Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 19 lutego 2026 08:14
  • Data zakończenia: 19 lutego 2026 08:39

Egzamin zdany!

Wynik: 21/40 punktów (52,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Rysunek przedstawia sposób zainstalowania urządzenia ochronnego różnicowoprądowego w sieci typu

Ilustracja do pytania
A. TN-C-S
B. TT
C. TN-S
D. IT
Wybór odpowiedzi spośród pozostałych typów sieci może prowadzić do nieporozumień związanych z zasadami ich działania. Sieci TN-S charakteryzują się tym, że przewód neutralny i przewód ochronny są oddzielone, co jest zupełnie inną koncepcją niż izolacja stosowana w sieciach IT. Użytkownicy mogą błędnie myśleć, że w sieci TN-S urządzenia różnicowoprądowe są tak samo efektywne jak w IT, jednak w przypadku awarii izolacji, prąd upływowy w sieci TN-S może spowodować poważniejsze konsekwencje. Podobnie sieci TN-C-S, które łączą funkcję przewodów neutralnych i ochronnych, są bardziej narażone na zjawiska związane z prądami upływowymi, co stawia pod znakiem zapytania ich bezpieczeństwo. Z kolei w sieciach TT, gdzie przewód neutralny i ochronny są oddzielne, istnieje większe ryzyko wystąpienia różnicy potencjałów między ziemią a neutralnym przewodem, co może prowadzić do niebezpiecznych sytuacji. Błędem jest zakładanie, że wszystkie te systemy zapewniają taki sam poziom ochrony jak sieci IT; każdy typ ma swoje unikalne właściwości i zastosowania, które powinny być starannie rozważane w kontekście wymagań bezpieczeństwa. W przypadku sieci IT, kluczowe jest zrozumienie ich struktury oraz właściwego zastosowania, aby uniknąć niebezpieczeństw związanych z awariami. Warto również zaznaczyć, że w sieciach TN i TT instalacje różnicowoprądowe są często mniej skuteczne w detekcji uszkodzeń, co może prowadzić do większych zagrożeń dla użytkowników i urządzeń.

Pytanie 2

Który sposób podłączenia instalacji oświetleniowej jest poprawny?

Ilustracja do pytania
A. D.
B. B.
C. C.
D. A.
Odpowiedź C jest poprawna, ponieważ przedstawia prawidłowy sposób podłączenia instalacji oświetleniowej, który jest zgodny z obowiązującymi normami bezpieczeństwa. W tym schemacie przewód fazowy L1 jest podłączony do włącznika, co umożliwia kontrolowanie zasilania żarówki. Gdy włącznik jest w pozycji wyłączonej, żarówka nie otrzymuje zasilania, co minimalizuje ryzyko porażenia prądem. Z kolei przewód neutralny N jest podłączony bezpośrednio do żarówki, co jest standardową praktyką w instalacjach elektrycznych. Ważnym elementem jest również podłączenie przewodu ochronnego PE do odpowiedniego punktu w oprawie oświetleniowej. Przewód ten ma kluczowe znaczenie dla zapewnienia bezpieczeństwa użytkowników, ponieważ w przypadku uszkodzenia izolacji, prąd popłynie do ziemi, minimalizując ryzyko porażenia. Taki sposób podłączenia gwarantuje, że w momencie, gdy włącznik jest wyłączony, nie ma napięcia na żarówce, co jest fundamentalną zasadą bezpieczeństwa w elektrotechnice.

Pytanie 3

Który typ łącznika instalacyjnego przedstawiony jest na schemacie?

Ilustracja do pytania
A. Schodowy.
B. Krzyżowy.
C. Dwubiegunowy.
D. Świecznikowy.
Wybrana odpowiedź nie jest poprawna, ponieważ prezentowany schemat dotyczy łącznika świecznikowego, a nie innych typów łączników instalacyjnych. W przypadku łącznika dwubiegunowego, jego podstawowym zadaniem jest włączanie i wyłączanie jednego obwodu, a nie dwóch niezależnych jak w przypadku łącznika świecznikowego. Często mylone z łącznikiem świecznikowym są łączniki schodowe, które również nie pełnią tej samej funkcji, ponieważ ich zadaniem jest umożliwienie włączania i wyłączania jednego źródła światła z dwóch różnych miejsc. Istnieje również łącznik krzyżowy, który używany jest w skomplikowanych układach oświetleniowych, gdzie wymagana jest kontrola z trzech lub więcej miejsc, jednak nie spełnia on funkcji łącznika świecznikowego. Typowe błędy w rozumieniu tych urządzeń wynikają najczęściej z braku znajomości ich zastosowania i funkcji w praktyce. Kluczowe jest rozróżnienie, że łączniki świecznikowe umożliwiają niezależne sterowanie dwoma obwodami, co jest nieosiągalne dla pozostałych typów łączników. Ważne jest także, aby w przyszłości zwracać uwagę na szczegóły schematów, które mogą wskazywać na ich rzeczywistą funkcję, co pomoże uniknąć takich pomyłek.

Pytanie 4

Stosując kryterium obciążalności prądowej, dobierz na podstawie tabeli minimalny przekrój przewodu do zasilenia grzejnika elektrycznego o danych: PN = 4,6 kW, UN = 230 V.

S, mm21,01,52,54,06,0
Idd, A1519243242
A. 1,5 mm2
B. 2,5 mm2
C. 4,0 mm2
D. 6,0 mm2
Dobra robota z wybraniem przekroju przewodu 2,5 mm²! Z tego co pamiętam, taki przekrój jest ok, gdy chodzi o obciążalność prądową. Kiedy obliczamy prąd dla grzejnika elektrycznego 4,6 kW przy 230 V, to wychodzi nam około 20 A. Jak spojrzysz na tabelę obciążalności przewodów, to zobaczysz, że 2,5 mm² spokojnie wytrzyma do 24 A, co oznacza, że jest to bezpieczny wybór. Moim zdaniem, dobrze dobrany przekrój przewodu to klucz do efektywnej pracy urządzenia i bezpieczeństwa naszych instalacji. Taki przekrój jest także często używany w instalacjach oświetleniowych czy przy zasilaniu urządzeń o podobnych parametrach. Zawsze warto mieć na uwadze tabele obciążalności i normy, jak PN-IEC 60364 – to pomoże uniknąć problemów w przyszłości.

Pytanie 5

Rysunek przedstawia symbol graficzny przewodu

Ilustracja do pytania
A. FB
B. FE
C. PE
D. PEN
Symbol przedstawiony na rysunku rzeczywiście oznacza przewód ochronny, który w zgodzie z normą PN-EN 60617 jest identyfikowany skrótem "PE" (Protective Earth). Przewód ten jest kluczowy w systemach elektrycznych, ponieważ zapewnia bezpieczeństwo poprzez odprowadzanie potencjalnych prądów upływowych do ziemi, co minimalizuje ryzyko porażenia prądem. W praktyce, przewód PE jest często stosowany w instalacjach elektrycznych w budynkach, gdzie pełni rolę ochronną dla urządzeń oraz użytkowników. Warto również zauważyć, że w systemach zasilania trójfazowego, przewód ochronny jest wymagany, aby spełnić normy bezpieczeństwa, takie jak norma IEC 60364. Przewód PE powinien być zawsze jasno oznakowany zielono-żółtym kolorem, aby umożliwić łatwą identyfikację w instalacjach elektrycznych. Zastosowanie tego przewodu jest nie tylko praktyczne, ale i zgodne z zasadami ochrony przeciwwybuchowej w środowiskach, gdzie mogą występować niebezpieczne substancje.

Pytanie 6

Na którym schemacie przedstawiono prawidłowy sposób połączenia rozdzielnicy mieszkaniowej z wewnętrzną linią zasilającą?

