Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 17 grudnia 2025 13:26
  • Data zakończenia: 17 grudnia 2025 13:49

Egzamin zdany!

Wynik: 20/40 punktów (50,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Co powoduje zwęglenie izolacji na końcu przewodu fazowego blisko zacisku w puszce rozgałęźnej?

A. Wzrost napięcia zasilającego spowodowany przepięciem
B. Zbyt mały przekrój użytego przewodu
C. Poluzowanie śruby mocującej w puszce
D. Zbyt wysoka wartość prądu długotrwałego
Poluzowanie się śruby dociskowej w puszce rozgałęźnej jest jedną z najczęstszych przyczyn zwęglenia izolacji na końcu przewodu fazowego. Kiedy śruba mocująca luzuje się, może to prowadzić do niewłaściwego kontaktu elektrycznego, co powoduje wzrost oporu na styku. W wyniku tego oporu generowane jest ciepło, które może spalić izolację przewodu, prowadząc do zwęglenia. Praktyczne przykłady wskazują, że regularne przeglądy instalacji elektrycznych oraz zastosowanie odpowiednich narzędzi do prawidłowego dokręcania połączeń są niezbędne dla zapewnienia bezpieczeństwa. W standardach branżowych, takich jak PN-IEC 60364, zwraca się uwagę na konieczność stosowania wysokiej jakości materiałów oraz odpowiednich technik montażu, aby zminimalizować ryzyko wystąpienia takich problemów. Dobrą praktyką jest także oznaczanie i dokumentowanie przeprowadzonych kontroli oraz konserwacji połączeń, co sprzyja długoterminowemu bezpieczeństwu użytkowania instalacji elektrycznej.

Pytanie 2

Których aparatów montowanych na szynie TH 35 dotyczą przedstawione w tabeli parametry techniczne?

Parametry techniczne
Prąd znamionowy
In w A
Szerokość
w modułach
o wymiarach
17,5 mm
Charakterystyka
61B
101B
161B
201B
251B
321B
401B
501B
631B
A. Wyłączników różnicowoprądowych.
B. Wyłączników nadprądowych.
C. Transformatorów.
D. Styczników.
Wyłączniki nadprądowe to naprawdę ważne elementy w systemach elektrycznych, bo chronią nas przed przeciążeniami i zwarciami. Patrząc na parametry w tabeli, takie jak prąd znamionowy (In) czy szerokość 17,5 mm, to są one typowe dla takich urządzeń, które zakłada się na szynę TH 35. Ciekawostką jest, że wyłączniki z charakterystyką B są idealne do obwodów, gdzie mogą występować krótkotrwałe skoki prądu, co często zdarza się w instalacjach oświetleniowych czy gniazdkowych. Dzięki nim, jak prąd przekroczy ustalony poziom, to automatycznie odłączają zasilanie, co zapobiega uszkodzeniu sprzętu i zmniejsza ryzyko pożaru. Warto pamiętać, że zgodnie z normą PN-EN 60898, musi się je regularnie testować, żeby wszystko działało jak należy. Dlatego ważne jest, żeby dobrze dobierać i instalować te wyłączniki, bo mają ogromne znaczenie dla bezpieczeństwa i niezawodności naszych instalacji elektrycznych.

Pytanie 3

Jaka jest bezwzględna wartość błędu pomiarowego natężenia prądu, jeśli multimetr pokazał wynik 30,0 mA, a dokładność miernika podana przez producenta dla zastosowanego zakresu pomiarowego wynosi
±(1 % + 2) cyfry?

A. ±2,0 mA
B. ±0,3 mA
C. ±0,5 mA
D. ±3,2 mA
W przypadku błędnych odpowiedzi, zwykle wynikają one z nieprawidłowej interpretacji podanych danych dotyczących dokładności pomiaru. Często mylone są różne składniki błędu. Na przykład, jeżeli obliczamy błąd jako samą wartość procentową, pomijając dodatek 2 cyfry, możemy uzyskać wynik, który nie odzwierciedla rzeczywistego błędu pomiaru. Warto również zauważyć, że pomiar z użyciem multimetru wymaga świadomego podejścia do jego specyfikacji, ponieważ różne urządzenia mogą mieć różne poziomy dokładności w zależności od zastosowanego zakresu pomiarowego. W praktyce, pomiar natężenia prądu powinien być zawsze przeprowadzany z uwzględnieniem całkowitego błędu pomiaru, a nie tylko jego części, co prowadzi do zafałszowania wyników. Dodatkowo, pomiar błędu jako np. ±3,2 mA lub ±2,0 mA zakładałby niewłaściwą interpretację zarówno błędu procentowego, jak i błędu w cyfrach. W inżynierii, gdzie dokładność jest kluczowa, błędne obliczenia mogą prowadzić do poważnych konsekwencji, takich jak uszkodzenia sprzętu lub niewłaściwe decyzje projektowe. Użycie zbyt dużych wartości błędu, które byłyby niemożliwe do zaakceptowania w kontekście standardów branżowych, pokazuje brak zrozumienia dla mechanizmów pomiarowych oraz ich ograniczeń.

Pytanie 4

Wyznacz znamionowy współczynnik mocy dla silnika trójfazowego z następującymi danymi: PN = 2,2 kW (moc mechaniczna), UN = 400 V, IN = 4,6 A, ηN = 0,84?

A. 0,82
B. 0,57
C. 0,69
D. 0,99
Obliczenie znamionowego współczynnika mocy (cos φ) dla silnika trójfazowego to dość prosta sprawa, jeśli mamy wszystkie potrzebne dane. Mówiąc w skrócie, ten współczynnik to stosunek mocy czynnej (P) do mocy pozornej (S). Może być obliczony za pomocą wzoru: cos φ = P / (√3 * U * I), gdzie P to moc czynna, U to napięcie, a I to prąd znamionowy. Jak podstawimy wartości z pytania: P = 2,2 kW, U = 400 V, I = 4,6 A, to najpierw liczymy S = √3 * 400 V * 4,6 A, co daje nam 2,664 kVA. Potem obliczamy cos φ = 2,2 kW / 2,664 kVA, co wychodzi około 0,826. Jak zaokrąglimy, to dostaniemy 0,82. Wiesz, czemu to jest ważne? Bo dobrze obliczony współczynnik mocy pomaga w projektowaniu układów elektroenergetycznych, a to z kolei przekłada się na lepszą efektywność energetyczną i mniejsze straty energii. Silniki z wyższym współczynnikiem mocy są bardziej efektywne i można na nich zaoszczędzić, co jest korzystne zarówno dla nas, jak i dla sieci zasilającej.

Pytanie 5

Który element przedstawionego na rysunku układu zasilania i sterowania silnikiem indukcyjnym steruje przełączeniem układu styczników łączących uzwojenia silnika w gwiazdę i w trójkąt?

Ilustracja do pytania
A. Przekaźnik czasowy.
B. Przycisk sterujący zwrotny NO.
C. Przycisk sterujący zwrotny NC.
D. Wyłącznik silnikowy.
Przekaźnik czasowy pełni kluczową rolę w układzie zasilania i sterowania silnikiem indukcyjnym, umożliwiając płynne przełączanie uzwojeń silnika między połączeniem w gwiazdę a w trójkąt. Dzięki zastosowaniu przekaźnika czasowego, możemy zminimalizować prądy rozruchowe silnika, co jest istotne dla jego długowieczności oraz efektywności energetycznej. W praktyce, przy włączaniu silnika w trybie gwiazdy, uzwojenia są połączone w sposób, który ogranicza prąd rozruchowy, a po ustabilizowaniu się obrotów, przekaźnik czasowy automatycznie przełącza układ na połączenie w trójkąt. Standardy dotyczące automatyki przemysłowej, takie jak normy IEC, zalecają stosowanie przekaźników czasowych w takich aplikacjach, aby zapewnić zgodność z wymogami bezpieczeństwa i efektywności operacyjnej. Właściwe zastosowanie przekaźników czasowych nie tylko zwiększa niezawodność układu, ale także pozwala na lepsze zarządzanie obciążeniem, co jest niezbędne w nowoczesnych systemach zasilania.

