Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 7 grudnia 2025 10:32
  • Data zakończenia: 7 grudnia 2025 10:46

Egzamin niezdany

Wynik: 10/40 punktów (25,0%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

W obiekcie zasilanym napięciem 400 V (3/N/PE 50Hz) zainstalowano następujące urządzenia:
1. przepływowy podgrzewacz wody - 12 kW - obwód trójfazowy
2. zmywarka - 3,5 kW - obwód jednofazowy
3. kuchenka elektryczna - 9,5 kW - obwód trójfazowy
4. pralka automatyczna - 4,5 kW - obwód jednofazowy

Każde z urządzeń stanowi odrębny obwód w tablicy rozdzielczej. Jakie wyłączniki instalacyjne należy zastosować z odpowiednimi wartościami prądu znamionowego, według kolejności dla każdego urządzenia (w kolejności 1,2,3,4)?

A. 16 A, 20 A, 20 A, 16 A
B. 16 A, 20 A, 20 A, 16 A
C. 20 A, 16 A, 20 A, 16 A
D. 20 A, 16 A, 16 A, 20 A
Odpowiedź 20 A, 16 A, 16 A, 20 A jest poprawna, ponieważ wartości prądów znamionowych wyłączników instalacyjnych dobierane są na podstawie mocy znamionowej odbiorników oraz zastosowanej metody ochrony. Przepływowy podgrzewacz wody o mocy 12 kW w obwodzie 3-fazowym wymaga prądu wynoszącego około 20 A (12 kW / (sqrt(3) * 400 V) ≈ 17,3 A, zaokrąglając do standardowej wartości 20 A). Zmywarka o mocy 3,5 kW w obwodzie jednofazowym wymaga 16 A, co jest standardową wartością dla tego typu urządzeń. Kuchenka elektryczna o mocy 9,5 kW w obwodzie 3-fazowym również powinna być zabezpieczona wyłącznikiem o prądzie 20 A, ponieważ 9,5 kW / (sqrt(3) * 400 V) ≈ 13,7 A. Pralka automatyczna o mocy 4,5 kW w obwodzie jednofazowym również wymaga wyłącznika o prądzie 16 A, co odpowiada normom dla urządzeń AGD. Takie dobory zabezpieczeń są zgodne z praktykami określonymi w normie PN-IEC 60364, co zapewnia zarówno bezpieczeństwo, jak i odpowiednią ochronę urządzeń. Wartości te są również zgodne z typowymi zabezpieczeniami dostępnymi na rynku.

Pytanie 2

Jaka jest minimalna wartość rezystancji izolacji przewodu, gdy mierzymy induktorem w sieci o napięciu znamionowym badanego obwodu U < 500 V?

A. ≥ 0,25 MΩ
B. < 0,25 MΩ
C. < 0,5 MΩ
D. ≥ 0,5 MΩ
Odpowiedzi, które podają wartości rezystancji izolacji poniżej 0,5 MΩ, nie są odpowiednie. Nie spełniają one podstawowych wymagań, co może być niebezpieczne. Wartości < 0,25 MΩ czy < 0,5 MΩ nie dają dobrego poziomu izolacji, co prowadzi do ryzyka porażenia prądem lub uszkodzenia sprzętu. W zasadzie, jeżeli rezystancja jest poniżej 0,5 MΩ, to może to oznaczać problemy z izolacją przewodów. To z kolei może prowadzić do naprawdę poważnych konsekwencji, jak pożary. Często myli się wartości rezystancji, chcąc uprościć pomiary, ale to jest naprawdę ryzykowne w kontekście bezpieczeństwa elektrycznego. Należy pamiętać, że dobra izolacja chroni nie tylko osoby pracujące w pobliżu, ale również sprzęt i systemy. Gdy wartości rezystancji są niższe niż wymagane 0,5 MΩ, może to wynikać z niewłaściwego stanu instalacji lub zużycia materiałów izolacyjnych. To jeszcze bardziej podkreśla, jak ważne są regularne kontrole i pomiary, żeby wszystko było zgodne z normami bezpieczeństwa instalacji elektrycznych.

Pytanie 3

Co oznacza symbol literowy YKY?

A. kabel z żyłami aluminiowymi w izolacji i powłoce z PVC
B. przewód oponowy warsztatowy z żyłami miedzianymi w izolacji z PVC
C. kabel z żyłami miedzianymi w izolacji z PVC
D. przewód telekomunikacyjny z żyłami aluminiowymi w izolacji i powłoce z PVC
Wybór odpowiedzi dotyczącej kabla o żyłach aluminiowych lub przewodów telekomunikacyjnych jest błędny, ponieważ te typy kabli różnią się w fundamentalny sposób od standardów oznaczonych symbolem YKY. Kable z żyłami aluminiowymi, choć mogą być lżejsze i tańsze niż ich miedziane odpowiedniki, mają znacznie gorszą przewodność elektryczną, co prowadzi do strat energii oraz potencjalnych problemów z niezawodnością w dłuższej perspektywie. Dodatkowo, przewody telekomunikacyjne, które również pojawiają się w alternatywnych odpowiedziach, są przeznaczone do zupełnie innych zastosowań, takich jak przesyłanie danych, co czyni je nieodpowiednimi w kontekście instalacji elektrycznych. Wybór przewodu oponowego warsztatowego również nie jest trafny, gdyż dotyczy on innego rodzaju zastosowań, głównie w warsztatach, gdzie wymagane są wysokie właściwości mechaniczne. W rezultacie, mylenie zastosowań i typów kabli oraz przewodów może prowadzić do nieefektywności i zagrożeń w instalacjach elektrycznych. Kluczowe jest zrozumienie specyfikacji technicznych oraz ich odpowiedniego doboru do konkretnych potrzeb, aby zapewnić bezpieczeństwo i efektywność energetyczną.

Pytanie 4

Którego klucza należy użyć do przymocowania urządzenia elektrycznego do podłoża przy użyciu wkrętów, jak przedstawiony na ilustracji?

Ilustracja do pytania
A. Nasadowego.
B. Płaskiego.
C. Ampulowego.
D. Oczkowego.
Odpowiedź "Ampulowego" jest prawidłowa, ponieważ klucz ampulowy (inaczej klucz imbusowy) jest specjalnie zaprojektowany do pracy z wkrętami, które posiadają gniazdo sześciokątne wewnętrzne. Tego rodzaju wkręty są powszechnie stosowane w urządzeniach elektrycznych, co czyni klucz ampulowy niezwykle przydatnym narzędziem w wielu zastosowaniach. Dzięki konstrukcji klucza, który idealnie pasuje do gniazda wkrętu, można osiągnąć wysoki moment dokręcenia, co jest kluczowe dla zapewnienia stabilności zamocowanego urządzenia. W praktyce, użycie klucza ampulowego przy dokręcaniu wkrętów w urządzeniach elektrycznych zmniejsza ryzyko uszkodzenia elementów, ponieważ klucz nie zsuwa się z gniazda, co jest częstym problemem przy użyciu kluczy nasadowych czy oczkowych. Warto pamiętać, że nieodpowiednie narzędzie może prowadzić do uszkodzeń wkrętów oraz szkodliwych dla struktury zamocowanego urządzenia. Dlatego, wybierając odpowiedni klucz, należy kierować się jego specyfiką oraz standardami branżowymi dotyczącymi montażu i konserwacji urządzeń elektrycznych.

Pytanie 5

W układzie jak na rysunku po załączeniu wskazówka watomierza W1 wychyliła się w lewą stronę. Po zamianie zacisków napięciowych watomierz wskazał moc 350 W. Jaka jest całkowita moc pobierana przez odbiornik, jeśli watomierz W2 wskazuje 800 W?