Ilustracja do pytania
A. A.
B. D.
C. C.
D. B.
Wybór złych schematów do połączenia z wewnętrzną linią zasilającą to poważna sprawa, bo może prowadzić do niebezpieczeństwa i problemów z działaniem całej instalacji. Często można zobaczyć błędy w podłączeniu przewodów neutralnych i ochronnych, co stwarza ryzyko porażenia prądem oraz może sprawić, że zabezpieczenia będą działać nieprawidłowo. Na przykład, jeśli licznik energii elektrycznej jest umieszczony po zabezpieczeniu nadmiarowoprądowym, to nie tylko pomiar będzie utrudniony, ale i cała instalacja może być na ryzyko uszkodzenia w przypadku zwarcia. Wiele osób nie zwraca na to uwagi, myśląc, że kolejność podłączenia nie ma znaczenia, a to błąd. Normy, jak PN-IEC 60364, jasno mówią, że przewody muszą być odpowiednio podłączone i rozmieszczone. Błędy w tym zakresie mogą prowadzić do awarii i zagrożenia dla zdrowia użytkowników, więc lepiej zwracać uwagę na detale.

Pytanie 7

Która z wymienionych maszyn elektrycznych jest wykorzystywana jako czujnik prędkości obrotowej?

A. Prądnica tachometryczna.
B. Kompensator.
C. Selsyn.
D. Silnik krokowy.
Poprawnie – prądnica tachometryczna to klasyczny, bardzo często stosowany czujnik prędkości obrotowej w układach automatyki i napędów. Działa jak mała prądnica, która wytwarza napięcie proporcjonalne do prędkości obrotowej wału. Im szybciej się kręci, tym wyższe napięcie na jej zaciskach. Dzięki temu układ sterowania może w prosty sposób „odczytać” prędkość, mierząc napięcie wyjściowe, zwykle w zakresie kilku–kilkunastu woltów. W praktyce spotyka się prądnice tachometryczne prądu stałego (napięcie DC) oraz prądu przemiennego (AC), dobierane w zależności od rodzaju napędu i elektroniki pomiarowej. W nowocześniejszych instalacjach coraz częściej używa się enkoderów impulsowych, ale w wielu układach modernizowanych, w starszych obrabiarkach, suwnicach czy liniach technologicznych, prądnica tachometryczna dalej robi robotę, bo jest prosta, odporna i łatwa w diagnozowaniu. Moim zdaniem to bardzo dobre rozwiązanie edukacyjne – na jej przykładzie świetnie widać związek między wielkością mechaniczną (obr/min) a wielkością elektryczną (V). W dobrych praktykach projektowych ważne jest, żeby prądnicę tachometryczną montować solidnie współosiowo z wałem, zadbać o ekranowany przewód sygnałowy oraz właściwe uziemienie, żeby nie łapała zakłóceń. W układach regulacji prędkości (np. napędy DC, falowniki starszego typu, regulatory analogowe) sygnał z prądnicy tachometrycznej jest elementem sprzężenia zwrotnego – dzięki niemu regulator może porównać prędkość zadaną z rzeczywistą i odpowiednio korygować moment silnika. W dokumentacjach producentów napędów i według ogólnych zasad automatyki przemysłowej prądnica tachometryczna jest więc pełnoprawnym czujnikiem prędkości, a nie „zwykłą prądnicą”.

Pytanie 8

W których z wymienionych rodzajów silników stosuje się wirnik przedstawiony na ilustracji?

Ilustracja do pytania
A. Asynchronicznych pierścieniowych.
B. Synchronicznych.
C. Asynchronicznych klatkowych.
D. Uniwersalnych.
Wirnik, który widzisz na obrazku, to typowy element silników asynchronicznych klatkowych. Te silniki są naprawdę powszechne w przemyśle, bo są proste w budowie i bardzo niezawodne. Mówi się na nie często 'klatka wiewiórki'. Jak to działa? No, wirnik składa się z prętów przewodzących, które są zamknięte na końcach pierścieniami. Dzięki temu mają świetne właściwości elektromagnetyczne. Co ciekawe, te silniki idealnie nadają się tam, gdzie potrzebna jest duża moc przy niskich kosztach. Przykładowo, używa się ich w wentylatorach, pompach czy kompresorach. W takich aplikacjach stała prędkość obrotowa i łatwość obsługi są mega ważne. Dodatkowo, są zgodne z międzynarodowymi standardami efektywności energetycznej, co jest dużym plusem dla środowiska. Nie zapominajmy też, że ich konstrukcja ułatwia konserwację, co jest naprawdę istotne w dłuższej perspektywie. Dlatego wybór silnika asynchronicznego klatkowego w przemyśle ma sens zarówno pod względem technicznym, jak i finansowym.

Pytanie 9

Który rodzaj przewodu przedstawiono na rysunku?

Ilustracja do pytania
A. Wielodrutowy nieuzbrojony.
B. Jednożyłowy uzbrojony.
C. Jednodrutowy nieuzbrojony.
D. Wielożyłowy uzbrojony.
Wybór niepoprawnej odpowiedzi może wynikać z nieporozumienia w interpretacji konstrukcji przewodów elektrycznych. Odpowiedź "Jednożyłowy uzbrojony" sugeruje, że przewód składa się z jednej, grubej żyły otoczonej metalowym pancerzem. Przewody jednożyłowe są często używane w instalacjach, gdzie wymagana jest wysoka odporność na mechaniczne uszkodzenia, jednak w przypadku przedstawionego rysunku nie ma żadnych oznak uzbrojenia. To prowadzi do kolejnego błędnego wniosku, który wskazuje na "Wielożyłowy uzbrojony". Takie przewody posiadają wiele żył, ale ich konstrukcja wskazuje na obecność zabezpieczeń mechanicznych, co nie ma miejsca w analizowanym przypadku. Z kolei "Jednodrutowy nieuzbrojony" nie odzwierciedla budowy przewodu, ponieważ sugeruje, że przewód składa się z jednego drutu, co jest sprzeczne z widocznym przekrojem. W praktyce, przewody uzbrojone często stosowane są w miejscach, gdzie mogą być narażone na uszkodzenia, co również wyklucza ich obecność w tym przypadku. Kluczowym aspektem w rozróżnieniu tych przewodów jest znajomość ich struktury i przeznaczenia, co jest niezbędne do prawidłowego wyboru materiałów w instalacjach elektrycznych, aby zapewnić bezpieczeństwo oraz efektywność energetyczną. Zrozumienie różnicy między różnymi typami przewodów pomoże uniknąć poważnych błędów w projektach elektrycznych.

Pytanie 10

Którym z urządzeń przedstawionych na rysunkach należy zastąpić uszkodzony w instalacji elektrycznej stycznik o oznaczeniu SM 425 230 4Z?

Ilustracja do pytania
A. D.
B. B.
C. A.
D. C.
Odpowiedź B jest prawidłowa, ponieważ stycznik Relpol RIK40-40, który ma być użyty jako zamiennik, ma napięcie cewki w zakresie 230-240V, co jest zgodne z wymaganiami technicznymi dla uszkodzonego stycznika SM 425 230 4Z. Dodatkowo, RIK40-40 dysponuje czterema stykami pomocniczymi, co sprawia, że jego parametry są zgodne z wymaganiami systemu. Użycie właściwego stycznika jest kluczowe w instalacjach elektrycznych, aby zapewnić ich niezawodność i bezpieczeństwo. Styczniki są szeroko stosowane w automatyce przemysłowej oraz w systemach sterowania, gdzie precyzyjne dopasowanie parametrów styków i napięcia cewki jest niezbędne dla prawidłowego działania. W przypadku stosowania niewłaściwego stycznika, może dojść do uszkodzenia urządzenia, co prowadzi do przestojów produkcyjnych czy zagrożeń bezpieczeństwa. Dlatego ważne jest, aby przy wymianie styczników zawsze kierować się ich specyfikacjami technicznymi, które powinny być zgodne z wymaganiami dokumentacji projektowej oraz normami branżowymi, takimi jak IEC 60947.

Pytanie 11

Jakie materiały są wykorzystywane do izolacji żył przewodów elektrycznych?

