektów elektronicznych. W elektronice, precyzyjne rozróżnienie parametrów i ich zastosowań jest niezbędne dla zapewnienia efektywności i niezawodności układów.

Pytanie 3

Co należy uczynić w przypadku rany z krwotokiem tętniczym?

A. nałożyć opatrunek z jałowej gazy bezpośrednio na ranę
B. położyć poszkodowanego w pozycji bocznej ustalonej i czekać na pomoc medyczną
C. przemyć ranę wodą utlenioną i oczekiwać na pomoc medyczną
D. założyć opaskę uciskową powyżej miejsca urazu
Założenie opatrunku z gazy jałowej bezpośrednio na ranę, przemycie rany wodą utlenioną, czy ułożenie poszkodowanego w pozycji bocznej ustalonej to działania, które w kontekście krwotoku tętniczego mogą być niewłaściwe i potencjalnie niebezpieczne. Opatrunek z gazy ma na celu jedynie zabezpieczenie rany przed zakażeniem i nie jest skuteczny w przypadku intensywnego krwawienia, jakim jest krwotok tętniczy. Gazy mogą wchłonąć część krwi, ale nie zatrzymają krwawienia, co grozi zaostrzeniem stanu pacjenta. Przemywanie rany wodą utlenioną również nie jest rekomendowane, ponieważ może prowadzić do uszkodzenia tkanek oraz zapozostawania resztek płynów, co może zwiększyć ryzyko infekcji. Ponadto, oczekiwanie na pomoc medyczną w pozycji bocznej ustalonej, stosowane w przypadku podejrzenia urazów kręgosłupa, nie jest adekwatną reakcją w sytuacji krwotoku. Kluczem do skutecznego działania w takich przypadkach jest natychmiastowe zatrzymanie krwawienia, co można osiągnąć tylko przez zastosowanie opaski uciskowej. Ignorowanie tej zasady może prowadzić do poważnych konsekwencji zdrowotnych, w tym do wstrząsu, a w skrajnych przypadkach do śmierci pacjenta. Dlatego niezwykle ważne jest, aby podejmować świadome decyzje w sytuacjach zagrożenia życia, kierując się wiedzą na temat skutecznych metod udzielania pierwszej pomocy.

Pytanie 4

Która z magistrali komunikacyjnych nie wymaga instalacji rezystorów terminacyjnych na końcach?

A. CAN
B. SmartWire-DT
C. RS 485
D. PROFINET
PROFINET to standard komunikacyjny oparty na Ethernet, który został zaprojektowany z myślą o automatyzacji przemysłowej. Jednym z kluczowych aspektów PROFINET jest to, że nie wymaga stosowania rezystorów terminujących na końcach łącza, co różni go od innych magistrali komunikacyjnych, takich jak RS 485 czy CAN, które zazwyczaj wymagają terminacji dla zapewnienia integralności sygnału. W przypadku PROFINET, sygnał jest przesyłany w formie pakietów danych, co sprawia, że terminacja nie jest konieczna. Dzięki temu, PROFINET oferuje większą elastyczność w projektowaniu sieci oraz upraszcza instalację, co jest szczególnie korzystne w rozbudowanych systemach automatyki, gdzie wiele urządzeń jest połączonych w sieć. Przykłady zastosowania PROFINET obejmują systemy sterowania procesami, robotykę oraz monitoring w czasie rzeczywistym w zakładach przemysłowych, gdzie wysoka prędkość transmisji i niskie opóźnienia są kluczowe dla efektywności działania. Standard ten jest zgodny z normą IEC 61158 i zyskuje coraz większe uznanie w branży dzięki możliwości integracji z istniejącymi infrastrukturami sieciowymi opartymi na Ethernet.

Pytanie 5

Na rysunku przedstawiono symbol graficzny

Ilustracja do pytania
A. optotriaka.
B. transoptora.
C. fototyrystora.
D. fotodiody.
Symbol przedstawiony na rysunku rzeczywiście reprezentuje transoptor, który jest kluczowym elementem w wielu zastosowaniach elektronicznych. Transoptor, inaczej zwany optoizolator, jest urządzeniem stosowanym do zapewnienia izolacji galwanicznej pomiędzy dwoma obwodami, co jest istotne w przypadku, gdy sygnały muszą być przesyłane w sposób bezpieczny, a jednocześnie efektywny. Przykładem zastosowania transoptorów są układy sterujące w automatyce przemysłowej, gdzie niebezpieczne napięcia muszą być przekazywane do układów kontrolnych o niższych napięciach. Dzięki zastosowaniu transoptorów, można zminimalizować ryzyko uszkodzenia wrażliwych komponentów elektronicznych. Dodatkowo, transoptory są wykorzystywane w systemach komunikacji optycznej oraz w układach zasilania, gdzie zapewniają separację między różnymi sekcjami obwodów, co jest zgodne z dobrymi praktykami inżynieryjnymi. Warto również zauważyć, że transoptory są szeroko stosowane w układach z mikroprocesorami, gdzie wymagane jest zapewnienie bezpieczeństwa i niezawodności przesyłu sygnałów.

Pytanie 6

Siłownik hydrauliczny o powierzchni tłoka A = 20 cm2 musi wygenerować siłę F = 30 kN. Jakie powinno być ciśnienie oleju?

A. 15 bar
B. 1 500 bar
C. 150 bar
D. 15 000 bar
Odpowiedź 150 bar jest prawidłowa z uwagi na zastosowanie wzoru na obliczenie ciśnienia w siłowniku hydraulicznym. Ciśnienie (p) oblicza się według wzoru p = F / A, gdzie F to siła wywierana przez siłownik, a A to powierzchnia czynna tłoka. W tym przypadku F wynosi 30 kN, co jest równoznaczne z 30 000 N, a A wynosi 20 cm², co należy przeliczyć na m² (20 cm² = 0,002 m²). Podstawiając wartości do wzoru: p = 30 000 N / 0,002 m² = 15 000 000 Pa, co daje 150 bar (1 bar = 100 000 Pa). W praktyce, w hydraulice przemysłowej, utrzymywanie właściwego ciśnienia ma kluczowe znaczenie dla efektywności działania układów, co wpływa na bezpieczeństwo oraz niezawodność maszyn. Technologie hydrauliczne są powszechnie stosowane w budownictwie, przemyśle motoryzacyjnym i lotniczym, gdzie precyzyjne sterowanie siłą i ruchem jest niezbędne.

Pytanie 7

Elementem zaworu, oznaczonym na rysunku znakiem X jest

Ilustracja do pytania
A. elektromagnes z przyłączem.
B. przyłącze wspomagania pneumatycznego.
C. przyłącze przetwornika ciśnienia.
D. czujnik położenia suwaka.
Element oznaczony znakiem X na rysunku to elektromagnes z przyłączem, co jest kluczowe w kontekście działania zaworów elektromagnetycznych. Elektromagnesy są szeroko stosowane w automatyce przemysłowej do sterowania przepływem cieczy lub gazów. W przypadku pneumatyki, elektromagnes aktywuje ruch suwaka, co pozwala na otwieranie bądź zamykanie drogi przepływu powietrza. Tego typu rozwiązania są zgodne z normami ISO 4414, które określają zasady bezpieczeństwa i niezawodności w systemach pneumatycznych. W praktyce, odpowiednio dobrany elektromagnes może znacząco zwiększyć efektywność układów automatyki, a jego zastosowanie w zaworach umożliwia precyzyjne zarządzanie przepływem medium w różnych procesach technologicznych, co jest kluczowe w nowoczesnych liniach produkcyjnych i systemach automatyzacji. Dobrą praktyką w projektowaniu systemów automatyki jest również zapewnienie odpowiednich zabezpieczeń, aby zapobiec nieautoryzowanemu uruchamianiu zaworów, co może prowadzić do poważnych awarii.

