Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.05 - Eksploatacja maszyn, urządzeń i instalacji elektrycznych
  • Data rozpoczęcia: 17 grudnia 2025 20:40
  • Data zakończenia: 17 grudnia 2025 21:20

Egzamin zdany!

Wynik: 27/40 punktów (67,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Przedstawione w tabeli wyniki pomiarów rezystancji uzwojeń i izolacji silnika trójfazowego wskazują na

Pomiar między
zaciskami silnika
Rezystancja
U1 – U232 Ω
V1 – V232 Ω
W1 – W232 Ω
U1 – V10
V1 – W15 MΩ
U1– W15 MΩ
U1 – PE0
V1 – PE0
W1 – PE5 MΩ
A. uszkodzoną izolację w uzwojeniach U1 — U2 oraz V1 — V2
B. przerwę w uzwojeniu U1 — U2
C. zwarcie międzyzwojowe w uzwojeniu W1 — W2
D. zwarcie między uzwojeniami U1 — U2 oraz W1 - W2
Wybrałeś odpowiedź mówiącą o uszkodzonej izolacji w uzwojeniach U1 — U2 oraz V1 — V2, i to jest akurat słuszne. Wyniki pomiarów rezystancji pokazują wyraźne anomalie. Na przykład, rezystancja izolacji między uzwojeniem U1 a V1 wynosi 0 Ω, co jasno wskazuje, że izolacji tam nie ma. Prowadzi to do potencjalnego zagrożenia dla bezpieczeństwa zarówno urządzenia, jak i użytkowników. Z mojej perspektywy, dobrze jest pamiętać, że normy branżowe, jak IEC 60034 dotyczące silników elektrycznych, mówią, że odpowiednie wartości rezystancji są kluczowe dla bezpieczeństwa i niezawodności silnika. Regularne pomiary rezystancji izolacji powinny być częścią rutyny konserwacji, żeby móc wcześnie wykrywać problemy i unikać awarii. Dbanie o tę izolację jest naprawdę istotne, bo jej uszkodzenie może prowadzić do zwarcia, co może zrujnować silnik i inne elementy systemu zasilania. W praktyce, ważne jest, żeby trzymać się pewnych procedur pomiarowych i konserwacyjnych – to naprawdę fundament, by działać zgodnie z najlepszymi praktykami.

Pytanie 2

Jednofazowa grzałka o mocy 4 kW jest zasilana przewodem o długości 10 m i przekroju 1,5 mm². W jaki sposób zmienią się straty mocy w przewodzie zasilającym, gdy jego przekrój wyniesie 2,5 mm²?

A. Zwiększą się o 40%
B. Zmniejszą się o 40%
C. Zmniejszą się o 100%
D. Zwiększą się o 100%
Przy zwiększeniu przekroju przewodu z 1,5 mm² do 2,5 mm² straty mocy w przewodzie ulegają redukcji o 40%. Straty mocy w przewodach elektrycznych są funkcją oporu, który z kolei zależy od przekroju przewodu, długości oraz materiału, z którego jest wykonany. Opór przewodu można obliczyć ze wzoru: R = ρ * (L / A), gdzie ρ to oporność właściwa materiału, L to długość przewodu, a A to jego przekrój. Zwiększenie powierzchni przekroju przewodu zmniejsza opór, co prowadzi do mniejszych strat mocy na skutek efektu Joule'a, gdzie moc stratna P = I² * R. Przykładowo, w instalacjach przemysłowych, gdzie wykorzystywane są długie przewody zasilające, zastosowanie większego przekroju przewodu nie tylko poprawia efektywność energetyczną, ale także zmniejsza ryzyko przegrzewania się przewodów oraz awarii. Standardy takie jak PN-IEC 60364 zalecają stosowanie odpowiednich przekrojów przewodów, aby zminimalizować straty energii oraz zwiększyć bezpieczeństwo instalacji elektrycznych.

Pytanie 3

Podczas przeprowadzania okresowych pomiarów instalacji elektrycznej w układzie TN-S, w jednym z obwodów gniazd jednofazowych 230 V stwierdzono zbyt wysoką wartość impedancji pętli zwarcia. Jakie działania należy podjąć w pierwszej kolejności, aby zidentyfikować problem?

A. Zmierzyć ciągłość przewodów ochronnych PE
B. Sprawdzić funkcję przycisku "TEST" na wyłączniku RCD
C. Zmierzyć rezystancję izolacji przewodów w tym obwodzie
D. Sprawdzić kondycję połączeń przewodów w puszkach oraz aparatach
Wybór opcji sprawdzenia stanu połączeń przewodów w puszkach i aparatach jest kluczowy przy identyfikacji problemów z impedancją pętli zwarcia w instalacji elektrycznej. Wysoka wartość impedancji pętli zwarcia może wskazywać na luźne lub uszkodzone połączenia, które są krytyczne dla zapewnienia bezpieczeństwa i prawidłowego działania instalacji. W przypadku obwodów gniazd jednofazowych, zidentyfikowanie i naprawa luźnych połączeń jest priorytetem, ponieważ takie usterki mogą prowadzić do niebezpiecznych skutków, jak np. nieprawidłowe działanie zabezpieczeń, a w skrajnych przypadkach do porażenia prądem. Dobre praktyki przewidują regularne sprawdzanie stanu połączeń oraz ich poprawności zgodnie z obowiązującymi normami, takimi jak PN-IEC 60364. W praktyce, zweryfikowanie stanu połączeń powinno obejmować nie tylko wizualną inspekcję, ale także testy pomocnicze, które mogą potwierdzić ich integralność i ciągłość.

Pytanie 4

Podczas serwisowania urządzenia wymieniono uszkodzony silnik bocznikowy prądu stałego. W trakcie próbnego uruchamiania silnika zauważono, że jego prędkość obrotowa jest wyższa od wartości nominalnej. Co może być przyczyną tego zjawiska?

A. Uszkodzenie w połączeniu uzwojenia bocznikowego z zasilaczem
B. Uszkodzenie w połączeniu uzwojenia twornika z zasilaczem
C. Zwarcie w obwodzie wzbudzenia silnika
D. Brak obciążenia na silniku
Brak połączenia w uzwojeniu bocznikowym z zasilaniem to spory problem, bo prowadzi to do niskiego wzbudzenia silnika, a przez to nie możemy kontrolować jego prędkości obrotowej. W silnikach bocznikowych to właśnie prąd wzbudzenia jest mega ważny, żeby prędkość była stabilna. Jak coś jest nie tak z połączeniem, prąd wzbudzenia spada, a to może sprawić, że silnik zacznie kręcić się szybciej niż powinien. Warto o tym pamiętać i regularnie sprawdzać połączenia elektryczne w układach napędowych, żeby uniknąć nieprzyjemnych sytuacji. Są różne normy, na przykład IEC 60034, które podkreślają, jak ważne jest poprawne wzbudzenie dla bezpieczeństwa i efektywności działania silnika. A jak ktoś modernizuje silnik lub wymienia jego części, to dobrze jest użyć odpowiednich narzędzi do diagnozowania, żeby mieć pewność, że wszystko działa jak należy i żeby silnik się nie rozbiegał.

Pytanie 5

W trakcie serwisowania silnika indukcyjnego jednofazowego pracownik przez przypadek zamienił miejscami kondensator rozruchowy o pojemności 300 µF z kondensatorem roboczym o pojemności 50 µF. Jakie mogą być konsekwencje tego błędu?

A. Silnik zmieni swój kierunek obrotów
B. Silnik nie włączy się
C. Uszkodzenie uzwojenia pomocniczego po kilku minutach działania silnika
D. Zniszczenie kondensatora 50 µF podczas uruchamiania silnika
Istnieje kilka nieporozumień związanych z błędnymi odpowiedziami. Zamiana kondensatora rozruchowego z kondensatorem pracy nie spowoduje uszkodzenia kondensatora 50 µF w chwili rozruchu, ponieważ kondensator ten nie jest przeznaczony do pracy w warunkach rozruchowych. Jego zadaniem jest podtrzymywanie momentu obrotowego podczas pracy silnika. Dodatkowo, zmiana kierunku wirowania silnika nie jest możliwa w tej sytuacji. Kierunek obrotów silnika indukcyjnego jednofazowego jest determinowany przez przesunięcie fazowe, które nie zostanie osiągnięte przy użyciu niewłaściwego kondensatora. Co więcej, twierdzenie, że uzwojenie pomocnicze może się uszkodzić po kilku minutach pracy, jest również błędne, ponieważ w rzeczywistości silnik po prostu nie uruchomi się, co zapobiegnie jego uszkodzeniu. Kluczowym błędem myślowym w tych odpowiedziach jest niezrozumienie zasady działania kondensatorów w silnikach jednofazowych, co prowadzi do nieprawidłowych wniosków o skutkach zamiany kondensatorów. Zastosowanie niewłaściwego kondensatora w systemach elektrycznych może prowadzić do nieodwracalnych uszkodzeń, dlatego istotne jest przestrzeganie zaleceń producentów oraz standardów branżowych przy konserwacji i naprawie urządzeń elektrycznych.