Ilustracja do pytania
A. 450W
B. 800W
C. 350W
D. 1150W
Poprawna odpowiedź to 450W, co wynika z analizy sytuacji w układzie z dwoma watomierzami. W1 wskazuje moc ujemną przed zamianą zacisków, co sugeruje, że urządzenie odbierające energię pracuje w trybie, w którym moc oddawana przez źródło przewyższa moc pobieraną przez odbiornik. Po zamianie zacisków, watomierz W1 wykazuje moc 350W, co oznacza, że odbiornik pobiera tę moc od źródła. Z kolei watomierz W2 wskazuje moc 800W, co wskazuje na całkowity pobór mocy przez system. W takim przypadku, aby obliczyć całkowitą moc pobieraną przez odbiornik, należy uwzględnić, że moc wskazywana przez W1 była wcześniej negatywna. Zatem całkowita moc wynosi 350W + 800W = 1150W, jednakże z uwagi na negatywny pomiar W1, rzeczywista moc wynosi 450W. To podejście jest zgodne z zasadami analizy obwodów elektrycznych i pokazuje, jak ważne jest rozumienie wskazań urządzeń pomiarowych oraz ich interpretacja w kontekście działania całego układu. Takie analizy są kluczowe w inżynierii elektrycznej, gdzie dokładność pomiarów i ich interpretacja wpływają na optymalizację pracy systemów energetycznych.

Pytanie 6

W jaki sposób należy ułożyć przewody w instalacji elektrycznej, jeśli na jej planie znajduje się symbol przedstawiony na rysunku?

Ilustracja do pytania
A. Na tynku.
B. Pod tynkiem.
C. W listwach elektroinstalacyjnych.
D. W kanałach przypodłogowych.
Wybór odpowiedzi związanej z układaniem przewodów w listwach elektroinstalacyjnych, na tynku lub w kanałach przypodłogowych jest błędny z kilku powodów. Zastosowanie listw elektroinstalacyjnych, choć zapewnia łatwy dostęp do przewodów, nie jest zgodne z zasadami estetyki oraz bezpieczeństwa w nowoczesnych projektach budowlanych. Listwy są często narażone na uszkodzenia mechaniczne, a ich obecność w pomieszczeniach może prowadzić do nieestetycznego wyglądu oraz problematycznego dostępu do przewodów w przypadku ich awarii. Umieszczanie przewodów na tynku to kolejna nieodpowiednia praktyka, ponieważ przewody są wtedy narażone na działanie czynników zewnętrznych, co może prowadzić do ich szybszego zużycia oraz wzrostu ryzyka zwarcia. Poza tym, układanie przewodów w kanałach przypodłogowych, choć stosowane w niektórych przypadkach, również nie jest zalecane, zwłaszcza w budynkach mieszkalnych, gdzie można zastosować bardziej estetyczne i bezpieczne rozwiązania, takie jak ułożenie przewodów pod tynkiem. Kluczowym błędem jest myślenie, że dostępność przewodów w przypadku ich awarii jest ważniejsza niż ich długoterminowa ochrona i estetyka. Wymogi dotyczące instalacji w budynkach mieszkalnych przewidują, że przewody powinny być ukryte, co nie tylko poprawia wygląd wnętrza, ale także zwiększa bezpieczeństwo użytkowników.

Pytanie 7

Jaka maksymalna wartość może mieć impedancja pętli zwarcia w trójfazowym systemie elektrycznym o napięciu nominalnym 230/400 V, aby ochrona przeciwporażeniowa przy awarii izolacji była skuteczna, wiedząc, że odpowiednie szybkie wyłączenie tego obwodu ma zapewnić instalacyjny wyłącznik nadprądowy B20?

A. 4,0 Ω
B. 6,6 Ω
C. 3,8 Ω
D. 2,3 Ω
Wybór wartości impedancji pętli zwarcia, który jest za wysoki, prowadzi do problemów z zapewnieniem skutecznej ochrony przed porażeniem prądem. W przypadku większych wartości impedancji, takich jak 6,6 Ω, 3,8 Ω czy 4,0 Ω, istnieje ryzyko, że prąd zwarciowy nie osiągnie wystarczającej wartości, aby aktywować wyłącznik nadprądowy B20 w odpowiednim czasie. Przykładowo, zgodnie z normą PN-IEC 60364-4-41, aby zapewnić skuteczne wyłączenie zasilania przy prądzie zwarciowym, impedancja powinna być poniżej 2,3 Ω. Przy wyższych wartościach impedancji, prąd zwarciowy może być zbyt niski, co skutkuje opóźnieniem lub brakiem wyłączenia zasilania, a to z kolei zwiększa ryzyko porażenia prądem użytkowników. Warto zauważyć, że typowym błędem jest mylenie impedancji z innymi parametrami elektrycznymi, co prowadzi do nieprawidłowych wniosków. Analizując te wartości, ważne jest zrozumienie, że każdy system zabezpieczeń w instalacji elektrycznej musi być zaprojektowany z uwzględnieniem minimalnych wartości impedancji, aby zapewnić bezpieczeństwo użytkowników i skuteczność ochrony przeciwporażeniowej.

Pytanie 8

Na którym rysunku przedstawiono przewód spawalniczy OnS-1?

Ilustracja do pytania
A. C.
B. D.
C. A.
D. B.
Wybór innej odpowiedzi może wynikać z braku zrozumienia specyfikacji i zastosowania przewodu spawalniczego OnS-1. Istotne jest, aby wiedzieć, że przewody spawalnicze są projektowane z myślą o konkretnych technikach spawania i warunkach pracy. Na rysunkach, które zostały przedstawione, wiele przewodów może wydawać się podobnych, jednak różnice w konstrukcji mają kluczowe znaczenie. Przewód spawalniczy OnS-1, złożony z cienkich drutów miedzianych, charakteryzuje się dużą elastycznością oraz doskonałym przewodnictwem prądu, co jest niezbędne przy spawaniu łukowym. Wybierając inne odpowiedzi, można popełnić błąd myślowy, zakładając, że każdy przewód o podobnym wyglądzie będzie odpowiedni do każdego zastosowania. Na przykład, przewody, które są nieodpowiednio zaprojektowane do spawania, mogą prowadzić do przegrzewania się, co z kolei może spowodować ich uszkodzenie oraz obniżenie jakości wykonanej spoiny. W praktyce, kluczowe jest stosowanie przewodów zgodnych z normami branżowymi, takimi jak IEC 60228 i EN 50525, aby zapewnić bezpieczeństwo i skuteczność pracy. Zrozumienie konstrukcji przewodów oraz ich przeznaczenia jest istotne dla każdego specjalisty zajmującego się spawaniem.

Pytanie 9

Ogranicznik przepięć klasy D, który można zainstalować w systemie elektrycznym o maksymalnym napięciu 1000 V, instaluje się w

A. złączach oraz miejscach, gdzie instalacja wchodzi do budynku z systemem piorunochronnym, zasilanego z linii napowietrznej.
B. rozgałęzieniach systemu elektrycznego w budynku oraz w rozdzielnicach dla mieszkań.
C. gniazdach elektrycznych, puszkach w instalacji oraz bezpośrednio w urządzeniach.
D. niskonapięciowych liniach elektroenergetycznych.
Ograniczniki przepięć klasy D są zaprojektowane do montażu w miejscach, gdzie mogą wystąpić nagłe wzrosty napięcia, na przykład w gniazdach wtyczkowych, puszkach instalacyjnych oraz w bezpośrednich aplikacjach w urządzeniach. Ich głównym zadaniem jest ochrona wrażliwych komponentów elektronicznych przed skutkami przepięć, które mogą pojawić się w wyniku wyładowań atmosferycznych, włączania i wyłączania obciążeń czy zakłóceń w sieci elektrycznej. W praktyce oznacza to, że ich instalacja w gniazdach jest kluczowa, gdyż tam najczęściej podłączane są urządzenia wymagające ochrony, takie jak komputery, telewizory czy sprzęt audio. Aby zapewnić skuteczność działania ograniczników, należy je montować jak najbliżej miejsc, w których są używane urządzenia, co minimalizuje długość połączeń i potencjalne straty związane z przewodnictwem. Zgodność z normami PN-IEC 61643-11 oraz PN-EN 60950-1 podkreśla znaczenie ich stosowania w instalacjach niskiego napięcia.

Pytanie 10

Jakim z podanych wyłączników nadprądowych można zamienić bezpieczniki typu gG w obwodzie 3/N/PE ~ 400/230 V 50 Hz, który zasila trójfazowy rezystancyjny grzejnik elektryczny o mocy znamionowej 7kW?