Pytanie 8

Skrót THT (Through-Hole Technology) odnosi się do metody montażu

A. zaciskowego
B. przewlekanego
C. powierzchniowego
D. skręcanego
Skrót THT (Through-Hole Technology) odnosi się do technologii montażu komponentów elektronicznych, w której elementy są umieszczane w otworach wykonanych w płytce drukowanej. Ta technika montażu jest szczególnie popularna w przypadku komponentów o większych rozmiarach, takich jak kondensatory elektrolityczne, złącza czy elementy pasywne. Przykładem zastosowania THT są urządzenia elektroniczne, które wymagają wysokiej wytrzymałości mechanicznej, takie jak zasilacze czy moduły czołowe w systemach audio. W praktyce, podczas montażu THT, komponenty są najpierw wstawiane do otworów, a następnie lutowane od spodu płytki, co zapewnia trwałe i solidne połączenie. W branży stosuje się standardy IPC (Institute for Interconnecting and Packaging Electronic Circuits), które określają zasady dotyczące jakości i trwałości takich połączeń. Technologia THT, mimo rosnącej popularności montażu powierzchniowego (SMT), pozostaje kluczowa w wielu aplikacjach, gdzie wymagane są wytrzymałe połączenia oraz łatwość naprawy lub wymiany komponentów.

Pytanie 9

Charakterystykę I = f(U) diody półprzewodnikowej można uzyskać za pomocą oscyloskopu dwukanałowego w trybie

A. AC
B. X/T
C. DC
D. X/Y
Użycie trybu AC do analizy charakterystyki prądowo-napięciowej diody półprzewodnikowej jest niewłaściwe, ponieważ ten tryb oscyloskopu służy przede wszystkim do analizy sygnałów zmiennych. W trybie AC oscyloskop nie wyświetla sygnałów stałych, co ogranicza możliwość monitorowania prądów i napięć w nieliniowych elementach, takich jak diody, które wymagają analizy w pełnym zakresie napięć. Z kolei tryb DC pozwala na obserwację sygnałów stałych, ale nie umożliwia jednoczesnego przedstawienia prądu i napięcia na jednym wykresie, co jest kluczowe do zrozumienia charakterystyki diody. Opcja X/T również nie jest odpowiednia, gdyż ten tryb jest używany do analizy sygnałów czasowych, a nie do porównania dwóch zmiennych, jak w przypadku prądu i napięcia. Typowym błędem przy wyborze trybu oscyloskopu jest założenie, że wystarczy wybrać jakikolwiek tryb do analizy, nie biorąc pod uwagę specyfiki badanego elementu. Aby skutecznie analizować nieliniowe charakterystyki, konieczne jest zrozumienie, że odpowiedni tryb X/Y dostarcza najbardziej wartościowych informacji, które są niezbędne dla właściwej interpretacji wyników oraz projektowania układów elektronicznych.

Pytanie 10

Zastępcza rezystancja obwodu widziana od strony zacisków A i B wynosi

Ilustracja do pytania
A. 3 ohmy
B. 2/3 ohma
C. 3/2 ohma
D. 1/3 ohma
Odpowiedź 2/3 ohma jest prawidłowa, ponieważ w obwodach elektrycznych zastępcza rezystancja obliczana jest na podstawie reguł dotyczących połączenia rezystorów. W przypadku łączenia rezystorów szeregowo, ich rezystancje sumuje się. W przypadku łączonych równolegle, stosuje się równanie 1/R = 1/R1 + 1/R2 + ... + 1/Rn, co pozwala na uzyskanie zastępczej rezystancji. W analizowanym obwodzie, sumując dwa rezystory o rezystancji 1Ω w połączeniu szeregowym, otrzymujemy 2Ω. Następnie, łącząc tę wartość z trzecim rezystorem o rezystancji 1Ω w układzie równoległym, otrzymujemy 2/3Ω. Wiedza na temat obliczania rezystancji jest kluczowa w projektowaniu układów elektrycznych, a także w praktyce inżynieryjnej, gdzie precyzyjne wartości rezystancji wpływają na efektywność obwodów. Warto zaznaczyć, że zgodnie z normami IEC 60076, poprawne wyliczanie rezystancji pozwala na optymalizację wydajności urządzeń elektrycznych.

Pytanie 11

Które elementy przedstawiono na rysunku?

Ilustracja do pytania
A. Sondy pomiarowe.
B. Pojemniki na sprężone powietrze.
C. Akumulatory hydrauliczne.
D. Obciążniki do układów hydraulicznych.
Akumulatory hydrauliczne to naprawdę ważne elementy w różnych układach hydraulicznych. Działają jak magazyny energii, przechowując ciecz pod ciśnieniem. Ich główna rola to kompensowanie wahań ciśnienia, co pomaga utrzymać stabilną pracę całego systemu. W praktyce używa się ich często w maszynach budowlanych, takich jak dźwigi czy koparki, gdzie szybkie zarządzanie energią ma kluczowe znaczenie. Poza tym, te akumulatory pomagają tłumić pulsacje, co chroni przed uszkodzeniami i poprawia komfort pracy. Z tego co pamiętam, standardy takie jak ISO 4413 zwracają uwagę na ich znaczenie dla bezpieczeństwa i efektywności systemów hydraulicznych. Akumulatory mogą też pełnić rolę awaryjną, dostarczając energię, gdy ciśnienie nagle spada. To naprawdę istotne dla niezawodności całego układu.

Pytanie 12

Jakie z czynności związanych z wymianą oleju oraz filtrów w zasilaczu hydraulicznym powinno być zrealizowane jako ostatnie?

A. Zamienić uszczelkę między zbiornikiem a pokrywą oraz wymienić wkłady filtrujące, a później połączyć zbiornik z pokrywą, przestrzegając zalecanej siły dokręcania
B. Odłączyć wszystkie obwody, wyłączyć zasilanie, odkręcić śrubę odpowietrzającą lub wyjąć korek wlewowy i lekko przechylając zasilacz zlać olej
C. Odkręcić śruby mocujące pokrywę do zbiornika, zdjąć pokrywę, dokładnie oczyścić i przepłukać zbiornik
D. Wlać olej do właściwego poziomu i włączyć zasilanie, aby umożliwić samoczynne odpowietrzenie
Właściwy przebieg czynności przy wymianie oleju i filtrów w zasilaczu hydraulicznym powinien kończyć się wlaniem nowego oleju do odpowiedniego poziomu i włączeniem zasilania. Jest to kluczowy etap, ponieważ zapewnia prawidłowe funkcjonowanie systemu hydraulicznego. Po napełnieniu zbiornika olejem, należy uruchomić zasilacz, co pozwala na samoczynne odpowietrzenie układu. W praktyce, odpowietrzanie jest istotne, ponieważ usunięcie powietrza z układu hydraulicznego zapobiega powstawaniu kawitacji, a tym samym zwiększa efektywność i żywotność urządzeń. Zgodnie z wytycznymi producentów zasilaczy hydraulicznych, tego rodzaju czynności powinny być zawsze wykonywane według ścisłych norm, aby zapewnić bezpieczeństwo i niezawodność systemu. Na przykład, jeżeli w systemie pozostało powietrze, może to prowadzić do nieprawidłowego działania siłowników, co negatywnie wpływa na dokładność operacji hydraulicznych. Zatem, kluczowe znaczenie ma również monitorowanie poziomu oleju oraz regularne sprawdzanie stanu filtrów, co jest zgodne z praktykami zarządzania konserwacją w branży hydraulicznej.