Pytanie 6

Na wyjściu układu zasilacza przedstawionego na schemacie zaobserwowano przebieg napięcia pokazany na rysunku. Oznacza to, że

Ilustracja do pytania
A. uszkodzona jest dioda, a kondensator jest sprawny.
B. uszkodzona jest dioda i kondensator.
C. dioda jest sprawna, a uszkodzony jest kondensator.
D. układ pracuje prawidłowo.
W analizowanym przypadku, błędne odpowiedzi sugerują nieprawidłowe interpretacje działania układu zasilacza. W pierwszym przypadku stwierdzono uszkodzenie diody i sprawność kondensatora, co jest niezgodne z obserwowanym przebiegiem napięcia, który pokazuje, że dioda działa poprawnie, a kondensator jest odpowiedzialny za pulsacje. Kolejna koncepcja zakłada, że zarówno dioda, jak i kondensator są uszkodzone. Taki wniosek prowadzi do błędnych założeń, ponieważ jeśli dioda byłaby uszkodzona, prąd nie przepływałby w ogóle, a przebieg napięcia byłby znacznie bardziej chaotyczny. W przypadku trzeciej opcji, twierdzenie, że układ pracuje prawidłowo, jest mylące, gdyż pulsujące napięcie wskazuje na problemy z kondensatorem. Uszkodzenie kondensatora skutkuje wzrostem tętnień, co nie jest akceptowalne w standardach dotyczących stabilności zasilania w urządzeniach elektronicznych. Typowe błędy myślowe obejmują ignorowanie kluczowej roli kondensatora w procesie filtrowania oraz niewłaściwe przypisanie funkcji diody. Zrozumienie tych podstawowych zasad działania układów zasilających jest niezbędne do poprawnej diagnostyki i konserwacji sprzętu elektronicznego.

Pytanie 7

Skuteczność ochrony przeciwporażeniowej w sieci typu TN o napięciu 230/400 V jest zapewniona, gdy w czasie zwarcia L-PE (lub L-PEN) w odpowiednich warunkach środowiskowych dojdzie do

A. reakcji zabezpieczeń przednapięciowych
B. odłączenia obwodu przez przekaźnik termiczny
C. automatycznego wyłączenia zasilania
D. reakcji zabezpieczeń przeciwprzepięciowych
W przypadku sieci typu TN o napięciu 230/400 V, skuteczna ochrona przeciwporażeniowa w sytuacji zwarcia L-PE (lub L-PEN) polega na samoczynnym wyłączeniu zasilania. To działanie jest kluczowe dla minimalizacji ryzyka porażenia prądem elektrycznym, ponieważ szybkie odłączenie zasilania ogranicza czas narażenia ludzi na niebezpieczeństwo. W praktyce oznacza to, że w momencie wykrycia zwarcia, urządzenia zabezpieczające, takie jak wyłączniki różnicowoprądowe lub wyłączniki automatyczne, powinny natychmiast zareagować i przerwać dopływ prądu do obwodu. Zgodnie z normą PN-EN 60364, czas wyłączenia zasilania powinien być dostosowany do specyfiki instalacji oraz warunków środowiskowych. W wielu przypadkach czas reakcji zabezpieczeń powinien wynosić nie więcej niż 0,4 sekundy dla systemów zasilających o napięciu do 400 V. W praktyce, aby zapewnić bezpieczeństwo użytkowników, niezwykle istotne jest regularne sprawdzanie i konserwacja urządzeń zabezpieczających, co zapobiega ich niesprawności w sytuacjach awaryjnych. Samoczynne wyłączenie zasilania to więc fundamentalny element ochrony przeciwporażeniowej, który powinien być brany pod uwagę na etapie projektowania oraz eksploatacji instalacji elektrycznych.

Pytanie 8

Jaką wkładkę topikową bezpiecznikową powinno się wykorzystać do ochrony silnika indukcyjnego przed skutkami zwarć?

A. WT-00 gF
B. WT/NHaM
C. WT/NH DC
D. WT-2gTr
Wkładka topikowa WT/NHaM została zaprojektowana specjalnie do ochrony silników indukcyjnych przed skutkami zwarć. Posiada ona właściwości, które pozwalają na szybkie odłączenie obwodu w przypadku wystąpienia zwarcia, co jest kluczowe dla ochrony zarówno samego silnika, jak i całej instalacji elektrycznej. Zastosowanie tej wkładki jest zgodne z normami IEC 60269, które definiują wymagania dotyczące wkładek bezpiecznikowych. W praktyce, wkładki WT/NHaM charakteryzują się niskimi wartościami prądu zwarciowego, co zapewnia ich efektywność w przypadku krótkotrwałych przeciążeń, typowych dla pracy silników. W przypadku, gdy w silniku dojdzie do zwarcia, wkładka ta reaguje w sposób błyskawiczny, co minimalizuje ryzyko uszkodzenia komponentów. Przykładem zastosowania może być przemysł, w którym silniki napędzają maszyny, a ich bezpieczne i niezawodne funkcjonowanie jest kluczowe dla ciągłości produkcji.

Pytanie 9

Która z wymienionych czynności nie jest częścią oceny stanu technicznego podczas przeglądu układu napędowego z wykorzystaniem przekształtnika energoelektronicznego?

A. Ocena czystości filtrów powietrza chłodzącego
B. Weryfikacja jakości zabezpieczeń nadprądowych oraz zmiennozwarciowych
C. Sprawdzenie natężenia oświetlenia na stanowisku obsługi układu napędowego
D. Kontrola połączeń stykowych
Sprawdzanie natężenia oświetlenia na stanowisku obsługi układu napędowego to nie to samo, co przegląd stanu technicznego tego układu. Jak dla mnie, w takim przeglądzie powinniśmy skupić się na kluczowych aspektach, które wpływają na to, czy układ działa wydajnie i bezpiecznie. Na przykład, trzeba by sprawdzić zabezpieczenia nadprądowe i zmiennozwarciowe, bo one chronią urządzenia przed uszkodzeniem, gdy coś idzie nie tak, jak powinno. I nie zapominajmy o połączeniach stykowych, które odpowiadają za przekazywanie sygnałów elektrycznych. Filtry powietrza chłodzącego też mają ogromne znaczenie, bo odpowiednia temperatura pracy układu wpływa na jego długowieczność. Zadbanie o te wszystkie aspekty to klucz do efektywności operacyjnej oraz bezpieczeństwa użycia systemów z przekształtnikami. Przeglądy zgodne z normami, jak IEC 60204, mogą pomóc w uniknięciu awarii i sprawić, że układy napędowe będą działały jak należy.

Pytanie 10

Na podstawie wyników pomiarów zamieszczonych w przedstawionej tabeli określ uszkodzenie występujące w instalacji.