A. Silikon i guma
B. Polwinit i guma
C. Mika i silikon
D. Polwinit i mika
Polwinit, czyli PVC, oraz guma to dwa naprawdę ważne materiały, które używa się do izolacji żył w przewodach elektrycznych. Dają one gwarancję, że wszystko będzie działać bezpiecznie i przez długi czas. Polwinit jest znany ze swojej odporności na różne chemikalia i wysokie temperatury, dlatego często znajdziesz go w kablach niskiego i średniego napięcia. Ma fajne właściwości mechaniczne i elektryczne, na przykład niską przewodność elektryczną, co czyni go super materiałem do izolacji. Guma natomiast jest elastyczna i świetnie sprawdza się tam, gdzie przewody muszą się poruszać lub być zginane. To ważne w sytuacjach, gdzie są narażone na wibracje. Normy IEC 60227 i IEC 60502 pokazują, jak ważne jest korzystanie z odpowiednich materiałów, żeby zapewnić bezpieczeństwo i niezawodność instalacji elektrycznych. Polwinitowe i gumowe izolacje są używane w wielu miejscach – od domów po przemysł, a nawet w motoryzacji. Dobrze wiedzieć, że odporność tych materiałów na różne czynniki może naprawdę wpłynąć na bezpieczeństwo całego systemu elektrycznego.

Pytanie 12

Jakie oznaczenie, zgodnie z Europejskim Komitetem Normalizacyjnym Elektrotechniki CENELEC posiada przewód przedstawiony na rysunku?

Ilustracja do pytania
A. H07V-U
B. NYM-J
C. H03VV-F
D. NAYY-O
Przewody 'NAYY-O' i 'H07V-U' niestety nie spełniają wymagań do tej instalacji, co można zauważyć na rysunku. 'NAYY-O' to przewody aluminiowe, które zazwyczaj wykorzystuje się w instalacjach na zewnątrz. Mają inną konstrukcję izolacyjną, więc nie nadają się do stałych instalacji w budynkach. Natomiast 'H07V-U' to przewód jednożyłowy, który również nie pasuje do wielożyłowych przewodów, jakie były potrzebne, by zapewnić prawidłowe zasilanie. Użycie takich przewodów może prowadzić do różnych błędów, bo jak źle dobierzesz przewód, to wpływa na bezpieczeństwo i funkcjonowanie całego systemu elektrycznego. Oznaczenie 'H03VV-F' odnosi się do przewodów elastycznych, używanych głównie w urządzeniach przenośnych, a nie w stałych instalacjach. Wybór niewłaściwego typu przewodu to nie tylko obniżona efektywność, ale też większe ryzyko awarii systemu, co jest wbrew normom CENELEC, które sugerują dobór przewodów odpowiednich do danej instalacji. Warto pamiętać, żeby wybierając przewody, kierować się ich przeznaczeniem oraz obowiązującymi normami, by zapewnić bezpieczeństwo i niezawodność instalacji elektrycznych.

Pytanie 13

Który element stosowany w instalacjach mieszkaniowych przedstawiono na rysunku?

Ilustracja do pytania
A. Przekaźnik priorytetowy.
B. Regulator oświetlenia.
C. Regulator temperatury.
D. Przekaźnik bistabilny.
Jak wybrałeś regulator oświetlenia, regulator temperatury lub przekaźnik priorytetowy, to wpadłeś w kilka pułapek dotyczących ich funkcji i działania. Regulator oświetlenia, w przeciwieństwie do przekaźnika bistabilnego, nie zapamiętuje stanu po wyłączeniu prądu. Po prostu kontroluje intensywność światła. Regulator temperatury ma za zadanie utrzymywać temperaturę w pomieszczeniach, a to całkiem inna bajka. No i ten przekaźnik priorytetowy zajmuje się zarządzaniem zasilaniem dla różnych urządzeń, co również nie ma nic wspólnego z tym, co robi przekaźnik bistabilny. Używając tych terminów, można się gubisz w kontekście projektowania instalacji elektrycznych. Uważam, że ważne jest, aby dobrze rozumieć różnice między tymi urządzeniami, bo błędy w wyborze komponentów mogą prowadzić do problemów w działaniu systemów. Lepiej być ostrożnym, żeby wszystko działało bez zarzutu.

Pytanie 14

Którym symbolem graficznym oznacza się w dokumentacji sposób prowadzenia przewodów instalacji elektrycznej w listwach przypodłogowych?

Ilustracja do pytania
A. Symbolem 4.
B. Symbolem 1.
C. Symbolem 2.
D. Symbolem 3.
Wybór błędnych symboli graficznych w dokumentacji instalacji elektrycznych może prowadzić do poważnych nieporozumień i problemów w realizacji projektów. Symbole 1, 2 oraz 4 nie są zgodne z normą PN-IEC 60617 odnoszącą się do oznaczeń w dokumentacji elektrycznej. Wybór symbolu 1 może sugerować zupełnie inną metodę prowadzenia przewodów, co nie odpowiada rzeczywistości w kontekście instalacji w listwach przypodłogowych. Z kolei symbole 2 i 4 mogą być używane w innych kontekstach, jednak nie mają zastosowania w sytuacji, gdy przewody muszą być zabezpieczone oraz estetycznie zamaskowane wzdłuż ścian. Takie błędne wybory mogą wynikać z pomyłek w zapamiętywaniu symboli, co podkreśla znaczenie znajomości standardów oraz umiejętności ich prawidłowej interpretacji. Ważne jest, aby projektanci instalacji elektrycznych oraz ich wykonawcy przestrzegali ustalonych norm i wytycznych w celu zapewnienia nie tylko funkcjonalności, ale również bezpieczeństwa instalacji. Prawidłowe oznaczenie przewodów jest niezbędne dla późniejszej konserwacji oraz diagnozowania ewentualnych usterek. Właściwe symbole graficzne powinny być integralną częścią każdej dokumentacji technicznej, aby zapewnić prawidłowe zrozumienie i wykonanie instalacji zgodnie z najlepszymi praktykami branżowymi.

Pytanie 15

Na którym rysunku przedstawiono oprawę oświetleniową rastrową?

Ilustracja do pytania
A. A.
B. B.
C. D.
D. C.
Oprawa oświetleniowa rastrowa, jak wskazuje poprawna odpowiedź, odgrywa kluczową rolę w zapewnieniu efektywnego oświetlenia w różnych przestrzeniach, takich jak biura, hale produkcyjne czy sale wykładowe. Charakteryzuje się ona specyficzną konstrukcją rastrową, której celem jest równomierne rozprowadzanie światła oraz zmniejszenie efektu olśnienia. W oprawie oznaczonej jako B dostrzegamy zastosowanie takiej osłony, co jest zgodne z normami oświetleniowymi, np. PN-EN 12464-1, które podkreślają znaczenie komfortu użytkowników w środowisku pracy. Praktycznym zastosowaniem oświetlenia rastrowego jest jego umiejscowienie w przestrzeniach biurowych, gdzie odpowiednie rozproszenie światła zmniejsza zmęczenie wzroku oraz poprawia efektywność pracy. Warto również zaznaczyć, że tego typu oprawy są dostępne w różnych wariantach, co pozwala na ich dopasowanie do specyficznych potrzeb architektonicznych i użytkowych, przy jednoczesnym zachowaniu estetyki wnętrza.

Pytanie 16

Jakie urządzenie powinno zastąpić bezpieczniki topikowe 25 A, które chronią obwody silnika trójfazowego?

A. S193B25
B. S191B25
C. S193C25
D. S191C25
Wybór wyłącznika S193C25 jako zamiennika dla bezpieczników topikowych 25 A, zabezpieczających obwody silnika trójfazowego, jest właściwy ze względu na jego parametry techniczne oraz zgodność z obowiązującymi normami. Wyłącznik S193C25 charakteryzuje się prądem nominalnym 25 A oraz odpowiednią charakterystyką zabezpieczającą, co sprawia, że jest idealnym rozwiązaniem dla obwodów silnikowych. Zastosowanie wyłączników instalacyjnych zamiast bezpieczników topikowych przyczynia się do większej wygody użytkowania, gdyż wyłączniki są wielokrotnego użytku, a ich resetowanie jest prostsze. Ponadto, wyłączniki te oferują lepszą ochronę przed przeciążeniem i zwarciem, co jest kluczowe dla bezpieczeństwa instalacji. Przykładem praktycznego zastosowania wyłącznika S193C25 jest jego montaż w systemach automatyki przemysłowej, gdzie ochrona silników przed różnymi rodzajami awarii ma kluczowe znaczenie dla ciągłości produkcji. Warto również zwrócić uwagę, że wyłącznik S193C25 spełnia normy IEC, co potwierdza jego wysoką jakość oraz bezpieczeństwo użytkowania.