Pytanie 13

Jakiego rodzaju materiału należy użyć do produkcji narzędzi do mechanicznej obróbki skrawaniem, takich jak frezy?

A. Stal szybkotnącą
B. Żeliwo szare
C. Brąz
D. Mosiądz
Stal szybkotnąca, znana również jako stal HSS (high-speed steel), jest materiałem o wysokiej twardości i odporności na ścieranie, co czyni ją idealnym wyborem do produkcji narzędzi skrawających takich jak frezy. Jej zdolność do zachowania wysokiej wydajności przy dużych prędkościach obróbczych sprawia, że jest powszechnie stosowana w przemyśle metalowym. Przykładowo, narzędzia wykonane z stali szybkotnącej mogą pracować w temperaturach przekraczających 600°C, co znacznie zwiększa ich efektywność w mechanicznej obróbce metali. Ponadto, stal HSS posiada doskonałe właściwości cieplne, co umożliwia jej użycie w formach skrawających, które są narażone na intensywne warunki pracy. Dzięki tym właściwościom, stal szybkotnąca jest zgodna z normami ISO oraz innymi standardami jakości, co czyni ją najlepszym wyborem do produkcji narzędzi skrawających.

Pytanie 14

Który z elementów tyrystora ma funkcję sterowania?

A. Źródło
B. Bramka
C. Anoda
D. Katoda
Bramka tyrystora, znana również jako terminal bramkowy, odgrywa kluczową rolę w jego działaniu, pełniąc funkcję sterującą. W momencie dostarczenia sygnału sterującego na bramkę, dochodzi do zainicjowania przewodzenia prądu pomiędzy anodą a katodą. Tyrystory są szeroko stosowane w aplikacjach wymagających precyzyjnego zarządzania dużymi prądami i napięciami, takich jak prostowniki, regulatory mocy oraz układy przełączające. Dzięki możliwości sterowania prądem za pomocą niskiego napięcia na bramce, tyrystory pozwalają na zdalne zarządzanie obciążeniem bez konieczności stosowania skomplikowanych układów mechanicznych. W praktyce, tyrystory z bramką są kluczowe w systemach automatyki przemysłowej, gdzie stabilna i efektywna kontrola mocy jest niezbędna do zapewnienia prawidłowego funkcjonowania maszyn.

Pytanie 15

Podczas prac związanych z montażem mechatronicznych elementów konstrukcyjnych na znacznej wysokości, co należy założyć?

A. kask ochronny
B. okulary ochronne
C. maskę przeciwpyłową
D. buty ochronne
Kask ochronny jest kluczowym elementem wyposażenia ochronnego podczas prac na wysokości, zwłaszcza przy montażu mechatronicznych elementów konstrukcyjnych. Jego głównym zadaniem jest ochrona głowy przed urazami w przypadku upadku przedmiotów, co jest szczególnie istotne w środowiskach przemysłowych. Standardy takie jak PN-EN 397:2012 podkreślają konieczność stosowania kasków, które spełniają określone normy bezpieczeństwa. Przykładowo, w sytuacjach, gdzie mogą wystąpić spadające narzędzia lub materiały, kask może zapobiec poważnym obrażeniom lub nawet urazom śmiertelnym. Warto również zwrócić uwagę na dodatkowe funkcje kasków, takie jak możliwość montażu osłon twarzy czy słuchawek komunikacyjnych, co zwiększa komfort i bezpieczeństwo pracy. W kontekście mechatroniki, gdzie elementy są często ciężkie i wymagają precyzyjnego montażu, odpowiednia ochrona głowy staje się niezbędna.

Pytanie 16

Muskuł pneumatyczny przedstawiony na rysunku przystosowany jest do połączenia

Ilustracja do pytania
A. gwintowego.
B. spawanego.
C. tarczowego.
D. kołnierzowego.
Wybór połączeń spawanych, kołnierzowych czy tarczowych w kontekście muskułu pneumatycznego to pomyłka. Połączenia spawane wymagają naprawdę wysokich temperatur, a to nie nadaje się do materiałów, które w pneumatyce muszą być lekkie i elastyczne. Poza tym, spawanie utrudnia demontowanie, a w systemach, gdzie trzeba często robić kontrolę i wymieniać części, to nie jest dobry pomysł. Kołnierze są używane głównie w instalacjach rur, ale dla muskułów pneumatycznych zwykle lepiej sprawdzają się mniejsze, bardziej kompaktowe rozwiązania. Kołnierze działają w dużych, stacjonarnych aplikacjach, ale w pneumatyce, gdzie przestrzeń jest ograniczona, lepszym wyborem są właśnie połączenia gwintowe. Tarczowe połączenia też są fajne, ale większe zastosowania jak sprzęgła, a w pneumatyce nie dadzą odpowiednich właściwości uszczelniających, co jest kluczowe. Tak więc, myślenie, że inne metody łączenia będą tak samo dobre jak gwintowe, to błąd, bo te ostatnie zapewniają większą elastyczność, solidność i łatwość w konserwacji.

Pytanie 17

Silnik krokowy dysponuje 4 uzwojeniami wzbudzającymi, z których każde ma 8 nabiegunników. Jakie będzie przesunięcie kątowe silnika przypadające na pojedynczy krok przy sterowaniu jednym uzwojeniem?

A. 11°15'
B. 22°30'
C. 5°38'
D. 2°49'
Silnik krokowy z czterema uzwojeniami wzbudzającymi i ośmioma nabiegunnikami w każdym uzwojeniu charakteryzuje się określoną ilością kroków na pełny obrót. W tym przypadku mamy 4 uzwojenia, co oznacza, że przy każdym aktywowaniu jednego uzwojenia, silnik wykonuje część obrotu, a liczba nabiegunników wpływa na precyzyjność tego ruchu. Aby obliczyć kąt przesunięcia na krok, należy zastosować wzór: 360° / (Liczba uzwojeń * Liczba nabiegunników). W tym przypadku obliczenia wyglądają następująco: 360° / (4 * 8) = 360° / 32 = 11°15'. Praktyczne zastosowania silników krokowych obejmują zautomatyzowane systemy, w których wymagana jest precyzyjna kontrola pozycji, jak np. w drukarkach 3D, robotyce czy automatyce przemysłowej. Zrozumienie tego obliczenia pozwala na lepsze projektowanie układów sterujących oraz optymalizację ich pracy w różnych aplikacjach.

Pytanie 18

Osoba obsługująca elektryczne urządzenie prądu stałego o nominalnym napięciu 60 V oraz III klasie ochronności jest narażona na

A. odczuwalne efekty przepływu prądu przy kontakcie ręką z nieizolowanymi elementami aktywnymi
B. poranienie prądem elektrycznym w trakcie dotykania ręką metalowej obudowy
C. poranienie prądem elektrycznym podczas dotykania ręką nieizolowanego zacisku PEN
D. poranienie prądem elektrycznym w momencie kontaktu ręką z nieizolowanymi elementami aktywnymi
Prawidłowa odpowiedź wskazuje na to, że pracownik obsługujący urządzenie elektryczne prądu stałego o napięciu znamionowym 60 V w III klasie ochronności może odczuwać skutki przepływu prądu podczas kontaktu z nieizolowanymi elementami czynnych. W kontekście III klasy ochronności urządzeń elektrycznych, oznacza to, że sprzęt jest zabezpieczony w taki sposób, aby nie stwarzał zagrożenia dla użytkownika. Urządzenia te są projektowane z dodatkowymi środkami ochrony, na przykład przez zastosowanie izolacji oraz zastosowanie materiałów, które nie przewodzą prądu. Niemniej jednak, w sytuacji, gdy pracownik ma kontakt z nieizolowanymi elementami, takich jak przewody lub terminale, ryzyko odczuwalnych skutków przepływu prądu istnieje. Ważne jest, aby przestrzegać norm i dobrych praktyk, takich jak zapewnienie odpowiednich procedur szkoleniowych oraz stosowanie osłon ochronnych, aby minimalizować ryzyko porażenia prądem. W praktyce oznacza to, że zawsze należy zachować ostrożność i stosować odpowiednie środki ochrony osobistej, takie jak rękawice izolacyjne oraz narzędzia z izolowanymi uchwytami.