Pomiar napięcia między przewodem PE i drugim punktem instalacji
Drugi punkt pomiaru:Przewód fazowy LPrzewód neutralny NMetalowa rura COMetalowa rura gazowaMetalowa wanna łazienkowa
232 V0 V51 V49 V0 V
Wynik:232 V0 V51 V49 V0 V
A. Przebicie izolacji przewodu fazowego do metalowych rur.
B. Zwarcie między przewodem neutralnym i fazowym.
C. Uszkodzone połączenia wyrównawcze miejscowe.
D. Uszkodzona izolacja przewodu neutralnego w pobliżu wanny.
Wybór niepoprawnej odpowiedzi często wynika z błędnego zrozumienia zasad działania instalacji elektrycznych oraz pomiarów napięcia. Przebicie izolacji przewodu fazowego do metalowych rur może sugerować, że izolacja jest w złym stanie, jednak w przypadku obecności napięcia na metalowych elementach, ważniejsze jest zrozumienie, że to nieprawidłowości w połączeniach wyrównawczych mogą być przyczyną takich zjawisk. Zwarcie między przewodem neutralnym a fazowym, choć groźne, nie tłumaczy obecności napięcia na metalowych elementach, które powinny być uziemione. Uszkodzona izolacja przewodu neutralnego w pobliżu wanny to inny problem, który z kolei jest bardziej związany z bezpieczeństwem użytkowników, ale nie wyjaśnia zjawiska napięcia na metalowych rurach. Każda z tych opcji nie odnosi się w wystarczający sposób do problemu, który pojawia się w wyniku niewłaściwego działania połączeń wyrównawczych. W szczególności, nieprawidłowe myślenie prowadzi do pominięcia fundamentalnych zasad związanych z uziemieniem i ochroną przeciwporażeniową. Kluczowe jest, aby instalacje były projektowane i wykonane zgodnie z aktualnymi normami, a ich regularna kontrola zapewnia bezpieczeństwo i eliminację potencjalnych zagrożeń.

Pytanie 11

Zgodnie z obowiązującymi przepisami, minimalna rezystancja izolacji uzwojeń silnika asynchronicznego o mocy 5 kW w temperaturze 20˚C powinna wynosić

A. 5 MΩ
B. 1 MΩ
C. 10 MΩ
D. 3 MΩ
Wybór niższej wartości minimalnej rezystancji izolacji, takiej jak 1 MΩ, 3 MΩ czy 10 MΩ, jest wynikiem niepełnego zrozumienia norm dotyczących bezpieczeństwa oraz wydajności silników elektrycznych. Przede wszystkim, zbyt niska wartość rezystancji izolacji, jak 1 MΩ, nie spełnia standardów, co może prowadzić do niebezpieczeństwa porażenia prądem, a także zwiększa ryzyko wystąpienia zwarć wewnętrznych. Silniki asynchroniczne są zaprojektowane tak, aby ich izolacja wytrzymywała znacznie wyższe napięcia i obciążenia, dlatego wartość 5 MΩ jest uważana za minimalną. Wybór 10 MΩ, choć teoretycznie wydaje się lepszą opcją, może być mylny, ponieważ zbyt wysoka rezystancja również może wskazywać na problemy z izolacją, takie jak nadmierne osuszenie materiału izolacyjnego, co prowadzi do jego kruchości i pęknięć. W praktyce, odpowiednie pomiary powinny być wykonywane z użyciem odpowiednich narzędzi, takich jak megger, aby dokładnie ocenić stan izolacji i zapewnić, że nie spadnie ona poniżej wspomnianych norm. Regularne monitorowanie rezystancji izolacji jest kluczowe w utrzymaniu silników w dobrym stanie, co przekłada się na ich długowieczność i optymalną wydajność. Ignorowanie tych zasad może prowadzić nie tylko do awarii silnika, ale również do poważnych wypadków w miejscu pracy.

Pytanie 12

W instalacji domowej 230/400 V obwód zasilający elektryczną kuchnię o grzaniu rezystancyjnym jest chroniony przez wyłącznik nadprądowy typu S 194 B20. Jaką największą moc może mieć kuchnia podłączona do tego obwodu?

A. 6,6 kW
B. 24,0 kW
C. 8,0 kW
D. 13,8 kW
Odpowiedź 13,8 kW jest poprawna, ponieważ wyłącznik nadprądowy typu S 194 B20 ma wartość znamionową 20 A. W instalacji 230/400 V maksymalna moc obwodu można obliczyć za pomocą wzoru P = U * I, gdzie P to moc, U to napięcie, a I to prąd. W przypadku zasilania jednofazowego, przy napięciu 230 V, moc oblicza się jako: P = 230 V * 20 A = 4600 W, co odpowiada 4,6 kW. Jednak w przypadku kuchni elektrycznej z nagrzewaniem rezystancyjnym możliwe jest także wykorzystanie zasilania trójfazowego. Przy wykorzystaniu napięcia 400 V i prądu 20 A, całkowita moc wynosi: P = 400 V * 20 A * √3 = 13,8 kW. Taki przydział mocy jest zgodny z normami i dobrymi praktykami w zakresie instalacji elektrycznych, co pozwala na bezpieczne użytkowanie kuchni elektrycznej, zapewniając jednocześnie odpowiednią funkcjonalność urządzeń. W praktyce, warto dbać o to, aby całkowite obciążenie obwodu nie przekraczało jego maksymalnych dopuszczalnych wartości, co zapobiega awariom i gwarantuje bezpieczne korzystanie z urządzeń elektrycznych.

Pytanie 13

W jakim celu stosuje się kompensację mocy biernej w instalacjach przemysłowych?

A. Zmniejszenia strat energii i poprawy współczynnika mocy
B. Zwiększenia częstotliwości prądu
C. Zwiększenia napięcia znamionowego
D. Zmniejszenia prędkości obrotowej silników
Kompensacja mocy biernej jest kluczowym zagadnieniem w kontekście instalacji przemysłowych, ponieważ wpływa bezpośrednio na efektywność energetyczną systemu. Moc bierna to ta część zużywanej energii elektrycznej, która nie wykonuje użytecznej pracy, ale jest niezbędna do podtrzymania pola elektromagnetycznego w urządzeniach takich jak transformatory i silniki indukcyjne. Zastosowanie kompensacji mocy biernej, zazwyczaj za pomocą baterii kondensatorów, prowadzi do poprawy współczynnika mocy, co oznacza, że więcej dostarczonej energii jest wykorzystywane na pracę użyteczną. Dzięki temu zmniejszają się straty energii w systemie, co przekłada się na niższe rachunki za energię i zmniejszenie obciążenia sieci energetycznej. Co więcej, poprawa współczynnika mocy może również prowadzić do zmniejszenia opłat za moc bierną, które są często naliczane przez dostawców energii jako kara za niską efektywność energetyczną. Dlatego kompensacja mocy biernej jest nie tylko korzystna z punktu widzenia efektywności, ale również może przynieść wymierne korzyści finansowe dla przedsiębiorstw.

Pytanie 14

Uszkodzenie izolacji uzwojenia w działającym przekładniku może wystąpić na skutek rozłączenia zacisków jego strony

A. pierwotnej przekładnika napięciowego
B. wtórnej przekładnika napięciowego
C. pierwotnej przekładnika prądowego
D. wtórnej przekładnika prądowego
Odpowiedzi związane z pierwotnym uzwojeniem przekładników prądowych i napięciowych są nieprawidłowe, ponieważ zakładają, że rozwarcie może wystąpić w obwodzie, który nie generuje niebezpiecznych warunków. W rzeczywistości pierwotne uzwojenie przekładnika prądowego jest na stałe podłączone do obwodu zasilającego i nie jest narażone na bezpośrednie rozwarcie, co powodowałoby wzrost napięcia na jego końcach. W przypadku przekładnika napięciowego, rozwarcie uzwojenia wtórnego może prowadzić do sytuacji, w której napięcie na uzwojeniu pierwotnym wzrasta, ale nie prowadzi to do uszkodzenia izolacji. Typowym błędem myślowym jest mylenie ról uzwojeń wtórnych i pierwotnych; uzwojenia wtórne są wrażliwe na rozwarcia, które prowadzą do ryzykownych warunków operacyjnych z powodu braku obciążenia. Dlatego istotne jest, aby zrozumieć, że uszkodzenia izolacji wynikają głównie z nieprawidłowego działania obwodów wtórnych, a nie pierwotnych, co powinno być uwzględnione w każdym projekcie systemu energetycznego. Przestrzeganie norm oraz stosowanie odpowiednich zabezpieczeń to kluczowe elementy zapewniające bezpieczeństwo i niezawodność systemów elektroenergetycznych.

