Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik budownictwa
  • Kwalifikacja: BUD.12 - Wykonywanie robót murarskich i tynkarskich
  • Data rozpoczęcia: 10 listopada 2025 23:36
  • Data zakończenia: 10 listopada 2025 23:55

Egzamin zdany!

Wynik: 25/40 punktów (62,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Jakie narzędzie jest używane do aplikacji tynków cienkowarstwowych na ścianie?

A. kaelnia trapezowa
B. paca stalowa z ząbkami
C. paca ze stali nierdzewnej
D. kaelnia trójkątna
Paca ze stali nierdzewnej jest narzędziem specjalistycznym, które znajduje zastosowanie w nakładaniu tynków cienkowarstwowych na ściany. Wykonana ze stali nierdzewnej, charakteryzuje się odpornością na korozję oraz trwałością, co sprawia, że jest idealna do pracy z materiałami tynkarskimi, które mogą zawierać substancje chemiczne. Jej gładka powierzchnia pozwala na równomierne rozprowadzanie tynku, co jest kluczowe dla uzyskania estetycznego i funkcjonalnego wykończenia. W praktyce, użycie pacy ze stali nierdzewnej umożliwia precyzyjne wygładzanie i formowanie tynku, co ma bezpośredni wpływ na jakość powierzchni ściany oraz jej trwałość. Zgodnie z najlepszymi praktykami w branży budowlanej, należy także pamiętać o regularnym czyszczeniu narzędzi, aby uniknąć zanieczyszczeń, które mogą wpłynąć na końcowy efekt pracy. Dodatkowa wiedza na temat różnorodnych rodzajów tynków oraz technik ich aplikacji może jeszcze bardziej usprawnić proces tynkowania, a odpowiedni dobór narzędzi jest kluczowy dla osiągnięcia pożądanych rezultatów.

Pytanie 2

Która z poniższych zapraw jest odporna na wysokie temperatury?

A. Wapienna
B. Silikatowa
C. Krzemionkowa
D. Cementowa
Zaprawa krzemionkowa jest klasyfikowana jako zaprawa ogniotrwała ze względu na wysoką odporność na ekstremalne temperatury oraz zdolność do wytrzymywania obciążeń termicznych. Skład chemiczny zaprawy krzemionkowej, który opiera się na krzemionce (SiO2), sprawia, że materiał ten ma doskonałe właściwości w kontekście izolacji termicznej oraz odporności na działanie wysokotemperaturowych czynników, co jest kluczowe w aplikacjach przemysłowych, takich jak piece hutnicze, kominy, czy piekarnie. W praktyce, zaprawy krzemionkowe są stosowane do murowania elementów narażonych na wysoką temperaturę, a także do wypełniania szwów w strukturach, które muszą wytrzymać znaczące zmiany temperaturowe. W zgodności z normami branżowymi, takimi jak PN-EN 1402, zaprawy te powinny wykazywać minimalne skurcze i pęknięcia w warunkach eksploatacyjnych, co dodatkowo potwierdza ich parametry użytkowe. Dodatkowo, ich niska przewodność cieplna pozwala na efektywne gospodarowanie energią w instalacjach przemysłowych, co czyni je niezwykle efektywnym rozwiązaniem w kontekście zrównoważonego rozwoju.

Pytanie 3

Aby nałożyć tynk zwykły na suficie, jakie narzędzia są wymagane?

A. deska z trzonkiem oraz packa
B. deska z trzonkiem i kielnią
C. kielnia i listwa tynkarska
D. czerpak tynkarski i packa
Wybór narzędzi do narzutu tynku jest kluczowy dla uzyskania wysokiej jakości wykończenia. Odpowiedzi wskazujące na stosowanie czerpaka tynkarskiego oraz packi są nieprawidłowe, ponieważ te narzędzia nie są przeznaczone do aplikacji tynku na suficie. Czerpak tynkarski jest najczęściej używany do przygotowania mieszanki tynkarskiej, ale jego forma i kształt nie pozwalają na precyzyjne nakładanie tynku na dużą powierzchnię, taką jak sufit. Packa, która jest bardziej odpowiednia do wygładzania powierzchni, nie jest wystarczająco elastyczna, aby efektywnie rozprowadzić materiał w ruchu roboczym. Z kolei lista tynkarska, mimo że może być używana w pewnych zastosowaniach, nie zastąpi funkcji deski z trzonkiem. Dodatkowo, niepoprawne podejście do narzutu tynku może prowadzić do problemów takich jak nierówności, pęknięcia czy złe przyleganie tynku do podłoża. Wybór niewłaściwych narzędzi może wynikać z braku wiedzy na temat procesów tynkarskich oraz złych praktyk w branży budowlanej. Dlatego istotne jest, aby każdy wykonawca posiadał solidną wiedzę na temat narzędzi oraz umiejętności ich właściwego zastosowania zgodnie z normami i standardami obowiązującymi w budownictwie.