A. S194B10
B. S192B16
C. S193B16
D. S193B10
Wybór niewłaściwego wyłącznika nadprądowego do obwodu zasilającego może być wynikiem kilku błędnych rozważań. Na przykład, jeśli ktoś zdecyduje się na S194B10, musi pamiętać, że ten model jest przeznaczony do zasilania jednofazowego, co czyni go nieodpowiednim w kontekście obwodu trójfazowego. Problemy pojawiają się, gdy nie uwzględnia się specyfiki obwodu, w którym ma pracować dany wyłącznik. Użycie wyłącznika, który nie jest przystosowany do pracy z obciążeniem trójfazowym, może prowadzić do jego przedwczesnego zadziałania lub braku reakcji w razie przeciążenia. Kolejną nieprzemyślaną decyzją może być wybór modelu S192B16, który, choć ma odpowiednią wartość prądową, nie jest przeznaczony do zastosowań trójfazowych. W kontekście instalacji elektrycznych niezwykle istotne jest, aby urządzenia zabezpieczające były dostosowane do specyfikacji i norm obowiązujących w danej instalacji. Warto zwrócić uwagę na wymagania dotyczące kategorii prądowej i liczby faz, aby uniknąć poważnych problemów z użytkowaniem urządzeń elektrycznych. Niezrozumienie tego aspektu może prowadzić do wyboru niewłaściwych komponentów, co w praktyce może skutkować awariami, a nawet zagrożeniem dla bezpieczeństwa. Właściwy dobór wyłącznika nadprądowego powinien być zawsze oparty na obliczeniach i analizach zgodnych z zasadami bezpieczeństwa oraz normami prawnymi, co podkreśla znaczenie wiedzy i doświadczenia w tej dziedzinie.

Pytanie 11

W wyniku uszkodzenia mechanicznego obudowa gniazda wtyczkowego w łazience uległa zniszczeniu. Co w takiej sytuacji powinno się zrobić?

A. wymienić gniazdo na nowe
B. zdemontować gniazdo i zaślepić puszkę
C. uszczelnić pęknięcia za pomocą kleju do tworzywa
D. zakleić gniazdo taśmą izolacyjną
Wymiana gniazda wtyczkowego jest kluczowym krokiem w przypadku uszkodzenia obudowy, ponieważ gwarantuje bezpieczeństwo użytkowników i zapewnia prawidłowe funkcjonowanie instalacji elektrycznej. Uszkodzona obudowa może prowadzić do odsłonięcia przewodów elektrycznych, co zwiększa ryzyko porażenia prądem oraz zwarcia. Zgodnie z normami bezpieczeństwa elektrycznego, takimi jak PN-IEC 60364, każda uszkodzona komponenta powinna być wymieniana, aby zapobiec potencjalnym zagrożeniom. Przykładowo, w przypadku gniazd wtyczkowych umieszczonych w łazienkach, gdzie panuje wysoka wilgotność, niezbędne jest korzystanie z gniazd o podwyższonej odporności na wodę i pył, co podkreśla znaczenie stosowania komponentów spełniających odpowiednie normy. Regularne kontrole oraz wymiana uszkodzonych elementów to najlepsza praktyka, która zwiększa bezpieczeństwo i niezawodność domowej instalacji elektrycznej. Przykładem może być sytuacja, w której gniazdo w łazience zostało uszkodzone – jego wymiana powinna być dokonywana przez wykwalifikowanego elektryka, aby zminimalizować ryzyko błędów w montażu.

Pytanie 12

Który z łączników dysponuje komorami gaszeniowymi i ma zdolność do przerywania prądów zwarciowych?

A. Stycznik
B. Odłącznik
C. Rozłącznik
D. Wyłącznik
Wyłącznik to urządzenie elektroenergetyczne, które nie tylko przerywa obwód, ale także posiada komory gaszeniowe, co umożliwia mu skuteczne wyłączanie prądów zwarciowych. Komory te są kluczowe, ponieważ odpowiadają za stłumienie łuku elektrycznego, który powstaje podczas rozłączania obwodu w sytuacji zwarcia. Dzięki temu wyłączniki są w stanie szybko i bezpiecznie eliminować niebezpieczne prądy, co chroni urządzenia elektryczne oraz instalacje przed uszkodzeniami. Przykładami zastosowań wyłączników są systemy zabezpieczeń w elektrowniach, stacjach transformacyjnych oraz w instalacjach przemysłowych, gdzie niezawodność i bezpieczeństwo są kluczowe. W kontekście norm, wyłączniki powinny spełniać wymogi określone w normach IEC 60947 i PN-EN 60898, które regulują ich budowę oraz parametry pracy, co zapewnia ich wysoką jakość i efektywność działania.

Pytanie 13

Którego z urządzeń elektrycznych dotyczy etykieta przedstawiona na ilustracji?

Ilustracja do pytania
A. Czujnika ruchu.
B. Źródła światła.
C. Automatu schodowego.
D. Aparatu zmierzchowego.
Odpowiedź "Źródła światła" jest poprawna, ponieważ etykieta na ilustracji dostarcza kluczowych informacji charakterystycznych dla różnych typów źródeł światła, takich jak żarówki LED czy tradycyjne żarówki. Warto zwrócić uwagę na podaną moc, która wynosi 14.5W, co jest typowe dla nowoczesnych źródeł światła. Lumeny, które wynoszą 1180, określają ilość światła emitowanego przez źródło, co jest istotnym parametrem w branży oświetleniowej. Typ gwintu E27 jest powszechnie stosowany w żarówkach domowych, co jeszcze bardziej potwierdza, że mamy do czynienia z źródłem światła. Ponadto temperatura barwowa wynosząca 3000K wskazuje na ciepłe światło, które jest często preferowane w zastosowaniach domowych i komercyjnych. Wiedza na temat klasyfikacji źródeł światła jest kluczowa dla specjalistów zajmujących się projektowaniem oświetlenia, gdyż pozwala na dobór odpowiednich produktów do konkretnych zastosowań zgodnie z obowiązującymi normami i standardami branżowymi.

Pytanie 14

Jakiego zestawu narzędzi potrzebujesz do złożenia aparatury oraz wykonania połączeń elektrycznych w rozdzielnicy w mieszkaniu?

A. Szczypce monterskie uniwersalne, nóż monterski, przymiar taśmowy, przyrząd do ściągania izolacji, wkrętarka
B. Szczypce do cięcia przewodów, przyrząd do ściągania powłoki, przyrząd do ściągania izolacji, zestaw wkrętaków
C. Szczypce do zaciskania końcówek, przyrząd do ściągania powłoki, nóż monterski, zestaw wkrętaków
D. Szczypce monterskie uniwersalne, młotek, przyrząd do ściągania powłoki, przyrząd do ściągania izolacji
Zestaw narzędzi, który wymieniłeś, jest naprawdę ważny przy montażu aparatury elektrycznej. Szczypce do cięcia przewodów są super przydatne, bo dzięki nim możesz łatwo obciąć przewody na odpowiednią długość – to ważne, żeby wszystko wyglądało schludnie. Przyrząd do ściągania powłoki to też niezła sprawa, bo pozwala na ściągnięcie zewnętrznej izolacji, co jest niezbędne, żeby dostać się do przewodów. No i przyrząd do ściągania izolacji - bez niego trudno by było zrobić dobre i trwałe połączenia. Co do zestawu wkrętaków, to jasne, że musisz mieć zarówno płaskie, jak i krzyżowe, żeby wszystko dobrze zamocować. Pamiętaj, że poprawne korzystanie z tych narzędzi to także kwestia bezpieczeństwa, więc dobrze jest się trzymać zasad BHP. To wszystko naprawdę wpływa na bezpieczeństwo i trwałość całej instalacji.

Pytanie 15

Który element regulacyjny występuje w układzie przedstawionym na schemacie?

Ilustracja do pytania
A. Przesuwnik fazowy.
B. Autotransformator.
C. Dławik.
D. Regulator indukcyjny.
Analizując błędne odpowiedzi, można zauważyć, że odpowiedź mówiąca o dławiku opiera się na niewłaściwym zrozumieniu roli elementów w układzie. Dławik jest urządzeniem, które służy głównie do tłumienia zakłóceń oraz stabilizacji prądu w obwodach, ale nie zmienia napięcia, co jest kluczową funkcją autotransformatora. Kolejną mylną koncepcją jest przesuwnik fazowy, który ma zastosowanie w regulacji fazy sygnałów, a nie w regulacji napięcia. Jest to urządzenie stosunkowo bardziej złożone, które znajduje swoje zastosowanie w systemach kontrolnych, ale nie jest to odpowiednie porównanie z autotransformatorem, którego podstawową funkcją jest transformacja napięcia. Z kolei regulator indukcyjny, często wykorzystywany w systemach automatyki do regulacji procesów, również nie ma zastosowania w kontekście zmiany napięcia, a jego działanie opiera się na zmianie pola magnetycznego w odpowiedzi na zmiany prądu. Niezrozumienie różnicy między tymi elementami może prowadzić do błędnych wniosków w projektowaniu układów elektrycznych. Kluczowe jest, aby przy wyborze elementów do układu zasilania zrozumieć ich podstawowe funkcje oraz zastosowanie, co pozwoli uniknąć typowych błędów i nieporozumień w pracy inżynieryjnej.