Pytanie 19

Które narzędzia należy zastosować podczas wymiany układu scalonego przedstawionego na rysunku?

Ilustracja do pytania
A. Pilnik i zaciskarkę.
B. Szczypce i pilnik.
C. Lutownicę i odsysacz.
D. Wkrętak i szczypce.
Lutownica i odsysacz to kluczowe narzędzia stosowane podczas wymiany układów scalonych na płytkach drukowanych. Lutownica pozwala na precyzyjne podgrzewanie miejsca lutowania, co pozwala na stopienie lutowia, a tym samym umożliwia usunięcie uszkodzonego układu scalonego. Odsysacz, zwany również odsysaczem lutowia, jest niezbędny do efektywnego usunięcia stopionego lutowia, co jest kluczowe, aby uniknąć uszkodzenia ścieżek drukowanych i innych komponentów znajdujących się w pobliżu. Praktyczne zastosowanie tych narzędzi można zaobserwować w standardach serwisowych, takich jak IPC-A-610, które określają wymagania dotyczące jakości lutowania w elektronice. Odpowiednie wykorzystanie lutownicy oraz odsysacza nie tylko zwiększa skuteczność naprawy, ale również zapewnia długoterminową niezawodność i stabilność całego układu elektronicznego. Dobrą praktyką jest również używanie lutowia o niskiej temperaturze topnienia, co minimalizuje ryzyko uszkodzenia innych komponentów na płytce.

Pytanie 20

Podnośnik hydrauliczny do samochodów dysponuje tłokiem roboczym o średnicy 100 mm. Tłoczek pompy w tym urządzeniu ma średnicę 10 mm. Kiedy podnośnik unosi obciążenie wynoszące 20 kN, jaka jest siła działająca na tłoczek pompy?

A. 2 N
B. 2000 N
C. 20 N
D. 200 N
Odpowiedź 200 N jest prawidłowa, ponieważ w hydraulicznych systemach podnośników działa zasada Pascala, która stwierdza, że zmiana ciśnienia w cieczy rozprzestrzenia się równomiernie we wszystkich kierunkach. W tym przypadku mamy do czynienia z tłokiem roboczym o średnicy 100 mm, co daje mu promień 50 mm. Obliczając pole powierzchni tego tłoka, używamy wzoru na pole koła: A = πr², co daje A = π(50 mm)² = 7854 mm². Tłoczek pompy z średnicą 10 mm ma promień 5 mm, więc jego pole wynosi A = π(5 mm)² = 78,5 mm². Wykorzystując równanie siły F = P*A, gdzie P to ciśnienie, możemy wyznaczyć siłę na tłoczku. Siła działająca na tłok roboczy wynosi 20 kN, czyli 20000 N. Ciśnienie w układzie obliczamy jako P = F/A = 20000 N / 7854 mm² = 2,546 N/mm². Następnie obliczamy siłę na tłoczku pompy: F = P*A = P * 78,5 mm² = 2,546 N/mm² * 78,5 mm² = 200 N. Takie obliczenia są kluczowe w inżynierii hydraulicznej, ponieważ pozwalają na prawidłowe dobieranie komponentów oraz ich późniejsze eksploatowanie zgodnie z normami bezpieczeństwa.

Pytanie 21

Na podstawie przedstawionych danych katalogowych sprężarek określ, który model sprężarki należy zastosować do zasilania układu pneumatycznego, w którym ciśnienie robocze wynosi 6 bar, a maksymalne natężenie przepływu czynnika roboczego ma wartość 4 dm³/s.

Dane katalogowe sprężarek

50HzR2.2IU-10-200R41IU-10-200R41IU-10-200SDR5.5IU-10-200
SPRĘŻARKA2.24.04.05.5
Maksymalna ciśnienie robocze bar (psi)10 (145)10 (145)10 (145)10 (145)
Fabrycznie ustawiony reload ciśnienia bar (psi)10.5 (152)10.5 (152)10.5 (152)10.5 (152)
Natężenie przepływu m³/min (cfm)0.241 (8.5)0.467 (16.5)0.467 (16.5)0.660 (22.0)
Wartość wyzwalająca temperatury tłoczenia sprężarki228°C (109°F)
Temperatura otoczenia (min.)→ (max.)+2°C (+36°F) → + 46°F(115°F)
SILNIK
Obudowa silnikaTEFC (IP55)
Moc nominalna2.2KW4.0 KW4.0 KW5.5 KW
Szybkość (obr./min)2870 RPM2875 RPM2875 RPM2860 RPM
Klasa izolacyjnościF
Poziom głośności (dBA)64646467
DANE OGÓLNE
Resztkowa zawartość płynu chłodzącego3 ppm (3mg/m³)
Pojemność zbiornika odolejacza5.16 litres
Objętość płynu chłodzącego2.5 litres
Masa – 200 litr Odbiornik montowany174183183188
Masa – z suszarką218227227232
PARAMETRY ELEKTRYCZNE - 400V
MODEL2.2IUR41UR41U-SDR5.5U
Prąd przy pełnym obciążeniu (maksimum)6.5 A10.5 A10.5 A14 A
Prąd rozruchowy38.5 A66.5 A36.7 A49 A
Czas rozruchu DOL (układ gwiazda-trójkąt)3-5 sec (7-10 sec)
Liczba rozruchów na godzinę (maksymalnie))20
Napięcie sterowania110 vac
Zalecane dopuszczalne obciążenie bezpiecznika
(patrz uwaga 1)
10202025
Zalecany przekrój przewodu AWG (patrz uwaga 2)11.51.52.5
A. R41IU-10-200SD
B. R41IU-10-200
C. R2.2IU-10-200
D. R5.SIU-10-200
Wybór sprężarki do zasilania układu pneumatycznego oparty na danych katalogowych wymaga szczegółowej analizy specyfikacji technicznych i dostosowania ich do potrzeb aplikacji. W przypadku sprężarek, takich jak modele R41IU-10-200, R5.SIU-10-200 oraz R41IU-10-200SD, można zauważyć, że ich parametry robocze nie zapewniają odpowiedniego ciśnienia do funkcjonowania przy 6 bar. Często zdarza się, że użytkownicy skupiają się jedynie na maksymalnym natężeniu przepływu, pomijając istotne aspekty, takie jak ciśnienie robocze. Błędem jest również zakładanie, że każdy model sprężarki będzie odpowiedni do wszystkich warunków pracy. W rzeczywistości, każdy układ pneumatyczny wymaga specyficznych parametrów, a zastosowanie sprężarki z niewłaściwymi danymi roboczymi może prowadzić do awarii systemu, zwiększonego zużycia energii lub niskiej efektywności operacyjnej. Aby uniknąć takich problemów, istotne jest, aby przed podjęciem decyzji o wyborze sprężarki przeprowadzić dokładne obliczenia oraz konsultacje z doświadczonymi inżynierami, którzy mogą pomóc w interpretacji danych katalogowych oraz w doborze odpowiedniego modelu. Należy także pamiętać o standardach jakości, takich jak ISO 8573, które definiują wymagania dotyczące jakości sprężonego powietrza, co również powinno być brane pod uwagę przy wyborze sprzętu.