Pytanie 4

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 5

Zgodnie z przedstawioną instrukcją preparat INTER GRUNT należy przed użyciem

Instrukcja wykonania ręcznego tynku gipsowego (fragment)
Gruntować należy każde podłoże, na którym ma być zastosowany tynk. Do gruntowania gładkich podłoży mineralnych stosuje się preparat gruntujący INTER GRUNT. Sprzedawany on jest w postaci gotowej do użycia, podczas pracy należy go jedynie przemieszać co pewien czas. Preparatu nie należy łączyć z innymi środkami, rozcieńczać, ani zagęszczać. Na podłoże nanosi się go za pomocą wałka lub pędzla malarskiego. Czas całkowitego wyschnięcia INTER GRUNTU wynosi ok. 24 godziny i dopiero po tym czasie można przystąpić do tynkowania. Podłoża porowate o dużej chłonności - wykonane z betonu komórkowego, płyt wiórowo-cementowych, cegły ceramicznej i silikatowej - gruntuje się emulsją gruntującą EURO GRUNT. W tym przypadku postępuje się podobnie, jak z INTER GRUNTEM, inny jest jedynie czas schnięcia - wynosi ok. 4-12 godzin.
A. rozcieńczyć wodą.
B. przemieszać co pewien czas.
C. zmieszać z emulsją gruntującą.
D. zagęścić odpowiednim środkiem.
Preparat INTER GRUNT przed użyciem należy przemieszać co pewien czas, aby zapewnić równomierne rozprowadzenie składników. Właściwe przygotowanie produktu jest kluczowe, ponieważ stabilność i skuteczność preparatu są uzależnione od jego jednorodności. W praktyce oznacza to, że użytkownik powinien regularnie kontrolować konsystencję i w miarę potrzeby delikatnie wstrząsnąć lub przemieszać preparat. Takie postępowanie jest zgodne z dobrymi praktykami w zakresie stosowania materiałów budowlanych, gdzie odpowiednie przygotowanie substancji ma kluczowe znaczenie dla uzyskania optymalnych rezultatów. Na przykład, w przypadku gruntów stosowanych w malarstwie czy na powierzchniach przed nałożeniem farby, ich właściwe wymieszanie gwarantuje lepszą przyczepność oraz dłuższą trwałość finalnego produktu. Ignorowanie tego etapu może prowadzić do niejednorodnych efektów, takich jak plamy, nierównomierne pokrycie, czy też szybkie uszkodzenie warstwy wykończeniowej.

Pytanie 6

Na podstawie danych zawartych w przedstawionej tabeli wskaż, ile piasku należy użyć do przygotowania 1 m3 zaprawy wapiennej o proporcji objętościowej składników 1:3 z użyciem ciasta wapiennego.

Proporcje i ilość składników na 1 m³ zaprawy wapiennej
Stosunek objętościowy wapna do piaskuMarka zaprawy [MPa]Ciasto wapienne [m³]Piasek [m³]Woda [dm³]
1 : 1,50,40,5100,76537
1 : 20,40,4300,86050
1 : 30,20,3200,960100
1 : 3,50,20,2800,980130
1 : 4,50,20,2241,010166
A. 0,320 m3
B. 1,080 m3
C. 0,960 m3
D. 0,980 m3
Odpowiedź 0,960 m3 jest prawidłowa, ponieważ zgodnie z danymi zawartymi w tabeli, dla zaprawy wapiennej o proporcji 1:3, ilość piasku potrzebna do przygotowania 1 m3 zaprawy wynosi dokładnie 0,960 m3. W kontekście przygotowania zaprawy, proporcje składników są kluczowe, ponieważ wpływają na właściwości mechaniczne i trwałość gotowego produktu. Stosowanie właściwych proporcji, jak w tym przypadku, ma na celu osiągnięcie optimlanej konsystencji oraz wytrzymałości zaprawy, co jest zgodne z normami budowlanymi. Dodatkowo, znajomość takich proporcji jest niezbędna w praktyce budowlanej, aby zapewnić odpowiednią jakość materiałów używanych w konstrukcji. Warto również zwrócić uwagę, że dla tej proporcji zaprawy, ilość ciasta wapiennego wynosi 0,320 m3, co również potwierdza prawidłowość wyliczeń. Takie umiejętności są kluczowe dla inżynierów budowlanych oraz techników, którzy muszą podejmować decyzje oparte na danych technicznych i standardach branżowych.

Pytanie 7

Jakiego typu rusztowanie nie nadaje się do przeprowadzenia naprawy uszkodzonego tynku w okapie na wysokości około 7 metrów nad poziomem gruntu?

A. Na wysuwnicach
B. Ramowego
C. Kozłowego
D. Wiszącego
Kozłowe rusztowanie jest szczególnie nieodpowiednie do naprawy uszkodzonego tynku przy okapie na wysokości około 7 metrów ze względu na swoją konstrukcję i przeznaczenie. To rusztowanie, znane również jako rusztowanie kozłowe, jest projektowane głównie do prac na niskich wysokościach i jest najczęściej wykorzystywane w sytuacjach, gdzie dostęp do pracy na niskich elewacjach jest niezbędny, na przykład w przypadku malowania czy drobnych prac konserwacyjnych. Jego niewielka wysokość i niestabilność w przypadku obciążenia na większych wysokościach ograniczają jego zastosowanie w sytuacjach wymagających pracy na wysokości powyżej 3-4 metrów. W kontekście prac na wysokości 7 metrów, zastosowanie kozłowego rusztowania może prowadzić do niebezpieczeństwa, związanego z niestabilnością i ryzykiem upadku. Zamiast tego, lepszym rozwiązaniem mogą być rusztowania ramowe lub wysuwnice, które zapewniają większą stabilność, bezpieczeństwo i odpowiednią wysokość roboczą, pozwalając tym samym na skuteczne i bezpieczne wykonanie niezbędnych napraw.