Pytanie 16

Którego z przedstawionych narzędzi należy użyć do zamontowania zworek w tabliczce silnikowej?

Ilustracja do pytania
A. C.
B. B.
C. A.
D. D.
Wybór niewłaściwego narzędzia do montażu zworek w tabliczce silnikowej może prowadzić do różnych problemów. Użycie klucza imbusowego, jak w odpowiedzi oznaczonej jako 'A.', jest nieadekwatne, ponieważ klucze imbusowe są projektowane do obsługi śrub o łbie sześciokątnym, a nie nakrętek stosowanych w tabliczkach silnikowych. Dodatkowo, takie narzędzie nie zapewnia stabilności, co może prowadzić do uszkodzenia łbów śrub lub ich poluzowania. Podobnie, użycie śrubokręta z rękojeścią typu 'T' z odpowiedzi 'B.' nie ma sensu, ponieważ nie jest on przeznaczony do pracy z nakrętkami, lecz do wkrętów, co również nie przyniesie zamierzonego efektu. Warto również zauważyć, że próbnik napięcia, oznaczony jako 'D.', ma zupełnie inne zastosowanie i służy do pomiaru napięcia w obwodach elektrycznych, a nie do montażu elementów. Wybór narzędzi powinien zawsze opierać się na ich funkcjonalności oraz zgodności z wymaganiami technicznymi danego zadania. Ignorowanie tych zasad może prowadzić do poważnych błędów w instalacjach elektrycznych, a także do zwiększonego ryzyka awarii sprzętu. Dlatego kluczowe jest, aby przed przystąpieniem do pracy znać specyfikację narzędzi oraz ich odpowiednie zastosowania.

Pytanie 17

Przewód pokazany na zdjęciu ma symbol literowy

Ilustracja do pytania
A. YDYo
B. YnDYo
C. YLYp
D. YDYp
Odpowiedź YDYp jest poprawna, ponieważ oznaczenie to dokładnie opisuje charakterystykę przewodu, który możemy zaobserwować na zdjęciu. Litera 'Y' wskazuje na izolację wykonaną z polichlorku winylu (PVC), co jest powszechnie stosowane w przewodach elektrycznych dzięki swojej odporności na działanie chemikaliów i dobrej izolacyjności elektrycznej. Następnie litera 'D' informuje nas, że wewnątrz przewodu znajdują się żyły jednodrutowe, co jest istotne w kontekście zastosowania. Takie przewody są powszechnie stosowane w instalacjach elektrycznych, gdzie wymagana jest duża elastyczność i odporność na zginanie. Oznaczenie 'p' sugeruje, że przewód ma płaską konstrukcję, co może być korzystne przy instalacji w miejscach o ograniczonej przestrzeni. Zastosowanie przewodu YDYp możemy zaobserwować w domowych instalacjach elektrycznych, a także w różnych aplikacjach przemysłowych, gdzie wymagane są wysokie standardy bezpieczeństwa i niezawodności. Zgodność z normą PN-EN 50525-2-11 potwierdza wysoką jakość tego typu przewodów, czyniąc go odpowiednim wyborem w wielu zastosowaniach.

Pytanie 18

Jaki zakres pomiarowy oraz rodzaj napięcia trzeba ustawić na woltomierzu, aby zmierzyć napięcie zasilające obwód gniazd wtyczkowych w budynku mieszkalnym?

A. 500 V AC
B. 200 V AC
C. 500 V DC
D. 200 V DC
Odpowiedź 500 V AC jest prawidłowa, ponieważ w budynkach mieszkalnych napięcie zasilające gniazdka wtyczkowe wynosi zazwyczaj 230 V w systemie prądu przemiennego (AC). Ustawienie woltomierza na zakres 500 V AC umożliwia pomiar napięcia z dużym marginesem bezpieczeństwa, co jest zgodne z dobrymi praktykami pomiarowymi. Użycie takiego zakresu zapewnia dokładne i bezpieczne pomiary bez ryzyka uszkodzenia urządzenia. Warto zauważyć, że pomiar napięcia AC jest istotny, gdyż instalacje elektryczne w budynkach mieszkalnych są projektowane na prąd przemienny, a nie stały (DC). W praktyce, przed rozpoczęciem pomiarów, zawsze należy upewnić się, że woltomierz jest odpowiednio skalibrowany i spełnia normy bezpieczeństwa, takie jak IEC 61010, które dotyczą sprzętu pomiarowego w obszarze niskiego napięcia.

Pytanie 19

Którą rolę pełni w styczniku element wskazany na ilustracji czarną strzałką?

Ilustracja do pytania
A. Likwiduje magnetyzm szczątkowy.
B. Likwiduje drgania zwory.
C. Zmniejsza siłę docisku zwory.
D. Zmniejsza napięcie podtrzymania cewki.
W kontekście analizowanej ilustracji oraz roli elementu w styczniku, ważne jest zrozumienie, dlaczego pozostałe opcje są nieprawidłowe. Pierwsza z błędnych odpowiedzi sugeruje, że element ten likwiduje magnetyzm szczątkowy. Magnetyzm szczątkowy to zjawisko, które występuje po odłączeniu zasilania i najczęściej jest związane z materiałem rdzenia elektromagnesu. Eliminacja tego efektu wymaga zastosowania odpowiednich materiałów magnetycznych oraz projektowania, a nie tłumika drgań. Kolejna opcja mówi o zmniejszeniu siły docisku zwory, co nie jest rolą opisanego elementu. Siła docisku zwory jest istotna dla prawidłowego działania stycznika i wpływa na jakość kontaktu elektrycznego. Zmniejszenie jej mogłoby prowadzić do przegrzewania lub niestabilności kontaktów. Ostatnia odpowiedź odnosi się do zmniejszenia napięcia podtrzymania cewki. Napięcie podtrzymania jest kluczowe dla utrzymania zwory w pozycji załączonej i jego zmniejszenie mogłoby skutkować przypadkowym wyłączeniem stycznika, co jest niepożądane w aplikacjach wymagających ciągłej pracy. Warto zauważyć, że poszczególne pomyłki w odpowiedziach wynikają często z niepełnego zrozumienia działania mechanizmów styczników oraz ich elementów składowych. Kluczowe jest, aby w procesie nauki zwracać uwagę na detale techniczne oraz zasady działania urządzeń, co pozwoli uniknąć mylnych interpretacji w przyszłości.

Pytanie 20

Strzałka na rysunku wskazuje

Ilustracja do pytania
A. przycisk zwiemy.
B. styk pomocniczy rozwierny.
C. przycisk rozwierny.
D. styk pomocniczy zwiemy.
Wybór niepoprawnej odpowiedzi może sprawiać kłopot przez to, że oznaczenia w schematach elektrycznych są czasem mylące. Przyciski rozwierne, styk pomocniczy rozwierny oraz styk pomocniczy zwiemy to różne typy styków i przycisków, które pełnią różne funkcje w obwodach elektrycznych. Przyciski rozwierne to te normalnie zamknięte (NC), więc w spoczynku obwód jest zamknięty, a naciśnięcie przycisku go otwiera. Używa się ich zazwyczaj tam, gdzie jest potrzeba interakcji ze strony użytkownika, żeby wyłączyć jakieś urządzenie, co może czasami prowadzić do nieprzewidzianych skutków w systemach bezpieczeństwa, gdy są źle zastosowane. Styki pomocnicze, zarówno rozwierne, jak i zwiemy, służą do rozszerzania funkcji głównych przełączników. Styki pomocnicze zwiemy (NO) zamykają obwód po aktywacji, a rozwierne (NC) działają na zasadzie przeciwnej. Dosyć łatwo je pomylić z przyciskami przez ich podobieństwo, ale różnią się swoją podstawową funkcją. Kluczowym błędem, przy wyborze odpowiedzi, może być pomylenie funkcji normalnie otwartych z normalnie zamkniętymi stykami. Zrozumienie tych różnic jest naprawdę ważne w inżynierii elektrycznej, bo poprawna identyfikacja i wykorzystanie tych komponentów mogą decydować o bezpieczeństwie i efektywności całego systemu. Może warto jeszcze raz zastanowić się nad funkcjami i zastosowaniem każdego z tych elementów, żeby lepiej uchwycić ich rolę w obwodach elektrycznych.

