Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik teleinformatyk
  • Kwalifikacja: INF.07 - Montaż i konfiguracja lokalnych sieci komputerowych oraz administrowanie systemami operacyjnymi
  • Data rozpoczęcia: 13 lutego 2026 23:12
  • Data zakończenia: 13 lutego 2026 23:18

Egzamin zdany!

Wynik: 26/40 punktów (65,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Protokół, który komputery wykorzystują do informowania ruterów w swojej sieci o zamiarze dołączenia do określonej grupy multicastowej lub jej opuszczenia, to

A. Internet Message Access Protocol (IMAP)
B. Transmission Control Protocol (TCP)
C. Internet Group Management Protocol (IGMP)
D. Interior Gateway Protocol (IGP)
Internet Group Management Protocol (IGMP) to protokół używany w sieciach IP do zarządzania członkostwem w grupach multicastowych. Dzięki IGMP, urządzenia w sieci mogą informować routery o chęci dołączenia do lub odejścia z grup multicastowych. Protokół ten jest kluczowy w kontekście transmisji danych dla wielu użytkowników, jak to ma miejsce w strumieniowaniu wideo, konferencjach online czy transmisjach sportowych. Umożliwia efektywne zarządzanie przepustowością, ponieważ dane są wysyłane tylko do tych urządzeń, które są zainteresowane daną grupą, co eliminuje niepotrzebny ruch w sieci. IGMP działa na poziomie warstwy sieciowej w modelu OSI i jest standardem określonym przez IETF w RFC 3376. W praktyce, IGMP pozwala na efektywne zarządzanie zasobami sieciowymi, co jest kluczowe w dużych środowiskach, gdzie wiele urządzeń korzysta z tych samych zasobów. Przykładem użycia IGMP może być system IPTV, gdzie użytkownicy mogą subskrybować różne kanały telewizyjne bez obciążania całej infrastruktury sieciowej.

Pytanie 2

Rekord typu MX w serwerze DNS

A. mapuje nazwę domeny na adres IP
B. przechowuje nazwę serwera
C. przechowuje alias dla nazwy domeny
D. mapuje nazwę domenową na serwer pocztowy
Rekordy MX (Mail Exchange) w systemie DNS (Domain Name System) odgrywają kluczową rolę w kierowaniu wiadomości e-mail do odpowiednich serwerów pocztowych. Poprawna odpowiedź wskazuje, że rekord MX mapuje nazwę domenową na nazwę serwera poczty, co jest istotnym elementem procesu dostarczania e-maili. Dzięki temu, gdy użytkownik wysyła wiadomość do danej domeny, serwery pocztowe mogą zidentyfikować, gdzie ta wiadomość powinna być dostarczona, analizując rekordy MX. Przykładowo, jeśli ktoś wysyła e-mail na adres [email protected], serwer odpowiedzialny za przetwarzanie poczty sprawdza rekord MX dla domeny przyklad.pl, aby określić, który serwer jest odpowiedzialny za odbiór wiadomości. Dobrą praktyką jest zapewnienie, aby rekordy MX były aktualne i poprawnie skonfigurowane, ponieważ błędne ustawienia mogą prowadzić do utraty wiadomości lub opóźnień w ich dostarczaniu. Ponadto, w kontekście bezpieczeństwa, warto implementować dodatkowe mechanizmy, takie jak SPF (Sender Policy Framework) czy DKIM (DomainKeys Identified Mail), aby zabezpieczyć domenę przed fałszywymi wiadomościami e-mail.

Pytanie 3

Na którym rysunku przedstawiono topologię gwiazdy?

Ilustracja do pytania
A. 1.
B. 3.
C. 4.
D. 2.
Topologia gwiazdy to jeden z najpopularniejszych układów sieci komputerowych, w którym wszystkie urządzenia końcowe są połączone z jednym centralnym punktem, najczęściej switchem lub hubem. Na rysunku 4 widoczna jest wyraźna struktura, w której każdy komputer jest połączony bezpośrednio z centralnym urządzeniem, co umożliwia łatwe zarządzanie siecią oraz minimalizuje ryzyko awarii. W przypadku uszkodzenia jednego z kabli, tylko jedno połączenie jest zagrożone, co czyni topologię gwiazdy bardziej odporną na problemy w porównaniu do topologii magistrali, gdzie awaria jednego elementu może wpłynąć na całą sieć. Z praktycznego punktu widzenia, ta topologia jest często stosowana w biurach i organizacjach, gdzie wymagana jest elastyczność w dodawaniu nowych urządzeń oraz prostota diagnostyki problemów. Warto również wspomnieć, że implementacja topologii gwiazdy wspiera standardy takie jak IEEE 802.3 i 802.11, co pozwala na łatwą integrację z innymi technologiami sieciowymi.

Pytanie 4

Która norma określa standardy dla instalacji systemów okablowania strukturalnego?

A. PN-EN50173
B. PN-EN 55022
C. PN-EN 50310
D. PN-EN 50174
Wybór innych norm, takich jak PN-EN 50310, PN-EN 50173 lub PN-EN 55022, może wynikać z niepełnego zrozumienia zakresu ich zastosowania. Norma PN-EN 50310 dotyczy wymagań dotyczących systemów okablowania w kontekście instalacji elektrycznych i sieciowych, jednak nie odnosi się bezpośrednio do standardów instalacji okablowania strukturalnego. Natomiast PN-EN 50173 określa wymagania dotyczące systemów okablowania strukturalnego, ale skupia się głównie na jego projektowaniu i nie obejmuje kompleksowych wytycznych dotyczących instalacji, co jest kluczowe w kontekście efektywnego układania kabli. Z kolei norma PN-EN 55022 koncentruje się na wymaganiach dotyczących emisji elektromagnetycznej urządzeń elektronicznych, co jest całkowicie inną dziedziną i nie ma zastosowania w kontekście instalacji okablowania. Wybierając niewłaściwe normy, można wprowadzić nieefektywne praktyki instalacyjne, które mogą prowadzić do problemów z wydajnością systemu, takich jak straty sygnału, zakłócenia elektromagnetyczne oraz problemy z serwisowaniem. Zrozumienie różnic między tymi normami oraz ich rzeczywistymi zastosowaniami jest kluczowe dla prawidłowego projektowania i instalacji systemów okablowania, co w dłuższej perspektywie wpływa na niezawodność i efektywność instalacji telekomunikacyjnych.

Pytanie 5

Adres IP (ang. Internet Protocol Address) to

A. logiczny adres komputera.
B. fizyczny adres komputera.
C. jedyną nazwą symboliczną urządzenia.
D. indywidualny numer produkcyjny urządzenia.
Wybór odpowiedzi, która definiuje adres IP jako unikatową nazwę symboliczną urządzenia, jest nieprecyzyjny, ponieważ w rzeczywistości adres IP nie jest nazwą, lecz adresem logicznym, który przypisywany jest w sposób numeryczny. Nazwy symboliczne są związane z systemami DNS (Domain Name System), które przekształcają zrozumiałe dla ludzi nazwy domen w zrozumiałe dla maszyn adresy IP. Kolejna błędna koncepcja to uznawanie adresu IP za adres fizyczny komputera; w rzeczywistości adres fizyczny odnosi się do adresu MAC (Media Access Control), który jest przypisany do sprzętu sieciowego i nie zmienia się w trakcie jego użytkowania. Adres IP jest zmienny i może być przypisany dynamicznie przez serwer DHCP. Z kolei uznawanie adresu IP za unikatowy numer fabryczny urządzenia wprowadza w błąd, ponieważ taki numer odnosi się do konkretnego sprzętu, a nie do jego interakcji w sieci. Te pomyłki często wynikają z nieporozumień dotyczących różnicy między koncepcjami adresowania logicznego i fizycznego. Zrozumienie tych różnic jest kluczowe dla efektywnego zarządzania sieciami i poprawnego interpretowania funkcji adresów IP w komunikacji internetowej. Współczesne praktyki sieciowe opierają się na zrozumieniu, jak adresy IP są wykorzystywane w routingach, co jest niezbędne do optymalizacji wydajności i bezpieczeństwa sieci.