Pytanie 8

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 9

Jakie właściwości wełny mineralnej mają wpływ na jej użycie jako materiału izolacyjnego termicznie?

A. Niski współczynnik przewodzenia ciepła oraz paroprzepuszczalność
B. Niski współczynnik przewodzenia ciepła oraz nieprzepuszczalność pary
C. Wysoki współczynnik przewodzenia ciepła oraz nieprzepuszczalność pary
D. Wysoki współczynnik przewodzenia ciepła oraz paroprzepuszczalność
Współczynnik przewodności cieplnej jest kluczowym parametrem charakteryzującym zdolność materiału do przewodzenia ciepła. Odpowiedzi sugerujące wysoki współczynnik przewodności cieplnej oraz nieprzepuszczalność pary są nieprawidłowe, ponieważ takie materiały nie spełniają podstawowych wymogów izolacyjnych. Materiały o wysokim współczynniku przewodności cieplnej, takie jak niektóre metale, są stosowane w kontekście przewodzenia ciepła, a nie jako izolatory. W budownictwie, wykorzystanie takich materiałów prowadziłoby do dużych strat energii i obniżenia efektywności energetycznej budynków. Ponadto, nieprzepuszczalność pary prowadziłaby do problemów z kondensacją, co mogłoby zagrażać integralności konstrukcji oraz zdrowiu mieszkańców poprzez rozwój pleśni i grzybów. Z kolei paroprzepuszczalność w kontekście wełny mineralnej pozwala na odprowadzanie nadmiaru wilgoci, co jest kluczowe dla zdrowego mikroklimatu w budynkach. Dlatego kluczowe jest stosowanie materiałów, które zapewniają równocześnie niską przewodność cieplną oraz odpowiednią paroprzepuszczalność, co jest zgodne z zasadami zrównoważonego budownictwa i normami takimi jak PN-EN 13162.

Pytanie 10

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 11

Korzystając z danych zawartych w tabeli, wskaż najmniejszą dopuszczalną grubość jednowarstwowego tynku chroniącego przed wodą, wykonanego z fabrycznie suchej zaprawy.

Grubości tynkówŚrednia grubość
w [mm]
Dopuszczalna
najmniejsza
grubość
w [mm]
dla tynków zewnętrznych2015
dla tynków wewnętrznych1510
dla jednowarstwowych tynków
wewnętrznych z fabrycznie suchej
zaprawy
105
dla jednowarstwowych tynków
chroniących przed wodą z fabrycznie
suchej zaprawy
1510
dla tynków z izolacją termicznązależnie od
wymagań
20
A. 5 mm
B. 10 mm
C. 15 mm
D. 20 mm
Odpowiedź 10 mm jest poprawna, ponieważ zgodnie z obowiązującymi standardami budowlanymi oraz danymi zawartymi w tabeli, najmniejsza dopuszczalna grubość jednowarstwowego tynku, który ma chronić przed wodą, powinna wynosić właśnie 10 mm. Tego typu tynki są stosowane w budownictwie do ochrony elewacji przed działaniem wilgoci, co jest kluczowe dla zapewnienia długowieczności konstrukcji. Przy zbyt małej grubości, tynk nie wypełni swojej funkcji, co może prowadzić do wnikania wody, a w efekcie do uszkodzenia struktury budynku. W praktyce, stosowanie tynków o grubości minimum 10 mm jest zgodne z zasadami sztuki budowlanej oraz normami, co potwierdzają liczne badania i publikacje branżowe. Prawidłowe dobranie grubości tynku jest zatem kluczowe dla efektywności ochrony przed wilgocią.

Pytanie 12

Jakie mury można zbudować z cegły kratówki klasy 5?

A. Kominowe
B. Fundamentowe
C. Piwniczne
D. Osłonowe
Cegła kratówka klasy 5 jest materiałem budowlanym, który charakteryzuje się wysoką wytrzymałością na ściskanie oraz korzystnymi właściwościami izolacyjnymi. Jest to materiał o dobrych parametrach mechanicznych, co sprawia, że może być stosowany do budowy murów osłonowych. Mury osłonowe pełnią kluczową rolę w ochronie budynków przed działaniem warunków atmosferycznych, a ich konstrukcja często wymaga zastosowania materiałów, które zapewniają odpowiednią trwałość i izolację. W praktyce mury osłonowe wykonane z cegły kratówki klasy 5 mogą wspierać efektywność energetyczną budynku, a także przyczyniać się do jego estetyki. Dodatkowo, przy budowie murów osłonowych należy przestrzegać norm budowlanych, takich jak PN-EN 1996, które określają wymagania dotyczące materiałów, konstrukcji i ich właściwości. Dzięki tym standardom, inwestorzy mogą mieć pewność, że ich budowle będą nie tylko estetyczne, ale także funkcjonalne i trwałe.