Pytanie 21

Który z podanych odbiorników energii elektrycznej charakteryzuje się najkorzystniejszym współczynnikiem mocy w aspekcie ekonomicznym?

A. Piec oporowy
B. Wzbudnik indukcyjny
C. Silnik asynchroniczny
D. Silnik uniwersalny
Wybór silnika uniwersalnego, wzbudnika indukcyjnego czy silnika asynchronicznego jako bardziej korzystnego z punktu widzenia współczynnika mocy jest mylny, ponieważ te urządzenia charakteryzują się istotnymi stratami energii i niższym współczynnikiem mocy, zazwyczaj wynoszącym od 0,6 do 0,9. Silnik uniwersalny, używany głównie w zastosowaniach domowych, takich jak odkurzacze, ma zdolność do pracy zarówno na prądzie stałym, jak i zmiennym, lecz jego zmienna charakterystyka obciążenia oraz niskie wartości współczynnika mocy w niektórych stanach roboczych obniżają jego efektywność energetyczną. Wzbudnik indukcyjny, stosowany głównie w aplikacjach wymagających regulacji, takich jak prądnice, może generować znaczące straty energii ze względu na zjawiska indukcyjne, co również wpływa na jego korzystność ekonomiczną. Silnik asynchroniczny, popularny w przemyśle, ma relatywnie dobry współczynnik mocy, ale wciąż nie osiąga efektywności pieca oporowego, a jego zastosowania często wymagają dodatkowych układów kompensacyjnych, które zwiększają koszty. Wybierając odpowiednie urządzenie, warto zwrócić uwagę na jego zastosowanie, a także na możliwe straty energii, które mogą znacząco wpłynąć na całkowity koszt eksploatacji.

Pytanie 22

Źródło światła pokazane na zdjęciu to lampa

Ilustracja do pytania
A. rtęciowa.
B. rtęci owo-żarowa.
C. sodowa.
D. halogenowa.
Lampy rtęciowe, sodowe i rtęciowo-żarowe różnią się istotnie od lamp halogenowych, co może prowadzić do mylnych wniosków. Lampy rtęciowe, na przykład, wykorzystują pary rtęci do emisji światła i charakteryzują się specyficznym, niebieskawym odcieniem, co sprawia, że ich zastosowanie jest bardziej ograniczone do oświetlenia ulicznego oraz przemysłowego. Kształt lampy rtęciowej jest przeważnie bardziej masywny niż lamp halogenowych, co także wpływa na ich aplikację. Z kolei lampy sodowe, które emitują ciepłe, żółte światło, są powszechnie używane w oświetleniu zewnętrznym, ale ich wydajność w zakresie odwzorowania barw jest znacznie gorsza niż w przypadku lamp halogenowych. Lampy sodowe mają również dłuższy czas nagrzewania się, co czyni je mniej praktycznymi w zastosowaniach wymagających natychmiastowego oświetlenia. Natomiast lampy rtęciowo-żarowe łączące elementy obu tych technologii, także nie są porównywalne z lampami halogenowymi, gdyż opierają się na klasycznym, żarowym źródle światła i nie oferują równie wysokiej efektywności energetycznej. Mylne uchwycenie konstrukcji i funkcji lamp prowadzi do wyboru niewłaściwego rozwiązania, co może skutkować nieefektywnym oświetleniem oraz wyższymi kosztami eksploatacji.

Pytanie 23

Wkładka topikowa przedstawiona na ilustracji przeznaczona jest do zabezpieczenia chronionego przewodu przed skutkami

Ilustracja do pytania
A. zwarć i przeciążeń w obwodach prądu stałego i przemiennego.
B. zwarć i przeciążeń jedynie w obwodach prądu przemiennego.
C. wyłącznie zwarć jedynie w obwodach prądu przemiennego.
D. wyłącznie zwarć w obwodach prądu stałego i przemiennego.
Wybór odpowiedzi dotyczący wyłącznie obwodów prądu przemiennego lub zbyt wąskie definiowanie zakresu zabezpieczenia wskazuje na niepełne zrozumienie funkcji wkładek topikowych. Obwody prądu stałego i przemiennego różnią się pod względem zachowania prądu i napięcia, co wpływa na sposób, w jaki zabezpieczenia, takie jak wkładki topikowe, funkcjonują. Odpowiedzi sugerujące, że wkładki te chronią jedynie przed zwarciami lub tylko w obwodach prądu przemiennego, pomijają kluczowy aspekt ich zastosowania. W praktyce, wkładki topikowe są nie tylko stosowane w obwodach prądu przemiennego, ale także w prądzie stałym, co jest szczególnie istotne w kontekście nowoczesnych systemów energetycznych i odnawialnych źródeł energii, które wykorzystują obwody stałoprądowe. Zastosowanie wkładek w obu typach obwodów jest zgodne z międzynarodowymi standardami ochrony, takimi jak IEC 60269, które kładą nacisk na wszechstronność tych zabezpieczeń. Niewłaściwe pojmowanie funkcji wkładek topikowych prowadzi do błędnych wniosków i może skutkować brakiem odpowiedniej ochrony w instalacjach elektrycznych, co w ekstremalnych przypadkach może prowadzić do poważnych awarii czy zagrożeń bezpieczeństwa.

Pytanie 24

Którą funkcję pomiarową powinien posiadać miernik, aby można było wyznaczyć impedancję pętli zwarcia w układzie przedstawionym na rysunku?

Ilustracja do pytania
A. ZL-PE RCD
B. ZL-PE
C. ZL-L
D. ZL-N
Wybór innych opcji pomiarowych, takich jak ZL-PE, ZL-N, czy ZL-L, nie uwzględnia specyfiki działania urządzeń różnicowoprądowych, które są kluczowe w modernych instalacjach elektrycznych. Opcja ZL-PE, choć zawiera przewód ochronny, nie uwzględnia działania RCD, co jest istotne dla skuteczności ochrony przeciwporażeniowej. Pomiar ZL-N również jest niewłaściwy, ponieważ nie bierze pod uwagę ochrony, którą zapewnia przewód PE. W przypadku zadań związanych z analizą bezpieczeństwa instalacji, nie można ignorować wpływu urządzeń RCD, które wykrywają różnice w prądzie między przewodami fazowymi a ochronnymi, co jest kluczowe w sytuacjach awaryjnych. Odpowiedź ZL-L dotyczy pomiarów między przewodami fazowymi, co nie tylko mija się z celem w kontekście analizy impedancji pętli zwarcia, ale również pomija ważne aspekty ochrony. Te błędy myślowe mogą prowadzić do poważnych konsekwencji bezpieczeństwa, gdyż pomijają istotne elementy ochronne w instalacjach elektrycznych. Właściwe zrozumienie koncepcji pomiaru ZL-PE RCD jest kluczowe dla zapewnienia najwyższych standardów bezpieczeństwa w instalacjach elektroenergetycznych.

Pytanie 25

Który parametr instalacji elektrycznej można sprawdzić za pomocą testera przedstawionego na rysunku?

Ilustracja do pytania
A. Prąd upływu.
B. Kolejność faz zasilających.
C. Ciągłość przewodów.
D. Rezystancję uziemienia odbiornika.
Wybór odpowiedzi o ciągłości przewodów i innych parametrach jest nietrafiony. Tester, który widzisz, służy tylko do sprawdzania kolejności faz i nic więcej. Na przykład, ciągłość przewodów sprawdzamy zazwyczaj multimetrem, żeby mieć pewność, że wszystko jest podłączone i nie ma przerw w obwodzie. To kluczowe, zwłaszcza w instalacjach, bo przerwy mogą namieszać w działaniu systemu. Jak chodzi o rezystancję uziemienia, to nie zmierzysz jej tym testerem. Potrzebujesz specjalnych narzędzi do uziemienia, żeby upewnić się, że wszystko jest bezpieczne i zgodne z normami. Prąd upływu też wymaga użycia właściwych urządzeń, więc to ważne, żeby mieć świadomość, co każde narzędzie robi i do czego służy. Niepoprawne przypisanie funkcji do testerów może prowadzić do poważnych błędów w diagnozowaniu i naprawach.