Pytanie 6

Wynik wykonania którego polecenia widoczny jest na fragmencie zrzutu z ekranu?

Network DestinationNetmaskGatewayInterfaceMetric
0.0.0.00.0.0.0192.168.0.1192.168.0.6550
127.0.0.0255.0.0.0On-link127.0.0.1331
127.0.0.1255.255.255.255On-link127.0.0.1331
127.255.255.255255.255.255.255On-link127.0.0.1331
169.254.0.0255.255.0.0On-link169.254.189.240281
169.254.189.240255.255.255.255On-link169.254.189.240281
169.254.255.255255.255.255.255On-link169.254.189.240281
192.168.0.0255.255.255.0On-link192.168.0.65306
192.168.0.65255.255.255.255On-link192.168.0.65306
192.168.0.255255.255.255.255On-link192.168.0.65306
192.168.56.0255.255.255.0On-link192.168.56.1281
192.168.56.1255.255.255.255On-link192.168.56.1281
192.168.56.255255.255.255.255On-link192.168.56.1281
224.0.0.0240.0.0.0On-link127.0.0.1331
224.0.0.0240.0.0.0On-link192.168.56.1281
224.0.0.0240.0.0.0On-link192.168.0.65306
224.0.0.0240.0.0.0On-link169.254.189.240281
255.255.255.255255.255.255.255On-link127.0.0.1331
255.255.255.255255.255.255.255On-link192.168.56.1281
255.255.255.255255.255.255.255On-link192.168.0.65306
255.255.255.255255.255.255.255On-link169.254.189.240281
A. netstat -a
B. ipconfig /all
C. netstat -r
D. ipconfig
Użycie polecenia 'netstat -r' to super wybór, bo pokazuje tabelę routingu IP, która ma naprawdę ważne informacje o trasach w systemie. W tej tabeli znajdziesz rzeczy takie jak 'Network Destination', 'Netmask', 'Gateway', 'Interface' i 'Metric'. Te dane są kluczowe, żeby ogarnąć, jak pakiety są kierowane przez sieć. Na przykład, gdy masz problemy z połączeniem, albo chcesz ustawić routing w swojej lokalnej sieci, to znajomość tej tabeli jest must-have. Administracja siecią często korzysta z tego polecenia, żeby sprawdzić, czy trasy są poprawnie ustawione i żeby wykryć ewentualne problemy z routingiem. Dobrze jest regularnie sprawdzać tabelę routingu, zwłaszcza w bardziej skomplikowanych sieciach, gdzie może być sporo tras i bramek. Warto też dodać, że fajnie jest użyć 'traceroute' razem z 'netstat -r', bo wtedy można lepiej analizować jak dane przechodzą przez sieć.

Pytanie 7

Jak jest nazywana transmisja dwukierunkowa w sieci Ethernet?

A. Full duplex
B. Simplex
C. Duosimplex
D. Halfduplex
Transmisja dwukierunkowa w sieci Ethernet nazywa się full duplex. Chodzi tutaj o to, że możliwa jest równoczesna komunikacja w obu kierunkach, czyli urządzenie może jednocześnie wysyłać i odbierać dane. To jest spora różnica w porównaniu do trybu halfduplex, gdzie trzeba czekać na swoją kolej, bo transmisja działa tylko w jedną stronę na raz (albo wysyłasz, albo odbierasz). W praktyce full duplex pozwala maksymalnie wykorzystać przepustowość łącza – na przykład w sieciach 1 Gb/s oznacza to, że faktycznie możemy przesłać 1 Gb/s w obie strony naraz, co daje łącznie 2 Gb/s ogólnego transferu. Stosowanie full duplexu to już praktycznie standard w nowoczesnych sieciach LAN, zwłaszcza w sieciach opartych na switchach, a nie hubach. Ważne jest też to, że protokół CSMA/CD stosowany w Ethernetach halfduplex nie jest już potrzebny w trybie full duplex – nie ma tu kolizji, bo każda transmisja ma swoją drogę. Moim zdaniem warto zwracać uwagę, czy urządzenia końcowe i przełączniki są ustawione właśnie na full duplex, bo często automatyczne negocjacje mogą się „rozjechać” i wtedy mamy niepotrzebnie niższe osiągi. W świecie profesjonalnych sieci praktycznie zawsze dąży się do pracy w full duplexie, zarówno ze względu na wydajność, jak i niezawodność transmisji.

Pytanie 8

W celu zwiększenia bezpieczeństwa sieci firmowej administrator wdrożył protokół 802.1X. Do czego służy ten protokół?

A. Realizuje dynamiczne przydzielanie adresów IP w sieci lokalnej.
B. Służy do kontroli dostępu do sieci na poziomie portów przełącznika, umożliwiając uwierzytelnianie urządzeń przed przyznaniem im dostępu do sieci.
C. Monitoruje i analizuje przepustowość łącza internetowego w firmie.
D. Zapewnia szyfrowanie transmisji danych wyłącznie w warstwie aplikacji.
<strong>Protokół 802.1X</strong> to kluczowy element bezpieczeństwa nowoczesnych sieci komputerowych, szczególnie tych wykorzystywanych w środowiskach korporacyjnych i instytucjonalnych. Jego głównym zadaniem jest kontrola dostępu do sieci na najniższym poziomie, czyli na porcie przełącznika (lub punkcie dostępowym w przypadku sieci bezprzewodowych). Mechanizm ten wymaga, aby każde urządzenie próbujące połączyć się z siecią przeszło proces uwierzytelniania, zanim uzyska dostęp do zasobów sieciowych. Najczęściej wykorzystuje się tu serwer RADIUS do weryfikacji tożsamości użytkownika lub urządzenia, co znacząco redukuje ryzyko nieautoryzowanego dostępu. Z mojego doświadczenia wdrożenie 802.1X to nie tylko podstawa zgodności z politykami bezpieczeństwa (np. ISO 27001), ale także skuteczny sposób na ograniczenie tzw. ataków typu „plug and play”, gdzie ktoś podpina nieautoryzowane urządzenie do wolnego portu. W praktyce, np. w dużych biurach czy na uczelniach, 802.1X umożliwia granularne zarządzanie dostępem i szybkie wycofanie uprawnień, jeśli pracownik opuszcza firmę. To rozwiązanie bardzo często łączy się z innymi technologiami, jak VLAN czy NAC (Network Access Control), co pozwala na jeszcze większą kontrolę i automatyzację procesów bezpieczeństwa. Najważniejsze, że 802.1X działa jeszcze zanim system operacyjny uzyska pełny dostęp do sieci, co czyni go wyjątkowo skutecznym narzędziem prewencji.

Pytanie 9

Jaki prefiks jest używany w adresie autokonfiguracji IPv6 w sieci LAN?

A. 128
B. 24
C. 64
D. 32
Prefiks o długości 64 bitów w adresie autokonfiguracji IPv6 w sieci LAN jest standardem określonym w protokole IPv6. Długość ta jest zgodna z zaleceniami organizacji IETF, które wskazują, że dla efektywnej autokonfiguracji interfejsów w sieci lokalnej, należy stosować prefiks /64. Taki prefiks zapewnia odpowiednią ilość adresów IPv6, co jest kluczowe w kontekście dużej liczby urządzeń podłączonych do sieci. Dzięki zastosowaniu prefiksu 64, sieci lokalne mogą łatwo i automatycznie konfigurować swoje adresy IP, co jest szczególnie istotne w przypadku dynamicznych środowisk, takich jak sieci domowe lub biurowe. Praktyczne zastosowanie tej koncepcji przejawia się w automatycznej konfiguracji adresów przez protokół SLAAC (Stateless Address Autoconfiguration), który umożliwia urządzeniom generowanie unikalnych adresów na podstawie prefiksu i ich identyfikatorów MAC. Takie rozwiązanie znacząco upraszcza zarządzanie adresami IP w sieciach IPv6.