Pytanie 15

Należy kontrolować instalację elektryczną w obiektach o wysokiej wilgotności (75-100%) pod kątem efektywności ochrony przed porażeniem nie rzadziej niż co

A. 1 rok
B. 3 lata
C. 4 lata
D. 2 lata
Sprawdzenie instalacji elektrycznej przynajmniej raz do roku w wilgotnych pomieszczeniach to naprawdę ważna sprawa. Jest to zgodne z zasadami bezpieczeństwa i ochrony przed porażeniem prądem. Jeśli wilgotność w pomieszczeniu wynosi od 75% do 100%, ryzyko porażenia wzrasta, więc warto, żebyśmy zajmowali się tym regularniej. Dobrze jest przeprowadzać inspekcje urządzeń i instalacji, żeby upewnić się, że nic nie zagraża bezpieczeństwu. Do takiej kontroli należy sprawdzić stan przewodów, działanie wyłączników różnicowoprądowych oraz ogólny stan instalacji. Na przykład, w łazience, gdzie wilgotność jest wysoka, regularne kontrole oświetlenia są kluczowe. Dzięki odpowiednim testom i konserwacji można uniknąć niebezpiecznych sytuacji. Warto też pamiętać o normie PN-EN 61140, która wskazuje na potrzebę regularnych przeglądów w takich warunkach.

Pytanie 16

Zwiększenie liczby kabli umieszczonych w jednej rurze instalacyjnej spowoduje

A. zmniejszenie dopuszczalnego obciążenia prądem długotrwałym jednego kabla
B. wydłużenie czasu osiągania granicznej temperatury izolacji kabli
C. zwiększenie dozwolonej wartości spadku napięcia na kablach
D. zmniejszenie wartości obliczeniowej rezystancji żył pojedynczego kabla
Zwiększenie liczby przewodów ułożonych w jednej rurze instalacyjnej prowadzi do zmniejszenia dopuszczalnego obciążenia prądem długotrwałym pojedynczego przewodu. Jest to związane z zasadą, że im więcej przewodów umieszczonych w tej samej przestrzeni, tym większa emisja ciepła z tych przewodów, ponieważ nie mają one wystarczającej przestrzeni na odprowadzenie ciepła. Zgodnie z normami, takimi jak PN-IEC 60364, dopuszczalne obciążenie prądowe przewodów uzależnione jest od ich zdolności do odprowadzania ciepła, co jest kluczowe dla zachowania bezpieczeństwa instalacji. Na przykład, w przypadku układania kilku przewodów w jednej rurze, każdy z nich może nie być w stanie wytrzymać standardowych wartości obciążenia, co prowadzi do przegrzewania i potencjalnych uszkodzeń izolacji. Dlatego w praktyce, dla instalacji elektrycznych, często stosuje się ograniczenia dotyczące liczby przewodów w jednej rurze oraz jej średnicy, aby zapewnić odpowiednią wentylację i chłodzenie.

Pytanie 17

Przed rozpoczęciem wymiany uszkodzonych części instalacji elektrycznej do 1 kV, należy najpierw odłączyć napięcie, a następnie stosować się do zasad bezpieczeństwa w poniższej kolejności:

A. potwierdzić brak napięcia, uziemić instalację elektryczną, zabezpieczyć przed ponownym załączeniem
B. zabezpieczyć przed ponownym załączeniem, uziemić instalację elektryczną, potwierdzić brak napięcia
C. potwierdzić brak napięcia, zabezpieczyć przed ponownym załączeniem, uziemić instalację elektryczną
D. zabezpieczyć przed ponownym załączeniem, potwierdzić brak napięcia, uziemić instalację elektryczną
Zrozumienie procedur bezpieczeństwa przed pracami przy instalacjach elektrycznych jest kluczowe dla uniknięcia niebezpieczeństw. W sytuacji, gdy najpierw potwierdzamy brak napięcia lub uziemiamy instalację przed zabezpieczeniem jej przed powtórnym załączeniem, narażamy się na poważne ryzyko. Potwierdzenie braku napięcia jest ważnym krokiem, ale jego wcześniejsze wykonanie bez odpowiednich zabezpieczeń może prowadzić do sytuacji, w której instalacja zostanie przypadkowo załączona podczas wykonywania prac. Z tego powodu, nie jest wystarczające jedynie potwierdzenie braku napięcia, ponieważ w tym momencie pracujący elektryk może być narażony na kontakt z energią elektryczną. Uziemienie systemu elektrycznego przed zabezpieczeniem przed załączeniem również nie jest właściwą praktyką; uziemienie powinno być ostatnim krokiem, aby zapewnić, że wszelkie ewentualne pozostałe ładunki są odprowadzone, ale nie przed podjęciem odpowiednich środków ostrożności. Kluczowe jest, aby zawsze najpierw zastosować blokady, które fizycznie uniemożliwiają włączenie zasilania, a następnie upewnić się o braku napięcia, co pozwala na bezpieczne przeprowadzenie dalszych działań. Tego rodzaju zaniedbanie w przestrzeganiu kolejności działań może prowadzić do tragicznych wypadków oraz poważnych konsekwencji zdrowotnych dla osób wykonujących prace w instalacjach elektrycznych.

Pytanie 18

Jakie czynności związane z eksploatacją instalacji elektrycznych powinny być realizowane jedynie na podstawie pisemnego zlecenia?

A. Eksploatacyjne, wskazane w instrukcjach stanowiskowych i realizowane przez uprawnione osoby
B. Eksploatacyjne, które mogą prowadzić do szczególnego zagrożenia dla życia i zdrowia ludzi
C. Dotyczące zabezpieczania instalacji przed uszkodzeniem
D. Związane z ratowaniem życia i zdrowia ludzi
To, że czynności eksploatacyjne, które mogą grozić zdrowiu i życiu, powinny być robione tylko na pisemne polecenie, to dobra odpowiedź. Właściwie, takie sytuacje mogą się zdarzać, gdy ktoś ma do czynienia z urządzeniami pod napięciem albo w przypadku ryzyka porażenia prądem czy pożaru. Wymóg pisemnego polecenia pomaga upewnić się, że wszystko jest dokładnie opracowane, a ryzyko zminimalizowane zgodnie z normami, jak na przykład PN-IEC 60364. Oprócz tego, te procedury powinny być opisane w instrukcjach stanowiskowych i powinny być realizowane przez ludzi, którzy mają odpowiednie uprawnienia. Wiedza o bezpieczeństwie i procedurach związanych z elektrycznością jest naprawdę ważna dla każdego, kto pracuje w tej dziedzinie.

Pytanie 19

Kto jest uprawniony do przeprowadzenia konserwacji silnika tokarki TUE-35 w zakładzie elektromechanicznym?

A. Każdy pracownik na pisemne zlecenie pracodawcy
B. Kierownik grupy mechaników
C. Osoba, która posiada odpowiednie przeszkolenie i uprawnienia
D. Operator tej maszyny
Odpowiedź, że konserwację silnika tokarki TUE-35 może przeprowadzić osoba przeszkolona i uprawniona, jest prawidłowa ze względu na konieczność przestrzegania standardów bezpieczeństwa oraz eksploatacji maszyn. W branży mechanicznej i elektromechanicznej, konserwacja urządzeń mechanicznych, takich jak tokarki, wymaga specjalistycznej wiedzy oraz umiejętności, które zdobywa się podczas szkoleń. Tylko wykwalifikowany personel ma odpowiednie kompetencje do zdiagnozowania potencjalnych problemów, dokonywania niezbędnych napraw oraz przeprowadzania regularnych przeglądów technicznych, co zapobiega dalszym uszkodzeniom maszyny. Przykładem może być sytuacja, w której nieprzeszkolona osoba próbuje wymienić uszczelnienia w silniku, co może prowadzić do jego awarii lub nawet zagrożenia dla zdrowia pracowników. Warto zauważyć, że w wielu zakładach przemysłowych obowiązują określone normy, takie jak ISO 9001, które wymagają, aby wszystkie prace konserwacyjne były przeprowadzane przez wykwalifikowany personel, co podkreśla znaczenie odpowiednich uprawnień.

Pytanie 20

W układzie, którego schemat zamieszczono na rysunku, sprawdzono cztery różne urządzenia ochronne różnicowoprądowe. Wyniki wskazań amperomierza (IA) w momencie zadziałania urządzenia zestawiono w tabeli. Które urządzenie ochronne jest sprawne?