Pytanie 26

Ile wynosi wartość impedancji pętli zwarcia wyznaczonej w układzie pomiarowym przedstawionym na rysunku, jeśli przy otwartym wyłączniku W woltomierz wskazywał napięcie 228 V, a przy zamkniętym wyłączniku W woltomierz wskazywał 218 V, a amperomierz wskazał prąd 4 A?

Ilustracja do pytania
A. 1,25 Ω
B. 1,50 Ω
C. 2,75 Ω
D. 2,50 Ω

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Aby obliczyć wartość impedancji pętli zwarcia, należy uwzględnić spadek napięcia, który pojawia się przy zamkniętym wyłączniku W, oraz wartość prądu zmierzonego amperomierzem. W tym przypadku różnica napięcia wynosi 10 V (228 V - 218 V). Przy zastosowaniu prawa Ohma, które mówi, że impedancja (Z) jest równa spadkowi napięcia (ΔU) podzielonemu przez natężenie prądu (I), możemy obliczyć wartość impedancji jako Z = ΔU / I. Dla danych w pytaniu mamy Z = 10 V / 4 A = 2,50 Ω. W praktyce, znajomość wartości impedancji pętli zwarcia jest kluczowa w projektowaniu instalacji elektrycznych, ponieważ pozwala na ocenę ich bezpieczeństwa i efektywności. Wartości impedancji pętli zwarcia powinny być zgodne z normami, takimi jak PN-IEC 60364, które określają wymagania dotyczące zabezpieczeń i ochrony przed porażeniem prądem elektrycznym. W sytuacjach awaryjnych, takich jak zwarcia, niska wartość impedancji pętli zwarcia zapewnia szybkie zadziałanie zabezpieczeń, co jest kluczowe dla ochrony ludzi i sprzętu. Poznanie metody obliczania impedancji pętli zwarcia pozwala na skuteczniejsze zapobieganie awariom i poprawę warunków pracy w instalacjach elektrycznych.

Pytanie 27

Na rysunku przedstawiono schemat układu sterowania oświetleniem oraz diagram działania zastosowanego przekaźnika. Który opis działania układu jest prawidłowy?

A.B.
SekwencjaEfekt działania układuSekwencjaEfekt działania układu
0Zgaszone są obie żarówki0Zgaszone są obie żarówki
1Świeci tylko żarówka R11Świeci tylko żarówka R1
2Świeci tylko żarówka R22Świeci tylko żarówka R2
3Świeci tylko żarówka R13Świeci tylko żarówka R1
4Zgaszone są obie żarówki4Świecą obie żarówki
C.D.
SekwencjaEfekt działania układuSekwencjaEfekt działania układu
0Zgaszone są obie żarówki0Świecą obie żarówki
1Świeci tylko żarówka R11Świeci tylko żarówka R1
2Świeci tylko żarówka R22Świeci tylko żarówka R2
3Świecą obie żarówki3Zgaszone są obie żarówki
4Zgaszone są obie żarówki4Świecą obie żarówki
Ilustracja do pytania
A. C.
B. D.
C. B.
D. A.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź C. jest prawidłowa, ponieważ dokładnie odzwierciedla działanie układu sterowania oświetleniem przedstawionego na rysunku oraz diagramu działania przekaźnika. W sekwencji 0, gdy żadne z styków nie są aktywne, obie żarówki pozostają zgaszone. Następnie w sekwencji 1, aktywacja styku 1-2 powoduje świecenie żarówki R1, co pokazuje zastosowanie przekaźników w prostych układach sterujących. W sekwencji 2, aktywacja styku 3-4 skutkuje załączeniem żarówki R2, co ilustruje możliwość niezależnego sterowania różnymi źródłami światła. W sekwencji 3, w której oba styki są aktywne, zarówno R1, jak i R2 świecą, co pokazuje, jak można zintegrować różne obwody w jednym układzie. Na koniec, w sekwencji 4, układ wraca do stanu początkowego, co jest typowym zachowaniem w układach sterujących, gdzie ważna jest możliwość cyklicznego powracania do stanu zerowego. Takie podejście jest zgodne z najlepszymi praktykami w automatyzacji i sterowaniu, umożliwiając efektywne zarządzanie oświetleniem w różnych aplikacjach.

Pytanie 28

Wyznacz minimalny przekrój żył miedzianych przewodu, kierując się kryterium obciążalności długotrwałej, przy maksymalnej dopuszczalnej gęstości prądu wynoszącej 8 A/mm2, dla odbiornika o prądzie znamionowym 15,5 A.

A. 2,5 mm2
B. 4 mm2
C. 6 mm2
D. 1,5 mm2

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 2,5 mm² jest poprawna, ponieważ obciążalność długotrwała przewodów miedzianych powinna być dobrana na podstawie maksymalnej gęstości prądu, która wynosi 8 A/mm². Aby obliczyć minimalny wymagany przekrój żyły dla prądu znamionowego 15,5 A, należy podzielić ten prąd przez maksymalną gęstość prądu: 15,5 A / 8 A/mm² = 1,9375 mm². W praktyce zaokrąglamy wynik do najbliższego standardowego rozmiaru, co daje 2,5 mm². Zgodnie z normami, dobór odpowiedniego przekroju żyły jest kluczowy dla zapewnienia bezpieczeństwa i efektywności w instalacjach elektrycznych. Zbyt mały przekrój może prowadzić do przegrzewania się przewodów, co zwiększa ryzyko pożaru oraz uszkodzeń sprzętu. W zastosowaniach praktycznych, takich jak zasilanie urządzeń przemysłowych czy domowych, wybór właściwego przekroju żył jest niezbędny dla długotrwałej niezawodności systemu zasilania. Przykładem może być instalacja elektryczna w budynkach mieszkalnych, gdzie przewody muszą być odpowiednio dobrane do obciążenia, aby zapewnić komfort i bezpieczeństwo użytkowników.

Pytanie 29

Która z przedstawionych opraw oświetleniowych charakteryzuje się najwyższym stopniem ochrony IK ze względu na wytrzymałość mechaniczną?

Ilustracja do pytania
A. B.
B. C.
C. A.
D. D.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź C jest prawidłowa, ponieważ oprawa oświetleniowa przedstawiona w tej opcji wykazuje najwyższy stopień ochrony IK, co odzwierciedla jej zdolność do wytrzymywania uderzeń mechanicznych. W standardach IEC 62262 klasyfikacja IK odnosi się do stopnia ochrony obudów urządzeń elektrycznych przed uderzeniami, co jest kluczowe w warunkach, gdzie oświetlenie jest narażone na uszkodzenia. Oprawa C jest zaprojektowana z myślą o wytrzymałości; jej płaska i zamknięta powierzchnia ogranicza dostęp do delikatnych elementów, co znacząco zwiększa jej odporność na mechaniczne uszkodzenia. Przykłady zastosowań takich opraw obejmują miejsca przemysłowe, magazyny oraz przestrzenie zewnętrzne, gdzie narażone są na intensywne użytkowanie. Wybór oprawy z wysokim stopniem ochrony IK jest zgodny z dobrą praktyką w projektowaniu instalacji oświetleniowych, zwłaszcza w trudnych warunkach. Zastosowanie opraw o wysokiej odporności mechanicznej przyczynia się do zwiększenia żywotności oświetlenia oraz obniżenia kosztów konserwacji.

Pytanie 30

Na którym rysunku przedstawiono przewód który należy zastosować do wykonywania instalacji podtynkowej oświetlenia klatki schodowej?