Pytanie 10

Jaki kabel pozwala na przesył danych z maksymalną prędkością 1 Gb/s?

A. Skrętka kat. 4
B. Skrętka kat. 5e
C. Kabel współosiowy
D. Kabel światłowodowy
Skrętka kat. 5e to kabel, który został zaprojektowany z myślą o zwiększonej wydajności transmisji danych, osiągając maksymalną prędkość do 1 Gb/s na odległości do 100 metrów. Jest to standard szeroko stosowany w sieciach Ethernet, zgodny z normą IEEE 802.3ab. Kabel ten charakteryzuje się lepszym ekranowaniem oraz wyższą jakością materiałów w porównaniu do starszych kategorii, co pozwala na minimalizację interferencji elektromagnetycznej i poprawia jakość sygnału. Skrętka kat. 5e znajduje zastosowanie w wielu środowiskach, od biur po małe i średnie przedsiębiorstwa, stanowiąc podstawę lokalnych sieci komputerowych (LAN). Dzięki swojej wydajności oraz stosunkowo niskim kosztom, jest idealnym rozwiązaniem dla infrastruktury sieciowej w aplikacjach wymagających szybkiej transmisji danych, takich jak przesyłanie dużych plików czy wideokonferencje. Warto również zauważyć, że skrętka kat. 5e jest kompatybilna z wcześniejszymi standardami, co ułatwia modernizację istniejących sieci.

Pytanie 11

Jaki argument komendy ipconfig w systemie Windows przywraca konfigurację adresów IP?

A. /renew
B. /release
C. /displaydns
D. /flushdns
/renew jest parametrem polecenia ipconfig, który służy do odnawiania konfiguracji adresu IP na komputerze z systemem Windows. Gdy połączenie z siecią jest aktywne, a komputer uzyskał adres IP z serwera DHCP, można użyć tego polecenia, aby poprosić serwer o nowy adres IP. Jest to szczególnie przydatne w sytuacjach, gdy adres IP został utracony, na przykład wskutek zmiany sieci, lub gdy chcemy uzyskać nową konfigurację w celu rozwiązania problemu z połączeniem. Przykładowo, w przypadku problemów z dostępem do internetu, użycie polecenia ipconfig /renew może pomóc w szybkim przywróceniu łączności, gdyż wymusza ponowne przydzielenie adresu IP. Standardy sieciowe, takie jak DHCP (Dynamic Host Configuration Protocol), zakładają, że urządzenia mogą dynamicznie uzyskiwać i odświeżać swoje adresy IP, co jest kluczowe w zarządzaniu siecią. Warto też wspomnieć, że po użyciu polecenia /renew, warto sprawdzić aktualny adres IP poleceniem ipconfig, aby upewnić się, że zmiany zostały wprowadzone.

Pytanie 12

Od momentu wprowadzenia Windows Server 2008, zakupując konkretną edycję systemu operacyjnego, nabywca otrzymuje prawo do zainstalowania określonej liczby kopii w środowisku fizycznym oraz wirtualnym. Która wersja tego systemu umożliwia nieograniczone instalacje wirtualne serwera?

A. Windows Server Foundation
B. Windows Server Standard
C. Windows Server Datacenter
D. Windows Server Essential
Analizując dostępne edycje systemu Windows Server, można zauważyć, że każda z nich oferuje różne możliwości w zakresie licencjonowania i zarządzania instalacjami wirtualnymi. Windows Server Foundation, przeznaczony głównie dla małych firm, obsługuje jedynie podstawowe potrzeby i nie jest przystosowany do rozbudowanej wirtualizacji. Oferuje ograniczone funkcje, co sprawia, że nie jest odpowiedni do bardziej zaawansowanych środowisk. Windows Server Essential, z kolei, również jest skierowany do małych i średnich przedsiębiorstw, oferując funkcjonalności, które są zbyt ograniczone w kontekście wirtualizacji. Jego licencjonowanie jest oparte na liczbie użytkowników oraz urządzeń, co nie sprzyja elastyczności w wdrażaniu rozwiązań wirtualnych. Windows Server Standard oferuje pewne możliwości wirtualizacji, ale ogranicza je do dwóch instalacji wirtualnych na licencję. To stanowi znaczną barierę dla organizacji, które planują rozwijać swoje środowiska wirtualne, dlatego nie jest to optymalne rozwiązanie dla firm potrzebujących licznych instancji serwerów wirtualnych. W praktyce, wybór niewłaściwej edycji systemu może prowadzić do problemów z zarządzaniem zasobami, zwiększając koszty oraz ograniczając możliwości wzrostu i rozwoju infrastruktury IT. Dlatego kluczowe jest zrozumienie różnic między edycjami oraz ich dostosowanie do specyficznych potrzeb i wymagań organizacji.

Pytanie 13

W systemach Microsoft Windows, polecenie netstat –a pokazuje

A. wszystkie aktywne połączenia protokołu TCP
B. statystyki odwiedzin witryn internetowych
C. tabelę trasowania
D. aktualne ustawienia konfiguracyjne sieci TCP/IP
Polecenie <b>netstat –a</b> w systemach Microsoft Windows jest narzędziem, które wyświetla listę wszystkich aktywnych połączeń sieciowych oraz portów, które są aktualnie używane przez różne aplikacje. Dzięki tej funkcjonalności administratorzy mogą monitorować, które usługi na urządzeniu są otwarte i na jakich portach, co jest kluczowe w kontekście bezpieczeństwa sieci. Na przykład, jeśli użytkownik zauważy, że na porcie 80, który jest standardowym portem dla HTTP, działa usługa, może to sugerować, że serwer webowy jest uruchomiony. Użycie tego polecenia pomaga również identyfikować potencjalne nieautoryzowane połączenia, co jest istotne w zarządzaniu bezpieczeństwem informacji. W praktyce, administratorzy sieci często wykorzystują <b>netstat –a</b> w połączeniu z innymi narzędziami, takimi jak firewalle, aby upewnić się, że tylko zamierzone połączenia są dozwolone.

Pytanie 14

Podaj domyślny port, który służy do przesyłania poleceń w serwisie FTP.

A. 110
B. 25
C. 21
D. 20
Odpowiedź 21 jest poprawna, ponieważ port 21 jest standardowym portem używanym do komunikacji w protokole FTP (File Transfer Protocol). FTP jest jednym z najstarszych protokołów internetowych, stosowanym głównie do przesyłania plików między komputerami w sieci. Port 21 jest używany do nawiązywania połączenia i obsługi próśb klientów. W praktyce, gdy klient FTP łączy się z serwerem, inicjuje sesję poprzez wysłanie polecenia LOGIN na ten właśnie port. Aby zapewnić bezpieczeństwo i zgodność z najlepszymi praktykami, ważne jest, aby administratorzy serwerów wykorzystywali standardowe porty, takie jak 21, co ułatwia diagnostykę problemów i integrację z innymi systemami. Warto również zauważyć, że FTP może działać w różnych trybach, a port 21 jest kluczowy w trybie aktywnym. W kontekście bezpieczeństwa, rozważając współczesne zastosowania, administratorzy mogą również korzystać z protokołów zabezpieczających, takich jak FTPS lub SFTP, które oferują szyfrowanie danych, ale nadal używają portu 21 jako standardowego portu komend.