Pytanie 6

Jakiego typu powinna być końcówka wkrętaka dobranego do wkrętu o główce, której kształt przedstawiono na rysunku?

Ilustracja do pytania
A. Pozidriv.
B. Torx.
C. Płaska.
D. Phillips.
Wybór złej końcówki wkrętaka pokazuje, że chyba nie do końca rozumiesz różnice między wkrętami. Końcówka płaska, choć popularna, w ogóle nie pasuje do krzyżowych nacięć, co może skończyć się poślizgiem narzędzia i uszkodzeniem zarówno końcówki, jak i główki wkrętu. Końcówka Torx też nie jest tu odpowiednia, bo jest zaprojektowana do większych momentów obrotowych, a to nie dotyczy wkrętów Pozidriv. Odpowiedź z końcówką Phillips też jest błędna, bo to narzędzie nie ma tych dodatkowych nacięć, które zwiększają stabilność. Takie błędy mogą skutkować problemami w pracy, a nawet niebezpieczeństwem, szczególnie na wysokości. Warto wiedzieć, jakie narzędzia pasują do jakich wkrętów, żeby wszystko robić bezpiecznie i skutecznie.

Pytanie 7

Korzystając z podanego wzoru i tabeli wyznacz wartość rezystancji izolacji uzwojeń silnika w temperaturze
20 oC, jeżeli rezystancja izolacji uzwojeń tego silnika zmierzona w temperaturze 23 oC wyniosła 6,8 MΩ.

Współczynniki przeliczeniowe K20 dla rezystancji izolacji uzwojeń silników
R20 = K20·Rx
Temperatura, w °C0111417202326293235445262
Współczynnik przeliczeniowy K200,670,730,810,901,01,101,211,341,481,642,503,335,00
A. 6,73 MΩ
B. 7,48 MΩ
C. 6,87 MΩ
D. 6,18 MΩ
Obliczenie rezystancji izolacji uzwojeń silnika w temperaturze 20°C wymaga zastosowania odpowiednich współczynników przeliczeniowych, które uwzględniają zmiany rezystancji w zależności od temperatury. W tym przypadku zastosowaliśmy wzór R20 = K20 * Rs, gdzie Rs to zmierzona rezystancja w temperaturze 23°C, a K20 to współczynnik przeliczeniowy dla temperatury 20°C. Z tabeli uzyskujemy wartości K20 = 1,0 dla 20°C i K23 = 1,1 dla 23°C. Zatem, dzieląc zmierzoną rezystancję 6,8 MΩ przez 1,1, uzyskujemy rezystancję w niższej temperaturze, co daje wynik 6,18 MΩ. Jednak w praktyce, biorąc pod uwagę zastosowania w przemyśle, znajomość tych wartości jest kluczowa do oceny stanu izolacji silnika. Izolacja musi spełniać normy, aby zapewniać bezpieczeństwo operacyjne i zapobiegać awariom. Takie obliczenia są standardem w diagnostyce stanu technicznego maszyn elektrycznych.

Pytanie 8

Do którego rodzaju ochrony przeciwporażeniowej zaliczane są środki ochrony opisane w tabeli?

1.Urządzenia ochronne różnicowoprądowe o znamionowym prądzie różnicowym nieprzekraczającym 30 mA.
2.Dodatkowe połączenia wyrównawcze ochronne.
A. Ochrony przy uszkodzeniu (dodatkowej).
B. Ochrony uzupełniającej.
C. Ochrony podstawowej.
D. Ochrony przez zastosowanie bardzo niskiego napięcia.
Wiesz, te środki ochrony, które były w tabeli, jak urządzenia różnicowoprądowe i połączenia wyrównawcze, to naprawdę ważna sprawa, jeśli chodzi o bezpieczeństwo instalacji elektrycznych. Ochrona uzupełniająca to coś, co wchodzi w grę, gdy standardowe zabezpieczenia nie są wystarczające. To szczególnie istotne w miejscach, gdzie ryzyko porażenia prądem jest większe, na przykład w łazienkach czy kuchniach. RCD świetnie działa, bo wyłapuje prąd upływu i go eliminuje, co naprawdę ratuje życie. Połączenia wyrównawcze też mają swoje miejsce, szczególnie tam, gdzie jest kilka źródeł zasilania. Dzięki nim zmniejsza się różnica potencjałów, co podnosi bezpieczeństwo użytkowników. Warto też znać normy, takie jak IEC 60364 i PN-EN 61008, bo one mówią, jak budować te instalacje, żeby były bezpieczne. Zrozumienie ochrony uzupełniającej to klucz do tego, żeby każdy, kto projektuje i wykonuje instalacje elektryczne, mógł to robić dobrze.

Pytanie 9

Na podstawie wybranych informacji dobierz wyłącznik nadprądowy do zabezpieczenia obwodu silnika trójfazowego klatkowego o prądzie znamionowym In = 5,5 A?

A. In = 16 A, charakterystyka C, krotność In = 5 do 10
B. In = 16 A, charakterystyka B, krotność In = 3 do 5
C. In = 6 A, charakterystyka B, krotność In = 3 do 5
D. In = 6 A, charakterystyka C, krotność In = 5 do 10
Wybrany wyłącznik nadprądowy o prądzie znamionowym In = 6 A z charakterystyką C oraz krotnością In w przedziale 5 do 10 jest odpowiedni do zabezpieczenia obwodu silnika trójfazowego klatkowego o prądzie znamionowym 5,5 A. Charakterystyka C oznacza, że wyłącznik jest przystosowany do tolerowania dużych prądów rozruchowych, które mogą występować podczas uruchamiania silnika indukcyjnego. Silniki klatkowe często mają prąd rozruchowy wielokrotnie przekraczający ich prąd znamionowy, co czyni wyłącznik z charakterystyką C idealnym wyborem. Krotność In w przedziale 5 do 10 pozwala na bezpieczne i efektywne działanie wyłącznika, zabezpieczając obwód przed skutkami przeciążeń, ale jednocześnie zapewniając możliwość rozruchu silnika. W praktyce oznacza to, że wyłącznik nie zadziała podczas normalnego rozruchu silnika, a zadziała w przypadku rzeczywistego przeciążenia lub zwarcia. Stosując się do zasad normy PN-EN 60947-2, można zapewnić optymalne działanie oraz bezpieczeństwo instalacji elektrycznej.

Pytanie 10

Który element regulacyjny występuje w układzie przedstawionym na schemacie?

Ilustracja do pytania
A. Dławik.
B. Autotransformator.
C. Przesuwnik fazowy.
D. Regulator indukcyjny.
Autotransformator to specjalny typ transformatora, który charakteryzuje się posiadaniem jednego wspólnego uzwojenia dla obwodów pierwotnego i wtórnego. Dzięki temu, autotransformatory są w stanie zmieniać napięcie z zachowaniem mniejszych strat mocy, co czyni je bardziej efektywnymi w zastosowaniach, gdzie wymagane są niewielkie zmiany napięcia. Przykłady zastosowania autotransformatorów obejmują regulację napięcia w zasilaczach oraz w systemach zasilania silników elektrycznych. W praktyce, autotransformatory są szeroko stosowane w energetyce do podnoszenia lub obniżania napięcia w liniach przesyłowych, co jest zgodne z dobrymi praktykami branżowymi, zwłaszcza w kontekście efektywności energetycznej. Używanie autotransformatorów zamiast tradycyjnych transformatorów separacyjnych pozwala na zmniejszenie rozmiaru urządzenia oraz jego kosztów, co jest istotnym czynnikiem w projektowaniu systemów elektrycznych. Zrozumienie działania autotransformatora jest kluczowe dla inżynierów zajmujących się projektowaniem i wdrażaniem systemów zasilania.