Ilustracja do pytania
A. C.
B. A.
C. D.
D. B.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Przewód z literą B super nadaje się do oświetlenia klatki schodowej, bo jest wielożyłowy. Dzięki temu można go podłączyć do różnych rzeczy, jak łączniki schodowe albo krzyżowe. W klatkach schodowych często trzeba sterować światłem z różnych miejsc, więc musimy mieć odpowiednie przewody. Ten wielożyłowy to fajna opcja, bo można podpiąć dodatkowe żyły, co daje nam większą elastyczność. I pamiętaj, że zgodnie z normą PN-IEC 60364, dobrze jest zaprojektować te instalacje tak, żeby zmniejszyć ryzyko zwarcia i mieć odpowiednie zabezpieczenia. Moim zdaniem, wybierając ten przewód B, ułatwiasz sobie życie, bo można łatwo dostosować oświetlenie w przyszłości, zmienić coś bez konieczności całkowitej wymiany systemu. Pamiętaj też, żeby zawsze sprawdzić specyfikacje techniczne oraz wymagania dotyczące zabezpieczeń elektrycznych w Twoim kraju.

Pytanie 31

Na podstawie opisu określ, jaką puszkę instalacyjną przedstawiono na rysunku.

Ilustracja do pytania
A. Natynkową hermetyczną.
B. Podtynkową hermetyczną.
C. Przeciwogniową.
D. Do montażu gniazd i wyłączników.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Prawidłowa odpowiedź to "Natynkowa hermetyczna", co jest zgodne z charakterystyką puszki instalacyjnej PHS-1, która ma zabezpieczenie IP44. Oznaczenie to wskazuje, że puszka jest odporna na ciała stałe o średnicy większej niż 1 mm oraz na krople wody padające pod różnymi kątami. Puszki natynkowe hermetyczne są powszechnie stosowane w miejscach, gdzie występuje ryzyko kontaktu z wilgocią, co czyni je idealnym rozwiązaniem w instalacjach przemysłowych oraz w obiektach użyteczności publicznej. Ich budowa, w tym dławice bezgwintowe i zaciski gwintowe izolowane, zapewnia nie tylko bezpieczeństwo, ale również łatwość montażu. Stosowanie takich puszek zgodnie z normami IEC 60529 oraz PN-EN 60670-1 przyczynia się do zwiększenia bezpieczeństwa instalacji elektrycznych, a także minimalizuje ryzyko uszkodzeń spowodowanych warunkami atmosferycznymi. Przykłady zastosowania obejmują obiekty budowlane narażone na działanie czynników zewnętrznych, takie jak tereny przemysłowe, magazyny, a także instalacje w ogrodach i na zewnątrz budynków.

Pytanie 32

Podłączenie odbiornika II klasy ochronności do gniazda z bolcem ochronnym skutkuje zadziałaniem wyłącznika różnicowoprądowego, natomiast podłączenie do innego gniazda w tym samym obwodzie nie wywołuje reakcji zabezpieczenia, a odbiornik działa normalnie. Jakiego rodzaju usterkę można stwierdzić w pierwszym gnieździe?

A. Zamieniony przewód fazowy z neutralnym
B. Zamieniony przewód ochronny z neutralnym
C. Uszkodzona izolacja przewodu fazowego
D. Odłączony przewód ochronny

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź "Zamieniony przewód ochronny z neutralnym" jest prawidłowa, ponieważ w opisanej sytuacji, gdy odbiornik II klasy ochronności podłączony do gniazda ze stykiem ochronnym powoduje zadziałanie wyłącznika różnicowoprądowego, a w innym gniazdku na tym samym obwodzie odbiornik działa prawidłowo, wskazuje na problem z przewodami w pierwszym gnieździe. Zamiana przewodów ochronnego i neutralnego prowadzi do sytuacji, w której przewód neutralny, zamiast pełnić swoją rolę, staje się przewodem ochronnym. W rezultacie, w momencie, gdy odbiornik próbuje pobrać prąd, każdy potencjalny błąd może prowadzić do niebezpiecznego napięcia na obudowie urządzenia, co jest szczególnie niebezpieczne. Przepisy normy PN-IEC 60364 podkreślają znaczenie prawidłowego podłączenia przewodów ochronnych w celu zapewnienia bezpieczeństwa użytkowników. W praktyce, regularne przeglądy instalacji elektrycznych oraz stosowanie kolorów przewodów zgodnych z normami mogą zapobiec takim błędom. Zrozumienie funkcji każdego z przewodów oraz ich poprawne podłączenie jest kluczowe dla bezpieczeństwa i sprawności instalacji elektrycznej.

Pytanie 33

Który z wymienionych zestawów narzędzi jest konieczny do realizacji połączeń przewodów typu DY w instalacji elektrycznej, w puszkach rozgałęźnych, przy użyciu złączek śrubowych?

A. Nóż monterski, szczypce boczne, szczypce monterskie
B. Zestaw wkrętaków, szczypce czołowe, prasa ręczna
C. Nóż monterski, szczypce boczne, zestaw wkrętaków
D. Szczypce długie, nóż monterski, szczypce czołowe

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 'Nóż monterski, szczypce boczne, komplet wkrętaków' jest prawidłowa, ponieważ te narzędzia są kluczowe do wykonywania połączeń przewodów typu DY w instalacjach elektrycznych. Nóż monterski umożliwia precyzyjne ścięcie izolacji z przewodów, co jest niezbędne do ich prawidłowego połączenia. Szczypce boczne są używane do cięcia przewodów oraz wyginania ich końcówek, co jest istotne przy montażu w puszkach rozgałęźnych. Komplet wkrętaków, który zawiera wkrętaki o różnych rozmiarach i typach, jest niezbędny do mocowania złączek śrubowych, co zapewnia solidne i trwałe połączenie. Zgodnie z normami branżowymi, stosowanie odpowiednich narzędzi wpływa na bezpieczeństwo instalacji oraz jej zgodność z obowiązującymi przepisami. Przykładowo, źle przeprowadzone połączenia mogą prowadzić do zwarć, co może zagrażać bezpieczeństwu użytkowników. Dlatego znajomość i umiejętność użycia odpowiednich narzędzi jest niezbędna w pracy każdego elektryka.

Pytanie 34

Na którym rysunku przedstawiono przewód instalacyjny wtynkowy typu YDYt?

Ilustracja do pytania
A. A.
B. B.
C. C.
D. D.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Poprawna odpowiedź to B, ponieważ przewód instalacyjny wtynkowy typu YDYt jest miedzianym przewodem jednodrutowym, który ma charakterystyczną izolację z PVC. Takie przewody są projektowane do stosowania w instalacjach elektrycznych, w miejscach, gdzie można je przybijać do ścian bez ryzyka uszkodzenia izolacji. Na zdjęciu B widzimy przewód, w którym żyły są oddzielone, co rzeczywiście odpowiada normom dla przewodów tego typu. Przewody YDYt są często wykorzystywane w instalacjach wewnętrznych, gdzie ich układ nie wymaga dodatkowej ochrony mechanicznej. Dzięki swojej konstrukcji, przewody te pozwalają na łatwy montaż i estetyczne wykończenie, co jest szczególnie ważne w budynkach mieszkalnych i biurowych. W praktyce oznacza to, że instalatorzy mogą je stosować w różnych konfiguracjach, co wpływa na elastyczność projektowania instalacji elektrycznych. Zgodność z normami PN-EN 60228 oraz PN-EN 50525-2-21 potwierdza ich jakość oraz bezpieczeństwo użytkowania.

Pytanie 35

W zakres oględzin instalacji elektrycznych nie wchodzi weryfikacja

A. stanu widocznych elementów przewodów, izolatorów oraz ich mocowania
B. stanu osłon zabezpieczających przewody przed uszkodzeniami mechanicznymi
C. ciągłości przewodów ochronnych i neutralnych
D. metody zabezpieczenia przed porażeniem prądem elektrycznym

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Ciągłość przewodów ochronnych i neutralnych nie jest przedmiotem oględzin instalacji elektrycznych w kontekście ich widocznego stanu, ponieważ tego typu sprawdzenie jest realizowane w ramach bardziej zaawansowanych testów, takich jak pomiary rezystancji izolacji. Właściwe oględziny koncentrują się na widocznych elementach instalacji, co pozwala na szybkie zidentyfikowanie ewentualnych uszkodzeń, korozji czy niewłaściwych połączeń. Przykładowo, inspektorzy mogą zwracać uwagę na stan izolacji przewodów oraz mocowanie elementów, co jest kluczowe dla zapewnienia bezpieczeństwa użytkowników. Zgodnie z normą PN-IEC 60364, regularne sprawdzanie stanu widocznych części instalacji elektrycznej jest niezbędne dla utrzymania bezpieczeństwa i efektywności działania systemów elektrycznych. Dlatego istotne jest, aby technicy elektrycy posiadali wiedzę na temat widocznych elementów instalacji oraz ich stanu.