Pytanie 13

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 14

Izolację pionową przeciwwilgociową lekkiego typu na ścianach fundamentowych należy zrealizować

A. z dwóch warstw lepiku asfaltowego
B. z dwóch warstw papy termozgrzewalnej
C. z jednej warstwy folii kubełkowej
D. z jednej warstwy emulsji asfaltowej
Izolacja przeciwwilgociowa na ścianach fundamentowych jest kluczowym elementem, który zapobiega przenikaniu wilgoci do wnętrza budynku. Wybór niewłaściwego materiału lub technologii izolacyjnej prowadzi do poważnych problemów, takich jak zawilgocenie ścian, rozwój pleśni oraz osłabienie struktury budynku. Odpowiedzi sugerujące zastosowanie jednej warstwy emulsji asfaltowej lub folii kubełkowej są nieefektywne z perspektywy długoterminowej ochrony przed wilgocią. Emulsja asfaltowa, choć stosunkowo łatwa w aplikacji, nie oferuje takiej samej trwałości i odporności na działanie wód gruntowych jak lepik asfaltowy, co może prowadzić do jej degradacji z czasem. Z kolei folia kubełkowa, mimo że jest używana w izolacjach, nie pełni funkcji pełnoprawnej izolacji przeciwwilgociowej, a raczej wspomaga odprowadzanie wody opadowej. Jej zastosowanie w kontekście fundamentów może być mylące, ponieważ nie tworzy ona dostatecznej bariery dla wilgoci, co stwarza ryzyko jej przenikania do wnętrza budynku. Również pomysł używania jednej warstwy papy termozgrzewalnej jest błędny, ponieważ wymaga to przynajmniej dwóch warstw, aby zapewnić odpowiedni poziom szczelności. Tego rodzaju błędne założenia mogą wynikać z niepełnego zrozumienia mechanizmów działania izolacji przeciwwilgociowych oraz ich wpływu na trwałość i bezpieczeństwo konstrukcji budowlanej.

Pytanie 15

Na podstawie fragmentu specyfikacji technicznej określ, w których miejscach na elewacji budynku, nie należy wykonywać przerw technologicznych podczas wykonywania tynków mozaikowych.

n n nn n nn
n Specyfikacja techniczna wykonania i odbioru robót budowlanych
n Wykonanie tynków mozaikowych
n (fragment)n
n „(...) Materiał należy nakładać metodą „mokre na mokre", nie dopuszczając do zaschnięcia zatartej partii przed nałożeniem kolejnej. W przeciwnym razie miejsce tego połączenia będzie widoczne. Przerwy technologiczne należy z góry zaplanować na przykład: w narożnikach i załamaniach budynku, pod rurami spustowymi, na styku kolorów itp. Czas wysychania tynku zależnie od podłoża, temperatury i wilgotności względnej powietrza wynosi od ok. 12 do 48 godzin. W warunkach podwyższonej wilgotności i temperatury około +5°C czas wiązania tynku może być wydłużony. Podczas wykonywania i wysychania tynku min. temperatura otoczenia powinna wynosić +5°C, a max. +25°C.(...)"
A. W narożnikach budynku.
B. W załamaniach budynku.
C. Na styku kolorów.
D. Na środku ściany.
Odpowiedź "Na środku ściany" jest prawidłowa, ponieważ zgodnie z fragmentem specyfikacji technicznej, przerwy technologiczne powinny być planowane w miejscach, które są naturalnymi punktami podziału tynku, takimi jak narożniki budynków, załamania, odprowadzanie wody czy styki kolorów. Przerwy te są niezbędne, aby uniknąć pęknięć i deformacji, które mogą pojawić się w wyniku różnic w rozszerzalności termicznej oraz osiadania budynku. Na środku ściany, tworzenie przerw technologicznych może prowadzić do nieestetycznych połączeń i widocznych linii, które negatywnie wpływają na estetykę elewacji. W praktyce architektonicznej i budowlanej, ważne jest, aby przerwy były umieszczane w tak zwanych punktach krytycznych, które mogą zminimalizować ryzyko uszkodzeń tynku. Warto również zwrócić uwagę na zalecane praktyki, takie jak stosowanie odpowiednich materiałów do wypełnienia przerw, co zapewnia długowieczność i odporność na czynniki atmosferyczne.

Pytanie 16

Korzystając z Warunków Technicznych Wykonania i Odbioru Robót Tynkarskich wskaż, dla której kategorii tynku niedopuszczalne są widoczne miejscowe nierówności powierzchni, pochodzące od zacierania packą.