Pytanie 22

Którą z wymienionych wielkości można zmierzyć za pomocą miernika przedstawionego na zdjęciu?

Ilustracja do pytania
A. Rezystancję izolacji.
B. Natężenie prądu przemiennego.
C. Temperaturę.
D. Napięcie przemienne.
Pomimo że pomiar rezystancji izolacji, natężenia prądu przemiennego oraz temperatury są istotnymi aspektami w pracach elektrycznych, nie są one funkcjami, które mogą być zrealizowane za pomocą miernika przedstawionego na zdjęciu. Miernik uniwersalny, jak ten, jest zaprojektowany z myślą o pomiarze napięcia przemiennego. Koncentrując się na pomiarze rezystancji izolacji, warto zauważyć, że do tych zastosowań często używa się specjalistycznych urządzeń, takich jak megomierze, które generują wyższe napięcie w celu oceny stanu izolacji przewodów. Z kolei pomiar natężenia prądu przemiennego wymaga zastosowania technik pomiarowych, które mogą obejmować cewki prądowe lub odpowiednie funkcje w miernikach wyposażonych w odpowiednie tryby. W odniesieniu do pomiaru temperatury, standardowe mierniki uniwersalne nie są w stanie realizować tych funkcji bez odpowiednich czujników. Typowym błędem myślowym jest założenie, że jedno urządzenie, jak miernik uniwersalny, może zastąpić wszystkie inne narzędzia pomiarowe. Kluczowe jest zrozumienie, że każde z tych narzędzi ma swoje specyficzne przeznaczenie i ograniczenia. W związku z tym ważne jest, aby przed przystąpieniem do pomiarów zrozumieć, jakie wielkości chcemy zmierzyć i jakie urządzenia są do tego najbardziej odpowiednie, co w praktyce oznacza konieczność stosowania różnych typów mierników zgodnie z ich przeznaczeniem.

Pytanie 23

Podczas działania silnika prądu stałego zauważono intensywne iskrzenie na komutatorze spowodowane nagromadzeniem pyłu ze szczotek. Aby naprawić tę awarię, należy wyłączyć silnik, a następnie

A. wykonać szlifowanie komutatora
B. umyć komutator wodą
C. posmarować olejem szczotki
D. przetrzeć komutator olejem
Przetrwanie komutatora olejem, umycie go wodą lub smarowanie szczotek olejem to podejścia, które nie adresują podstawowego problemu, jakim jest iskrzenie spowodowane zanieczyszczeniami. Przetarcie komutatora olejem może chwilowo zmniejszyć tarcie, jednak nie eliminuje zanieczyszczeń, a wręcz może prowadzić do ich utrwalenia, co pogarsza sytuację. Woda, choć skutecznie usunie brud, nie jest odpowiednia do czyszczenia komutatorów silników elektrycznych, ponieważ może spowodować korozję oraz uszkodzić izolację. Dodatkowo, wprowadzenie wilgoci do wnętrza silnika może prowadzić do poważnych uszkodzeń. Smarowanie szczotek olejem również nie jest właściwym rozwiązaniem, ponieważ olej może osadzać się na komutatorze, co z kolei zwiększa ryzyko iskrzenia. To podejście pomija fundamentalny problem, jakim jest niewłaściwe działanie komutatora. Istotne jest zrozumienie, że każdy z wymienionych sposobów nie eliminuje problemu z iskrzeniem, a jedynie maskuje objawy, co może prowadzić do dalszego zużycia i uszkodzeń. Kluczowe w konserwacji silników prądu stałego jest regularne sprawdzanie stanu komutatora oraz jego szlifowanie, co jest uznawane za najlepszą praktykę w branży.

Pytanie 24

Jakie środki ochrony osobistej, oprócz kasku ochronnego, powinien założyć pracownik wykonujący konserwację wyłączonego z eksploatacji urządzenia mechatronicznego w hali produkcyjnej?

A. Odzież ochronna
B. Rękawice ochronne
C. Buty ochronne
D. Okulary ochronne
Rękawice ochronne są kluczowym środkiem ochrony indywidualnej, który powinien być noszony przez pracowników zajmujących się konserwacją urządzeń mechatronicznych. Działania konserwacyjne często wiążą się z ryzykiem wystąpienia urazów mechanicznych, takich jak przecięcia, otarcia czy uderzenia. Rękawice ochronne zapewniają barierę między skórą a potencjalnymi źródłami urazów, co znacząco zmniejsza ryzyko kontuzji. Przykładem mogą być rękawice wykonane z materiałów odpornych na przebicia, które są standardem w branżach zajmujących się pracami w trudnych warunkach. Ponadto, w sytuacjach, gdzie używane są chemikalia lub substancje szkodliwe, odpowiednie rękawice chemiczne będą niezbędne do ochrony przed ich działaniem. Zgodnie z normą PN-EN 420:2004, rękawice ochronne powinny być dostosowane do rodzaju pracy i zagrożeń występujących w danym środowisku, dlatego ich wybór powinien być uzależniony od specyfiki wykonywanych zadań. Właściwe użycie rękawic ochronnych w połączeniu z innymi środkami, takimi jak kask czy odzież ochronna, tworzy kompleksowy system bezpieczeństwa.

Pytanie 25

System napędowy, który składa się z silnika prądu przemiennego zasilanego przez falownik, działa poprawnie, gdy wzrost częstotliwości napięcia zasilającego prowadzi do

A. obniżenia wartości napięcia zasilania
B. zmniejszenia reaktancji uzwojeń silnika
C. wzrostu obrotów silnika
D. spadku obrotów silnika
Wzrost obrotów silnika w układzie napędowym z silnikiem prądu przemiennego zasilanym z falownika jest zgodny z zasadą, że zmiana częstotliwości napięcia zasilającego wpływa na prędkość obrotową silnika. Zgodnie z równaniem: n = (120 × f) / p, gdzie n to prędkość obrotowa w obrotach na minutę (RPM), f to częstotliwość zasilania, a p to liczba par biegunów silnika, możemy zauważyć, że zgodnie z tym równaniem, zwiększenie częstotliwości f prowadzi do proporcjonalnego wzrostu prędkości obrotowej n. Przykładowo, w zastosowaniach przemysłowych, takich jak napęd wentylatorów, pomp, czy taśmociągów, wykorzystuje się falowniki do precyzyjnego sterowania prędkością obrotową, co pozwala na oszczędność energii oraz zwiększenie efektywności procesów technologicznych. Warto także zwrócić uwagę na standardy takie jak IEC 60034, które definiują normy dla maszyn elektrycznych, w tym dla silników elektrycznych, co jest istotne dla zapewnienia ich prawidłowej pracy i bezpieczeństwa użytkowania. Zrozumienie tej zasady jest kluczowe dla inżynierów automatyków oraz techników zajmujących się systemami napędowymi.

Pytanie 26

Którą czynność powinien wykonać użytkownik podczas uruchamiania komercyjnej wersji programu Proficy iFIX po ukazaniu się przedstawionego na rysunku komunikatu, aby program działał dłużej niż 2 godziny?