Pytanie 15

Zastosowanie połączenia typu trunk między dwoma przełącznikami umożliwia

A. zablokowanie wszystkich nadmiarowych połączeń na danym porcie
B. konfigurację agregacji portów, co zwiększa przepustowość między przełącznikami
C. przesyłanie ramek z różnych wirtualnych sieci lokalnych w jednym łączu
D. zwiększenie przepustowości dzięki wykorzystaniu dodatkowego portu
Połączenie typu trunk między dwoma przełącznikami rzeczywiście umożliwia przesyłanie ramek z różnych wirtualnych sieci lokalnych (VLAN) przez jedno łącze. Dzięki temu, cały ruch sieciowy, pochodzący z wielu VLAN-ów, może być efektywnie transportowany przez jedno fizyczne połączenie, co prowadzi do oszczędności w infrastrukturze kablowej oraz zwiększenia elastyczności sieci. Praktycznym zastosowaniem trunków jest konfiguracja w środowiskach wirtualnych, gdzie wiele maszyn wirtualnych korzysta z różnych VLAN-ów. Standard IEEE 802.1Q definiuje sposób tagowania ramek Ethernet, co pozwala na identyfikację, z którego VLAN-u pochodzi dana ramka. Dobrą praktyką jest przypisywanie trunków do portów, które łączą przełączniki, aby zapewnić segregację ruchu oraz umożliwić wydajne zarządzanie siecią. Implementując trunkowanie, administratorzy sieci mogą również wprowadzać polityki bezpieczeństwa i zarządzać ruchem w sposób, który optymalizuje wydajność sieci oraz minimalizuje ryzyko kolizji. Przykładowo, w dużych sieciach korporacyjnych, trunking pozwala na segregację ruchu biura i działów, co jest kluczowe dla wydajności i bezpieczeństwa.

Pytanie 16

Kontrola pasma (ang. bandwidth control) w przełączniku to funkcjonalność

A. umożliwiająca jednoczesne łączenie przełączników przy użyciu wielu łącz
B. umożliwiająca zdalne połączenie z urządzeniem
C. pozwalająca na równoczesne przesyłanie danych z wybranego portu do innego portu
D. pozwalająca ograniczyć przepustowość na wyznaczonym porcie
Zarządzanie pasmem (bandwidth control) w przełączniku jest kluczowym elementem w kontekście efektywnego zarządzania siecią. Odpowiedź, która wskazuje na możliwość ograniczenia przepustowości na wybranym porcie, jest poprawna, ponieważ ta funkcjonalność pozwala administratorom sieci na precyzyjne dostosowanie dostępnych zasobów do konkretnych wymagań. Przykładowo, w sytuacji, gdy na jednym porcie podłączone są urządzenia o różnym zapotrzebowaniu na pasmo, zarządzanie pasmem pozwala na priorytetyzację ruchu i ograniczenie prędkości transferu dla mniej krytycznych aplikacji. W praktyce, techniki takie jak Quality of Service (QoS) są często wykorzystywane, aby zapewnić, że aplikacje o wysokim priorytecie, takie jak VoIP czy transmisje wideo, mają zapewnioną odpowiednią przepustowość, podczas gdy inne, mniej istotne usługi mogą być throttlowane. Standardy branżowe, takie jak IEEE 802.1Q, wskazują na znaczenie zarządzania pasmem w kontekście rozwoju sieci VLAN, co dodatkowo podkreśla jego istotność w nowoczesnych architekturach sieciowych.

Pytanie 17

Aby chronić lokalną sieć komputerową przed atakami typu Smurf pochodzącymi z Internetu, należy zainstalować oraz właściwie skonfigurować

A. oprogramowanie antyspamowe
B. skaner antywirusowy
C. zapory ogniowej
D. bezpieczną przeglądarkę internetową
Zainstalowanie i skonfigurowanie zapory ogniowej (firewall) jest kluczowym krokiem w zabezpieczaniu lokalnej sieci komputerowej przed atakami typu Smurf, które polegają na wykorzystaniu adresów IP ofiar do generowania nadmiaru ruchu sieciowego. Zapora ogniowa działa jako filtr, który blokuje nieautoryzowany dostęp do sieci oraz monitoruje i kontroluje ruch przychodzący i wychodzący. W przypadku ataku Smurf, złośliwy użytkownik wysyła pakiety ICMP Echo Request (ping) do rozgłoszeniowego adresu IP, co powoduje, że wszystkie urządzenia w sieci odpowiadają na te żądania, co wywołuje przeciążenie. Skonfigurowana zapora ogniowa może wykrywać i blokować takie pakiety, co znacznie zmniejsza ryzyko ataku. Dobrym praktyką jest również wdrożenie zasad ograniczających dostęp do portów oraz monitorowanie ruchu sieciowego w celu szybkiej identyfikacji potencjalnych zagrożeń. Współczesne zapory ogniowe oferują wiele funkcji, takich jak inspekcja głębokiego pakietu i wykrywanie intruzów, co dodatkowo wspiera obronę przed różnorodnymi atakami.

Pytanie 18

Jakie polecenie pozwoli na wyświetlenie ustawień interfejsu sieciowego w systemie Linux?

A. ipaddr show
B. iproute show
C. traceroute
D. ipconfig
Polecenie 'ipaddr show' jest odpowiednie do wyświetlania konfiguracji interfejsu sieciowego w systemie Linux, ponieważ jest częścią zestawu narzędzi związanych z konfiguracją sieci w nowoczesnych dystrybucjach. Narzędzie to pozwala na uzyskanie szczegółowych informacji na temat adresów IP przypisanych do interfejsów sieciowych, a także na wyświetlenie ich stanu. Przykładowo, po wpisaniu 'ipaddr show' w terminalu administrator może szybko sprawdzić, jakie adresy są przypisane do poszczególnych interfejsów, co jest kluczowe w procesie diagnozowania problemów z łącznością sieciową. W praktyce, to polecenie jest standardem w administracji systemami Linux, a jego znajomość jest niezbędna dla każdego specjalisty zajmującego się sieciami komputerowymi. Warto zauważyć, że 'ipaddr' jest częścią zestawu poleceń 'ip', które zastępują starsze polecenia, takie jak 'ifconfig', co pokazuje trend w kierunku bardziej zintegrowanych i funkcjonalnych narzędzi w administracji siecią.

Pytanie 19

Jakiego protokołu dotyczy port 443 TCP, który został otwarty w zaporze sieciowej?

A. HTTPS
B. NNTP
C. DNS
D. SMTP
Odpowiedź 'HTTPS' jest poprawna, ponieważ port 443 jest standardowym portem używanym przez protokół HTTPS (Hypertext Transfer Protocol Secure). HTTPS jest rozszerzeniem protokołu HTTP, które wykorzystuje SSL/TLS do szyfrowania danych przesyłanych pomiędzy serwerem a klientem. Dzięki temu, komunikacja jest zabezpieczona przed podsłuchiwaniem i manipulacją. W praktyce, gdy przeglądasz strony internetowe, które zaczynają się od 'https://', twoje połączenie wykorzystuje port 443. Ponadto, w kontekście dobrych praktyk branżowych, stosowanie HTTPS stało się standardem, zwłaszcza w przypadku stron wymagających przesyłania poufnych informacji, takich jak dane logowania czy dane osobowe. Warto także zauważyć, że wyszukiwarki internetowe, takie jak Google, preferują strony zabezpieczone HTTPS, co wpływa na pozycjonowanie w wynikach wyszukiwania.

Pytanie 20

Które polecenie systemu Windows zostało zastosowane do sprawdzenia połączenia z serwerem DNS?