Urządzenie
ochronne
różnicowoprądowe
Prąd
znamionowy IΔN
Prąd IA
A.10 mA0,02 A
B.30 mA0,04 A
C.100 mA0,15 A
D.300 mA0,24 A
Ilustracja do pytania
A. A.
B. D.
C. C.
D. B.
Urządzenie ochronne różnicowoprądowe D zostało uznane za sprawne, ponieważ jego prąd zadziałania wynosi 0,24 A (240 mA), co mieści się w określonym zakresie od 0,5 IΔn do IΔn, gdzie IΔn dla tego urządzenia wynosi 300 mA. Oznacza to, że urządzenie zadziała w odpowiednim momencie, skutecznie chroniąc instalację elektryczną oraz osoby przed skutkami porażenia prądem. W branży elektroenergetycznej zasady działania urządzeń różnicowoprądowych są ściśle regulowane przez normy, takie jak PN-EN 61008-1. Te urządzenia są kluczowe w zapewnieniu bezpieczeństwa, zwłaszcza w obiektach, gdzie występuje ryzyko kontaktu z wodą lub innymi przewodnikami prądu. Właściwy dobór urządzenia ochronnego i jego parametry są fundamentalne dla efektywności ochrony. Przykładem zastosowania może być instalacja w łazience, gdzie obecność wody zwiększa ryzyko porażenia prądem, a zastosowanie różnicowoprądowego urządzenia ochronnego o odpowiednich parametrach jest koniecznością. To pokazuje, jak ważne jest nie tylko zrozumienie działania tych urządzeń, ale również ich praktyczne zastosowanie w codziennym życiu.

Pytanie 21

Jakiego typu zakłócenie zabezpieczają samodzielnie wkładki topikowe typu aM w przypadku przewodów zasilających urządzenia odbiorcze?

A. Przed zwarciem i przeciążeniem
B. Wyłącznie przed przeciążeniem
C. Przed przepięciem i przeciążeniem
D. Wyłącznie przed zwarciem
Zrozumienie funkcji wkładek topikowych aM w kontekście zabezpieczeń elektrycznych wymaga znajomości mechanizmów, które je definiują. Odpowiedzi sugerujące, że wkładki aM chronią tylko przed przeciążeniem, są błędne, ponieważ te elementy nie mają zdolności do wykrywania długotrwałych przeciążeń prądowych. W przypadku przeciążenia, wkładki te w ogóle nie reagują, co prowadzi do ich powolnego przegrzewania się, a w konsekwencji może doprowadzić do uszkodzenia instalacji. Ponadto, twierdzenie, że wkładki aM chronią przed przepięciem, jest również mylące. Przepięcia, które są nagłymi wzrostami napięcia, wymagają innych typów zabezpieczeń, takich jak ograniczniki przepięć, które są zaprojektowane do szybkiej reakcji na zmiany napięcia. Właściwe zrozumienie zabezpieczeń elektrycznych polega na znajomości ich specyfikacji i zastosowań, co jest kluczowe dla zapewnienia bezpieczeństwa i efektywności działania instalacji. Często dochodzi do pomylenia funkcji różnych zabezpieczeń, co prowadzi do niewłaściwego ich doboru i tym samym zwiększa ryzyko awarii lub pożaru. Dlatego ważne jest, aby projektując instalacje elektryczne, opierać się na standardach branżowych, które jasno definiują wymagania dla zabezpieczeń, tak aby każda ich funkcja była zrozumiana i stosowana w odpowiednich warunkach.

Pytanie 22

Jak można podnieść moc bierną indukcyjną oddawaną do sieci przez działającą w elektrowni prądnicę synchroniczną przy niezmiennej mocy czynnej?

A. Zwiększając prąd wzbudzenia
B. Zwiększając moment napędowy
C. Zmniejszając moment napędowy
D. Zmniejszając prąd wzbudzenia
Zmniejszanie prądu wzbudzenia nie tylko nie pozwala na zwiększenie mocy biernej indukcyjnej, ale wręcz przeciwnie, może prowadzić do jej zmniejszenia. Przy niższym prądzie wzbudzenia strumień magnetyczny w wirniku zostaje osłabiony, co w konsekwencji ogranicza zdolność prądnicy do wytwarzania mocy biernej. Taki błąd myślowy wynika z nieporozumienia dotyczącego relacji między prądem wzbudzenia a mocą bierną. Często przyjmuje się, że zmniejszanie prądu wzbudzenia prowadzi do zmniejszenia obciążenia, co jest prawdą w kontekście mocy czynnej, jednak w przypadku mocy biernej działa to w odwrotny sposób. Podobnie, zmniejszanie momentu napędowego nie ma wpływu na zwiększenie mocy biernej, ponieważ moment napędowy jest związany z mocą czynną i obciążeniem maszyny. Zmniejszenie momentu napędowego może prowadzić do obniżenia prędkości obrotowej prądnicy, co może skutkować niewystarczającą produkcją zarówno mocy czynnej, jak i biernej. Zwiększanie momentu napędowego z kolei może być pomocne w innych kontekstach, ale sama w sobie nie dostarczy dodatkowej mocy biernej, jeśli nie zostanie skorelowane z odpowiednią regulacją prądu wzbudzenia. W związku z tym, kluczowe jest zrozumienie, że regulacja wzbudzenia jest decydującym czynnikiem w zarządzaniu mocą bierną w systemach elektroenergetycznych.

Pytanie 23

Podczas pracy urządzeń napędowych, oględziny nie obejmują oceny

A. stanu szczotek
B. wskazań aparatury kontrolno-pomiarowej
C. stanu osłon części wirujących
D. poziomu drgań
Odpowiedź "stanu szczotek" jest poprawna, ponieważ podczas oględzin urządzeń napędowych w czasie ich pracy koncentrujemy się na aspektach, które bezpośrednio wpływają na ich funkcjonowanie oraz bezpieczeństwo. Stan szczotek, które są zwykle elementami wykonawczymi w silnikach elektrycznych, nie jest kontrolowany podczas pracy, gdyż ich ocena wymaga zatrzymania urządzenia. Oględziny skupiają się na monitorowaniu parametrów pracy, takich jak poziom drgań, które mogą wskazywać na nieprawidłowości w pracy łożysk lub wirników, oraz na wskazaniach aparatury kontrolno-pomiarowej, które dostarczają kluczowych informacji o stanie technicznym urządzenia. Przykładem praktycznym są procedury dotyczące diagnostyki i konserwacji silników elektrycznych, gdzie regularne sprawdzanie poziomu drgań i temperatury ma na celu zapobieganie awariom oraz optymalizację pracy maszyn. Zgodnie z normami ISO 10816, monitorowanie drgań jest niezbędne dla zapewnienia ciągłości produkcji oraz minimalizacji kosztów związanych z naprawami i przestojami.

Pytanie 24

Pomiar jakiego parametru umożliwia wykrycie przebicia izolacji uzwojeń silnika indukcyjnego trójfazowego w stosunku do obudowy?

A. rezystancji uzwojeń stojana
B. prądu upływu
C. prądu stanu jałowego
D. rezystancji przewodu ochronnego
Pomiar prądu upływu jest skuteczną metodą wykrywania przebicia izolacji uzwojeń silnika indukcyjnego trójfazowego względem obudowy. Prąd upływu to prąd, który przepływa z uzwojeń przez izolację do obudowy silnika. W przypadku uszkodzenia izolacji, wartość prądu upływu wzrasta, co może prowadzić do niebezpiecznych sytuacji, w tym do porażenia prądem. Praktyczne zastosowanie tej metody polega na wykorzystaniu specjalistycznych mierników, które rejestrują wartość prądu upływu podczas pracy silnika. Zgodnie z normą IEC 60364, dopuszczalne wartości prądu upływu powinny być ściśle przestrzegane, aby zapewnić bezpieczeństwo użytkowników oraz prawidłowe działanie urządzeń. Regularne pomiary prądu upływu mogą być również częścią procedur konserwacyjnych, co pozwala na wczesne wykrywanie problemów z izolacją i zapobieganiu awariom. Warto pamiętać, że pomiar ten powinien być przeprowadzany w warunkach pełnego obciążenia, aby uzyskać wiarygodne wyniki.

Pytanie 25

Który z wymienionych czynników nie wpływa na dopuszczalne obciążenie długotrwałe przewodów stosowanych w instalacji elektrycznej?