Ilustracja do pytania
A. Sprawdzić, czy została zainstalowana właściwa wersja systemu operacyjnego.
B. Ponownie zainstalować program Proficy iFIX.
C. Zainstalować sterownik klucza sprzętowego.
D. Kontynuować uruchamianie programu Proficy iFIX.
Zainstalowanie sterownika klucza sprzętowego jest kluczowym działaniem, które każdego użytkownika programu Proficy iFIX powinno skłonić do podjęcia działań w momencie napotkania komunikatu o braku detekcji klucza sprzętowego. Klucz sprzętowy jest fizycznym urządzeniem zabezpieczającym, które umożliwia legalne użytkowanie oprogramowania. Bez jego obecności program automatycznie ogranicza swoje działanie do 2 godzin. Dlatego zainstalowanie odpowiedniego sterownika jest niezbędne do zapewnienia ciągłości pracy. W praktyce, użytkownicy powinni upewnić się, że klucz jest prawidłowo podłączony do portu USB oraz że zainstalowano właściwe sterowniki, które mogą być dostępne na stronie producenta oprogramowania. Zgodnie z najlepszymi praktykami w zakresie zarządzania oprogramowaniem, regularne aktualizacje oprogramowania oraz jego komponentów, takich jak sterowniki, powinny być standardową procedurą. Dzięki temu użytkownik ma pewność, że korzysta z najnowszych funkcji i zabezpieczeń, co jest kluczowe w kontekście pracy z systemami automatyki przemysłowej.

Pytanie 27

Toczenie powierzchni czołowej przedstawia ilustracja

Ilustracja do pytania
A. 1.
B. 4.
C. 3.
D. 2.
Toczenie powierzchni czołowej jest kluczowym procesem obróbczo-skrawającym, który znajduje zastosowanie w wielu branżach, takich jak przemysł motoryzacyjny czy lotniczy. Poprawna odpowiedź to ilustracja nr 3, na której narzędzie toczenia jest ustawione prostopadle do osi obrotu obrabianego przedmiotu. To ustawienie umożliwia skuteczne usuwanie materiału, co jest niezbędne dla uzyskania precyzyjnych wymiarów i gładkich powierzchni. W praktyce, toczenie powierzchni czołowej jest często wykorzystywane do formowania końców wałów, co jest istotne dla ich dalszego montażu w zespołach mechanicznych. W kontekście standardów branżowych, toczenie powinno być realizowane zgodnie z normami ISO, które określają metody pomiaru oraz wymagania dotyczące jakości wyrobów. Stosowanie odpowiednich parametrów obróbczych, takich jak prędkość skrawania czy posuw, jest kluczowe dla zapewnienia efektywności procesu oraz długowieczności narzędzi skrawających. Wiedza na temat toczenia powierzchni czołowej jest zatem nie tylko teoretyczna, ale ma praktyczne zastosowanie w codziennym inżynierskim życiu.

Pytanie 28

Jaki podzespół przedstawiono na fotografii?

Ilustracja do pytania
A. Przegub Kardana.
B. Przekładnię ślimakową.
C. Przekładnię planetarną.
D. Krzyż Maltański.
Przekładnia planetarna, często nazywana przekładnią słoneczną, jest naprawdę ważnym elementem w mechanice pojazdów i maszyn przemysłowych. Na zdjęciu widać, że centralne koło zębate, tak zwane słońce, otoczone jest przez mniejsze koła zębate, które nazywamy planetami. Te planety mają za zadanie współpracować z zewnętrznym pierścieniem zębatym, czyli koroną. Dzięki takiej budowie, przekładnia planetarna potrafi przenosić dużą moc, a jednocześnie zajmować mało miejsca. Z mojego doświadczenia wiem, że wykorzystuje się ją w automatycznych skrzyniach biegów w samochodach, w robotyce i przy wytwarzaniu energii. Są naprawdę cenione za to, jak efektywnie działają i jak można je dostosować do różnych przełożeń, co jest super ważne dla pracy silników. Warto też dodać, że standardy w przemyśle motoryzacyjnym, takie jak ISO 9001, zwracają dużą uwagę na efektywność i niezawodność, przez co przekładnie planetarne są często wybierane w nowoczesnych konstrukcjach.

Pytanie 29

Na podstawie tabeli kodów paskowych rezystorów wskaż rezystor o wartości rezystancji 1 kΩ i tolerancji 5%.

Kody paskowe rezystorów

KolorWartośćMnożnikTolerancja
± %
Współczynnik temp.
± ppm/K
1 pasek2 pasek3 pasek4 pasekOstatni pasek
czarny00x 1 Ω20200
brązowy11x 10 Ω1100
czerwony22x 100 Ω250
pomarańczowy33x 1 k315
żółty44x 10 k0 - +10025
zielony55x 100 k0.5
niebieski66x 1 M0.2510
fioletowy77x 10 M0,15
szary880,051
biały99
złoty0,1 Ω5
srebrny0,01 Ω10
brak20
Ilustracja do pytania
A. B.
B. D.
C. A.
D. C.
Rezystor o wartości 1 kΩ i tolerancji 5% jest oznaczony paskami w kolorach: brązowy, czarny, czerwony i złoty. Brązowy reprezentuje cyfrę 1, czarny cyfrę 0, czerwony mnożnik 100, a złoty określa tolerancję na poziomie 5%. Odpowiedź A zawiera te kolory, co oznacza, że jest to prawidłowy wybór. W praktyce, umiejętność odczytywania wartości rezystorów z kodów paskowych jest kluczowa w elektronice, ponieważ właściwy dobór rezystorów wpływa na działanie obwodów elektronicznych. W przypadku projektowania układów elektronicznych, tolerancja rezystora ma znaczenie dla stabilności i niezawodności działania urządzenia; 5% tolerancji oznacza, że rzeczywista rezystancja może różnić się od nominalnej o 5% w górę lub w dół. Warto zatem pamiętać, że dobór właściwych komponentów zgodnie z ich specyfikacją jest jednym z podstawowych aspektów inżynierii elektroniki i elektrotechniki.

Pytanie 30

Która metoda regulacji prędkości obrotowej silnika obcowzbudnego prądu stałego umożliwi efektywną regulację w szerokim zakresie od 0 do nn?

A. Napięciem przyłożonym do obwodu wzbudzenia
B. Napięciem przyłożonym do obwodu twornika
C. Rezystancją w obwodzie twornika
D. Rezystancją w obwodzie wzbudzenia
Rezystancja w obwodzie wzbudzenia silnika obcowzbudnego prądu stałego wpływa na siłę pola magnetycznego, co z kolei oddziałuje na moment obrotowy silnika. Zwiększenie rezystancji w tym obwodzie prowadzi do zmniejszenia prądu wzbudzenia, co skutkuje osłabieniem pola magnetycznego i może prowadzić do obniżenia momentu obrotowego przy danej wartości napięcia. Takie podejście może być stosowane w niektórych sytuacjach, ale nie zapewnia efektywnej regulacji prędkości w szerokim zakresie. Zwiększenie rezystancji w obwodzie twornika również nie jest właściwym rozwiązaniem, ponieważ prowadzi do strat mocy oraz obniżenia sprawności energetycznej silnika. Działania te mogą prowadzić do nieefektywnego działania, zwłaszcza w aplikacjach wymagających dynamicznej regulacji prędkości. Warto zwrócić uwagę, że stosowanie napięcia przyłożonego do obwodu wzbudzenia może wprowadzać dodatkowe problemy, takie jak trudności w uzyskaniu stabilnej pracy silnika w niższych prędkościach, co czyni tę metodę niepraktyczną. W kontekście najlepszych praktyk inżynieryjnych, należy unikać podejść, które nie gwarantują pełnej kontroli nad parametrami pracy silnika, a także mogą prowadzić do nadmiernych strat energetycznych i złożoności w implementacji systemu. Ostatecznie, wybór odpowiedniej metody regulacji prędkości powinien być oparty na analizie wymagań aplikacji oraz efektywności energetycznej.

Pytanie 31

Który z programów przekształca kod napisany w danym języku programowania na kod maszynowy stosowany przez mikrokontroler?