1<1 ms<1 ms<1 mslivebox.home [192.168.1.1]
244 ms38 ms33 mswro-bng1.tpnet.pl [80.50.118.234]
334 ms39 ms33 mswro-r2.tpnet.pl [80.50.119.233]
433 ms33 ms33 ms212.244.172.106
533 ms33 ms32 msdns2.tpsa.pl [194.204.152.34]
Trace complete.
A. nslookup
B. tracert
C. route
D. ping
Polecenie 'tracert' jest narzędziem diagnostycznym w systemie Windows, które pozwala na śledzenie trasy, jaką pakiety danych przechodzą do określonego hosta. Użycie tego polecenia ma kluczowe znaczenie w analityce sieciowej, ponieważ umożliwia zidentyfikowanie opóźnień oraz potencjalnych problemów na trasie do serwera DNS. W wyniku działania 'tracert' uzyskujemy listę wszystkich przekaźników (routerów), przez które przechodzi nasz pakiet, co jest niezwykle przydatne w diagnozowaniu problemów z połączeniem. Na przykład, jeżeli widzimy, że pakiet zatrzymuje się na jednym z przekaźników, może to wskazywać na problem z siecią w danym miejscu. Ponadto, 'tracert' jest zgodne z najlepszymi praktykami w zakresie zarządzania siecią, ponieważ pozwala na wczesną identyfikację problemów i szybkie ich rozwiązanie, co jest zgodne z zasadami efektywnego zarządzania infrastrukturą IT. Warto również zaznaczyć, że 'tracert' działa na zasadzie wysyłania pakietów ICMP Echo Request, co pozwala na pomiar czasu przejazdu do każdego z przekaźników na trasie.

Pytanie 21

Jak wiele punktów rozdzielczych, według normy PN-EN 50174, powinno być umiejscowionych w budynku o trzech kondygnacjach, przy założeniu, że powierzchnia każdej z kondygnacji wynosi około 800 m²?

A. 2
B. 4
C. 3
D. 1
Zgodnie z normą PN-EN 50174, która reguluje wymagania dotyczące planowania i instalacji systemów telekomunikacyjnych w budynkach, liczba punktów rozdzielczych w obiekcie zależy od kilku kluczowych czynników, takich jak powierzchnia kondygnacji oraz ilość kondygnacji. W przypadku 3-kondygnacyjnego budynku o powierzchni każdej kondygnacji wynoszącej około 800 m², norma wskazuje na konieczność zainstalowania trzech punktów rozdzielczych. Każdy punkt rozdzielczy powinien być strategicznie rozmieszczony, aby maksymalizować efektywność sieci telekomunikacyjnej oraz zapewnić łatwy dostęp do infrastruktury. Praktyczne zastosowanie tej zasady sprawdza się w obiektach o dużej powierzchni użytkowej, gdzie odpowiednia liczba punktów rozdzielczych ułatwia zarządzanie siecią, a także minimalizuje ryzyko awarii. Zastosowanie normy PN-EN 50174 w projektowaniu sieci telekomunikacyjnych jest istotne dla zapewnienia nieprzerwanego dostępu do usług, co jest kluczowe w obiektach komercyjnych oraz publicznych.

Pytanie 22

Firma Dyn, której serwery DNS zostały zaatakowane, potwierdziła, że część ataku … miała miejsce dzięki różnym urządzeniom podłączonym do sieci. Ekosystem kamer, czujników oraz kontrolerów, określany ogólnie jako "Internet rzeczy", został wykorzystany przez przestępców jako botnet − sieć zainfekowanych maszyn. Do tej pory tę funkcję pełniły głównie komputery. Jakiego rodzaju atak jest opisany w tym cytacie?

A. DDOS
B. mail bombing
C. flooding
D. DOS
Odpowiedź 'DDOS' jest prawidłowa, ponieważ atak, jak opisano w pytaniu, polegał na wykorzystaniu sieci urządzeń podłączonych do Internetu, takich jak kamery i czujniki, do przeprowadzenia skoordynowanego ataku na serwery DNS firmy Dyn. Termin DDOS, czyli Distributed Denial of Service, odnosi się do ataku, w którym wiele zainfekowanych urządzeń (zwanych botami) prowadzi wspólne działanie mające na celu zablokowanie dostępu do określonego serwisu. W przeciwieństwie do klasycznego ataku DOS, który wykorzystuje pojedyncze źródło, DDOS polega na współpracy wielu urządzeń, co powoduje znacząco wyższy wolumen ruchu, który może przeciążyć serwery. Przykładem zastosowania tej wiedzy w praktyce jest monitorowanie i zabezpieczanie sieci przed atakami DDOS, co często obejmuje wdrażanie systemów ochrony, takich jak zapory sieciowe, systemy detekcji i zapobiegania włamaniom oraz usługi CDN, które mogą rozpraszać ruch, co minimalizuje ryzyko przeciążenia. Standardy branżowe, takie jak NIST SP 800-61, dostarczają wytycznych dotyczących odpowiedzi na incydenty związane z bezpieczeństwem, wskazując na znaczenie przygotowania na ataki DDOS poprzez implementację strategii zarządzania ryzykiem oraz regularne aktualizowanie procedur obronnych.

Pytanie 23

Przy organizowaniu logicznego podziału sieci na podsieci należy brać pod uwagę

A. rodzaj systemu operacyjnego używanego na stacjach roboczych
B. liczbę hostów w każdej z podsieci
C. odległości między poszczególnymi urządzeniami w sieci
D. liczbę portów w przełączniku zarządzanym
Podczas planowania logicznego podziału sieci na podsieci kluczowym aspektem jest zrozumienie liczby hostów, które będą obsługiwane w każdej podsieci. To podejście opiera się na zasadzie, że każda podsieć powinna mieć wystarczającą liczbę adresów IP, aby obsłużyć wszystkie urządzenia, takie jak komputery, drukarki, serwery czy inne urządzenia sieciowe. Na przykład, jeśli planujesz sieć, w której w danym dziale pracuje 50 pracowników, a każdy z nich ma komputer, konieczne będzie uwzględnienie dodatkowych adresów dla urządzeń takich jak drukarki czy skanery. Zgodnie z najlepszymi praktykami, warto przewidzieć rezerwę adresów IP na przyszłość, aby uniknąć problemów z rozbudową sieci. Warto także zaznaczyć, że podział na podsieci powinien być zgodny z zasadą CIDR (Classless Inter-Domain Routing), co umożliwia efektywne zarządzanie przestrzenią adresową. Właściwe zaplanowanie liczby hostów w każdej podsieci pozwoli na optymalne zarządzanie ruchem sieciowym oraz zwiększy wydajność i bezpieczeństwo całej infrastruktury.

Pytanie 24

Przekazywanie tokena (ang. token) ma miejsce w sieci o topologii fizycznej

A. siatki
B. gwiazdy
C. pierścienia
D. magistrali
Architektura siatki to coś zupełnie innego. Tutaj urządzenia są ze sobą wzajemnie połączone, co daje dużą redundancję, ale nie ma tu żadnego żetonu do zarządzania dostępem. W tym modelu węzły komunikują się równolegle, co czasem może prowadzić do kolizji, jeśli nie ma odpowiednich protokołów. A sieć gwiazdowa? Tam mamy centralny węzeł, do którego podłączone są wszystkie inne urządzenia. To się różni od koncepcji żetonu, bo brakuje jednoznacznego mechanizmu przekazywania danych. W sieci magistrali z kolei wszystkie węzły są połączone z jednym medium transmisyjnym. I tu też nie używa się żetonu, dostęp do medium kontrolują różne protokoły, jak CSMA/CD. Generalnie, żadna z tych architektur nie ma kluczowego elementu przekazywania żetonu, co sprawia, że nie działają tak sprawnie jak sieć pierścieniowa. Rozumienie tych różnic jest naprawdę ważne, jeśli chodzi o projektowanie i wdrażanie efektywnych rozwiązań sieciowych.

Pytanie 25

Jakie jest odpowiednik maski 255.255.252.0 w postaci prefiksu?