A. Długość ułożonych przewodów.
B. Metoda ułożenia przewodów.
C. Rodzaj materiału izolacyjnego.
D. Przekrój poprzeczny żył.
Wszystkie wymienione parametry mają istotny wpływ na dopuszczalną obciążalność długotrwałą przewodów elektrycznych, co jest kluczowe dla zapewnienia bezpieczeństwa i efektywności instalacji. Przekrój poprzeczny żył przewodów wpływa na ich oporność, co z kolei determinuje ilość wydzielającego się ciepła podczas przepływu prądu. Zbyt mały przekrój może prowadzić do nadmiernego nagrzewania się przewodów, co w najgorszym przypadku skutkuje pożarem. Rodzaj materiału izolacji jest równie ważny, ponieważ różne materiały mają różne właściwości, takie jak odporność na wysoką temperaturę. Na przykład, materiały takie jak PVC mogą mieć ograniczoną odporność na wysokie temperatury, co w sytuacji długotrwałego obciążenia może prowadzić do uszkodzenia izolacji. Sposób ułożenia przewodów również ma kluczowe znaczenie: przewody ułożone blisko siebie mogą mieć ograniczone możliwości odprowadzania ciepła, co przekłada się na wyższą temperaturę pracy. Długość przewodów, chociaż nie wpływa bezpośrednio na obciążalność, może wpływać na spadki napięcia, co również jest istotne podczas projektowania instalacji. W efekcie, ignorowanie tych parametrów może prowadzić do poważnych problemów w instalacjach elektrycznych, od ich niewłaściwego działania po uszkodzenia, a nawet zagrożenia dla bezpieczeństwa użytkowników. Dlatego należy zawsze zwracać uwagę na wszystkie wymienione czynniki i stosować praktyki zgodne z obowiązującymi normami.

Pytanie 26

Jakiego urządzenia pomiarowego należy użyć do określenia prędkości obrotowej wału silnika?

A. Higrometru termo.
B. Prądnicy tachometrycznej.
C. Pirometru
D. Tensometru mostkowego.
Prądnica tachometryczna to przyrząd pomiarowy, który jest powszechnie stosowany do pomiaru prędkości obrotowej wałów silników. Działa na zasadzie generowania napięcia elektrycznego proporcjonalnego do prędkości obrotowej wału, co pozwala na łatwe i precyzyjne odczyty. Przykładem zastosowania prądnicy tachometrycznej są silniki elektryczne w przemyśle, gdzie monitorowanie prędkości obrotowej jest kluczowe dla zapewnienia optymalnej pracy maszyny oraz ochrony przed przeciążeniem. Standardy branżowe, takie jak IEC 60034, zalecają stosowanie prądnic tachometrycznych w systemach automatyzacji i sterowania, co podkreśla ich znaczenie w zapewnianiu efektywności energetycznej i bezpieczeństwa eksploatacji. Dodatkowo, prądnice tachometryczne mogą być używane w systemach feedbackowych, co pozwala na automatyczne dostosowywanie parametrów pracy silnika w odpowiedzi na zmieniające się warunki operacyjne.

Pytanie 27

Który z poniższych środków ostrożności nie jest wymagany do bezpiecznego przeprowadzenia prac na linii napowietrznej odłączonej od zasilania?

A. Ogrodzenie obszaru pracy
B. Uziemienie odłączonej linii
C. Używanie sprzętu izolacyjnego
D. Zarządzanie pracą w grupie
Prace przy linii napowietrznej wyłączonej spod napięcia wymagają przestrzegania określonych zasad bezpieczeństwa, które zapewniają ochronę pracowników i minimalizują ryzyko wystąpienia niebezpiecznych sytuacji. Wykonywanie pracy zespołowo jest kluczowym elementem, ponieważ zespół wzajemnie się wspiera, co pozwala na szybsze reagowanie w przypadku niespodziewanych okoliczności. Pracownicy powinni być świadomi otoczenia i potencjalnych zagrożeń, co skutkuje zwiększoną ochroną. Uziemienie wyłączonej linii jest kolejnym kluczowym środkiem ostrożności. Uziemienie nie tylko chroni przed przypadkowym porażeniem, ale także zapewnia, że w przypadku jakiejkolwiek nieprzewidzianej sytuacji, nie wystąpi niebezpieczne napięcie. Ogrodzenie miejsca wykonywania pracy również odgrywa ważną rolę; zabezpiecza obszar przed dostępem osób nieuprawnionych, co jest zgodne z zasadami BHP. Błędne jest przekonanie, że te środki są zbędne, ponieważ każdy moment pracy przy instalacjach elektrycznych wiąże się z potencjalnym niebezpieczeństwem, nawet jeśli linia jest wyłączona. Standardy BHP oraz normy krajowe wyraźnie wskazują, że zabezpieczenie miejsca pracy i stosowanie odpowiednich procedur są nie tylko zalecane, ale wręcz wymagane, aby zapewnić maksymalne bezpieczeństwo w miejscu pracy.

Pytanie 28

Jakie skutki spowoduje podłączenie baterii kondensatorów równolegle do końcówek silnika asynchronicznego?

A. Pobór mocy czynnej z sieci ulegnie zwiększeniu
B. Napięcie na końcówkach silnika się zmniejszy
C. Pobór mocy biernej z sieci będzie mniejszy
D. Częstotliwość prądu w silniku wzrośnie
Włączenie baterii kondensatorów równolegle do zacisków silnika asynchronicznego prowadzi do zmniejszenia poboru mocy biernej z sieci. Kondensatory wprowadzają do obwodu moc czynną, co kompensuje ubytek mocy biernej generowanej przez silnik. Silniki asynchroniczne, zwłaszcza te o dużych mocach, często wykazują znaczny pobór mocy biernej, co powoduje obciążenie sieci elektroenergetycznej. Dlatego wprowadzenie baterii kondensatorów nie tylko poprawia współczynnik mocy, ale także zwiększa efektywność energetyczną całego systemu. W praktyce zastosowanie kondensatorów do kompensacji mocy biernej jest szeroko stosowane w przemyśle, gdzie obciążenia są zmienne, a ich odpowiednia konfiguracja pozwala na znaczące oszczędności kosztów związanych z energią elektryczną oraz redukcję strat w sieci. Ponadto, zgodnie z normami IEC 61000, stabilizacja współczynnika mocy jest kluczowym elementem w celu poprawy jakości energii w systemach elektroenergetycznych.

Pytanie 29

Aby przygotować instalację elektryczną oświetlenia do przeprowadzenia pomiarów rezystancji izolacji, konieczne jest odłączenie zasilania oraz

A. zamknąć łączniki instalacyjne i wkręcić żarówki
B. otworzyć łączniki instalacyjne i wykręcić żarówki
C. otworzyć łączniki instalacyjne i wkręcić żarówki
D. zamknąć łączniki instalacyjne i wykręcić żarówki
Otwieranie łączników i wkręcanie żarówek nie jest mądrym pomysłem, bo może to prowadzić do sporych niebezpieczeństw podczas pomiarów rezystancji izolacji. Jak otworzysz łączniki, to instalacja może się niechcący włączyć, co stwarza ryzyko porażenia prądem lub uszkodzenia sprzętu. Wkręcanie żarówek w tym przypadku to zły ruch, bo może to prowadzić do nieplanowanych połączeń elektrycznych, które mogą być niebezpieczne i generować nieoczekiwane napięcia. Pamiętaj, że przy pomiarach izolacji istotne jest, by cała instalacja była odłączona od zasilania. Zgodnie z normą PN-IEC 60079, podstawową zasadą bezpieczeństwa jest unikanie pracy na sprzęcie pod napięciem. Z tego powodu odpowiedzi sugerujące otwieranie łączników są po prostu niezgodne z najlepszymi praktykami. Zawsze, gdy robisz pomiary elektryczne, kluczowe jest, aby podjąć wszelkie środki ostrożności i odpowiednio przygotować instalację, żeby zminimalizować ryzyko niebezpieczeństw.

Pytanie 30

Jaki typ przewodów jest zalecany do stosowania w instalacjach na zewnątrz budynków?

A. Przewody aluminiowe
B. Przewody o podwyższonej odporności na UV
C. Przewody z miedzi beztlenowej
D. Przewody do instalacji wewnętrznych
Przewody o podwyższonej odporności na UV są zalecane do stosowania w instalacjach na zewnątrz budynków ze względu na ich zdolność do wytrzymywania promieniowania ultrafioletowego. UV może powodować degradację materiałów, co w przypadku przewodów może prowadzić do ich mechanicznego uszkodzenia i utraty izolacyjności. Tego typu przewody są zaprojektowane tak, aby wytrzymać trudne warunki atmosferyczne, w tym intensywne nasłonecznienie, deszcz czy zmienne temperatury. Wybór przewodów odpornych na UV zwiększa niezawodność instalacji i zmniejsza ryzyko awarii. Z mojego doświadczenia wynika, że odpowiednie zaplanowanie instalacji z użyciem takich przewodów jest kluczowe dla jej długowieczności. W praktyce, przewody odporne na UV są często stosowane w instalacjach fotowoltaicznych, oświetleniowych na zewnątrz budynków oraz wszędzie tam, gdzie przewody są narażone na bezpośrednie działanie promieni słonecznych. Warto zawsze zwracać uwagę na oznaczenia producenta, które potwierdzają odporność na UV, co jest zgodne z normami branżowymi i dobrymi praktykami eksploatacyjnymi.