A. Kompilator
B. Emulator
C. Debugger
D. Deasembler
Kompilator jest narzędziem, które tłumaczy kod źródłowy napisany w określonym języku programowania na kod maszynowy, który jest zrozumiały dla mikrokontrolera. Proces ten obejmuje kilka kroków, w tym analizę składniową, analizę semantyczną oraz generację kodu. Kompilatory są kluczowe w programowaniu systemów embedded, gdzie efektywność i optymalizacja kodu są niezwykle istotne. Przykładem popularnego kompilatora dla języka C jest GCC (GNU Compiler Collection), który jest szeroko stosowany w projektach związanych z mikrokontrolerami, takimi jak platforma Arduino. Kompilacja pozwala także na wykorzystanie różnych poziomów optymalizacji, co sprawia, że końcowy kod maszynowy działa szybciej i zużywa mniej zasobów. W dobrze zaprojektowanym procesie kompilacji, programiści mogą również zastosować dyrektywy preprocesora, co umożliwia dostosowanie kodu do różnych platform sprzętowych. Z tego powodu, znajomość działania kompilatorów jest niezbędna dla każdego, kto pragnie efektywnie programować mikrokontrolery.

Pytanie 32

Wskaż prawidłowe przyporządkowanie cyfr wskazujących części sprzęgła kłowego do ich nazw.

Piasta sprzęgłaKołnierz przykręcanyWkładka elastycznaPierścienie osadczePodkładka zabezpieczająca
Przyporządkowanie 1.1234 | 56
Przyporządkowanie 2.3124 | 56
Przyporządkowanie 3.4235 | 61
Przyporządkowanie 4.5124 | 63
Ilustracja do pytania
A. Przyporządkowanie 3.
B. Przyporządkowanie 4.
C. Przyporządkowanie 1.
D. Przyporządkowanie 2.
Odpowiedź jest prawidłowa, ponieważ przyporządkowanie 1. dokładnie odzwierciedla rzeczywiste rozmieszczenie i funkcje poszczególnych części sprzęgła kłowego. W praktyce, zrozumienie tych elementów jest kluczowe dla prawidłowego montażu i konserwacji urządzeń mechanicznych. Na przykład, płytka sprzęgła, oznaczona cyfrą 1, jest podstawowym elementem, który łączy różne części, a jej prawidłowe umiejscowienie zapewnia stabilność całego systemu. Kołnierz przykręcany (oznaczony cyfrą 2) odpowiada za mocowanie, co jest szczególnie istotne w kontekście obciążeń dynamicznych występujących w pracy sprzęgła. Wkładka elastyczna (cyfra 3) pełni kluczową rolę w amortyzacji drgań, co wpływa na żywotność oraz efektywność działania całego mechanizmu. Pozostałe elementy, takie jak pierścienie osadcze (4 i 5) i podkładka zabezpieczająca (6), również mają swoje określone funkcje, które są niezbędne dla prawidłowego działania sprzęgła. Zrozumienie tych interakcji jest nie tylko istotne z perspektywy inżynieryjnej, ale również w kontekście zachowania standardów jakości i bezpieczeństwa w przemyśle.

Pytanie 33

Jaką metodę łączenia metali należy wybrać, gdy maksymalna temperatura w trakcie łączenia nie może przekroczyć 450OC?

A. Lutowanie miękkie
B. Spawanie gazowe
C. Spawanie elektryczne
D. Lutowanie twarde
Lutowanie miękkie jest techniką, która polega na łączeniu materiałów metalowych za pomocą stopów lutowniczych, których temperatura topnienia nie przekracza 450°C. Dzięki temu proces lutowania miękkiego jest idealnym rozwiązaniem w sytuacjach, gdzie ważne jest, aby nie narażać łączonych materiałów na wysokie temperatury, które mogłyby prowadzić do ich deformacji, osłabienia struktury lub innych niepożądanych efektów. Lutowanie miękkie znajduje zastosowanie w elektronice, gdzie łączenie elementów na płytkach drukowanych wymaga precyzyjnego podejścia i ochrony delikatnych komponentów przed ciepłem. Warto również zaznaczyć, że ta metoda jest szeroko stosowana w produkcji biżuterii, gdzie pożądana jest estetyka oraz trwałość połączeń bez ryzyka zagrożenia dla materiałów bazowych. Stosowanie lutowania miękkiego jest zgodne z normami branżowymi, takimi jak ISO 9453, które regulują wymagania dotyczące lutów i procesów lutowania, zapewniając wysoką jakość i bezpieczeństwo połączeń.

Pytanie 34

Niewielkie, drobne zarysowania na tłoczysku hydraulicznego siłownika eliminuje się za pomocą

A. polerowania
B. spawania
C. napawania
D. lutowania
Polerowanie to skuteczna metoda usuwania drobnych, niewielkich rys na tłoczysku siłownika hydraulicznego, ponieważ pozwala na wygładzenie powierzchni metalowej bez potrzeby dodawania materiału. W procesie polerowania wykorzystuje się różne materiały ścierne, takie jak pasty polerskie czy materiały ścierne o drobnych ziarnach, co umożliwia osiągnięcie wysokiej jakości wykończenia. Przykładem zastosowania polerowania w praktyce jest konserwacja siłowników hydraulicznych w maszynach budowlanych, gdzie ich długowieczność oraz niezawodność są kluczowe. Polerowanie nie tylko poprawia estetykę, ale również minimalizuje ryzyko dalszego uszkodzenia, zmniejszając tarcie i zużycie materiału. W branży hydraulicznej standardy jakości, takie jak ISO 9001, zalecają regularne kontrolowanie stanu tłoczysk i ich polerowanie w celu zapewnienia optymalnej wydajności oraz bezpieczeństwa operacyjnego urządzeń hydraulicznych. Warto również wspomnieć, że polerowanie przyczynia się do poprawy właściwości tribologicznych powierzchni, co wpływa na efektywność pracy siłowników.

Pytanie 35

Zgodnie z wytycznymi producenta przedstawionymi w tabeli układ sterowniczy urządzenia mechatronicznego pracującego przy napięciu zasilania 24 V DC należy połączyć przewodami w kolorach żółto-zielonym oraz

Nazwa przewoduOznaczenie przewodu lub zacisku kodem alfanumerycznymOznaczenie przewodu kolorem
Przewód liniowy 1 (AC)
Przewód liniowy 2 (AC)
Przewód liniowy 3 (AC)
L1
L2
L3
czarnym lub
brązowym, lub szarym
Przewód neutralny (AC)N
Przewód środkowy (AC)Mniebieskim
Przewód dodatni (DC)L+czerwonym
Przewód ujemny (DC)L-czarnym
Przewód ochronny
Przewód ochronno-neutralny
Przewód ochronno-liniowy
Przewód ochronno-środkowy
PE
PEN
PEL
PEM
żółto-zielonym
A. szarym i niebieskim.
B. czarnym i niebieskim.
C. brązowym i niebieskim.
D. czerwonym i czarnym.
Odpowiedź jest poprawna, ponieważ zgodnie z wytycznymi producenta, przewód dodatni w układach zasilania DC oznaczony jest kolorem czerwonym, a przewód ujemny kolorem czarnym. W praktyce, oznaczenia kolorami przewodów mają na celu ułatwienie prawidłowego podłączenia komponentów elektronicznych i mechatronicznych, minimalizując ryzyko błędów, które mogą prowadzić do uszkodzenia urządzeń. Użycie przewodów w kolorach czerwonym i czarnym jest zgodne z powszechnie przyjętymi standardami, jak np. normy IEC 60446, które definiują oznaczenia kolorów przewodów elektrycznych. W kontekście układów zasilania 24 V DC, prawidłowe podłączenie przewodów jest kluczowe dla zapewnienia stabilności i bezpieczeństwa systemu. Dodatkowo, w przypadku błędnego podłączenia, mogą wystąpić usterki w działaniu urządzenia, a nawet jego trwałe uszkodzenie, co podkreśla znaczenie przestrzegania ustalonych zasad i norm w praktyce inżynierskiej.