A. /25
B. /22
C. /24
D. /23
Maska podsieci 255.255.252.0 to nic innego jak prefiks /22. To znaczy, że 22 bity używamy do określenia identyfikatora podsieci w adresie IPv4. Mówiąc prosto, te dwa ostatnie bity dają nam możliwość utworzenia 4 podsieci i 1022 hostów w każdej (liczy się 2^10 - 2, bo trzeba odjąć adres sieci i rozgłoszeniowy). Ta maska jest całkiem przydatna w większych sieciach, gdzie chcemy dobrze zarządzać adresami IP. Na przykład w firmach można ją zastosować do podziału dużych zakresów adresów na mniejsze, lepiej zorganizowane podsieci, co potem pomaga w zarządzaniu ruchem i bezpieczeństwem. Używanie odpowiednich masek podsieci to ważny aspekt w projektowaniu sieci, bo to jedna z tych najlepszych praktyk w branży. A jeśli chodzi o IPv6, to już nie jest tak krytyczne, ale wciąż dobrze wiedzieć, jak to wszystko działa w kontekście routingu i adresowania.

Pytanie 26

Najefektywniejszym sposobem na zabezpieczenie prywatnej sieci Wi-Fi jest

A. zmiana nazwy SSID
B. stosowanie szyfrowania WEP
C. stosowanie szyfrowania WPA-PSK
D. zmiana adresu MAC routera
Stosowanie szyfrowania WPA-PSK (Wi-Fi Protected Access Pre-Shared Key) jest najskuteczniejszą metodą zabezpieczenia domowej sieci Wi-Fi, ponieważ zapewnia silne szyfrowanie danych przesyłanych między urządzeniami a routerem. WPA-PSK wykorzystuje algorytmy szyfrowania TKIP (Temporal Key Integrity Protocol) lub AES (Advanced Encryption Standard), co znacznie podnosi bezpieczeństwo w porównaniu do przestarzałych metod, takich jak WEP. Aby wprowadzić WPA-PSK, użytkownik musi ustawić hasło, które będzie używane do autoryzacji urządzeń w sieci. Praktyczne zastosowanie tej metody polega na regularnej zmianie hasła, co dodatkowo zwiększa bezpieczeństwo. Warto także pamiętać o aktualizacji oprogramowania routera, co jest zgodne z najlepszymi praktykami w zakresie bezpieczeństwa sieci. W przypadku domowych sieci Wi-Fi, zastosowanie WPA-PSK jest standardem, który powinien być przestrzegany, aby chronić prywatność i integralność przesyłanych danych.

Pytanie 27

Do zdalnego administrowania stacjami roboczymi nie używa się

A. programu TeamViewer
B. programu Wireshark
C. programu UltraVNC
D. pulpitu zdalnego
Program Wireshark to narzędzie służące do analizy ruchu sieciowego, a nie do zdalnego zarządzania stacjami roboczymi. Umożliwia on przechwytywanie i analizowanie pakietów danych przesyłanych w sieci, co jest kluczowe w diagnostyce problemów sieciowych oraz zabezpieczaniu infrastruktury IT. Wireshark pozwala na zrozumienie ruchu sieciowego, wykrywanie nieprawidłowości czy analizowanie wydajności, jednak jego funkcjonalność nie obejmuje zdalnego dostępu do komputerów. W praktyce, narzędzie to jest używane przez administratorów sieci, specjalistów ds. bezpieczeństwa oraz inżynierów do monitorowania i analizowania komunikacji w sieci. Przykładowo, przy użyciu Wireshark można zidentyfikować potencjalne ataki, sprawdzić, jakie dane są przesyłane między urządzeniami, a także analizować protokoły sieciowe. W kontekście dobrych praktyk, korzystanie z Wiresharka powinno odbywać się zgodnie z zasadami etyki zawodowej oraz przepisami prawa, szczególnie w odniesieniu do prywatności użytkowników.

Pytanie 28

Narzędzie przedstawione na zdjęciu to

Ilustracja do pytania
A. zaciskarka.
B. ściągacz izolacji.
C. nóż monterski.
D. narzędzie uderzeniowe.
Wybór odpowiedzi, która wskazuje na nóż monterski, zaciskarkę czy narzędzie uderzeniowe, jest błędny z kilku powodów. Nóż monterski, choć jest narzędziem przydatnym w wielu zastosowaniach budowlanych, nie jest przeznaczony do usuwania izolacji z przewodów elektrycznych. Jego główną funkcją jest cięcie materiałów, a nie precyzyjne usuwanie izolacji, co może prowadzić do uszkodzenia przewodów. Zaciskarka, z kolei, jest narzędziem służącym do trwałego łączenia przewodów poprzez zaciskanie, co również nie odpowiada funkcji ściągacza izolacji. Narzędzie uderzeniowe to sprzęt wykorzystywany głównie w pracach budowlanych, takich jak wbijanie gwoździ czy kotwic, co również nie ma związku z usuwaniem izolacji. Typowym błędem myślowym w takich przypadkach jest mylenie zastosowań różnych narzędzi, co może prowadzić do wyboru niewłaściwego narzędzia dla danej aplikacji. Zrozumienie funkcji narzędzi oraz ich klasyfikacji jest kluczowe dla prawidłowego ich stosowania, co jest fundamentem efektywnej i bezpiecznej pracy w branży elektrycznej.

Pytanie 29

Jakie medium transmisyjne powinno się zastosować do połączenia urządzeń sieciowych oddalonych o 110 m w pomieszczeniach, gdzie występują zakłócenia EMI?

A. Światłowodu jednodomowego
B. Kabla współosiowego
C. Fal radiowych
D. Skrętki ekranowanej STP
Analizując odpowiedzi inne niż światłowód jednodomowy, można zauważyć, że mają one sporo ograniczeń, zwłaszcza jeśli chodzi o transmisję danych na większe odległości i w obecności zakłóceń elektromagnetycznych. Kabel współosiowy, mimo że kiedyś był popularny, nie dorasta do pięt światłowodowi, bo ma słabszą przepustowość i wydajność. Ponadto, objawia większą wrażliwość na zakłócenia, co czyni go słabym wyborem w miejscach z dużą ilością EMI. Fal radiowych można używać do bezprzewodowej transmisji danych, ale tutaj znów mamy problem z zasięgiem i stabilnością sygnału, które mogą być niewystarczające, zwłaszcza na takim dystansie jak 110 m – sygnał często traci na jakości. Skrętka ekranowana STP, choć ma pewną ochronę przed zakłóceniami, też nie jest idealna, głównie z powodu ograniczeń długości kabli oraz maksymalnej przepustowości. Często popełniamy błąd, skupiając się na krótkoterminowych kosztach czy wygodzie, a nie myśląc o długoterminowej wydajności i niezawodności. W nowoczesnych sieciach kluczowe jest, aby wybierać rozwiązania, które nie tylko sprostają obecnym wymaganiom, ale też będą przyszłościowe i łatwe do rozbudowy.

Pytanie 30

Podaj zakres adresów IP przyporządkowany do klasy A, który jest przeznaczony do użytku prywatnego w sieciach komputerowych?

A. 10.0.0.0-10.255.255.255
B. 192.168.0.0-192.168.255.255
C. 127.0.0.0-127.255.255.255
D. 172.16.0.0-172.31.255.255
Zakres 127.0.0.0-127.255.255.255 to adresy IP klasy A przeznaczone do pętli zwrotnej (localhost), co oznacza, że są one używane do komunikacji lokalnej w obrębie urządzenia. Ich zastosowanie nie ma nic wspólnego z adresacją prywatną w sieciach komputerowych. Użycie tych adresów w kontekście sieci LAN jest niewłaściwe i może prowadzić do nieporozumień w projektowaniu infrastruktury sieciowej. Adresy 172.16.0.0-172.31.255.255 należą do klasy B, a nie A, i również mogą być używane w sieciach prywatnych, ale w innym zakresie. Nieprawidłowe jest również sugerowanie, że adresy z zakresu 192.168.0.0-192.168.255.255, które są adresami prywatnymi klasy C, mogą być używane w tym kontekście jako alternatywa dla klasy A. Często mylenie tych zakresów prowadzi do błędnego projektowania sieci, co może skutkować problemami z routowaniem oraz bezpieczeństwem danych. Kluczowe jest zrozumienie, że każda klasa adresowa ma swoje specyficzne zastosowania, a nieprawidłowe ich użycie może prowadzić do konfliktów adresowych i obniżenia wydajności sieci. W praktyce, projektując sieci, należy się kierować dobrymi praktykami, aby zoptymalizować zarządzanie adresami IP i uniknąć nieefektywności.