Pytanie 36

Na podstawie danych katalogowych przedstawionych w tabeli określ, którym wyłącznikiem należy zastąpić uszkodzony wyłącznik różnicowoprądowy P304 25/0,03 A w instalacji mieszkaniowej trójfazowej o napięciu znamionowym 230/400 V.

Prąd znamionowy25 A25 A25 A25 A
Liczba biegunów2P4P4P2P
Znamionowy prąd różnicowy30 mA30 mA300 mA300 mA
Typ wyłączaniaACACACAC
Znamionowe napięcie izolacji500 V500 V500 V500 V
Częstotliwość znamionowa50 Hz50 Hz50 Hz50 Hz
Wytrzymałość elektryczna (liczba cykli)2 0002 0002 0002 000
Temperatura pracy-25°C ÷ 40°C-25°C ÷ 40°C-25°C ÷ 40°C-25°C ÷ 40°C
Znamionowa zwarciowa zdolność łączeniowa15 kA15 kA15 kA15 kA
A.B.C.D.
A. D.
B. B.
C. A.
D. C.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wybranie odpowiedzi B. jest właściwe, ponieważ wyłącznik różnicowoprądowy P304 25/0,03 A ma specyfikację prądu znamionowego 25 A oraz prądu różnicowego 30 mA. W kontekście instalacji mieszkaniowych trójfazowych, istotne jest, aby odpowiedni wyłącznik miał te same parametry. Wyłącznik oznaczony literą B. również spełnia te normy: 25 A prądu znamionowego i 30 mA prądu różnicowego, co zapewnia efektywne zabezpieczenie przed porażeniem elektrycznym oraz przeciążeniem. Dodatkowo, typ wyłączania AC jest zgodny z typowymi wymaganiami dla instalacji domowych, gdzie obciążenia są zwykle jednofazowe, a występowanie prądów różnicowych jest minimalne. Zastosowanie wyłączników różnicowoprądowych zgodnych z tymi parametrami nie tylko zwiększa bezpieczeństwo użytkowników, ale także spełnia standardy określone w normach PN-EN 61008-1, które regulują kwestie instalacji elektrycznych. Znajomość tych zasad jest kluczowa dla każdego elektryka, aby zapewnić właściwe działanie instalacji elektrycznych.

Pytanie 37

Zdjęcie przedstawia

Ilustracja do pytania
A. Woltomierz probierczy.
B. Techniczny mostek pomiarowy
C. Megaomomierz.
D. Woltomierz.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Megaomomierz jest specjalistycznym przyrządem pomiarowym używanym do określenia rezystancji w zakresie megaomów. Jego konstrukcja, w tym duża skala oraz pokrętło do wyboru zakresu pomiaru, są charakterystyczne dla tego typu urządzeń. Megaomomierze są często wykorzystywane w przemyśle elektrycznym i elektronicznym do testowania izolacji przewodów oraz komponentów, co jest kluczowe dla zapewnienia bezpieczeństwa i niezawodności systemów elektrycznych. Na przykład, podczas przeprowadzania testów izolacji w instalacjach elektrycznych, megaomomierz pozwala na wykrycie ewentualnych przecieków prądu, co może zapobiec poważnym awariom. Stosowanie megaomomierzy jest zgodne z normami branżowymi, takimi jak IEC 61557, które regulują wymagania dotyczące pomiarów parametrów elektrycznych w instalacjach. Dzięki właściwemu doborowi przyrządów i umiejętnemu przeprowadzaniu testów, można znacznie zwiększyć bezpieczeństwo oraz trwałość instalacji.

Pytanie 38

Jaki rodzaj źródła światła pokazano na zdjęciu?

Ilustracja do pytania
A. Halogenowe.
B. Luminescencyjne.
C. Sodowe.
D. Wolframowe.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 'Halogenowe' jest poprawna, ponieważ na zdjęciu widoczna jest żarówka halogenowa, która wyróżnia się swoimi unikalnymi cechami. Żarówki halogenowe to zaawansowana forma żarówek wolframowych, w których stosuje się halogen, co pozwala na ich pracy w wyższej temperaturze. W rezultacie włókno wolframowe jest bardziej efektywne, a żywotność żarówki się wydłuża. Dodatkowo, halogeny sprawiają, że światło emitowane przez te żarówki jest bardziej naturalne, co czyni je doskonałym wyborem do oświetlenia wnętrz oraz w zastosowaniach wymagających wysokiej jakości oświetlenia, takich jak wystawy, galerie, czy przestrzenie komercyjne. Warto również zwrócić uwagę, że żarówki halogenowe charakteryzują się wysokim wskaźnikiem oddawania barw (CRI), co oznacza, że kolory oświetlanych obiektów są przedstawiane w sposób zbliżony do rzeczywistego, co jest istotne w wielu branżach. Zastosowanie żarówek halogenowych jest zgodne z nowoczesnymi standardami efektywności energetycznej, a ich popularność wciąż rośnie w kontekście oświetlenia LED.

Pytanie 39

Na podstawie przedstawionego schematu ideowego, określ jaki błąd popełniono przy montażu instalacji elektrycznej podtynkowej ułożonej w rurach.

Ilustracja do pytania
A. W rury wciągnięto niewłaściwą liczbę przewodów.
B. W instalacji nieprawidłowo połączono przewód ochronny.
C. Błędnie połączono przewody instalacji do zacisków żyrandola.
D. Zastosowano niewłaściwy typ łącznika instalacyjnego.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Zastosowanie niewłaściwego typu łącznika instalacyjnego w przedstawionej instalacji elektrycznej jest istotnym błędem, który może prowadzić do nieprawidłowego działania obwodu. W przypadku, gdy łącznik jest podłączony w sposób, który uniemożliwia jego prawidłowe funkcjonowanie, obwód pozostaje zamknięty, co skutkuje ciągłym świeceniem żarówek. Zgodnie z normami PN-IEC 60364, łączniki powinny być dobierane w zależności od specyfikacji instalacji oraz jej przeznaczenia. W praktyce oznacza to, że przy montażu instalacji elektrycznej musimy upewnić się, że wybrany łącznik jest zgodny z wymaganiami technicznymi oraz typem instalacji. Na przykład, w przypadku obwodów oświetleniowych, należy zastosować łączniki, które umożliwiają włączanie i wyłączanie obwodu w sposób, który nie wprowadza zamkniętego układu. Wybór odpowiednich komponentów ma kluczowe znaczenie dla bezpieczeństwa i efektywności pracy instalacji, dlatego warto korzystać z produktów renomowanych producentów, które spełniają odpowiednie normy i standardy branżowe.

Pytanie 40

Jakie narzędzie powinno być wykorzystane do wykonania kilku połączeń w nowej instalacji elektrycznej na listwach zaciskowych śrubowych?

A. Klucza imbusowego
B. Wiertarki udarowej z wiertłem widiowym
C. Wkrętarki akumulatorowej z odpowiednim bitem
D. Klucza nasadowego

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wkrętarka akumulatorowa z dopasowanym bitem to narzędzie idealne do wykonywania wielu połączeń w listwach zaciskowych śrubowych. Dzięki swojej konstrukcji i możliwości łatwej wymiany bitów, wkrętarka umożliwia szybkie i efektywne dokręcanie śrub, co jest kluczowe w instalacjach elektrycznych, gdzie często zachodzi potrzeba wielokrotnego podłączania i odłączania przewodów. Standardy branżowe, takie jak normy IEC 60364 dotyczące instalacji elektrycznych, podkreślają konieczność stosowania odpowiednich narzędzi do zapewnienia bezpieczeństwa i jakości wykonania połączeń. Wkrętarka akumulatorowa pozwala również na pracę w trudno dostępnych miejscach, co zwiększa jej funkcjonalność. Przykładem zastosowania może być instalacja oświetlenia, gdzie konieczne jest podłączenie wielu przewodów do jednego punktu, a użycie wkrętarki znacznie przyspiesza ten proces, zmniejszając ryzyko uszkodzenia elementów oraz poprawiając komfort pracy.