Pytanie 36

W celu sprawdzenia poprawności działania układu przedstawionego na schemacie, zmierzono napięcie zasilania. Wskaż wynik pomiaru, który świadczy, że napięcie zasilania jest prawidłowe?

Ilustracja do pytania
A. 380 V
B. 400 V
C. 230 V
D. 24 V
Tak, 230 V to jest właściwe napięcie! Wiesz, w polskich instalacjach jednofazowych właśnie to napięcie jest standardowe. Używamy tego w domach, a także w różnych obiektach przemysłowych średniej wielkości. Jak dobrze się orientujesz, normy europejskie też to potwierdzają. Jak mierzysz napięcie i pokazuje 230 V, to znaczy, że wszystko działa jak należy. Dzięki temu sprzęty, które mamy w domach, jak lampy czy lodówki, funkcjonują bez problemu. Z drugiej strony, 24 V to już inna historia – to napięcie niskonapięciowe, które częściej spotykasz w automatyce. A 380 V czy 400 V to napięcia trójfazowe, które są stosowane w przemyśle, a nie u nas w domach. Więc można by powiedzieć, że 230 V to taki „złoty środek” dla naszych potrzeb elektrycznych.

Pytanie 37

Który z zaworów pozwala na przepływ czynnika roboczego tylko w jednym kierunku?

A. Zwrotny
B. Rozdzielający
C. Odcinający
D. Przelotowy
Zawór zwrotny jest kluczowym elementem w systemach hydraulicznych i pneumatycznych, który umożliwia przepływ czynnika roboczego tylko w jednym, określonym kierunku. Działa on na zasadzie automatycznego zamykania, gdy ciśnienie w przeciwnym kierunku przekracza określony poziom. Dzięki temu zapobiega to cofaniu się płynów, co jest szczególnie ważne w układach, gdzie nieprzerwany przepływ w jednym kierunku jest krytyczny dla działania systemu. Przykładem zastosowania zaworu zwrotnego mogą być systemy hydrauliczne w maszynach budowlanych, gdzie konieczne jest, aby olej hydrauliczny nie wracał do zbiornika, gdy siłownik jest pod obciążeniem. Zawory zwrotne są również stosowane w instalacjach wodociągowych, aby zapobiegać cofaniu się wody, co mogłoby prowadzić do zanieczyszczenia systemu. W praktyce, dobór odpowiedniego zaworu zwrotnego powinien być zgodny z normą PN-EN ISO 4414, która definiuje zasady użytkowania urządzeń pneumatycznych, oraz z normą PN-EN 982, dotyczącą systemów hydraulicznych. Zrozumienie działania zaworów zwrotnych i ich zastosowania jest kluczowe dla inżynierów i techników pracujących w dziedzinach hydrauliki i pneumatyki.

Pytanie 38

Na przedstawionym diagramie sygnał Y odpowiada funkcji logicznej

Ilustracja do pytania
A. B.
B. A.
C. D.
D. C.
Poprawna odpowiedź to D, ponieważ diagram sygnałów jednoznacznie wskazuje, że sygnał Y osiąga stan wysoki wyłącznie wtedy, gdy zarówno sygnał A, jak i sygnał B są w stanie wysokim. Oznacza to, że sygnał Y działa zgodnie z funkcją logiczną AND. Funkcja ta jest podstawowym elementem w inżynierii cyfrowej oraz systemach logiki, ponieważ jest niezwykle istotna w projektowaniu układów cyfrowych, takich jak bramki logiczne. W praktyce, logika AND jest używana w różnych zastosowaniach, od prostych układów elektronicznych po zaawansowane systemy komputerowe. Przy projektowaniu układów używa się standardów takich jak IEEE 91 i IEEE 1164, które definiują sposoby implementacji i sprawdzania poprawności funkcji logicznych. Zrozumienie funkcji AND jest kluczowe dla każdego inżyniera zajmującego się projektowaniem oraz analizą układów logicznych, a także dla programistów, którzy używają tej logiki w programowaniu warunkowym.

Pytanie 39

Największe ryzyko związane z urządzeniami elektrycznymi wynika z możliwości

A. wystąpienia zwarcia doziemnego
B. dotknięcia odizolowanych części będących pod napięciem
C. dotknięcia elementów urządzenia elektrycznego mających uziemienie
D. pojawu przerwy w obwodzie elektrycznym
Dotknięcie odizolowanych elementów znajdujących się pod napięciem stanowi poważne zagrożenie dla zdrowia i życia ludzi. Elementy te, jeśli są odizolowane, mogą wydawać się bezpieczne, jednak w momencie, gdy dojdzie do naruszenia izolacji, stają się źródłem niebezpiecznego napięcia elektrycznego. Przykładem może być uszkodzona wtyczka lub przewód, w którym izolacja została przerwana, a przewodnik stał się dostępny. W takich sytuacjach, dotykając odizolowanego elementu, osoba może stać się drogą, przez którą prąd elektryczny przepływa do ziemi, co może prowadzić do porażenia elektrycznego. Zgodnie z normami bezpieczeństwa, takimi jak PN-EN 61140, urządzenia elektryczne powinny być projektowane z myślą o minimalizowaniu ryzyka kontaktu z elementami pod napięciem. Regularne przeglądy oraz stosowanie odpowiednich zabezpieczeń, takich jak wyłączniki różnicowo-prądowe, mogą znacznie zredukować to ryzyko. Odpowiednia edukacja użytkowników i pracowników w zakresie bezpieczeństwa elektrycznego jest kluczowa dla zapobiegania wypadkom.

Pytanie 40

Przed przystąpieniem do wymiany zaworu elektropneumatycznego, który jest sterowany przez PLC, należy zająć się zasilaniem pneumatycznym.

A. wyłączyć dopływ sprężonego powietrza, odłączyć siłownik oraz wyłączyć PLC
B. wprowadzić sterownik PLC w tryb STOP, odłączyć zasilanie elektryczne oraz pneumatyczne układu
C. odłączyć przewody zasilające sterownik oraz przewody pneumatyczne od elektrozaworu
D. dezaktywować zasilanie pneumatyczne, odłączyć przewody od cewki elektrozaworu i przewody
Poprawna odpowiedź wskazuje na kluczowe etapy przygotowania do wymiany zaworu elektropneumatycznego, który jest zintegrowany z systemem sterowania PLC. Wprowadzenie sterownika PLC w tryb STOP jest niezbędne, aby zapobiec niekontrolowanemu działaniu systemu podczas przeprowadzania prac serwisowych. Wyłączenie zasilania elektrycznego oraz pneumatycznego całego układu eliminuje ryzyko wystąpienia niebezpiecznych sytuacji, takich jak przypadkowe uruchomienie czy wyciek sprężonego powietrza, co mogłoby prowadzić do uszkodzeń sprzętu lub zagrożenia dla operatorów. Dobrym przykładem jest procedura serwisowa w przemyśle automatyzacyjnym, gdzie przed wymianą komponentów pneumatycznych zawsze stosuje się blokady i procedury bezpieczeństwa, zgodne z normami ISO 13849, które regulują bezpieczeństwo maszyn. Praktyczne zastosowanie tej wiedzy zwiększa bezpieczeństwo operacji oraz efektywność pracy, minimalizując ryzyko awarii i wypadków.