Pytanie 31

Na którym rysunku przedstawiono topologię gwiazdy rozszerzonej?

Ilustracja do pytania
A. 4.
B. 1.
C. 3.
D. 2.
Topologia gwiazdy rozszerzonej to jeden z ważniejszych modeli strukturalnych w sieciach komputerowych, który jest szeroko stosowany w różnych zastosowaniach, takich jak biura czy duże korporacje. Charakteryzuje się tym, że wszystkie urządzenia sieciowe są podłączone do centralnego punktu, którym może być hub, switch lub router. W przypadku rysunku numer 3, widoczny jest wyraźny centralny punkt, do którego podłączone są inne urządzenia sieciowe, a te z kolei łączą się z komputerami użytkowników. Taki układ zapewnia nie tylko efektywność w przesyłaniu danych, ale także ułatwia zarządzanie siecią. W przypadku awarii jednego z urządzeń, tylko jego sąsiednie urządzenia są dotknięte, co zwiększa niezawodność całej sieci. Zastosowanie topologii gwiazdy rozszerzonej jest zgodne z najlepszymi praktykami w projektowaniu sieci, ponieważ pozwala na łatwe dodawanie nowych urządzeń oraz zapewnia lepszą kontrolę nad przepływem danych. Warto również podkreślić, że w kontekście standardów, wiele organizacji korzysta z modeli takich jak IEEE 802.3 dla Ethernetu, które są zgodne z tym typem topologii.

Pytanie 32

Aby serwer DNS mógł poprawnie przekształcać nazwy domenowe na adresy IPv6, konieczne jest skonfigurowanie rekordu

A. MX
B. CNAME
C. A
D. AAAA
Wybór rekordu MX, CNAME czy A zamiast AAAA do odwzorowania nazw domen na adresy IPv6 to spora pomyłka. Rekord MX to przecież serwery pocztowe dla danej domeny, więc w ogóle się nie nadaje do adresów IP. Z kolei rekordy CNAME służą do aliasowania nazw, co też nie ma sensu w tym kontekście. Rekord A również nie jest pomocny, bo on działa tylko z IPv4. Zrozumienie tych różnic jest kluczowe, bo brak odpowiedniego rekordu AAAA w DNS sprawi, że użytkownicy z IPv6 nie będą mogli się połączyć z serwisem. To częsty błąd – myślenie, że wszystkie rekordy DNS mają takie same zastosowania. W rzeczywistości każdy typ rekordu ma swój cel, a korzystanie z nich na właściwy sposób to podstawa w administrowaniu siecią.

Pytanie 33

Po zainstalowaniu roli usług domenowych Active Directory na serwerze Windows, możliwe jest

A. udostępnienie użytkownikom witryny internetowej
B. współdzielenie plików znajdujących się na serwerze
C. centralne zarządzanie użytkownikami oraz komputerami
D. automatyczne przypisywanie adresów IP komputerom w sieci
Wytyczne dotyczące ról i usług w systemach Windows są kluczowe dla skutecznego zarządzania infrastrukturą IT. W kontekście omawianego pytania, pierwsze podejście do udostępniania witryn internetowych nie jest bezpośrednio związane z rolą Active Directory. Chociaż można hostować witryny internetowe na serwerach Windows, sama rola AD DS koncentruje się na zarządzaniu tożsamością, a nie na publikacji treści. Kolejne, dotyczące współużytkowania plików, jest również mylące; AD DS nie zajmuje się bezpośrednio udostępnianiem plików, lecz raczej zarządza dostępem do zasobów, co nie oznacza automatyzacji ich udostępniania. Wreszcie, automatyczne przydzielanie adresów IP należy do roli serwera DHCP, a nie Active Directory. Odpowiedzi, które łączą funkcje AD DS z innymi rolami, mogą wynikać z nieporozumienia co do obszaru działania usług Windows Server. Kluczowe jest zrozumienie specyfiki każdej roli i jej funkcji, aby uniknąć takich nieporozumień. Odpowiednie przypisanie ról i zrozumienie ich właściwej funkcjonalności jest zgodne z najlepszymi praktykami w administrowaniu systemami, co z kolei zapewnia sprawniejsze zarządzanie infrastrukturą sieciową.

Pytanie 34

Moduł SFP, który jest wymienny i zgodny z normami, odgrywa jaką rolę w urządzeniach sieciowych?

A. konwertera mediów
B. interfejsu do diagnostyki
C. zasilania rezerwowego
D. dodatkowej pamięci operacyjnej
Moduł SFP nie ma nic wspólnego z zasilaniem awaryjnym. Ta funkcja należy do systemów UPS (Uninterruptible Power Supply), które ratują sytuację, gdy prąd znika. Co do pamięci RAM, to też niedobrze myślisz. SFP nie służy do zwiększania pamięci w urządzeniach, jego zadanie to tylko konwersja sygnałów. Ludzie czasami mylą SFP z czymś, co ma podnieść wydajność pamięci, a to jest zupełnie inne zagadnienie. Interfejs diagnostyczny też nie wchodzi w grę dla modułu SFP. One nie są zaprojektowane jako narzędzia do analizy, tylko do fizycznego łączenia w sieci. Częstym błędem jest mylenie funkcji fizycznych komponentów z ich rolą w zarządzaniu i diagnostyce. Taki sposób myślenia może prowadzić do złego zarządzania siecią i wyboru złych komponentów, co później źle wpływa na wydajność i niezawodność całego systemu.

Pytanie 35

Aby uzyskać sześć podsieci z sieci o adresie 192.168.0.0/24, co należy zrobić?

A. zmniejszyć długość maski o 2 bity
B. zwiększyć długość maski o 3 bity
C. zmniejszyć długość maski o 3 bity
D. zwiększyć długość maski o 2 bity
Zwiększenie długości maski o 2 bity nie jest wystarczające do wydzielenia sześciu podsieci. W takim przypadku, przy dodaniu dwóch bitów do maski /24, otrzymujemy maskę /26. Zastosowanie maski /26 pozwala na uzyskanie jedynie 4 podsieci, co nie spełnia wymagań. Ponadto, zmniejszenie długości maski o 2 lub 3 bity prowadzi do zwiększenia liczby dostępnych hostów w każdej podsieci, co w przypadku potrzeby stworzenia większej ilości podsieci jest niewłaściwe. Zmniejszenie maski z /24 powoduje, że część adresów sieciowych zostaje użyta na identyfikację hostów, co ogranicza liczbę generowanych podsieci. Prawidłowe planowanie adresacji IP wymaga zrozumienia, że każda zmiana maski wpływa na liczbę dostępnych podsieci oraz hostów. Przy tworzeniu sieci, należy stosować standardowe praktyki, takie jak rozważenie liczby przyszłych podsieci oraz potencjalnych potrzeb w zakresie adresacji. Niepoprawne podejścia mogą prowadzić do nagromadzenia adresów IP i problemów z zarządzaniem siecią, co jest sprzeczne z zasadami efektywnej administracji sieci.

Pytanie 36

Który z poniższych adresów jest adresem prywatnym zgodnym z dokumentem RFC 1918?