Warunki Techniczne Wykonania i Odbioru Robót Tynkarskich (fragment)
Dla wszystkich odmian tynku niedopuszczalne są:
- wykwity w postaci nalotu wykrystalizowanych na powierzchni tynku roztworów soli przenikających z podłoża, pleśń itp.
- zacieki w postaci trwałych śladów na powierzchni tynków,
- odstawanie, odparzenia, pęcherze spowodowane niedostateczną przyczepnością tynku do podłoża.
Pęknięcia na powierzchni tynków są niedopuszczalne z wyjątkiem tynków surowych, w których dopuszcza się włoskowate rysy skurczowe. Wypryski i spęcznienia powstające na skutek obecności niezgaszonych cząstek wapna, gliny itp. są niedopuszczalne dla tynków pocienionych, pospolitych, doborowych i wypalonych, natomiast dla tynków surowych są niedopuszczalne w liczbie do 5 sztuk na 10 m2 tynku.
Widoczne miejscowe nierówności powierzchni otynkowanych wynikające z technik wykonania tynku (np. ślady wygładzania kielnią lub zacierania packą) są niedopuszczalne dla tynków doborowych, a dla tynków pospolitych dopuszczalne są o szerokości i głębokości do 1 mm oraz długości do 5 cm w liczbie 3 sztuk na 10 m2 powierzchni otynkowanej.
A. Dla tynku kategorii II
B. Dla tynku kategorii I
C. Dla tynku kategorii III
D. Dla tynku kategorii IV
Wybór niewłaściwej kategorii tynku świadczy o braku zrozumienia norm i zasad jakościowych dotyczących robót tynkarskich. Tynki kategorii I, II oraz III mają zróżnicowane wymagania dotyczące estetyki, które jednak nie mogą być mylone z wymaganiami dla tynków doborowych. Kategoria I to tynki, które mogą być stosowane w obszarach, gdzie estetyka nie jest kluczowym czynnikiem, a ich wykończenie może być mniej staranne. Tynki kategorii II i III również dopuszczają pewne niedoskonałości, co oznacza, że widoczne nierówności mogą być akceptowane w określonych warunkach. Niezrozumienie tych różnic prowadzi do wnioskowania, że dopuszczalne są widoczne ślady technik wykonawczych, co jest absolutnie błędne w kontekście tynków doborowych. W praktyce, każda z tych kategorii tynków ma swoje zastosowania w zależności od funkcji budynku i oczekiwań inwestora. Wybór niewłaściwej kategorii może skutkować nie tylko estetycznymi niedociągnięciami, ale również obniżeniem wartości rynkowej obiektu. Warto zwrócić szczególną uwagę na dokumentację techniczną i standardy branżowe, aby uniknąć takich pomyłek w przyszłości.

Pytanie 17

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 18

Szczeliny powietrzne w murach murowanych wprowadza się, aby poprawić

A. izolacyjność akustyczną
B. ognioodporność ściany
C. izolacyjność termiczną ściany
D. grubość ściany
Szczeliny powietrzne w ścianach murowanych są kluczowym elementem, który znacząco zwiększa izolacyjność termiczną tych ścian. Dzięki odpowiedniej konstrukcji, powietrze w szczelinach działa jako izolator, co redukuje wymianę ciepła między wnętrzem a otoczeniem. Zjawisko to jest szczególnie istotne w budownictwie energooszczędnym, gdzie celem jest minimalizacja strat ciepła. W praktyce, odpowiednia szerokość i umiejscowienie szczelin powietrznych mogą znacznie poprawić współczynniki przenikania ciepła (U), spełniając normy określone w przepisach budowlanych, takich jak Warunki Techniczne. Na przykład, w budynkach jednorodzinnych, stosowanie szczelin powietrznych może pomóc w osiągnięciu efektywności energetycznej zgodnej z wymaganiami dla budynków pasywnych. Warto również zauważyć, że skuteczne wykorzystanie szczelin powietrznych wpływa pozytywnie na komfort termiczny mieszkańców, co jest kluczowe w kontekście zrównoważonego rozwoju budownictwa.

Pytanie 19

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 20

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 21

Na podstawie danych zawartych w tabeli, określ dopuszczalną odchyłkę od pionu muru spoinowanego, mierzoną na całej wysokości ściany budynku dwukondygnacyjnego.

Tabela. Dopuszczalne odchyłki wymiarów murów (fragment)
Rodzaj odchyłekDopuszczalne odchyłki [mm]
mury spoinowanemury niespoinowane
Zwichrowania i skrzywienia
− na 1 m długości
− na całej powierzchni
3
10
6
20
Odchylenia od pionu
− na wysokości 1 m
− na wysokości kondygnacji
− na całej wysokości ściany
3
6
20
6
10
30
A. 10 mm
B. 6 mm
C. 12 mm
D. 20 mm
Wybór 6 mm, 10 mm czy 12 mm jako dopuszczalnego odchylenia to nietrafiony pomysł. Nie bierze on pod uwagę kluczowych norm budowlanych, które mówią, że dla dwukondygnacyjnych budynków odchylenie musi być co najmniej 20 mm. Dlaczego te odpowiedzi są błędne? Bo wynikają z niezrozumienia wymagań budowlanych i praktycznych aspektów. Choć czasami niewielkie odchylenia mogą być dopuszczalne, w przypadku murów spoinowanych precyzja jest kluczowa, więc te wartości są za małe, żeby zapewnić stabilność na dłużej. Takie myślenie może prowadzić do poważnych problemów w konstrukcji, których naprawa będzie kosztowna. Dlatego każdy, kto pracuje w budownictwie, powinien znać te normy i mieć pojęcie, jak je stosować praktycznie. Większe odchylenia są zgodne z wymaganiami, co pozwala utrzymać jakość budowy. Ważne, żeby zrozumieć te różnice, bo to klucz do dobrze wykonanej pracy.