Pytanie 31

Podczas badania skuteczności działania dwóch wyłączników różnicowoprądowych, których znamionowy prąd różnicowy wynosi 30 mA, uzyskano wyniki przedstawione w tabeli:
Przy założeniu, że prąd wyzwalający nie powinien być mniejszy niż 0,5 znamionowego prądu różnicowego oraz nie powinien przekraczać wartości znamionowego prądu różnicowego, o działaniu tych wyłączników można powiedzieć, że

Numer wyłącznika różnicowoprądowegoRzeczywisty, zmierzony prąd różnicowy
120 mA
210 mA
A. pierwszy działa prawidłowo, a drugi działa nieprawidłowo.
B. pierwszy i drugi działają prawidłowo.
C. pierwszy działa nieprawidłowo, a drugi działa prawidłowo.
D. pierwszy i drugi działają nieprawidłowo.
Wyłącznik różnicowoprądowy nr 1 działa jak należy, bo jego prąd wyzwalający to 20 mA. Mieści się to w akceptowalnym zakresie, bo prąd nie powinien być mniejszy niż 0,5 znamionowego prądu różnicowego. Dla wyłącznika 30 mA to oznacza, że musi być minimalnie 15 mA. Działanie takiego wyłącznika ocenia się pod kątem ochrony przed porażeniem prądem, co jest naprawdę ważne. W praktyce, wyłączniki różnicowoprądowe są kluczowe w instalacjach elektrycznych, bo zapewniają bezpieczeństwo wszystkich użytkowników. Regularne kontrolowanie i testowanie tych urządzeń to podstawa, żeby mieć pewność, że działają zgodnie z normami, na przykład PN-EN 61008-1, która określa wymagania dla tych wyłączników. Warto też prowadzić dokumentację pomiarów i regularnie je kalibrować, bo to zapewnia, że systemy ochrony przed porażeniem są niezawodne.

Pytanie 32

Aby uzyskać widoczną przerwę w obwodzie elektrycznym, należy użyć

A. stycznika
B. wyłącznika
C. przekaźnika
D. odłącznika
Wyłącznik, stycznik i przekaźnik to urządzenia, które pełnią różne funkcje w obwodach elektrycznych, ale nie są odpowiednie do zapewnienia widocznej przerwy. Wyłącznik to urządzenie, które może być używane do włączania i wyłączania obwodu, lecz nie gwarantuje fizycznej, wizualnej separacji od źródła zasilania. Z kolei stycznik, często stosowany w automatyce, służy do zdalnego włączania i wyłączania obwodów, ale również nie zapewnia widoczności przerwy, co jest kluczowe w kontekście bezpieczeństwa podczas prac serwisowych. Przekaźnik działa na zasadzie przekazywania sygnałów i kontrolowania innych obwodów, jednak nie jest to urządzenie, które można zastosować jako widoczne odłączenie zasilania. Powszechny błąd w myśleniu polega na tym, że niektóre osoby mylą te urządzenia, zakładając, że każde z nich może pełnić rolę odłącznika. W rzeczywistości odpowiednie urządzenie musi nie tylko wyłączyć obwód, ale także wizualnie potwierdzić tę operację, co ma kluczowe znaczenie w kontekście norm bezpieczeństwa, takich jak PN-EN 60204-1. Dlatego, aby zapewnić bezpieczeństwo, konieczne jest stosowanie odłączników w odpowiednich zastosowaniach.

Pytanie 33

W instalacjach oświetleniowych w mieszkaniach nie wolno używać opraw oświetleniowych stałych i regulowanych wykonanych w klasie ochronności

A. III
B. I
C. II
D. 0
Odpowiedź 0 jest ok, bo w mieszkaniach nie powinniśmy używać opraw oświetleniowych klasy ochronności 0. One nie mają żadnej dodatkowej izolacji, a to znaczy, że mogą być niebezpieczne, zwłaszcza gdy mówimy o kontaktach z prądem. Klasa ochronności 0 nie chroni przed prądami błądzącymi, a to niesie ryzyko, zwłaszcza tam, gdzie są wilgotne powierzchnie, jak w łazienkach. Z norm PN-IEC 61140 i PN-EN 60598 wynika, że najlepiej używać opraw przynajmniej klasy I, które mają uziemienie i dodatkowe zabezpieczenia. W praktyce, jeśli wybierzemy oprawy klasy I lub II, zwiększamy bezpieczeństwo, co w domowych warunkach jest bardzo ważne. W miejscach, gdzie może być woda, naprawdę warto postawić na oprawy odpowiedniej klasy, żeby zminimalizować ryzyko porażenia prądem.

Pytanie 34

Osoby wykonujące wymianę instalacji elektrycznej o napięciu 230/400 V w obiekcie przemysłowym powinny mieć kwalifikacje potwierdzone świadectwem, które jest co najmniej typu

A. D do 1 kV
B. E do 30 kV
C. E do 1 kV
D. D do 15 kV
Odpowiedź E do 1 kV jest prawidłowa, ponieważ osoby wykonujące prace przy instalacjach elektrycznych o napięciu do 1 kV muszą posiadać odpowiednie kwalifikacje. W Polsce, zgodnie z przepisami prawa, uprawnienia te potwierdzane są świadectwem kwalifikacyjnym, które powinno być wydane przez odpowiednie instytucje. Prace w obiektach przemysłowych, w których napięcie wynosi 230/400 V, są najczęściej związane z instalacjami niskonapięciowymi. Wymagania dotyczące szkoleń i certyfikacji osób zajmujących się instalacjami elektrycznymi są ściśle określone w normach, takich jak PN-EN 50110-1, która odnosi się do eksploatacji urządzeń elektrycznych. Pracownicy muszą być świadomi zagrożeń związanych z elektrycznością oraz umieć stosować odpowiednie środki ochrony osobistej. Przykładowo, osoby z uprawnieniami E do 1 kV będą w stanie wykonać wymianę osprzętu elektrycznego, takich jak gniazda, włączniki czy oświetlenie, zapewniając jednocześnie bezpieczeństwo pracy oraz zgodność z obowiązującymi normami.

Pytanie 35

W instalacji elektrycznej z napięciem nominalnym 230 V, skonstruowanej w systemie TN-S, działa urządzenie, które należy do pierwszej klasy ochronności. Jakie środki powinny być wdrożone, aby zapewnić dodatkową ochronę przed porażeniem w tym urządzeniu?

A. Wykonać lokalne połączenia wyrównawcze
B. Połączyć obudowę z przewodem ochronnym
C. Zainstalować transformator redukcyjny
D. Ułożyć dodatkową warstwę izolacyjną na podłożu
Połączenie obudowy urządzenia z przewodem ochronnym jest kluczowym środkiem zabezpieczającym przed porażeniem elektrycznym w instalacjach elektrycznych. W przypadku urządzeń klasy I, które polegają na ochronie poprzez uziemienie, takie połączenie ma na celu zapewnienie, że w przypadku awarii izolacji, prąd upływowy zostanie skierowany do ziemi, co zminimalizuje ryzyko porażenia prądem. W instalacjach TN-S, gdzie przewód ochronny (PE) jest oddzielony od przewodu neutralnego (N), jest to szczególnie istotne. Przykładem praktycznym może być sprzęt AGD, jak lodówka czy pralka, które muszą mieć pewne połączenia ochronne, aby zapewnić bezpieczeństwo użytkowników. Standardy takie jak PN-IEC 60364 stanowią podstawę dla projektowania i wykonania instalacji elektrycznych, a także definiują wymagania dotyczące ochrony przed porażeniem elektrycznym, co podkreśla znaczenie właściwego połączenia obudowy z przewodem ochronnym.