Pytanie 11

Który rodzaj maszyny wirującej przedstawiono na rysunku?

Ilustracja do pytania
A. Synchroniczną z biegunami utajonymi.
B. Komutatorową prądu przemiennego.
C. Synchroniczną jawnobiegunową.
D. Indukcyjną klatkową.
Maszyna przedstawiona na rysunku to synchroniczna maszyna jawnobiegunowa, co można zauważyć dzięki wyraźnym biegunom magnetycznym oznaczonym jako S i N. W takich maszynach, w przeciwieństwie do maszyn z biegunami utajonymi, bieguny są wyraźnie widoczne na wirniku. W kontekście zastosowań, maszyny synchroniczne jawnobiegunowe są powszechnie wykorzystywane w energetyce, na przykład w generatorach prądu przemiennego w elektrowniach. Ich główną zaletą jest możliwość utrzymania stałej prędkości obrotowej niezależnie od obciążenia, co czyni je idealnymi do zastosowań wymagających wysokiej stabilności. Dodatkowo, maszyny te cechują się wysoką sprawnością i zdolnością do pracy w szerokim zakresie prędkości, co sprawia, że są wykorzystywane w aplikacjach takich jak napędy elektryczne w transporcie czy w przemyśle. Wiedza na temat maszyn synchronicznych jawnobiegunowych jest kluczowa dla inżynierów zajmujących się projektowaniem systemów energetycznych, ponieważ ich zrozumienie pozwala na efektywne wykorzystanie takich maszyn w różnych konfiguracjach sieciowych.

Pytanie 12

W instalacji elektrycznej, której schemat przedstawiono na rysunku błędnie podłączono

Ilustracja do pytania
A. przewody zasilające.
B. żyrandol.
C. przewód ochronny.
D. łącznik.
Wybór żyrandola, przewodów zasilających lub przewodu ochronnego jako błędnie podłączonych elementów w instalacji elektrycznej nie jest uzasadniony z technicznego punktu widzenia. Żyrandol, będący źródłem światła, powinien być podłączony zgodnie z instrukcjami producenta i normami bezpieczeństwa, które zalecają podłączenie go do obwodu elektrycznego poprzez odpowiednie złącza. Niepoprawne jest postrzeganie żyrandola jako elementu, który może być źródłem poważnych problemów w instalacji, jeżeli zostanie właściwie zamontowany i użytkowany. Przewody zasilające, jako kluczowy element każdej instalacji, nie powinny być uznawane za źródło błędów, o ile są zgodne z normami, takimi jak PN-IEC 60364, które określają wymagania dotyczące ich instalacji oraz ochrony. Przewód ochronny natomiast ma na celu zabezpieczenie przed porażeniem prądem i jego poprawne podłączenie jest kluczowe dla bezpieczeństwa instalacji. Typowe błędy myślowe, które mogą prowadzić do nieprawidłowych wniosków, obejmują nieznajomość podstawowych zasad instalacji elektrycznych oraz nieuwzględnianie zasadności ich działania w codziennym użytkowaniu. Zrozumienie funkcji i zastosowania każdego z tych elementów instalacji elektrycznej jest niezbędne dla zapewnienia ich prawidłowego działania oraz bezpieczeństwa użytkowników.

Pytanie 13

Do czego służy złączka przedstawiona na ilustracji?

Ilustracja do pytania
A. Do wykonywania połączeń bez zdejmowania izolacji.
B. Do łączenia przewodów dowolnego typu.
C. Do zdejmowania izolacji z przewodów dwużyłowych.
D. Do zaciskania końcówek tulejkowych na przewodach.
Odpowiedź 'Do łączenia przewodów dowolnego typu' jest jak najbardziej trafna, bo złączka WAGO właśnie do tego służy. Łączy przewody elektryczne – zarówno te jednożyłowe, jak i wielożyłowe. Takie złączki są teraz mega popularne w nowoczesnych instalacjach, bo są łatwe w użyciu i naprawdę niezawodne. Dzięki nim można szybko i bezpiecznie połączyć przewody, bez potrzeby lutowania czy innych skomplikowanych metod, co na pewno przyspiesza całą robotę. Co więcej, złączki WAGO spełniają normy IEC 60998 i IEC 60529, więc można mieć pewność, że są solidne i bezpieczne. Używanie ich w pracy to też sposób na oszczędność czasu i minimalizację błędów, bo nie trzeba ręcznie łączyć przewodów. W praktyce świetnie się sprawdzają w instalacjach oświetleniowych, automatyce budynkowej czy w rozdzielnicach elektrycznych, gdzie ważna jest jakość połączeń. No i ich konstrukcja pozwala na wielokrotne użycie, co czyni je fajnym rozwiązaniem na dłuższą metę.

Pytanie 14

Podaj skuteczność świetlną źródła światła o etykiecie przedstawionej na rysunku.

Ilustracja do pytania
A. 14,5 lm/W
B. 1 180,0 lm/W
C. 81,4 lm/W
D. 206,9 lm/W
Podstawowym błędem w przypadku wyboru nieprawidłowej odpowiedzi jest niezrozumienie, jak oblicza się skuteczność świetlną źródła światła. Osoby, które wskazały inne wartości, mogą nie dostrzegać, że skuteczność świetlna jest określana poprzez bezpośrednie podzielenie strumienia świetlnego przez moc elektryczną. Często w takich przypadkach dochodzi do pomyłki w przeliczeniach lub pominięcia istotnych danych. Przykładowo, wybór odpowiedzi 206,9 lm/W sugeruje, że respondent błędnie zinterpretował dane, być może dodając wartości zamiast je dzielić. Z kolei odpowiedzi 14,5 lm/W i 1 180,0 lm/W mogą wynikać z mylenia strumienia świetlnego z mocą lub innymi parametrami technicznymi. Warto również zauważyć, że skuteczność świetlna w granicach 80-100 lm/W jest uznawana za bardzo dobrą dla nowoczesnych źródeł LED, co czyni odpowiedź 81,4 lm/W zgodną z aktualnymi standardami branżowymi. Zrozumienie tych koncepcji i umiejętność ich stosowania jest kluczowa w projektowaniu efektywnych systemów oświetleniowych oraz w podejmowaniu decyzji zakupowych dotyczących źródeł światła.

Pytanie 15

W układzie instalacji mieszkaniowej przedstawionej na rysunku, ochrona wyłącznikiem różnicowoprądowym RCD nie obejmuje gniazd w

Ilustracja do pytania
A. kuchni i pokoju 2
B. łazience i pokoju 2
C. łazience i pokoju 1
D. pokoju 1 i pokoju 2
Twoje odpowiedzi dotyczące gniazd w kuchni, łazience, czy też różnych kombinacji tych pomieszczeń są błędne. Wydaje mi się, że myślisz, że obwody w tych miejscach są objęte ochroną RCD, ale to nie jest prawda. RCD powinno się stosować tam, gdzie ryzyko kontaktu z wodą jest wysokie, co jest naprawdę istotne, żeby zapewnić bezpieczeństwo. Kuchnia i łazienka to miejsca, gdzie wilgoć jest na porządku dziennym, więc ochrona RCD to konieczność. Z kolei twierdzenie, że obwody w pokojach mają taką samą ochronę, może wprowadzać w błąd, bo te przestrzenie nie są tak narażone jak kuchnie czy łazienki. Często też ludzie mogą mylnie sądzić, że RCD powinno być wszędzie w mieszkaniu, co nie zawsze ma sens w praktyce. Dobrze jest montować RCD w obwodach, gdzie mogą być urządzenia używane w wilgotnych warunkach, ale w pokojach, które nie mają tyle wilgoci, można je zabezpieczyć w inny sposób. Ignorowanie tego bezpieczeństwa to ryzykowna sprawa, dlatego istotne jest, by instalacja elektryczna była zgodna z normami.