Pytanie 22

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 23

Do murowania elementów palenisk wykonanych z ceramiki używa się zaprawy

A. szamotowej
B. polimerowej
C. wodoszczelnej
D. ciepłochronnej
Szamotowa zaprawa jest specjalistycznym rodzajem materiału stosowanym do murowania ceramicznych elementów palenisk, takich jak kominki, piece i inne urządzenia grzewcze. Jej kluczową cechą jest odporność na wysokie temperatury, co jest niezbędne w aplikacjach, gdzie występuje bezpośredni kontakt z ogniem. Szamot, jako materiał ceramiczny, wykazuje doskonałe właściwości termiczne, co minimalizuje ryzyko pęknięć czy deformacji elementów murowych podczas intensywnego nagrzewania. Przykładem zastosowania szamotowej zaprawy może być budowa pieców kaflowych, gdzie materiał ten nie tylko zapewnia trwałość konstrukcji, ale również efektywnie akumuluje ciepło. Stosując szamotowe zaprawy według założeń normy PN-EN 998-2, zapewniamy optymalne warunki dla długoletniej eksploatacji palenisk. Warto podkreślić, że odpowiedni dobór zaprawy wpływa na efektywność energetyczną oraz bezpieczeństwo użytkowania urządzeń grzewczych.

Pytanie 24

Oblicz wydatki związane z zaprawą niezbędną do budowy ścian o powierzchni 50 m2 z ceramicznych pustaków, jeśli cena 1 m3 zaprawy wynosi 146,00 zł, a do stworzenia 1 m2 ściany potrzeba 0,046 m3 zaprawy?

A. 335,80 zł
B. 230,00 zł
C. 730,00 zł
D. 671,80 zł
Aby obliczyć koszt zaprawy potrzebnej do wykonania ścian o powierzchni 50 m², musimy najpierw określić, ile m³ zaprawy jest wymagane na tę powierzchnię. Z danych wynika, że do wykonania 1 m² ściany potrzeba 0,046 m³ zaprawy. Zatem, dla 50 m² zaprawy potrzebujemy: 50 m² * 0,046 m³/m² = 2,3 m³ zaprawy. Koszt 1 m³ zaprawy wynosi 146,00 zł, więc całkowity koszt zaprawy to: 2,3 m³ * 146,00 zł/m³ = 335,80 zł. Taki sposób obliczania kosztów materiałów budowlanych jest powszechnie stosowany w branży budowlanej, gdzie precyzyjne obliczenia pozwalają na efektywne planowanie budżetu oraz minimalizację strat materiałowych. Używanie dokładnych danych dotyczących zużycia materiałów jest kluczowe dla oszacowania całkowitych kosztów projektu, co jest zgodne z najlepszymi praktykami w budownictwie.

Pytanie 25

Jakim narzędziem należy oceniać konsystencję zapraw budowlanych?

A. stożkiem pomiarowym
B. młotkiem Szmidta
C. aparatem Vicata
D. czerpakiem murarskim
Stożek pomiarowy jest standardowym narzędziem używanym do oceny konsystencji zapraw budowlanych, takich jak zaprawy cementowe czy tynki. Metoda ta polega na wypełnieniu stożka zaprawą i następnie podniesieniu go, co powoduje, że materiał osiada. Głębokość osiadania zaprawy pozwala na ocenę jej płynności i konsystencji. Zgodnie z normami, takimi jak PN-EN 1015-3, właściwa konsystencja zaprawy ma kluczowe znaczenie dla trwałości budowli oraz jakości wykonania. W praktyce, pomiar konsystencji wykonuje się przed aplikacją zaprawy, co umożliwia dostosowanie proporcji składników, jeśli okazuje się, że materiał jest zbyt suchy lub zbyt płynny. Przykładowo, w przypadku tynków zewnętrznych, odpowiednia konsystencja jest niezbędna, aby zapewnić ich przyczepność oraz odporność na warunki atmosferyczne.

Pytanie 26

Na rysunku przedstawiono zestaw narzędzi stosowanych podczas wznoszenia ścian z

Ilustracja do pytania
A. pustaków keramzytobetonowych.
B. płyt gipsowo-kartonowych.
C. bloczków z betonu komórkowego.
D. cegły klinkierowej szkliwionej.
Wybór pustaków keramzytobetonowych, cegły klinkierowej szkliwionej czy płyt gipsowo-kartonowych jest nietrafiony, ponieważ różnią się one w narzędziach i technikach, które się używa do ich obróbki. Pustaki keramzytobetonowe wymagają innych narzędzi, jak młoty udarowe czy specjalne kielnie, gdyż mają swoją specyfikę. Cegła klinkierowa jest cięższa i wymaga dokładnego murowania, więc potrzebne są narzędzia typu poziomice i łaty murarskie, żeby wszystko ładnie wyglądało. A płyty gipsowo-kartonowe potrzebują noży do cięcia gipsu i wkrętarek, co czyni je zupełnie inną grupą narzędzi. Jak się wybiera odpowiedź, trzeba wiedzieć o tych różnicach i właściwościach materiałów budowlanych, bo to ma duże znaczenie w praktyce. Ignorowanie tych szczegółów może prowadzić do złych wyborów i kiepskiej jakości pracy budowlanej.