Pytanie 17

Co oznacza oznaczenie IP00 widoczne na obudowie urządzenia elektrycznego?

A. Wykorzystanie separacji ochronnej.
B. Brak ochrony przed wilgocią i pyłem.
C. Najwyższy poziom ochrony.
D. Brak klasy ochronności przed porażeniem.
Napis IP00 na obudowie urządzenia elektrycznego oznacza brak ochrony przed wilgocią i kurzem. Klasyfikacja IP (Ingress Protection) jest standardem opracowanym przez Międzynarodową Organizację Normalizacyjną (IEC), który określa poziomy ochrony oferowane przez obudowy urządzeń elektrycznych. W przypadku IP00, brak jakiejkolwiek cyfry oznacza, że urządzenie nie jest chronione ani przed wnikaniem ciał stałych, ani przed wilgocią. W praktyce oznacza to, że takie urządzenia powinny być używane w suchych, czystych i kontrolowanych warunkach, przez co minimalizuje się ryzyko uszkodzenia komponentów w wyniku nadmiernego zapylenia lub kontaktu z wodą. Przykładem zastosowania urządzeń oznaczonych jako IP00 mogą być niektóre elementy wewnętrzne systemów elektronicznych, które są odpowiednio zabezpieczone w zamkniętych obudowach i nie są narażone na działanie czynników zewnętrznych.

Pytanie 18

W oprawie oświetleniowej pokazanej na zdjęciu została zamontowana żarówka

Ilustracja do pytania
A. żarowa.
B. sodowa.
C. halogenowa.
D. rtęciowa.
Wybór żarówki sodowej, rtęciowej lub żarowej jako odpowiedzi wskazuje na pewne nieporozumienia dotyczące budowy i zastosowania różnych typów źródeł światła. Żarówki sodowe, na przykład, są powszechnie stosowane w oświetleniu ulicznym i mają charakterystyczny żółty kolor światła, co czyni je mniej efektywnymi w kontekście oświetlenia wnętrz, w którym wymagane jest naturalne odwzorowanie kolorów. Z kolei żarówki rtęciowe były popularne w przeszłości, ale obecnie są coraz rzadziej stosowane ze względu na ich szkodliwość dla środowiska oraz znaczące zanieczyszczenie światłem. Te źródła światła mają również inną konstrukcję, co sprawia, że są łatwo rozpoznawalne. Żarówki żarowe, mimo że uznawane są za klasyczne rozwiązanie, charakteryzują się niską efektywnością energetyczną oraz krótką żywotnością. W praktyce, ich stosowanie w nowoczesnym oświetleniu jest coraz bardziej ograniczone, co ukazuje zmieniające się normy energetyczne i ekologiczne, które promują bardziej efektywne źródła światła, takie jak halogeny. Dlatego ważne jest, aby zrozumieć różnice między tymi technologiami i podejmować świadome decyzje dotyczące wyboru odpowiednich źródeł światła do danego zastosowania.

Pytanie 19

Który typ silnika elektrycznego najczęściej stosuje się w urządzeniach gospodarstwa domowego?

A. Silnik synchroniczny trójfazowy
B. Silnik krokowy
C. Silnik indukcyjny jednofazowy
D. Silnik liniowy
Silniki indukcyjne jednofazowe są najczęściej stosowane w urządzeniach gospodarstwa domowego ze względu na ich prostotę konstrukcji, niezawodność oraz stosunkowo niskie koszty produkcji. Jednofazowe silniki indukcyjne działają w oparciu o zasadę indukcji elektromagnetycznej, gdzie prąd zmienny przepływający przez uzwojenie stojana wytwarza pole magnetyczne, które indukuje prąd w wirniku. To z kolei generuje siłę napędową, która wprawia wirnik w ruch obrotowy. Tego typu silniki są powszechnie stosowane w urządzeniach takich jak pralki, lodówki, wentylatory czy miksery. Ich zaletą jest brak szczotek komutatora, co eliminuje problem iskrzenia i konieczność częstej konserwacji. Dzięki swojej prostocie, silniki te charakteryzują się długą żywotnością i są odporne na przeciążenia. Ponadto są stosunkowo ciche i energooszczędne, co czyni je idealnym wyborem do zastosowań domowych. Standardy przemysłowe i dobre praktyki również preferują użycie jednofazowych silników indukcyjnych w kontekście urządzeń gospodarstwa domowego, podkreślając ich efektywność i trwałość.

Pytanie 20

Którego z symboli należy użyć na schemacie wielokreskowym w celu oznaczenia łącznika schodowego?

Ilustracja do pytania
A. D.
B. B.
C. C.
D. A.
Wybór symboli A, B lub D do oznaczenia łącznika schodowego jest nieprawidłowy i wynika z nieporozumienia dotyczącego funkcji oraz konstrukcji tych elementów. Symbol A przedstawia zwykły łącznik, który jest używany do włączania i wyłączania obwodu z jednego miejsca. Nie ma on możliwości zarządzania oświetleniem z dwóch różnych lokalizacji, co jest kluczowe dla łącznika schodowego. Użycie tego symbolu w tym kontekście prowadzi do błędnej interpretacji możliwości instalacji. Symbol B, z kolei, może odnosić się do innego typu przełącznika, który nie jest przystosowany do działania w systemach schodowych. Oznaczenia te mogą mylić, ponieważ nie oddają rzeczywistych funkcji, które powinny być jasno sprecyzowane w dokumentacji technicznej. Natomiast symbol D może reprezentować elementy, które nie są powiązane z funkcjonalnością zarządzania oświetleniem w kontekście schodów. Te błędne wybory wynikają z typowych nieporozumień w interpretacji rysunków technicznych oraz braku znajomości norm dotyczących oznaczania symboli elektrycznych. Ważne jest, aby przy projektowaniu instalacji elektrycznych zwracać uwagę na specyfikację i zastosowanie poszczególnych symboli, aby zapewnić ich poprawne użytkowanie i efektywność działania systemu. Dobrą praktyką jest konsultacja z dokumentacją normatywną oraz specjalistami w dziedzinie elektrotechniki przed podjęciem decyzji o wyborze odpowiednich elementów instalacji.

Pytanie 21

Jakim kolorem oznaczona jest wkładka topikowa, której wartość prądu znamionowego wynosi 20 A?

A. niebieski
B. czerwony
C. żółty
D. szary
Wybór innych kolorów wkładek topikowych może prowadzić do poważnych błędów w zabezpieczeniach instalacji elektrycznych. Szary kolor odpowiada wkładkom o prądzie znamionowym 6 A, co oznacza, że zastosowanie go w miejscu o pełnym obciążeniu 20 A może skutkować ich zbyt wczesnym przepaleniem, co z kolei może doprowadzić do uszkodzeń sprzętu oraz potencjalnych zagrożeń pożarowych. Żółty oznacza wkładki o wartości 10 A, co również jest niewystarczające dla prądów sięgających 20 A. Czerwony kolor jest przypisany wkładkom o prądzie znamionowym 16 A, co również nie zabezpiecza adekwatnie instalacji, która wymaga wytrzymałości 20 A. Kluczowym błędem myślowym jest błędne założenie, że każdy kolor mógłby być stosowany wymiennie w zależności od dostępności, co jest absolutnie nieprawidłowe. Przy wyborze wkładek topikowych należy kierować się nie tylko ich dostępnością, ale przede wszystkim normami oraz prądami znamionowymi, by uniknąć ryzyka awarii. Wiedza na temat tych norm oraz ich praktyczne zastosowanie jest niezbędne dla każdego profesjonalisty w branży elektrycznej.

Pytanie 22

Na którym rysunku przedstawiono adapter z gniazda E27 na gniazdo GU10?