A. 172.0.0.1
B. 172.16.0.1
C. 171.0.0.1
D. 172.32.0.1
Adres 172.16.0.1 jest poprawnym adresem prywatnym, definiowanym przez dokument RFC 1918, który ustanawia zakresy adresów IP przeznaczonych do użytku w sieciach lokalnych. Adresy prywatne nie są routowane w Internecie, co oznacza, że mogą być używane w sieciach wewnętrznych bez obawy o kolizje z adresami publicznymi. Zakres adresów prywatnych dla klasy B obejmuje 172.16.0.0 do 172.31.255.255, zatem 172.16.0.1 znajduje się w tym zakresie. Przykładowo, firmy często wykorzystują te adresy do budowy sieci lokalnych (LAN), co pozwala urządzeniom w sieci na komunikację bez potrzeby posiadania publicznego adresu IP. W praktyce, urządzenia takie jak routery lokalne przydzielają adresy prywatne w ramach sieci, a następnie wykorzystują translację adresów sieciowych (NAT) do komunikacji z Internetem, co zwiększa bezpieczeństwo i efektywność przydziału adresów.

Pytanie 37

W lokalnej sieci stosowane są adresy prywatne. Aby nawiązać połączenie z serwerem dostępnym przez Internet, trzeba

A. przypisać adres publiczny jako dodatkowy adres karty sieciowej na każdym hoście
B. skonfigurować translację NAT na ruterze brzegowym lub serwerze
C. ustawić sieci wirtualne w obrębie sieci lokalnej
D. dodać drugą kartę sieciową z adresem publicznym do każdego hosta
Wszystkie niepoprawne odpowiedzi odnoszą się do koncepcji, które nie są zgodne z zasadami działania adresacji IP oraz praktykami zarządzania siecią. Konfiguracja sieci wirtualnych w sieci lokalnej nie ma wpływu na komunikację z Internetem, ponieważ VLSM (Variable Length Subnet Mask) i sieci VLAN (Virtual Local Area Network) służą jedynie do strukturyzacji lokalnej sieci, a nie do umożliwienia dostępu do Internetu. Ponadto, przypisanie adresu publicznego jako drugiego adresu karty sieciowej na każdym hoście jest niepraktyczne i może prowadzić do konfliktów adresowych, a także zwiększa ryzyko bezpieczeństwa, ponieważ każdy host byłby bezpośrednio dostępny z Internetu. Dodatkowo, dodawanie drugiej karty sieciowej z adresem publicznym do każdego hosta narusza zasady efektywnego zarządzania adresami IP, ponieważ publiczne adresy są ograniczone i kosztowne, a ich użycie na każdym urządzeniu w sieci lokalnej jest nieekonomiczne. Typowym błędem myślowym jest założenie, że każdy host musi mieć unikalny adres publiczny, co jest sprzeczne z zasadami NAT, które umożliwiają wielu urządzeniom korzystanie z jednego adresu publicznego. Całościowe podejście do projektowania sieci powinno obejmować NAT jako kluczowy element, co pozwala na optymalne wykorzystanie zasobów adresacji IP, jak również zwiększa bezpieczeństwo dostępu do zasobów w Internecie.

Pytanie 38

Która z poniższych właściwości kabla koncentrycznego RG-58 sprawia, że nie jest on obecnie stosowany w budowie lokalnych sieci komputerowych?

A. Brak opcji nabycia dodatkowych urządzeń sieciowych
B. Maksymalna odległość między stacjami wynosząca 185 m
C. Koszt narzędzi potrzebnych do montażu i łączenia kabli
D. Maksymalna prędkość przesyłania danych wynosząca 10 Mb/s
Kabel koncentryczny RG-58 charakteryzuje się maksymalną prędkością transmisji danych wynoszącą 10 Mb/s, co w kontekście współczesnych wymagań sieciowych jest zdecydowanie zbyt niską wartością. W dzisiejszych lokalnych sieciach komputerowych (LAN) standardy, takie jak Ethernet, wymagają znacznie wyższych prędkości – obecnie powszechnie stosowane są technologie pozwalające na przesył danych z prędkościami 100 Mb/s (Fast Ethernet) oraz 1 Gb/s (Gigabit Ethernet), a nawet 10 Gb/s w nowoczesnych rozwiązaniach. Z tego powodu, na etapie projektowania infrastruktury sieciowej, wybór kabla o niskiej prędkości transmisji jak RG-58 jest nieefektywny i przestarzały. Przykładowo, w przypadku dużych sieci korporacyjnych, gdzie przesyłanie dużych plików lub obsługa wielu jednoczesnych użytkowników jest normą, kabel RG-58 nie spełnia wymogów wydajnościowych oraz jakościowych. Dlatego też jego zastosowanie w lokalnych sieciach komputerowych jest obecnie niezalecane, co czyni go nieodpowiednim wyborem.

Pytanie 39

Aplikacja, która pozwala na przechwytywanie pakietów oraz analizowanie aktywności w sieci, to

A. firewall
B. skaner Wifi
C. skaner sieci
D. oprogramowanie antywirusowe
Wybór narzędzi zabezpieczających sieć wymaga zrozumienia ich specyficznych funkcji i zastosowań. Wifi skaner, choć może dostarczać informacji o dostępnych sieciach bezprzewodowych, nie jest zaprojektowany do przechwytywania i analizy pakietów w ten sposób, jak robi to skaner sieci. Głównym celem wifi skanera jest identyfikacja sieci Wi-Fi, ocena ich sygnału oraz możliwość sprawdzenia, czy są jakieś problemy z zakłóceniem w eterze. Antywirus z kolei skupia się na wykrywaniu i eliminacji złośliwego oprogramowania, ale nie monitoruje czy nie analizuje ruchu sieciowego w czasie rzeczywistym, co jest kluczowe w kontekście zarządzania bezpieczeństwem sieci. Mimo że zapora sieciowa jest fundamentem ochrony sieci, kontrolując ruch przychodzący i wychodzący, jej główną funkcją jest filtrowanie oraz ochrona przed nieautoryzowanym dostępem, a nie analizy pakietów. Typowym błędem jest mylenie funkcji tych narzędzi, co może prowadzić do niewłaściwego doboru rozwiązań zabezpieczających. Kluczowe w zarządzaniu bezpieczeństwem jest zrozumienie różnic między tymi narzędziami oraz ich właściwe zastosowanie w kontekście ochrony przed zagrożeniami w cyberprzestrzeni.

Pytanie 40

Narzędzie z grupy systemów Windows tracert służy do

A. śledzenia ścieżki przesyłania pakietów w sieci
B. wyświetlania oraz modyfikacji tablicy trasowania pakietów sieciowych
C. uzyskiwania szczegółowych informacji dotyczących serwerów DNS
D. nawiązywania połączenia zdalnego z serwerem na wyznaczonym porcie
Wygląda na to, że wybrałeś złe odpowiedzi, bo pomyliłeś funkcje narzędzia <i>tracert</i>. To narzędzie nie jest do zmieniania tablicy trasowania pakietów, tym zajmują się inne programy, jak <i>route</i>. <i>Tracert</i> bardziej koncentruje się na tym, jak pakiety przemieszczają się przez sieć, a nie na ich routingu. Ponadto, jeśli myślisz, że <i>tracert</i> może szukać informacji o serwerach DNS, to też nie jest do końca prawda. To narzędzie może pokazać niektóre trasy do serwerów DNS, ale nie jest to jego główna rola. Jeszcze jest ten temat łączenia się ze zdalnym serwerem na określonym porcie – <i>tracert</i> tego nie robi, on tylko śledzi trasę pakietów. Często ludzie mylą te różne funkcje, co prowadzi do błędnych wniosków. Dobrze byłoby, jakbyś poświęcił chwilę na poznanie możliwości różnych narzędzi, żeby uniknąć takich pomyłek.