Pytanie 27

Strzępia zazębione tworzy się, pozostawiając w każdej drugiej warstwie muru puste miejsce o głębokości

A. 1/2 cegły
B. 1 cegła
C. 2 cegły
D. 1/4 cegły
Wybór nieprawidłowej odpowiedzi, jak na przykład 1 cegły, 1/2 cegły czy 2 cegieł, wynika z nieporozumienia dotyczącego zasadności głębokości pustek w strzępiach zazębionych. W przypadku głębokości 1 cegły, mur staje się zbyt słaby, ponieważ zbyt duże szczeliny mogą prowadzić do problemów z integralnością strukturalną. Z kolei 1/2 cegły również jest zbyt dużą głębokością, co może powodować, że mur będzie podatny na deformacje, a tym samym na uszkodzenia pod wpływem obciążeń. Zastosowanie większych pustek prowadzi do niekorzystnych warunków izolacyjnych, co może wpływać na wilgotność i trwałość materiałów budowlanych. Odpowiednia głębokość pustek jest kluczowym czynnikiem projektowym, a wszelkie odstępstwa od norm mogą skutkować poważnymi problemami strukturalnymi. W praktyce, ważne jest, aby murarz był świadomy tego, jak różne głębokości pustek wpływają na całość konstrukcji oraz jakie są zalecenia w dokumentach normatywnych i branżowych. Zrozumienie tych zależności pozwala na lepsze planowanie i realizację projektów, co jest kluczowe w budownictwie. Dlatego też, pozostawienie pustek o głębokości 1/4 cegły jest najlepszą praktyką, która gwarantuje zarówno wytrzymałość, jak i estetykę wykonanej pracy.

Pytanie 28

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 29

Tynk klasy 0, znany jako tynk rapowany, jest zaliczany do tynków

A. jednowarstwowych
B. trójwarstwowych
C. dwuwarstwowych
D. cienkowarstwowych
Tynk rapowany, zaliczany do kategorii 0, jest tynkiem jednowarstwowym, co oznacza, że jest aplikowany w jednej warstwie bez dodatkowych podkładów. Tynki jednowarstwowe charakteryzują się szybkim procesem aplikacji oraz wysoką efektywnością, co jest kluczowe w nowoczesnym budownictwie. Tynki tego typu są często stosowane na budynkach mieszkalnych i komercyjnych, gdzie ważne są zarówno walory estetyczne, jak i funkcjonalne. Do tynków rapowanych można stosować różne rodzaje materiałów, w tym produkty wykonane na bazie cementu, wapna czy gipsu. W praktyce, tynki jednowarstwowe zapewniają dobry poziom izolacji cieplnej oraz odporności na warunki atmosferyczne, co wpisuje się w aktualne standardy budowlane. Zastosowanie tynku rapowanego przyczynia się do redukcji kosztów robocizny oraz czasu realizacji budowy, co jest niezwykle istotne w kontekście współczesnych wymagań rynkowych. Dlatego znajomość tej kategorii tynków jest niezbędna dla profesjonalistów w branży budowlanej.

Pytanie 30

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 31

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 32

Przed przystąpieniem do naprawy tynku, który jest odparzony i silnie zawilgocony, co należy zrobić?

A. pokryć całą powierzchnię tynku preparatem hydrofobowym
B. osuszyć miejsca zawilgocone oraz odparzone i zagruntować je emulsją gruntującą
C. skuć tynk w miejscach zawilgoconych oraz odparzonych i osuszyć mur
D. pokryć całą powierzchnię tynku mleczkiem cementowym
Zastosowanie preparatów hydrofobowych na całej powierzchni tynku jest nieodpowiednią reakcją na problem zawilgocenia i odparzania. Tego typu środki są projektowane do zabezpieczania od zewnątrz, jednak w przypadku już uszkodzonego tynku nie zaadoptują się one do struktury, co może prowadzić do dalszych uszkodzeń. Hydrofobizacja nie usunie istniejącej wilgoci, a jedynie zatrzyma ją wewnątrz, co zwiększa ryzyko powstawania pleśni i grzybów. Z kolei pokrycie tynku mleczkiem cementowym może wydawać się rozwiązaniem, ale również nie rozwiązuje problemu wilgoci, a właściwie może prowadzić do zaparcia wilgoci w murze, co w dłuższej perspektywie prowadzi do zniszczenia struktury tynku. Dodatkowo, osuszanie miejsc zawilgoconych oraz odparzonych i gruntowanie ich emulsją gruntującą jest niewłaściwe, jeśli nie zostanie przeprowadzone skucie tynku. Tego typu podejście pomija kluczowy krok w procesie naprawy, jakim jest usunięcie uszkodzonej warstwy, a tym samym zwiększa ryzyko niepowodzenia całej reperacji. W praktyce budowlanej nie ma efektywnego sposobu na naprawę tynku bez wcześniejszego usunięcia jego zniszczonej warstwy.

Pytanie 33

Który z rodzajów tynków można zaklasyfikować jako trójwarstwowy zwykły kat. IV, charakteryzujący się równą i gładką, bardzo starannie wygładzoną powierzchnią uzyskaną przy użyciu packi?

A. Surowy
B. Pospolity
C. Doborowy
D. Wypalany
Tynk doborowy jest klasyfikowany jako tynk trójwarstwowy zwykły kat. IV, co oznacza, że spełnia określone wymagania techniczne dotyczące trwałości i estetyki. Jego powierzchnia jest bardzo starannie wygładzona packą, co zapewnia gładkość i równość, co jest kluczowe w wielu zastosowaniach budowlanych. Tynki doborowe są często stosowane w budownictwie mieszkalnym oraz komercyjnym, gdzie estetyka i wytrzymałość są równie ważne. W praktyce, tynk doborowy można z powodzeniem stosować w pomieszczeniach wewnętrznych oraz na zewnętrznych elewacjach, a jego właściwości pozwalają na osiągnięcie wysokiej jakości wykończeń. Dodatkowo, zgodnie z normami budowlanymi, tynki doborowe charakteryzują się doskonałą przyczepnością do podłoża oraz odpornością na warunki atmosferyczne, co czyni je idealnym wyborem do różnych projektów budowlanych.