Pytanie 16

Na którym rysunku przedstawiono schemat podłączenia automatu schodowego, umożliwiający prawidłową pracę układu oświetlenia?

Ilustracja do pytania
A. B.
B. D.
C. C.
D. A.
Nieprawidłowe odpowiedzi na pytanie o schemat podłączenia automatu schodowego często wynikają z niepełnego zrozumienia działania tego urządzenia oraz zasad elektryki. W przypadku odpowiedzi A, B i D, brak jest uwzględnienia kluczowych połączeń, które determinują, że automat schodowy działa poprawnie. Na przykład, w schematach, gdzie przewód fazowy nie jest podłączony do właściwego zacisku L, nie tylko dochodzi do nieprawidłowego działania, ale także do potencjalnych zagrożeń dla użytkowników. Niedostateczne połączenia przycisków A1 i A2 mogą skutkować brakiem możliwości włączania i wyłączania oświetlenia, co jest nieakceptowalne w przestrzeniach, gdzie kontrola nad oświetleniem jest istotna dla bezpieczeństwa. Często w tych błędnych interpretacjach mylone są podstawowe zasady obwodów elektrycznych, takie jak zasada działania obwodów równoległych i szeregowych. Warto również zwrócić uwagę na standardy bezpieczeństwa, które podkreślają konieczność prawidłowego podłączenia komponentów w celu uniknięcia zwarć oraz innych awarii elektrycznych. Zrozumienie tych zasad jest kluczem do samodzielnego projektowania prostych instalacji, a także do świadomego korzystania z technologii w codziennym życiu.

Pytanie 17

Przewód, który jest oznaczony symbolem SMYp, ma żyły

A. jednodrutowe
B. wielodrutowe
C. sektorowe
D. płaskie
Przewód oznaczony jako SMYp to typowy przewód elektryczny, który ma w sobie wielodrutowe żyły zrobione z miedzi. Dzięki tym wielodrutowym żyłom, przewód jest elastyczny, co jest naprawdę ważne, zwłaszcza tam, gdzie przewody muszą się ruszać lub zakręcać. Fajnie, że te żyły poprawiają odporność na przeciążenia i przewodnictwo elektryczne, bo to ma duże znaczenie, gdy zasilamy różne urządzenia. W praktyce, przewody tego typu bardzo często spotyka się w instalacjach zarówno w domach, jak i w przemyśle. Ich właściwości są zgodne z normami, takimi jak PN-EN 60228, które mówią, jak klasyfikować żyły w przewodach. Co istotne, przewody SMYp są też odporne na wilgoć i wysokie temperatury, co sprawia, że można je stosować w trudnych warunkach. Zauważ, że te żyły mają większą powierzchnię przekroju, co zmniejsza straty energii podczas przesyłu prądu. To jest naprawdę ważne w dzisiejszym świecie, gdzie efektywność energetyczna ma znaczenie.

Pytanie 18

Którym symbolem graficznym oznacza się w dokumentacji sposób prowadzenia przewodów instalacji elektrycznej w listwach przypodłogowych?

Ilustracja do pytania
A. Symbolem 4.
B. Symbolem 3.
C. Symbolem 1.
D. Symbolem 2.
Wybór błędnych symboli graficznych w dokumentacji instalacji elektrycznych może prowadzić do poważnych nieporozumień i problemów w realizacji projektów. Symbole 1, 2 oraz 4 nie są zgodne z normą PN-IEC 60617 odnoszącą się do oznaczeń w dokumentacji elektrycznej. Wybór symbolu 1 może sugerować zupełnie inną metodę prowadzenia przewodów, co nie odpowiada rzeczywistości w kontekście instalacji w listwach przypodłogowych. Z kolei symbole 2 i 4 mogą być używane w innych kontekstach, jednak nie mają zastosowania w sytuacji, gdy przewody muszą być zabezpieczone oraz estetycznie zamaskowane wzdłuż ścian. Takie błędne wybory mogą wynikać z pomyłek w zapamiętywaniu symboli, co podkreśla znaczenie znajomości standardów oraz umiejętności ich prawidłowej interpretacji. Ważne jest, aby projektanci instalacji elektrycznych oraz ich wykonawcy przestrzegali ustalonych norm i wytycznych w celu zapewnienia nie tylko funkcjonalności, ale również bezpieczeństwa instalacji. Prawidłowe oznaczenie przewodów jest niezbędne dla późniejszej konserwacji oraz diagnozowania ewentualnych usterek. Właściwe symbole graficzne powinny być integralną częścią każdej dokumentacji technicznej, aby zapewnić prawidłowe zrozumienie i wykonanie instalacji zgodnie z najlepszymi praktykami branżowymi.

Pytanie 19

Rysunek przedstawia pomiar impedancji pętli zwarciowej metodą

Ilustracja do pytania
A. zastosowania dodatkowego źródła.
B. kompensacyjną.
C. bezpośredniego pomiaru.
D. spadku napięcia.
Pomiar impedancji pętli zwarciowej można przeprowadzać różnymi metodami, jednak nie każda z nich zapewnia taką samą dokładność i wiarygodność. Pierwsza z nieprawidłowych odpowiedzi, dotycząca zastosowania dodatkowego źródła, sugeruje, że użycie źródła napięcia jest wystarczające do przeprowadzenia tego pomiaru bez wskazania na konieczność jego kompensacji. Odpowiedź ta myli koncepcję pomiaru z prostym zastosowaniem źródła, co nie odzwierciedla rzeczywistych warunków w obwodzie. Kolejna odpowiedź, dotycząca pomiaru spadku napięcia, również jest problematyczna, ponieważ metoda ta nie uwzględnia wpływu rezystancji przewodów, co może prowadzić do znacznych błędów w odczytach. Bezpośrednie pomiary opierają się na idealnych warunkach, które rzadko występują w rzeczywistości, i nie są w stanie dostarczyć pełnego obrazu sytuacji w instalacji elektrycznej. Metoda kompensacyjna zaś, która uwzględnia te zmienne, pozwala na uzyskanie bardziej precyzyjnych wyników. Z kolei odpowiedź dotycząca pomiaru kompensacyjnego, mimo że prawidłowa, nie oddaje pełni zalet tej metody, a także zniekształca zrozumienie jej zastosowania, co może prowadzić do niewłaściwych wniosków w praktyce. Kluczowe jest zrozumienie, że w każdym pomiarze należy brać pod uwagę wszystkie zmienne, aby uzyskać rzetelne wyniki, a metody uproszczone mogą nie być wystarczające dla skutecznej analizy.

Pytanie 20

Do pomiaru napięć stałych należy użyć miernika elektrycznego o ustroju, którego symbol graficzny przedstawiono na rysunku

Ilustracja do pytania
A. C.
B. B.
C. D.
D. A.
W przypadku wyboru jakiejkolwiek innej odpowiedzi, można zauważyć szereg nieporozumień dotyczących symboli oraz ich zastosowania w elektrotechnice. Symbol przedstawiony przy opcji A, który sugeruje gniazdo zasilania stałego, nie ma zastosowania w kontekście pomiaru napięcia, jako że jego funkcja polega na dostarczaniu energii elektrycznej, a nie na jej pomiarze. Wybór B, symbolizujący rezystor, również jest błędny, ponieważ rezystory są komponentami pasywnymi stosowanymi do ograniczania prądu w obwodach, a nie do pomiaru napięcia. Ponadto, wybór C, który przedstawia symbol cewki indukcyjnej, może prowadzić do mylnych wniosków o pomiarze napięcia w obwodach, w których cewki są używane. Cewki indukcyjne są elementami aktywnymi, ale ich rola w pomiarach napięcia jest ograniczona, a w niektórych przypadkach mogą powodować zniekształcenia w wynikach pomiarów. Te wybory świadczą o braku zrozumienia różnicy między symbolami komponentów pasywnych a przyrządami pomiarowymi. Wybór niewłaściwego symbolu odzwierciedla typowe błędy myślowe w zakresie rozpoznawania zastosowań komponentów elektrycznych oraz ich rzeczywistej funkcji w obwodach, co jest kluczowe dla prawidłowego stosowania wiedzy w praktyce inżynieryjnej.