Ilustracja do pytania
A. C.
B. A.
C. B.
D. D.
Adapter oznaczony literą A jest prawidłową odpowiedzią, ponieważ łączy gniazdo E27 z gniazdem GU10, co czyni go niezwykle praktycznym elementem w zastosowaniach oświetleniowych. Gniazdo E27, szerokie i standardowe, jest powszechnie stosowane w oprawach żarówkowych, co pozwala na łatwe wkręcanie tradycyjnych żarówek. Z kolei gniazdo GU10, charakteryzujące się dwoma bolcami, jest szeroko używane w nowoczesnych żarówkach halogenowych oraz LED, dając możliwość uzyskania pożądanego efektu świetlnego i oszczędności energii. W praktyce adaptery tego typu ułatwiają modernizację oświetlenia, umożliwiając użytkownikom wykorzystanie różnych typów żarówek, nawet w istniejących instalacjach. Zastosowanie adapterów E27-GU10 jest zgodne z dobrymi praktykami branżowymi, które zalecają elastyczność i dostosowanie systemów oświetleniowych do potrzeb użytkowników.

Pytanie 23

Kontrolę przeciwpożarową wyłącznika prądu powinno się przeprowadzać w terminach określonych przez producenta, jednak nie rzadziej niż raz na

A. dwa lata
B. pięć lat
C. rok
D. trzy lata
Wybór odpowiedzi, która sugeruje dłuższy okres między przeglądami, jest błędny i może prowadzić do poważnych konsekwencji. W kontekście przeglądów przeciwpożarowych wyłączników prądu, istotne jest, aby każde urządzenie było regularnie monitorowane pod kątem sprawności. Wiele osób mylnie uważa, że rzadkie przeglądy, takie jak co dwa lub trzy lata, są wystarczające, co w rzeczywistości może prowadzić do niedopuszczalnego ryzyka. Wyłączniki prądu są kluczowymi elementami systemów zabezpieczeń elektrycznych, a ich awaria w momencie, gdy są najbardziej potrzebne, może prowadzić do katastrofalnych skutków. Użytkownicy często zapominają, że komponenty elektryczne mogą ulegać zużyciu oraz że czynniki zewnętrzne, takie jak wilgoć czy zanieczyszczenia, mogą wpływać na ich działanie. Dlatego przegląd roczny jest nie tylko zalecany, ale wręcz obligatoryjny, aby zapewnić ich prawidłowe funkcjonowanie. Ponadto, regulacje prawne w wielu krajach określają, że organizacje powinny mieć opracowane procedury konserwacji urządzeń elektrycznych, w tym wyłączników, co dodatkowo podkreśla znaczenie regularnych przeglądów. Ignorowanie tego aspektu jest niezgodne z dobrą praktyką inżynierską oraz wymogami normatywnymi, co może prowadzić do konieczności ponoszenia kosztów naprawy uszkodzeń lub nawet strat materialnych i osobowych w wyniku awarii.

Pytanie 24

W którym układzie sieciowym, w przypadku przerwania przewodu ochronno-neutralnego, na obudowach metalowych odbiorników może pojawiać się pełne napięcie fazowe?

A. IT
B. TN-C
C. TN-S
D. TT
Prawidłowa odpowiedź to układ TN-C, bo właśnie w tym systemie przewód ochronno‑neutralny PEN pełni jednocześnie dwie funkcje: przewodu roboczego (N) i ochronnego (PE). Jeśli dojdzie do jego przerwania, wszystkie obudowy urządzeń podłączone do tego przewodu „tracą” połączenie z punktem neutralnym transformatora i zaczynają się zachowywać jak przewód fazowy – może się na nich pojawić pełne napięcie fazowe względem ziemi. I to jest bardzo niebezpieczne w praktyce, bo użytkownik dotyka wtedy normalnie uziemionej obudowy, która nagle ma 230 V. W układzie TN-C przewód PEN jest prowadzony wspólnie, najczęściej w starszych instalacjach dwuprzewodowych (L + PEN). Z mojego doświadczenia właśnie w takich starych blokach czy kamienicach ryzyko przerwania PEN jest realne: poluzowane zaciski, korozja, złe łączenia. Normy, np. PN‑HD 60364, od lat odradzają stosowanie TN-C w instalacjach odbiorczych wewnątrz budynków i zalecają przejście na układy TN-S albo TN-C-S, gdzie funkcje PE i N są rozdzielone. Rozdział PEN na PE i N (układ TN-C-S) wykonuje się możliwie blisko punktu zasilania budynku, a w instalacji wewnętrznej prowadzi się już trzy przewody: L, N, PE, co radykalnie zmniejsza ryzyko pojawienia się napięcia na obudowach. W praktyce dobrym zwyczajem jest unikanie „dorabiania” ochrony przez mostkowanie bolca ochronnego do N w gniazdach w starych instalacjach TN-C. To tylko utrwala niebezpieczny układ i zwiększa skutki potencjalnego przerwania PEN. Zawodowo patrząc, każda modernizacja instalacji w TN-C powinna iść w stronę wymiany przewodów i rozdziału przewodu PEN, a nie kombinowania z przejściówkami. Moim zdaniem to jedno z kluczowych zagadnień ochrony przeciwporażeniowej, które każdy elektryk powinien mieć „w małym palcu”.

Pytanie 25

Podczas inspekcji świeżo zrealizowanej instalacji elektrycznej nie ma potrzeby weryfikacji

A. wartości natężenia oświetlenia na stanowiskach pracy
B. wyboru zabezpieczeń oraz urządzeń
C. rozmieszczenia tablic informacyjnych i ostrzegawczych
D. wyboru i oznakowania przewodów
Wartość natężenia oświetlenia na stanowiskach pracy nie jest bezpośrednio związana z podstawowymi wymaganiami, jakimi są bezpieczeństwo i sprawność instalacji elektrycznej. W kontekście nadzoru nad nowo wykonanymi instalacjami, ważniejsze jest upewnienie się, że instalacja jest zgodna z normami oraz dobrze zorganizowana pod względem zabezpieczeń, oznaczeń i tablic informacyjnych. Obowiązki związane z badaniem natężenia oświetlenia są zazwyczaj związane z ergonomią pracy i komfortem użytkowników, co zalicza się do bardziej szczegółowych aspektów eksploatacji. W praktyce, standardy takie jak PN-EN 12464-1 oferują wytyczne dotyczące oświetlenia miejsc pracy, ale przed przystąpieniem do pomiarów natężenia, należy upewnić się, że sama instalacja elektryczna działa sprawnie i jest bezpieczna.

Pytanie 26

Podaj rodzaj i miejsce uszkodzenia w trójfazowym silniku indukcyjnym o uzwojeniach połączonych w gwiazdę, jeżeli wyniki pomiarów rezystancji jego uzwojeń przedstawione są w tabeli.

Rezystancja między zaciskamiWartość
U - V20,0 Ω
V - W15,0 Ω
W - U15,0 Ω
A. Przerwa w uzwojeniu fazy V
B. Zwarcie międzyzwojowe w fazie V
C. Przerwa w uzwojeniu fazy W
D. Zwarcie międzyzwojowe w fazie W
Wybór odpowiedzi związanych z przerwami w uzwojeniach fazy V lub W oraz zwarciami międzyzwojowymi w fazie V jest błędny. Kluczowym aspektem, który należy wziąć pod uwagę przy analizie pomiarów rezystancji uzwojeń, jest to, że przerywanie jednego z uzwojeń skutkuje brakiem możliwości zasilania danej fazy, co objawia się znacznym spadkiem wartości rezystancji, a nie wyraźnym różnicowaniem między poszczególnymi uzwojeniami. Odpowiedzi te mogą prowadzić do błędnych wniosków, gdyż nie uwzględniają fundamentalnych zasad działania silników indukcyjnych, gdzie zwarcie międzyzwojowe w fazie W wskazuje na fakt, że występuje tam wewnętrzne uszkodzenie, które skutkuje zmniejszeniem rezystancji. Ignorowanie takich różnic może prowadzić do niepoprawnej analizy stanu silnika, co z kolei skutkuje nieadekwatnym podejściem do diagnostyki. W praktyce, zdiagnozowanie uszkodzeń w silnikach indukcyjnych wymaga starannego podejścia oraz znajomości specyfikacji technicznych, które definiują normy operacyjne dla urządzeń. Wartości rezystancji uzwojeń powinny być monitorowane regularnie, aby wykrywać wszelkie anomalie, co jest zgodne z najlepszymi praktykami w zarządzaniu konserwacją i diagnostyką urządzeń elektrycznych.