Pytanie 36

Podstawowa ochrona przed porażeniem prądem za pomocą przegród lub obudów jest realizowana dzięki

A. zastosowaniu osłon chroniących przed zamierzonym dotykiem
B. całkowitemu i trwałemu pokryciu części czynnych materiałem izolacyjnym
C. wprowadzeniu barier chroniących przed przypadkowym kontaktem
D. umieszczeniu elementów aktywnych poza zasięgiem ręki
Pomimo że różne metody ochrony przed porażeniem prądem są ważnymi zagadnieniami w inżynierii elektrycznej, to odpowiedzi dotyczące umieszczenia części czynnych poza zasięgiem ręki, całkowitego pokrycia materiałem izolacyjnym oraz zastosowania przeszkód chroniących przed przypadkowym dotykiem nie są wystarczające. Umieszczenie części czynnych poza zasięgiem ręki może w pewnym stopniu ograniczyć ryzyko, jednak nie zapewnia skutecznej ochrony przed zamierzonym dotykiem. W praktyce, takie podejście może być stosowane jedynie w ograniczonym zakresie, np. w instalacjach, gdzie dostęp do urządzeń jest kontrolowany. Ponadto, całkowite pokrycie części czynnych materiałem izolacyjnym, choć może być skuteczne w pewnych warunkach, nie zawsze jest wykonalne ze względów praktycznych i technologicznych. Izolacja musi być zgodna z normami, aby rzeczywiście spełniać swoje funkcje. Zastosowanie przeszkód chroniących przed przypadkowym dotykiem również nie rozwiązuje problemu celowego kontaktu z częściami czynnymi. Ostatecznie, aby skutecznie chronić przed porażeniem, niezbędne jest zastosowanie kompleksowego podejścia, które uwzględnia zarówno osłony ochronne, jak i odpowiednie zabezpieczenia, zgodne z międzynarodowymi standardami bezpieczeństwa. Kluczowe jest zrozumienie, że ochrona przeciwporażeniowa wymaga nie tylko fizycznych barier, ale również edukacji użytkowników oraz przestrzegania norm i zasad bezpieczeństwa.

Pytanie 37

Kontrolę instalacji elektrycznej, znajdującej się w pomieszczeniach o wysokiej wilgotności (75÷100%), w zakresie efektywności ochrony przed porażeniem elektrycznym należy przeprowadzać co najmniej raz na

A. 4 lata
B. 1 rok
C. 3 lata
D. 2 lata
Instalacje elektryczne w pomieszczeniach wilgotnych, takich jak łazienki czy piwnice, wymagają szczególnej uwagi w kontekście ochrony przeciwporażeniowej. Wilgotność powietrza w takich miejscach może prowadzić do zwiększonego ryzyka porażenia prądem, dlatego też zgodnie z obowiązującymi normami i zaleceniami, takie instalacje powinny być poddawane kontroli co najmniej raz w roku. Regularne przeglądy pozwalają na wczesne wykrywanie potencjalnych usterek, takich jak uszkodzenia izolacji, niewłaściwe zabezpieczenia czy korozja elementów instalacji. Przykładem może być kontrola stanu gniazdek elektrycznych, które w miejscach o wysokiej wilgotności narażone są na działanie wody, co może prowadzić do zwarć. Warto również zwrócić uwagę na zastosowanie odpowiednich zabezpieczeń, takich jak różnicowoprądowe wyłączniki zabezpieczające (RCD), które mogą istotnie zwiększyć poziom bezpieczeństwa. Przestrzeganie tych zasad jest zgodne z normami, takimi jak PN-IEC 60364, które określają wymagania dotyczące instalacji elektrycznych w miejscach narażonych na wilgoć.

Pytanie 38

Jakie jest maksymalne dopuszczalne wartości impedancji pętli zwarcia w instalacji elektrycznej o napięciu nominalnym 230 V działającej w układzie TN-S, zabezpieczonej wyłącznikiem nadprądowym C16, aby zapewnić samoczynne wyłączenie zasilania jako środek ochrony przeciwporażeniowej w przypadku awarii?

A. 1,43 Ω
B. 0,71 Ω
C. 4,79 Ω
D. 2,87 Ω
Maksymalna dopuszczalna impedancja pętli zwarcia dla instalacji z wyłącznikiem nadprądowym C16 w sieci TN-S wynosi 1,43 Ω, co zapewnia odpowiednie warunki do samoczynnego wyłączenia zasilania w przypadku uszkodzenia. Taki wyłącznik nadprądowy zadziała, gdy prąd zwarciowy osiągnie wartość wystarczającą do jego uruchomienia, co w przypadku C16 wynosi 16 A. Aby zapewnić skuteczną ochronę, impedancja pętli zwarcia powinna być tak dobrana, aby prąd zwarciowy przekraczał wartość zadziałania wyłącznika. Przy napięciu 230 V, zgodnie z zasadą Ohma (U = I * R), maksymalna impedancja wynosi: Z = U / I = 230 V / 16 A = 14,375 Ω, co daje duży margines, ale w praktyce akceptowana wartość dla bezpiecznego działania to 1,43 Ω. Przykłady praktycznych zastosowań obejmują instalacje w budynkach mieszkalnych, gdzie ważne jest zapewnienie szybkiego odłączenia prądu w przypadku awarii. Standardy PN-IEC 60364-4-41 oraz PN-EN 61140 określają wymagania dotyczące ochrony przeciwporażeniowej, a także metodyka obliczania impedancji pętli zwarcia, co pozwala na właściwe zabezpieczenie przed porażeniem elektrycznym.

Pytanie 39

Jakie metody zapewniają ochronę przed porażeniem w instalacji fotowoltaicznej na stronie prądu stałego w przypadku uszkodzenia?

A. użycie automatycznego wyłączenia zasilania przez zastosowanie bezpieczników topikowych
B. umieszczenie wszystkich komponentów na izolowanym podłożu
C. użycie automatycznego wyłączenia zasilania poprzez wyłączniki nadprądowe
D. wykonanie wszystkich elementów w II klasie ochronności
Wykonanie urządzeń w II klasie ochronności oznacza, że są one zaprojektowane w taki sposób, aby zapewnić odpowiedni poziom bezpieczeństwa użytkownikom. Urządzenia te mają dodatkowe izolacje oraz nie wymagają podłączenia do uziemienia, co jest kluczowe w instalacjach fotowoltaicznych, gdzie prąd stały może stanowić zagrożenie w przypadku awarii. Przykładem zastosowania tego rozwiązania może być montaż paneli słonecznych, w których zastosowane komponenty są certyfikowane jako spełniające normy II klasy ochronności. W przypadku uszkodzenia instalacji, takie urządzenia zminimalizują ryzyko porażenia prądem, ponieważ są one zaprojektowane tak, by nie dopuścić do wystąpienia niebezpiecznych napięć na obudowie. Dodatkowo, stosowanie urządzeń w II klasie ochronności jest zgodne z normami IEC 61140, które definiują wymagania dotyczące ochrony osób przed porażeniem elektrycznym, co potwierdza ich praktyczną wartość na etapie projektowania i wdrażania instalacji fotowoltaicznych.

Pytanie 40

Symbol graficzny którego przekaźnika przedstawiono na rysunku?

Ilustracja do pytania
A. Podnapięciowego.
B. Podczęstotliwościowego.
C. Nadprądowego.
D. Nadnapięciowego.
Symbol graficzny przekaźnika podnapięciowego jest istotnym elementem w projektowaniu systemów elektrycznych i automatyki. Oznaczenie "U" wewnątrz prostokąta wskazuje, że przekaźnik działa w odpowiedzi na spadek napięcia poniżej ustalonego poziomu. Przekaźniki podnapięciowe są używane do ochrony urządzeń przed niewłaściwym działaniem spowodowanym niskim napięciem, co może prowadzić do uszkodzenia elementów elektronicznych lub niestabilnej pracy systemu. Przykłady zastosowania obejmują systemy zasilania, w których kluczowe jest utrzymanie napięcia w odpowiednich granicach, na przykład w zasilaczach UPS, gdzie przekaźnik może odłączyć obciążenie w przypadku spadku napięcia. Zgodnie z normą IEC 60947-5-1, przekaźniki te powinny być używane w odpowiednich warunkach, aby zapewnić bezpieczeństwo i niezawodność działania. Zrozumienie symboliki i działania przekaźników podnapięciowych jest fundamentem w dziedzinie elektrotechniki i automatyki, co podkreśla ich znaczenie w codziennej praktyce inżynieryjnej.