Pytanie 21

W jakiej z poniższych sytuacji poślizg silnika indukcyjnego będzie najmniejszy?

A. Silnik będzie zasilany prądem w kierunku przeciwnym
B. Silnik będzie pracować na biegu jałowym
C. Podczas zasilania silnika jego wirnik będzie stał
D. Silnik działa w nominalnych warunkach zasilania oraz obciążenia
Silnik pozostający na biegu jałowym charakteryzuje się minimalnym poślizgiem, ponieważ nie jest obciążony zewnętrznie, co sprawia, że jego wirnik obraca się blisko prędkości synchronicznej. W praktyce oznacza to, że nie ma znacznego oporu mechanicznego, który mógłby wpłynąć na różnicę między prędkością wirnika a polem magnetycznym statora. W takich warunkach obroty wirnika są prawie zgodne z obrotami pola magnetycznego. W zastosowaniach przemysłowych, takich jak wentylatory czy pompy, silniki indukcyjne często pracują w trybie jałowym, co minimalizuje straty energii. Dobrą praktyką jest monitorowanie poślizgu silników w celu optymalizacji ich wydajności i zużycia energii. Zmniejszenie poślizgu wpływa na obniżenie kosztów eksploatacji, co jest kluczowe w kontekście zarządzania energią w zakładach produkcyjnych.

Pytanie 22

Który z wymienionych symboli literowych odnosi się do przewodu samonośnego?

A. AsXSn
B. GsLGs
C. OMY
D. YKY
Przewody samonośne są specyficznym typem przewodów używanych w instalacjach elektrycznych, a ich oznaczenie jest ściśle regulowane przez normy branżowe. YKY, OMY oraz GsLGs to oznaczenia, które nie odnoszą się do przewodów samonośnych. YKY to przewód z izolacją PVC, stosowany głównie do instalacji wewnętrznych oraz zewnętrznych, ale nie jest przystosowany do montażu samonośnego. OMY to przewód stosowany w zastosowaniach niskonapięciowych, również nie przewidziany do samonośnych instalacji. GsLGs to przewód przeznaczony do użytku w obszarach o dużej wilgotności, jednak jego konstrukcja nie spełnia wymogów dla przewodów samonośnych. Typowe błędy myślowe w tej kwestii polegają na myleniu różnych typów przewodów i nieznajomości ich zastosowań. Właściwe rozpoznanie przewodów samonośnych jest kluczowe dla zapewnienia bezpieczeństwa elektrycznego oraz efektywności energetycznej, dlatego ważne jest, aby stosować się do standardów i dobrych praktyk branżowych.

Pytanie 23

Którą oprawę oświetleniową należy zastosować w piwnicy o zwiększonej wilgotności powietrza?

Ilustracja do pytania
A. A.
B. C.
C. B.
D. D.
Oprawa oświetleniowa oznaczona jako D. jest odpowiednia do zastosowania w piwnicy o zwiększonej wilgotności powietrza, ponieważ spełnia normy dotyczące szczelności i odporności na działanie wilgoci. W takich warunkach, zastosowanie oprawy z wyższym stopniem ochrony, jak IP65 lub IP67, jest kluczowe, aby uniknąć ryzyka uszkodzenia instalacji elektrycznej oraz zapewnić bezpieczeństwo użytkowników. Dobrą praktyką jest wybór opraw wyekwipowanych w zatrzaski, co zwiększa ich szczelność i zapobiega przedostawaniu się pary wodnej oraz zanieczyszczeń. W piwnicach, gdzie może występować wilgoć, szczególnie istotne jest regularne sprawdzanie stanu technicznego oświetlenia, a także stosowanie źródeł światła odpornych na wahania temperatury oraz wilgotności, takich jak diody LED. Przykładem mogą być instalacje oświetleniowe w magazynach lub piwnicach, które wymagają nie tylko właściwego doboru opraw, ale także odpowiedniego montażu, aby zapewnić ich długotrwałą i bezpieczną eksploatację.

Pytanie 24

Na rysunku przedstawiono wynik uzyskany podczas pomiaru rezystancji izolacji silnika indukcyjnego między zaciskami W2 i PE tabliczki silnikowej. Uzyskany wynik świadczy o

Ilustracja do pytania
A. zbyt dużej wartości rezystancji izolacji uzwojenia W1 – W2.
B. zwarciu uzwojenia z obudową silnika.
C. zbyt małej wartości rezystancji izolacji uzwojenia W1 – W2.
D. dobrym stanie izolacji uzwojenia W1 – W2.
Wybierając odpowiedzi, które sugerują zbyt dużą wartość rezystancji izolacji W1 – W2, zwarcie uzwojenia z obudową silnika lub zbyt małą wartość rezystancji, można wpaść w szereg błędnych wniosków. Każda z tych odpowiedzi nie uwzględnia kluczowych aspektów dotyczących analizy wyników pomiaru rezystancji izolacji. Zbyt duża wartość rezystancji nie jest problematyczna, a wręcz przeciwnie - wskazuje na dobrą izolację. Twierdzenie o zwarciu uzwojenia z obudową jest również mylne, ponieważ pomiar wykazał bardzo wysoką rezystancję, co jasno świadczy o braku takiego zwarcia. Z kolei niska wartość rezystancji izolacji zazwyczaj sugeruje problemy z izolacją, takie jak uszkodzenia mechaniczne lub degradacja materiału, co może prowadzić do poważnych konsekwencji, takich jak uszkodzenia silnika czy zagrożenie dla bezpieczeństwa użytkowników. Należy pamiętać, że interpretacja wyników pomiaru rezystancji izolacji wymaga zrozumienia zasad działania silników oraz praktyk inżynieryjnych związanych z bezpieczeństwem elektrycznym. Właściwa analiza danych pomiarowych jest kluczowa do prawidłowej oceny stanu technicznego urządzeń elektrycznych oraz podejmowania odpowiednich działań prewencyjnych.

Pytanie 25

Którą z przedstawionych opraw oświetleniowych należy zastosować w piwnicy o zwiększonej wilgotności?

Ilustracja do pytania
A. C.
B. B.
C. D.
D. A.
Wybór nieodpowiedniej oprawy oświetleniowej do piwnicy o zwiększonej wilgotności może prowadzić do poważnych problemów z bezpieczeństwem oraz wydajnością. Oprawy, które nie mają szczelnej konstrukcji, mogą ulegać uszkodzeniom w wyniku kontaktu z wodą, co w konsekwencji stwarza ryzyko zwarcia lub pożaru. Wiele osób nie zdaje sobie sprawy z tego, że standardowe oprawy oświetleniowe, takie jak te oznaczone niskim stopniem ochrony IP, nie są przystosowane do pracy w wilgotnych środowiskach. Te konstrukcje nie mają wystarczającej ochrony przed wnikaniem wilgoci, co może prowadzić do ich szybszego zużycia. Typowym błędem jest także sądzenie, że jakakolwiek oprawa oświetleniowa może być użyta w piwnicy, ponieważ często nie uwzględnia się specyficznych wymagań dotyczących wilgoci. Nieprzemyślane podejście do doboru oświetlenia w takich miejscach może skutkować nie tylko mniejszą efektywnością energetyczną, ale i narażeniem użytkowników na niebezpieczeństwo. Dlatego tak ważne jest, aby zawsze kierować się standardami i dobrymi praktykami, wybierając oprawy spełniające wymogi IP odpowiednie dla danego środowiska.

Pytanie 26

W jaki sposób można zweryfikować funkcjonowanie wyłącznika różnicowoprądowego?