Pytanie 27

Przeglądy instalacji elektrycznej w budynkach mieszkalnych powinny być przeprowadzane nie rzadziej niż co

A. 1 rok
B. 2 lata
C. 10 lat
D. 5 lat
Przeglądy mieszkaniowej instalacji elektrycznej należy wykonywać nie rzadziej niż co 5 lat, zgodnie z obowiązującymi normami i przepisami prawa, w tym z ustawą Prawo budowlane oraz normami PN-IEC 60364. Regularne przeglądy są kluczowe dla zapewnienia bezpieczeństwa użytkowania instalacji elektrycznych oraz zapobiegania pożarom i porażeniom prądem. W ramach takiego przeglądu oceniana jest nie tylko stan techniczny przewodów i osprzętu elektrycznego, ale także zgodność z aktualnymi przepisami. Przykład: jeśli w ciągu 5 lat nie zrealizujesz przeglądu, możesz być narażony na ryzyko awarii instalacji, co może prowadzić do poważnych konsekwencji. Dobrą praktyką jest dokumentowanie wykonanych przeglądów oraz przechowywanie protokołów w celu ułatwienia ewentualnych kontroli oraz zapewnienia, że instalacja jest w dobrym stanie przez cały okres jej użytkowania.

Pytanie 28

Źródło światła pokazane na zdjęciu to lampa

Ilustracja do pytania
A. rtęciowa.
B. sodowa.
C. rtęci owo-żarowa.
D. halogenowa.
Lampy rtęciowe, sodowe i rtęciowo-żarowe różnią się istotnie od lamp halogenowych, co może prowadzić do mylnych wniosków. Lampy rtęciowe, na przykład, wykorzystują pary rtęci do emisji światła i charakteryzują się specyficznym, niebieskawym odcieniem, co sprawia, że ich zastosowanie jest bardziej ograniczone do oświetlenia ulicznego oraz przemysłowego. Kształt lampy rtęciowej jest przeważnie bardziej masywny niż lamp halogenowych, co także wpływa na ich aplikację. Z kolei lampy sodowe, które emitują ciepłe, żółte światło, są powszechnie używane w oświetleniu zewnętrznym, ale ich wydajność w zakresie odwzorowania barw jest znacznie gorsza niż w przypadku lamp halogenowych. Lampy sodowe mają również dłuższy czas nagrzewania się, co czyni je mniej praktycznymi w zastosowaniach wymagających natychmiastowego oświetlenia. Natomiast lampy rtęciowo-żarowe łączące elementy obu tych technologii, także nie są porównywalne z lampami halogenowymi, gdyż opierają się na klasycznym, żarowym źródle światła i nie oferują równie wysokiej efektywności energetycznej. Mylne uchwycenie konstrukcji i funkcji lamp prowadzi do wyboru niewłaściwego rozwiązania, co może skutkować nieefektywnym oświetleniem oraz wyższymi kosztami eksploatacji.

Pytanie 29

Jakie narzędzia trzeba przygotować do wyznaczenia miejsca na zainstalowanie rozdzielnicy podtynkowej w ścianie murowanej?

A. Przymiar kreskowy, ołówek traserski, rysik
B. Przymiar taśmowy, poziomnica, ołówek traserski
C. Rysik, kątownik, punktak, młotek
D. Sznurek traserski, młotek, punktak
Poprawna odpowiedź to przymiar taśmowy, poziomnica oraz ołówek traserski. Te narzędzia są kluczowe w procesie trasowania, ponieważ zapewniają precyzję oraz dokładność wymagane przy montażu rozdzielnicy podtynkowej. Przymiar taśmowy pozwala na dokładne mierzenie odległości i wyznaczanie miejsca, gdzie rozdzielnica powinna być umiejscowiona. Poziomnica jest niezbędna do sprawdzenia, czy zamontowana rozdzielnica jest w idealnej pozycji, co ma kluczowe znaczenie dla dalszych prac instalacyjnych. Ołówek traserski umożliwia zaznaczenie punktów na ścianie, co ułatwia przeniesienie wymiarów na materiał budowlany. Standardy branżowe podkreślają znaczenie precyzyjnego pomiaru w instalacjach elektrycznych, co bezpośrednio przekłada się na bezpieczeństwo oraz funkcjonalność całego systemu. Użycie tych narzędzi w odpowiednich technikach trasowania, takich jak wyznaczanie pionów i poziomów, zapewnia, że instalacja będzie zgodna z normami budowlanymi i elektrycznymi, co jest kluczowe dla zachowania bezpieczeństwa użytkowania.

Pytanie 30

W miejsce cyfr dobierz symbole graficzne rodzaju przewodów, zachowując kolejność.

Ilustracja do pytania
A. B.
B. C.
C. A.
D. D.
Odpowiedź D jest poprawna, ponieważ zgodnie z zasadami podłączania przewodów w instalacjach elektrycznych, oznaczenia przewodów mają kluczowe znaczenie dla ich prawidłowego funkcjonowania. Przewód oznaczony grubą kropką reprezentuje przewód neutralny (N), podczas gdy przewody bez oznaczeń to przewody fazowe (L). W analizowanym schemacie widzimy, że do łącznika dochodzi przewód fazowy, a jego wyjście również prowadzi do przewodu fazowego. Odpowiedź D ilustruje tę sytuację, przedstawiając dwa przewody fazowe oraz jeden neutralny, co jest zgodne z normami i dobrymi praktykami branżowymi. Właściwe podłączenie przewodów jest istotne, aby zapewnić bezpieczeństwo instalacji oraz jej właściwe działanie. Przykładowo, w instalacjach oświetleniowych, prawidłowe oznaczenie i podłączenie przewodów ma kluczowe znaczenie dla uniknięcia zwarć oraz zapewnienia nieprzerwanego dostępu do energii elektrycznej.

Pytanie 31

Jakim oznaczeniem charakteryzuje się przewód jednożyłowy z żyłą wykonaną z aluminium, w izolacji z PVC, o przekroju 2,5 mm2, przeznaczony na napięcie znamionowe izolacji 500 V?

A. ALY 500 V 2,5 mm2
B. ADY 500 V 2,5 mm2
C. YDY 500 V 2,5 mm2
D. YLY 500 V 2,5 mm2
No, niestety, nie wszystkie inne odpowiedzi są poprawne. Odpowiedź ALY 500 V 2,5 mm2 ma poważny błąd, bo 'L' sugeruje, że przewód wykonany jest z miedzi, a nie z aluminium. W przypadku YDY 500 V 2,5 mm2, 'Y' mówi, że to przewód jednożyłowy, ale 'D' jest tu problematyczne, bo powinno dotyczyć PVC przy żyłach aluminiowych. Co do YLY 500 V 2,5 mm2, to znowu 'L' sugeruje miedź, co jest sprzeczne z informacjami w pytaniu. Często ludzie popełniają błąd, ignorując materiał żyły, co może prowadzić do różnych problemów w instalacji. Mylimy symbole różnych typów przewodów, co może później skutkować ich niewłaściwym doborem i zwiększa ryzyko awarii. W inżynierii elektrycznej, ogarnięcie tych oznaczeń jest mega ważne, żeby wszystko działało bezpiecznie i sprawnie.

Pytanie 32

Którym z przedstawionych na rysunkach wyłączników różnicowoprądowych można zastąpić w trójfazowej instalacji elektrycznej 230/400 V, zabezpieczonej wyłącznikiem S314 B50, uszkodzony mechanicznie wyłącznik RCD o prądzie IΔn = 0,03 A?

Ilustracja do pytania
A. C.
B. D.
C. A.
D. B.
Wyłącznik różnicowoprądowy oznaczony jako A jest prawidłowym wyborem w kontekście zastępowania uszkodzonego mechanicznie wyłącznika RCD. Posiada on prąd znamionowy I_n równy 0,03 A, co jest zgodne z wymaganiami ochrony przed porażeniem elektrycznym oraz zabezpieczeniem obwodów w trójfazowej instalacji 230/400 V. Dodatkowo, jego napięcie znamionowe U_n wynosi 400 V, co czyni go odpowiednim do zastosowań w instalacjach trójfazowych. Wyłączniki RCD są kluczowe dla zapewnienia bezpieczeństwa w instalacjach elektrycznych, gdyż wykrywają różnice prądowe, które mogą wskazywać na uszkodzenie izolacji lub obecność prądu upływowego. W przypadku awarii wyłącznika RCD, istotne jest, aby wymieniony element spełniał te same parametry, aby zapewnić ciągłość ochrony. Wybierając odpowiedni wyłącznik, warto również kierować się normami PN-EN 61008 oraz PN-EN 60947, które regulują kwestie bezpieczeństwa i efektywności działania wyłączników różnicowoprądowych.