Pytanie 34

Rodzaj rusztowania wykorzystywanego w pomieszczeniach, zbudowanego z dwóch podpór oraz pomostu roboczego, to rusztowanie

A. wspornikowe
B. stojakowe
C. modułowe
D. kozłowe
Rusztowanie kozłowe to świetne rozwiązanie, zwłaszcza w zamkniętych przestrzeniach. Składa się z dwóch podpór i jednego pomostu roboczego, co sprawia, że montuje się je naprawdę szybko i bez większych problemów. To coś, co jest super przydatne przy robieniu remontów czy budowie tam, gdzie miejsca jest mało. Kozły robocze są mega pomocne, gdy trzeba sięgnąć do wyżej położonych rzeczy, jak malowanie sufitów czy zakładanie instalacji. Dodatkowo, ich konstrukcja spełnia normy bezpieczeństwa, więc nie trzeba się obawiać o bezpieczeństwo podczas pracy. Tego typu rusztowania można znaleźć w mieszkaniówkach i różnych obiektach komercyjnych, gdzie przestrzeń jest ograniczona, ale potrzebna jest odpowiednia wysokość robocza.

Pytanie 35

Sprzętu przedstawionego na rysunku używa się do transportu

Ilustracja do pytania
A. mieszanki betonowej.
B. drogowych mas bitumicznych.
C. suchych mieszanek zapraw tynkarskich.
D. cementu luzem.
Betonomieszarka, przedstawiona na zdjęciu, jest specjalistycznym urządzeniem wykorzystywanym do transportu i przygotowania mieszanki betonowej na placu budowy. Jej konstrukcja pozwala na efektywne mieszanie składników, takich jak cement, piasek i kruszywo, co zapewnia uzyskanie jednorodnej mieszanki. To zagadnienie jest kluczowe w budownictwie, ponieważ jakość betonu determinowana jest zarówno przez proporcje składników, jak i przez sposób ich mieszania. Betonomieszarki są standardowo używane w dużych projektach budowlanych, gdzie ilość betonu potrzebna do realizacji robót budowlanych jest znaczna. Istotnym atutem tego sprzętu jest mobilność – betonomieszarki mogą być przetransportowane blisko miejsca użycia, co minimalizuje czas potrzebny na dowóz materiału oraz zwiększa efektywność prac budowlanych. W praktyce, korzystając z betonomieszarek, można również dostosować recepturę betonu w zależności od wymagań projektu, co jest zgodne z aktualnymi normami budowlanymi i dobrymi praktykami w branży.

Pytanie 36

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 37

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 38

Oblicz wydatki na robociznę wzniesienia 100 m2 ścian obiektu z pustaków Porotherm, mając na uwadze, że czas potrzebny na wykonanie 1 m2 muru z tych pustaków wynosi 1,15 h, przy założonym 10-godzinnym czasie pracy, a wynagrodzenie murarza to 140 zł.

A. 1 610 zł
B. 1 232 zł
C. 1 410 zł
D. 2 012 zł
Koszt robocizny wymurowania 100 m2 ścian z pustaków Porotherm oblicza się na podstawie nakładu czasu oraz stawki za roboczogodzinę murarza. W przypadku, gdy nakład czasu na wykonanie 1 m2 muru wynosi 1,15 h, to dla 100 m2 potrzebujemy 115 h (1,15 h/m2 x 100 m2). Przy 10-godzinnym systemie pracy, murarz wykonuje 10 m2 w ciągu jednego dnia, co oznacza, że na wymurowanie 100 m2 potrzeba 10 dni (100 m2 ÷ 10 m2/dzień). Przy stawce 140 zł za dniówkę, całkowity koszt robocizny wynosi 10 dni x 140 zł/dzień, co daje 1400 zł. Jednak, przy dokładnym przeliczeniu czasu pracy, koszt robocizny powinien być obliczony jako (115 h x 14 zł/h) co daje nam 1610 zł. To podejście uwzględnia zarówno stawkę godzinową, jak i efektywność pracy w danym systemie. W budownictwie kluczowe jest dokładne oszacowanie czasu pracy, aby uniknąć niedoszacowania kosztów projektu."

Pytanie 39

Do zbudowania nadproża sklepionego (łęku) należy użyć cegły

A. szczelinówki
B. dziurawki
C. kratówki
D. pełnej
Nadproża sklepione, czyli te łuki, są mega ważne w budowlance, bo przenoszą ciężar z góry na boki. W tym przypadku cegła pełna jest wręcz niezbędna, bo ma super właściwości. Jest gęsta i naprawdę wytrzymała na ściskanie, idealna do robienia nadproży, które muszą wytrzymać sporo ciężaru. Cegła pełna daje też lepszą izolację akustyczną i cieplną w porównaniu do innych cegieł. Przykładem mogą być stare budynki, gdzie często spotykamy nadproża z cegły pełnej – to zgodne z zasadami ochrony naszego dziedzictwa kulturowego, a przy tym dobre dla budowlanych praktyk. Normy budowlane też mówią, że trzeba używać materiałów o odpowiednich parametrach wytrzymałościowych w takich konstrukcjach nośnych.

Pytanie 40

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.