A. Sprawdzając napięcie oraz prąd wyłącznika
B. Zmieniając ustawienie dźwigni "ON-OFF"
C. Tworząc zwarcie w obwodzie zabezpieczonym
D. Naciskając przycisk "TEST"
Wyłącznik różnicowoprądowy (RCD) jest kluczowym elementem systemów zabezpieczeń elektrycznych, który chroni przed porażeniem prądem elektrycznym oraz pożarami spowodowanymi prądami upływowymi. Aby sprawdzić jego działanie, należy wcisnąć przycisk 'TEST', co symuluje warunki, w których RCD powinien zareagować na różnicę między prądem wpływającym a wypływającym. Działanie tego przycisku uruchamia mechanizm w RCD, który odłącza zasilanie, jeżeli wykryje jakiekolwiek nieprawidłowości. Zgodnie z normą PN-EN 61008-1, regularne testowanie RCD jest zalecane, co najmniej raz na miesiąc, aby zapewnić ich prawidłowe funkcjonowanie. Przykładem zastosowania takiego testowania może być mieszkanie, w którym w przypadku uszkodzenia izolacji w przewodzie, RCD powinien wyłączyć obwód, zanim doprowadzi to do porażenia prądem. Regularne testowanie RCD, poprzez naciśnięcie przycisku 'TEST', upewnia użytkowników, że ich systemy zabezpieczeń są w pełni sprawne i gotowe do ochrony przed zagrożeniami.

Pytanie 27

Jakie parametry wyłącznika różnicowoprądowego powinny być zmierzone, aby ocenić jego poprawne działanie?

A. Obciążenie prądowe i czas reakcji
B. Prąd różnicowy oraz czas reakcji
C. Napięcie w sieci oraz prąd różnicowy
D. Napięcie w sieci oraz prąd obciążeniowy
Odpowiedź, która wskazuje na pomiar prądu różnicowego oraz czasu zadziałania wyłącznika różnicowoprądowego, jest poprawna, ponieważ te parametry są kluczowe dla oceny skuteczności działania tego urządzenia. Prąd różnicowy to różnica między prądami wpływającymi i wypływającymi z obwodu, a jego pomiar pozwala zidentyfikować potencjalne nieprawidłowości, takie jak upływ prądu do ziemi. Czas zadziałania, z kolei, określa, jak szybko wyłącznik reaguje na wykrycie tego prądu różnicowego, co jest istotne dla zapewnienia bezpieczeństwa użytkowników. Przykładem zastosowania jest sytuacja, gdy osoba dotyka uszkodzonego przewodu; w tym przypadku wyłącznik różnicowoprądowy powinien natychmiast zadziałać, aby uniknąć porażenia prądem. Zgodnie z normami IEC 61008 oraz IEC 61009, wyłączniki różnicowoprądowe powinny mieć określone wartości prądu różnicowego i czasu zadziałania, co podkreśla ich znaczenie w systemach zabezpieczeń. Regularne testowanie tych parametrów jest niezbędne do utrzymania wysokiego poziomu bezpieczeństwa w instalacjach elektrycznych.

Pytanie 28

Którego silnika elektrycznego dotyczy przedstawiony schemat?

Ilustracja do pytania
A. Bocznikowego prądu stałego.
B. Synchronizowanego.
C. Szeregowego prądu stałego.
D. Synchronicznego.
Odpowiedzi, które wybrałeś, wskazują na pewne nieporozumienia dotyczące klasyfikacji silników elektrycznych. Silnik synchroniczny oraz synchronizowany to typy silników prądu przemiennego, które działają na zasadzie synchronizacji prędkości obrotowej wirnika z częstotliwością prądu zasilającego. Te silniki są często używane w aplikacjach, gdzie wymagana jest stała prędkość obrotowa, jednak nie mają one zastosowania w kontekście schematu, który pokazuje silnik prądu stałego. Silnik bocznikowy prądu stałego, z kolei, charakteryzuje się połączeniem równoległym uzwojenia wzbudzenia, co wpływa na zachowanie momentu obrotowego przy różnych prędkościach. Wybór jednego z tych typów silników do analizy schematu może prowadzić do błędnych wniosków, ponieważ ich zasady działania oraz zastosowania są odmienne od silnika szeregowego. Należy zwrócić uwagę na to, że nieprawidłowe identyfikowanie silników może prowadzić do wyboru niewłaściwych rozwiązań technologicznych w praktyce, co w konsekwencji może skutkować awariami lub zmniejszoną efektywnością systemów, w których są one wykorzystywane. Zrozumienie różnic pomiędzy tymi typami silników oraz ich właściwościami jest kluczowe dla skutecznego projektowania i eksploatacji urządzeń elektrycznych.

Pytanie 29

W jakim typie układu sieciowego możemy spotkać przewód PEN?

A. IT
B. TN-S
C. TT
D. TN-C
Odpowiedź TN-C jest prawidłowa, ponieważ w tym układzie sieciowym przewód PEN łączy funkcje przewodu neutralnego (N) i ochronnego (PE). Układ TN-C jest stosowany w wielu instalacjach elektrycznych, w tym w budynkach użyteczności publicznej oraz w przemyśle, gdzie zapewnia zarówno transport energii, jak i ochronę przed porażeniem elektrycznym. Kluczowym aspektem tego układu jest to, że przewód PEN jest wspólny dla wielu odbiorników i umożliwia efektywne prowadzenie instalacji przy ograniczeniu liczby przewodów. Zgodnie z normą PN-EN 60364, przewód PEN musi być odpowiednio zaprojektowany i wykonany, aby zapewnić wysoką niezawodność oraz bezpieczeństwo użytkowników. W praktyce stosowanie przewodu PEN w układzie TN-C jest również korzystne z punktu widzenia kosztów, ponieważ ogranicza ilość potrzebnych przewodów, co przekłada się na mniejsze wydatki materiałowe oraz prostotę instalacji. Na przykład w wielu budynkach mieszkalnych stosuje się układ TN-C, co pozwala na wydajne i bezpieczne zasilanie różnych urządzeń elektrycznych.

Pytanie 30

Na którym rysunku przedstawiono schemat montażowy zgodny z przedstawionym planem instalacji?

Ilustracja do pytania
A. D.
B. B.
C. A.
D. C.
Wybór odpowiedzi, która nie jest zgodna z planem instalacji, może wynikać z kilku błędnych założeń dotyczących montażu i podłączenia instalacji elektrycznych. Wiele osób myli pojęcia dotyczące przewodów PE, N i L, co prowadzi do nieprawidłowych wniosków. Przykładowo, w niepoprawnych schematach może występować niewłaściwe połączenie przewodu neutralnego z fazowym, co stwarza ryzyko zwarcia oraz uszkodzenia urządzeń elektrycznych. Często spotykaną pomyłką jest również brak odpowiedniego uziemienia, które jest kluczowe dla bezpieczeństwa. Bezpośrednie połączenie przewodów do gniazda wtyczkowego bez uwzględnienia zasadności ich rozmieszczenia może prowadzić do nieefektywności pracy urządzeń oraz zwiększonego ryzyka porażenia prądem. Ważne jest, aby pamiętać, że każdy element instalacji musi być zgodny z odpowiednimi normami, takimi jak normy PN-EN 60364, które precyzują zasady projektowania oraz montażu. Wiedza na temat symboliki i oznaczeń w schematach montażowych jest kluczowa dla zrozumienia, jak prawidłowo zrealizować instalację. Pomocne może być również zapoznanie się z wytycznymi dotyczącymi bezpieczeństwa, które podkreślają znaczenie zachowania odpowiednich odstępów pomiędzy przewodami, aby uniknąć zakłóceń oraz potencjalnych zagrożeń.

Pytanie 31

Pomiar którego parametru wyłącznika różnicowoprądowego przedstawiono na rysunku?