Pytanie 33

W jaki sposób powinno się podłączyć obwód prądowy oraz obwód napięciowy jednofazowego elektronicznego licznika energii elektrycznej do systemu pomiarowego?

A. Prądowy i napięciowy szeregowo
B. Prądowy równolegle, napięciowy szeregowo
C. Prądowy szeregowo, napięciowy równolegle
D. Prądowy i napięciowy równolegle
Zastosowanie różnych konfiguracji połączeń prądowego i napięciowego może prowadzić do nieprawidłowego działania licznika energii elektrycznej. W przypadku podłączenia zarówno obwodu prądowego, jak i napięciowego równolegle, pojawia się ryzyko, że prąd nie przepłynie przez licznik, co uniemożliwi jego prawidłowe zarejestrowanie. Równoległe połączenie obwodu prądowego sprawia, że licznik nie mierzy rzeczywistego przepływu prądu przez obciążenie, co prowadzi do fałszywych odczytów. Analogicznie, podłączenie obwodu napięciowego szeregowo z prądowym również jest nieodpowiednie, ponieważ pomiar napięcia nie będzie reprezentatywny dla napięcia zasilającego odbiornik. Warto zauważyć, że takie pomyłki często wynikają z braku zrozumienia zasad działania liczników energii oraz z nieodpowiedniej analizy schematów połączeń. Dobrze skonfigurowany układ pomiarowy powinien być zgodny z najlepszymi praktykami branżowymi, które zalecają szeregowe połączenie obwodu prądowego oraz równoległe połączenie obwodu napięciowego, co zapewnia dokładne i wiarygodne pomiary energii elektrycznej.

Pytanie 34

Największy prąd, który może pobierać długotrwale obwód oświetleniowy, zasilany z rozdzielnicy o przedstawionym na rysunku schemacie, wynosi

Ilustracja do pytania
A. 20 A
B. 16 A
C. 26 A
D. 6 A
Poprawna odpowiedź to 20 A, co wynika z analizy schematu elektrycznego związanego z obwodem oświetleniowym. W obwodzie tym kluczową rolę odgrywają wyłącznik nadprądowy B20 oraz stycznik SM-320, które mają znamionowy prąd roboczy wynoszący 20 A. W praktyce oznacza to, że przy prawidłowym doborze elementów, obwód może bezpiecznie eksploatować prąd do 20 A bez ryzyka przeciążenia. Należy pamiętać, że dobra praktyka inżynierska wymaga, aby znamionowy prąd urządzeń był dostosowany do obciążenia, jakie będą musiały tolerować. Warto również zwrócić uwagę na automat zmierzchowy, który ma prąd znamionowy 16 A, jednak nie stanowi on ograniczenia w przypadku tego konkretnego obwodu, gdyż stycznik SM-320 wytrzymuje wyższe wartości prądu. W praktyce, w przypadku projektowania obwodów oświetleniowych, kluczowe jest, aby nie przekraczać znamionowych wartości prądów, co zapewnia długotrwałą i bezpieczną eksploatację instalacji elektrycznych.

Pytanie 35

Które z wymienionych czynności należy wykonać po próbnym uruchomieniu silnika indukcyjnego klatkowego (kierunek obrotów silnika jest prawidłowy), podczas jego pracy w warunkach znamionowego zasilania i obciążenia?

A. Ocenić stan urządzeń do przeprowadzenia rozruchu, aparatury sterującej i zabezpieczającej.
B. Zmierzyć wartość pobieranego prądu, sprawdzić stan sprzężenia z maszyną napędzaną i poprawność pracy łożysk.
C. Zmierzyć wartość napięcia zasilania, ocenić poprawność doboru typu silnika do maszyny napędzanej.
D. Sprawdzić stan izolacji uzwojeń silnika, sprawdzić zapewnienie swobodnego dopływu powietrza do przewietrznika.
Prawidłowo wskazana czynność dotyczy tego, co w praktyce robi się po ostatecznym, próbnym uruchomieniu silnika klatkowego w jego normalnych warunkach pracy – czyli przy znamionowym napięciu i znamionowym obciążeniu. W tym momencie zakładamy, że kierunek obrotów jest już sprawdzony i poprawny, instalacja jest wykonana, a rozruch się udał. Teraz trzeba ocenić, czy silnik i napęd mechaniczny faktycznie pracują bezpiecznie i w granicach parametrów katalogowych. Dlatego mierzy się przede wszystkim wartość pobieranego prądu w warunkach ustalonej pracy. Porównuje się ją z prądem znamionowym z tabliczki znamionowej. Jeżeli prąd jest wyraźnie wyższy, może to oznaczać przeciążenie, zbyt dużą moc wymaganą przez maszynę roboczą, zbyt niskie napięcie zasilania albo problemy mechaniczne (np. zatarte łożyska, złe osiowanie). Z drugiej strony prąd dużo niższy od znamionowego przy pełnym obciążeniu zwykle sugeruje, że coś nie gra z samym obciążeniem, np. maszyna nie pracuje na pełnej mocy. Drugim istotnym krokiem jest sprawdzenie stanu sprzężenia silnika z maszyną napędzaną: sprzęgła, przekładni, pasów klinowych, połączeń wałów. Patrzy się czy nie ma bicia, luzów, niewspółosiowości, nadmiernych drgań. Z mojego doświadczenia to właśnie niewspółosiowość i luźne sprzęgło najczęściej powodują późniejsze awarie, mimo że elektrycznie wszystko wygląda dobrze. Trzeci element to ocena poprawności pracy łożysk: nasłuchuje się nietypowych odgłosów (chrobotanie, wycie), kontroluje temperaturę obudów, drgania. Dobre praktyki utrzymania ruchu wymagają, żeby po uruchomieniu nowego lub remontowanego silnika przez dłuższą chwilę obserwować go pod kątem nagrzewania łożysk i nietypowych dźwięków. Normy i instrukcje producentów (np. wytyczne dotyczące eksploatacji silników indukcyjnych) wyraźnie podkreślają konieczność kontroli obciążenia prądowego oraz układu mechanicznego napędu po rozruchu. Sam pomiar prądu i oględziny sprzężenia oraz łożysk pozwalają wcześnie wykryć problemy, zanim dojdzie do zadziałania zabezpieczeń, przegrzania uzwojeń czy wręcz zniszczenia silnika lub maszyny roboczej.

Pytanie 36

Jakie działania oraz w jakiej sekwencji powinny zostać przeprowadzone przy wymianie uszkodzonego fragmentu przewodu w instalacji umieszczonej w rurach peszla?

A. Pomiar rezystancji przewodu, odłączenie napięcia, wymiana uszkodzonego przewodu, włączenie zasilania, sprawdzenie działania instalacji
B. Odłączenie zasilania, rozkuwanie tynku w miejscu uszkodzenia, wymiana rury peszla z przewodami, włączenie napięcia, sprawdzenie funkcjonowania instalacji
C. Odłączenie zasilania, otwarcie puszek instalacyjnych, odkręcenie końców uszkodzonego przewodu, wymiana uszkodzonego odcinka przewodu, połączenie wymienionego przewodu w puszkach, zamknięcie puszek, włączenie zasilania, sprawdzenie poprawności działania instalacji
D. Odłączenie napięcia, rozkuwanie tynku, poprowadzenie nowej rury peszla z przewodami, uzupełnienie tynku, włączenie napięcia
Jak się przygotowujesz do wymiany uszkodzonego odcinka przewodu w rurach peszla, to trzeba dobrze przemyśleć, co robisz. Najpierw ważne jest, żeby odłączyć napięcie zasilania – to wiadomo, ale niektórzy zapominają o otwarciu puszek instalacyjnych. Bez tego dostanie się do przewodów to jak szukanie igły w stogu siana. Następnie, jak mówisz o wymianie rury peszla, nie można tego robić bez odkręcenia końców uszkodzonego przewodu. W praktyce najlepiej jest analizować całą instalację w puszkach, a nie grzebać tam, gdzie nie potrzeba, żeby nie komplikować sobie życia. Gdzieś mi się wydaje, że niektórzy też zapominają o ponownym sprawdzeniu działania instalacji po włączeniu napięcia, co jest naprawdę istotne, żeby mieć pewność, że wszystko działa jak powinno. Czasem zrywanie tynku bez przemyślenia to totalna strata czasu, a później uzupełnianie go bez sensu jest niepotrzebne, jeśli nie wykonasz odpowiedniego dostępu do przewodów. Dlatego lepiej działać według norm i standardów, które mówią, że wszystko trzeba robić z głową i w bezpieczny sposób.

Pytanie 37

Wymagana izolacja przewodów używanych w trójfazowej sieci niskiego napięcia 230/400 V powinna wynosić co najmniej

A. 300/300 V
B. 450/750 V
C. 300/500 V
D. 100/100 V
Izolacja przewodów w instalacjach elektrycznych jest kluczowym elementem zapewniającym bezpieczeństwo i trwałość systemu. Odpowiedzi sugerujące użycie przewodów z izolacją 450/750 V, 300/300 V czy 100/100 V nie uwzględniają specyfiki i wymagań dla sieci niskonapięciowych. Przewody 450/750 V są przystosowane do wyższych napięć i zastosowań, które nie są typowe dla instalacji 230/400 V, a użycie ich w tym kontekście może być nieefektywne oraz kosztowne. Z kolei przewody 300/300 V i 100/100 V mają zbyt niskie parametry izolacji, co czyni je niewłaściwymi do pracy w warunkach, gdzie mogą pojawić się napięcia robocze na poziomie 400 V. Użycie takich przewodów w sieci trójfazowej niskiego napięcia wiąże się z ryzykiem wystąpienia przebicia izolacji, co w rezultacie może prowadzić do awarii systemu, a w najgorszym przypadku - do zagrożenia życia ludzi oraz uszkodzenia mienia. Dlatego ważne jest, aby stosować przewody o odpowiedniej klasie izolacji, które są zgodne z normami oraz standardami branżowymi, co pozwoli na zminimalizowanie ryzyka oraz zapewnienie bezpiecznej eksploatacji instalacji elektrycznych.

Pytanie 38

Na rysunku przedstawiono oprawę oświetleniową

Ilustracja do pytania
A. wewnętrzną do lampy sodowej.
B. lampy przenośnej warsztatowej.
C. wewnętrzną do lampy punktowej.
D. lampy biurowej z odbłyśnikiem.
Wybór pozostałych odpowiedzi wskazuje na niepełne zrozumienie charakterystyki opraw oświetleniowych oraz ich zastosowania. Odpowiedź wskazująca na lampę biurową z odbłyśnikiem nie uwzględnia faktu, że biurowe źródła światła są zazwyczaj projektowane do pracy w stabilnych warunkach z zachowaniem estetyki oraz ergonomii, a nie do intensywnego użytkowania w zmiennych warunkach, jak ma to miejsce w przypadku lamp przenośnych. Ponadto, lampy biurowe nie są wyposażone w dodatkowe zabezpieczenia przed uszkodzeniami mechanicznymi, co jest kluczowe w przypadku opraw przeznaczonych do warsztatów. Również, wybór lampy wewnętrznej do lampy sodowej jest błędny, ponieważ lampy sodowe są stosowane głównie w przestrzeniach zewnętrznych, takich jak ulice czy parkingi, co nie jest zgodne z kontekstem przedstawionym na zdjęciu. Z kolei lampa punktowa jest projektowana do oświetlania konkretnego miejsca, a nie do rozproszonego oświetlenia w trudnych warunkach, co również przeczy charakterystyce lampy przenośnej warsztatowej. Te nieprawidłowe odpowiedzi wynikają z braku uwzględnienia praktycznych zastosowań oraz specyfikacji technicznych różnych typów oświetlenia, co jest kluczowe w ich poprawnym odróżnianiu w kontekście zastosowań w przemyśle i codziennym życiu.

Pytanie 39

Podczas pomiarów kontrolnych, przed odbiorem mieszkania, wykryto usterkę w instalacji oświetleniowej. Na zdjęciu przedstawiono fragment pomieszczenia przed tynkowaniem i wykonaniem wylewek. W celu wymiany uszkodzonych przewodów typu DY 1,5 mm2, prowadzonych w rurach instalacyjnych giętkich, należy w pierwszej kolejności

Ilustracja do pytania
A. rozkuć ściany i podłogę oraz wymienić uszkodzone odcinki instalacji.
B. wyciągnąć stare przewody z rur i wciągnąć nowe za pomocą sprężystego drutu stalowego.
C. do końców starych przewodów zamocować nowe i wyciągając stare wprowadzać do rur nowe przewody.
D. rozkuć ściany, wprowadzić nowe przewody w ścianach i listwach przypodłogowych.
Odpowiedź polegająca na zamocowaniu nowych przewodów do końców starych i wyciąganiu ich podczas wprowadzania nowych jest najbardziej efektywnym sposobem wymiany uszkodzonych przewodów w instalacji elektrycznej. Metoda ta minimalizuje inwazyjność pracy, co jest kluczowe w kontekście renowacji pomieszczeń. Działając w ten sposób, oszczędzamy czas i koszty związane z ewentualnymi naprawami ścian i podłóg. Ponadto, stosując ten sposób, możemy zachować integralność istniejącej instalacji, unikając potencjalnego uszkodzenia rur, co może prowadzić do dodatkowych kosztów. W praktyce, ta technika jest szeroko zalecana w standardach branżowych, takich jak PN-IEC 60364, które podkreślają znaczenie skutecznych i bezpiecznych metod naprawy instalacji elektrycznych. Warto również dodać, że przy tej metodzie kluczowe jest użycie odpowiednich materiałów, takich jak przewody o właściwej specyfikacji oraz narzędzi, które umożliwiają precyzyjne wykonanie wymiany.

Pytanie 40

Jaką z poniższych wkładek bezpiecznikowych powinno się zastosować w celu zabezpieczenia przewodów przed skutkami zwarć oraz przeciążeń w obwodzie jednofazowego bojlera elektrycznego o parametrach znamionowych: PN = 3 kW, UN = 230 V?

A. aM 16 A
B. aM 20 A
C. gG 16 A
D. gG 20 A
Wybór niewłaściwych wkładek bezpiecznikowych do zabezpieczenia obwodu bojlera elektrycznego często wynika z niepełnego zrozumienia specyfiki zastosowania i funkcji różnych typów wkładek. Na przykład, wybór wkładki aM 16 A lub aM 20 A jest nieodpowiedni, ponieważ wkładki te są przeznaczone głównie do ochrony silników elektrycznych, a ich charakterystyka czasowo-prądowa nie jest dostosowana do obwodów grzewczych. Wkładki aM charakteryzują się wyższą tolerancją na chwilowe przeciążenia, co jest korzystne w przypadku silników, jednak w przypadku bojlerów elektrycznych, gdzie obciążenie ma bardziej stabilny charakter, tak wysoka tolerancja nie jest wymagana i może prowadzić do nieodpowiedniej ochrony. Kolejnym błędnym podejściem jest wybór wkładki gG 20 A. Choć wkładki gG są odpowiednie do ochrony przed zwarciami i przeciążeniami, ich dobór powinien opierać się na obliczonym prądzie znamionowym. W przypadku bojlera o mocy 3 kW, prąd wynosi 13 A, co sugeruje, że wkładka gG 20 A byłaby zbyt mocna, co z kolei mogłoby prowadzić do zbyt późnego wyzwolenia w przypadku wystąpienia zwarcia. Takie decyzje mogą prowadzić do uszkodzenia przewodów lub urządzenia. Kluczowe jest, aby przy wyborze wkładek bezpiecznikowych kierować się ich parametrami zgodnymi z wymaganiami obciążenia, co zostało szczegółowo opisane w normach PN-EN 60269. Dlatego ważne jest, aby dokładnie analizować parametry techniczne urządzeń oraz standardy branżowe, aby zapewnić zarówno bezpieczeństwo, jak i niezawodność systemu elektrycznego.