Ilustracja do pytania
A. Rzeczywistego prądu zadziałania.
B. Czasu zadziałania.
C. Prądu obciążenia.
D. Rezystancji izolacji.
Zrozumienie działania wyłączników różnicowoprądowych i ich pomiarów jest kluczowe dla bezpieczeństwa instalacji. Odpowiedzi dotyczące rezystancji izolacji, czasu zadziałania oraz prądu obciążenia wskazują na typowe nieporozumienia związane z funkcjonowaniem tych urządzeń. Rezystancja izolacji nie jest parametrem, który wpływa na działanie wyłącznika różnicowoprądowego, lecz na jego bezpieczeństwo względem przebicia do ziemi oraz inne aspekty dotyczące izolacji. Czas zadziałania odnosi się do momentu, w którym urządzenie zareaguje na określony poziom prądu różnicowego, ale nie jest to tożsame z pomiarem rzeczywistego prądu zadziałania, który jest kluczowy dla zabezpieczeń. Z kolei prąd obciążenia odnosi się do wartości prądu płynącego przez obciążenie, a nie do prądu różnicowego, który jest kluczowym czynnikiem dla zadziałania wyłącznika. Ważne jest, aby w kontekście pomiarów, takich jak te dotyczące wyłączników różnicowoprądowych, mieć na uwadze różnice między różnymi typami prądów oraz ich znaczeniem dla bezpieczeństwa. Typowe błędy myślowe mogą prowadzić do mylnego rozumienia, że wszystkie te parametry są równoważne, podczas gdy każdy z nich pełni inną rolę w ocenie bezpieczeństwa i skuteczności instalacji elektrycznej. Właściwe zrozumienie tych różnic jest kluczowe dla prawidłowego stosowania wyłączników i zapewnienia ich efektywności w ochronie przed zagrożeniami elektrycznymi.

Pytanie 32

Który z pokazanych na rysunkach przewodów należy zastosować do wykonania instalacji zasilającej odbiornik prądu stałego w układzie 2/M DC 220/110 V?

Ilustracja do pytania
A. A.
B. D.
C. B.
D. C.
Wybór innych przewodów, takich jak A, B czy C, do instalacji zasilającej odbiornik prądu stałego w układzie 2/M DC 220/110 V jest nieodpowiedni z kilku istotnych powodów. Przede wszystkim, nie każdy przewód jest przystosowany do pracy w warunkach napięcia stałego, co jest kluczowe w tym przypadku. Przewody A, B i C mogą mieć różne właściwości izolacyjne, które nie są wystarczające do ochrony przed skutkami działania napięcia stałego, co może prowadzić do porażenia prądem lub zwarcia. Typowe błędy przy wyborze przewodów do instalacji DC to pomijanie specyfikacji dotyczących odporności na przebicia oraz nieprzestrzeganie norm bezpieczeństwa, takich jak IEC 60228. Osoby wybierające te przewody często kierują się jedynie ich wyglądem lub ceną, ignorując fundamentalne różnice w konstrukcji, które są kluczowe dla bezpieczeństwa całego systemu. W praktyce, stosowanie niewłaściwego przewodu w instalacjach DC może prowadzić do poważnych awarii oraz zwiększa ryzyko pożaru. Warto również pamiętać o tym, że instalacje elektryczne muszą być projektowane z uwzględnieniem lokalnych przepisów i norm, co dodatkowo podkreśla konieczność starannego doboru komponentów instalacji.

Pytanie 33

Kontrolując warunek automatycznego wyłączenia zasilania jako element ochrony przed porażeniem w systemach TN-S, realizowanego przez nadprądowy wyłącznik instalacyjny, oprócz pomiaru impedancji pętli zwarcia konieczne jest określenie dla zastosowanego wyłącznika

A. wartości prądu wyłączającego
B. maksymalnej wielkości prądu zwarciowego
C. progu zadziałania wyzwalacza przeciążeniowego
D. czasu działania wyzwalacza zwarciowego
Wartość prądu wyłączającego to kluczowy parametr przy ocenie skuteczności nadprądowego wyłącznika instalacyjnego w kontekście samoczynnego wyłączenia zasilania, co jest jednym z podstawowych środków ochrony przeciwporażeniowej w sieciach TN-S. Prąd wyłączający to minimalna wartość prądu, przy której wyłącznik zareaguje i rozłączy obwód, zapewniając w ten sposób bezpieczeństwo użytkowników. W praktyce, aby spełnić wymagania norm, takich jak PN-IEC 60364, należy określić, czy prąd zwarciowy w danym obwodzie przekracza tę wartość, co pozwoli na skuteczne odcięcie zasilania w przypadku wystąpienia awarii. Warto również zwrócić uwagę na dobór wyłącznika, który powinien być dostosowany do specyfiki obwodu oraz przewidywanych warunków pracy. W przypadku braku odpowiedniego doboru wyłącznika, ryzyko porażenia prądem lub uszkodzeń urządzeń znacznie wzrasta. Dlatego również w praktyce często wykonuje się testy impedancji pętli zwarcia, aby upewnić się, że prąd zwarciowy osiągnie wartość wyłączającą, co jest kluczowe dla zapewnienia ochrony.

Pytanie 34

Narzędziem niezbędnym do wymiany łącznika pokazanego na zdjęciu jest wkrętak

Ilustracja do pytania
A. z bitem M8
B. płaski.
C. TROX
D. PH2
Prawidłowa odpowiedź to wkrętak płaski, który jest narzędziem odpowiednim do wymiany łącznika pokazanego na zdjęciu. Wyłączniki instalacyjne wyposażone w zacisk śrubowy wymagają użycia wkrętaka płaskiego, ponieważ jego konstrukcja pozwala na łatwe i precyzyjne wkręcanie lub wykręcanie śrub. W praktyce, wkrętak płaski jest najczęściej wykorzystywany w instalacjach elektrycznych, gdzie śruby mocujące są powszechnie stosowane. W sytuacjach, gdy zachodzi potrzeba wymiany wyłączników, zastosowanie odpowiedniego narzędzia jest kluczowe dla zapewnienia bezpieczeństwa oraz poprawności wykonania instalacji. Warto również dodać, że wkrętaki płaskie są dostępne w różnych rozmiarach, co umożliwia ich dopasowanie do konkretnego typu śrub. W przypadku niewłaściwego narzędzia może dojść do uszkodzenia śruby lub samego wyłącznika, co prowadzi do dodatkowych kosztów i ryzyka w zakresie bezpieczeństwa elektrycznego.

Pytanie 35

Przyrząd przedstawiony na rysunku służy do

Ilustracja do pytania
A. pomiaru rezystancji żył przewodów.
B. szacowania długości przewodów.
C. sprawdzania ciągłości żył przewodów.
D. wyznaczania trasy przewodów.
Odpowiedzi, które wskazują na wyznaczanie trasy przewodów, szacowanie długości przewodów czy pomiar rezystancji żył, nie uwzględniają fundamentalnych zasad działania urządzeń pomiarowych w elektryce. Wyznaczanie trasy przewodów wymaga zastosowania innych narzędzi, takich jak lokalizatory kabli, które działają na zasadzie detekcji sygnałów w przewodach. Te urządzenia nie są w stanie ocenić ciągłości obwodu, a jedynie lokalizować przewody w ścianach czy ziemi. Szacowanie długości przewodów natomiast wiąże się z użyciem taśmy mierniczej lub innego urządzenia mierniczego, co różni się od funkcji testera ciągłości. Pomiar rezystancji żył wymaga zastosowania specjalistycznych multimetrach, które są w stanie dokonać pomiaru wartości oporu elektrycznego, lecz nie zajmują się bezpośrednio sprawdzaniem ciągłości obwodu. Typowe błędy, prowadzące do tych nieprawidłowych wniosków, to mylenie funkcji różnych urządzeń pomiarowych oraz niewłaściwe zrozumienie ich zastosowania w praktyce. Zrozumienie, jaki dokładnie rodzaj przyrządów jest potrzebny w konkretnych sytuacjach, jest kluczowe dla efektywnej pracy w obszarze elektryki.

Pytanie 36

Łącznik przedstawiony na zdjęciu jest oznaczony na schematach symbolem graficznym

Ilustracja do pytania
A. C.
B. B.
C. A.
D. D.
Łącznik przedstawiony na zdjęciu jest rzeczywiście dwuklawiszowy, co odpowiada symbolowi graficznemu oznaczonemu literą C. W branży elektrycznej, klawisze w łącznikach są kluczowe dla funkcjonalności systemów oświetleniowych, a ich odpowiednie oznaczenie jest istotne dla poprawnego montażu oraz użytkowania. Symbol graficzny C, który posiada dwa rozgałęzienia, jest standardem stosowanym w schematach instalacji elektrycznych, co ułatwia identyfikację urządzeń w projekcie. W praktyce, zastosowanie dwuklawiszowego łącznika pozwala na jednoczesne sterowanie różnymi obwodami świetlnymi z jednego miejsca, co zwiększa komfort użytkowania przestrzeni. Warto również zauważyć, że zgodność z normami instalacyjnymi, takimi jak PN-IEC 60669, wspiera bezpieczeństwo i efektywność energetyczną. Dlatego znajomość symboli graficznych, takich jak w tym przypadku, jest niezbędna dla projektantów i techników zajmujących się instalacjami elektrycznymi.

Pytanie 37

Do którego z rodzajów trzonków źródeł światła przeznaczona jest oprawka przedstawiona na ilustracji?

Ilustracja do pytania
A. E27
B. G9
C. GU10
D. MR11
Oprawka E27, którą widzisz na obrazku, to jedna z tych, które najczęściej spotyka się w domach i różnych lokalach. Ten duży gwint E27 sprawia, że montaż żarówek jest prosty jak dwa razy dwa. A jakbyś pomyślał o różnych rodzajach żarówek, to znajdziesz tu sporo opcji, jak energooszczędne czy LED – każdy sobie coś dobrego wybierze. Te oprawki są chętnie używane w lampach sufitowych, kinkietach i takich wolnostojących lampach, które dodają trochę charakteru. Ich popularność wynika z tego, że są wszędzie dostępne i pasują do różnych projektów oświetleniowych. Jak wymieniasz źródło światła, E27 to świetny wybór, bo wpasujesz to właściwie wszędzie, dzięki standardowym wymiarom.

Pytanie 38

Jakiego przyrządu należy użyć, aby zmierzyć moc bierną w obwodzie?

A. Woltomierza
B. Watomierza
C. Reflektometru
D. Waromierza
Pomiar mocy w układach elektrycznych można przeprowadzać za pomocą różnych mierników, jednak nie wszystkie z nich są odpowiednie do pomiaru mocy biernej. Reflektometr jest urządzeniem, które służy do analizy odbicia sygnału w liniach transmisyjnych, a jego zastosowanie ogranicza się do problematyki związanej z impedancją i stratami sygnału, co nie ma związku z pomiarem mocy biernej. Watomierz, z drugiej strony, mierzy moc czynną, a jego działanie opiera się na pomiarze napięcia i prądu, a następnie obliczaniu mocy czynnej, co oznacza, że nie jest w stanie dostarczyć informacji na temat mocy biernej, która jest miarą energii niezużywanej. Woltomierz jest urządzeniem do pomiaru napięcia, a jedynie mierząc napięcie nie można określić mocy biernej, gdyż nie uwzględnia on parametrów prądu oraz fazy między nimi. Typowym błędem myślowym jest zatem utożsamianie różnych rodzajów mocy i mylenie ich pomiaru, co prowadzi do nieprawidłowych wniosków i decyzji w zakresie projektowania oraz eksploatacji systemów elektrycznych. Zrozumienie różnic pomiędzy mocą czynną, bierną i pozorną oraz umiejętność zastosowania odpowiednich narzędzi pomiarowych jest kluczowe dla efektywności energetycznej.

Pytanie 39

Który sposób połączenia przewodów jest zgodny z przedstawionym na rysunku schematem ideowym instalacji elektrycznej pracującej w sieci TN-S?

Ilustracja do pytania
A. D.
B. C.
C. B.
D. A.
Niepoprawne odpowiedzi bazują na nieprawidłowym zrozumieniu zasad działania systemu TN-S. W instalacjach tego typu kluczowe jest, aby przewód ochronny PE był całkowicie oddzielony od przewodu neutralnego N. W przypadku odpowiedzi, które nie spełniają tego warunku, ryzyko porażenia prądem znacząco wzrasta, a to może prowadzić do poważnych wypadków. Często występującym błędem jest mylenie funkcji przewodu neutralnego z funkcją przewodu ochronnego. Przewód neutralny ma za zadanie zamykanie obwodu elektrycznego, natomiast przewód uziemiający jest dedykowany ochronie przed awariami elektrycznymi. W systemie TN-S, nieodpowiednie połączenie tych przewodów prowadzi do sytuacji, w której prąd awaryjny może swobodnie krążyć przez obwody, co stwarza zagrożenie dla osób i urządzeń. W praktyce błędne połączenie przewodów może prowadzić do zwarcia lub uszkodzenia sprzętu elektrycznego oraz stwarzać zagrożenie pożaru. Warto pamiętać, że normy i przepisy regulujące instalacje elektryczne mają na celu właśnie eliminację takich nieprawidłowości, a ich przestrzeganie to nie tylko wymóg prawny, ale również dbałość o bezpieczeństwo ludzi i mienia. Dlatego tak istotne jest, aby zrozumieć różnice pomiędzy poszczególnymi rodzajami przewodów i stosować je zgodnie z określonymi normami.

Pytanie 40

Na tynku wykonanym na ścianie działowej z cegły pełnej wytyczono miejsce dla rurek PVC. Jakie narzędzia należy zgromadzić, aby zapewnić szybki i precyzyjny montaż rurek?

A. Taśmę mierniczą, młotek, wiertarkę udarową, wiertło widiowe dostosowane do średnicy kołka rozporowego, poziomicę, zestaw wkrętaków
B. Punktak, młotek, wiertarka udarowa, wiertło widiowe dostosowane do średnicy kołka rozporowego, piła do metalu, zestaw wkrętaków
C. Taśmę mierniczą, wiertarkę, piłę do metalu, młotek
D. Wiertarkę, punktak, zestaw wkrętaków
Wybór narzędzi zaproponowany w innych odpowiedziach, takich jak tylko taśma miernicza i młotek, bądź jedynie wiertarka i komplet wkrętaków, jest niewłaściwy dla tego konkretnego zadania. Taśma miernicza, mimo że jest przydatna do pomiarów, nie zastępuje potrzeby precyzyjnego wyznaczenia miejsc wiercenia, co może prowadzić do błędów w montażu. Młotek sam w sobie nie jest wystarczający do pracy z cegłą pełną, gdzie konieczne jest użycie punktaka do wstępnego oznaczenia otworów. Wiertarka bez odpowiedniego wiertła widiowego może nie sprostać twardości cegły, co skutkuje trudnościami w procesie wiercenia oraz możliwym uszkodzeniem narzędzia. Piła do metalu może być używana, lecz w kontekście montażu rurek PVC, kluczowe jest posiadanie narzędzi do obróbki i mocowania, a nie tylko cięcia. Ostatecznie, brak poziomnicy w zestawie narzędzi jest istotnym błędem, ponieważ precyzyjne wypoziomowanie rurek jest kluczowe dla prawidłowego funkcjonowania instalacji. Takie nieprzemyślane podejście do przygotowania narzędzi może prowadzić do poważnych błędów w instalacji, co w dłuższym czasie może generować dodatkowe koszty związane z poprawkami i ponownym montażem.