Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik automatyk
  • Kwalifikacja: ELM.04 - Eksploatacja układów automatyki przemysłowej
  • Data rozpoczęcia: 24 stycznia 2026 23:25
  • Data zakończenia: 24 stycznia 2026 23:55

Egzamin zdany!

Wynik: 37/40 punktów (92,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Aby przed porażeniem prądem elektrycznym skutecznie chroniona była obsługa kompresora zastosowany w instalacji zasilającej tego urządzenia wyłącznik różnicowo-prądowy powinien posiadać wartość znamionowego prądu różnicowego równą

A. 500 mA
B. 30 mA
C. 300 mA
D. 80 mA
Wyłącznik różnicowoprądowy o wartości znamionowego prądu różnicowego 30 mA to właśnie standard przy ochronie ludzi przed skutkami porażenia prądem elektrycznym – i tak jest praktycznie wszędzie w przemyśle, budownictwie, nawet w domach jednorodzinnych. Takie zabezpieczenie pozwala na wykrycie bardzo niewielkich prądów upływowych, które mogą być już niebezpieczne dla człowieka. Zgodnie z normami, np. PN-HD 60364-4-41 czy ogólnie europejskimi wytycznymi, 30 mA to górna granica, przy której u człowieka zwykle nie następują trwałe skutki porażenia. Moim zdaniem to taki złoty środek między czułością, a odpornością na przypadkowe wyzwalanie. W praktyce – jeśli w kompresorze dojdzie do przebicia izolacji, taki wyłącznik natychmiast odcina zasilanie i nie daje szans na „kopnięcie”. Często spotyka się ten typ zabezpieczeń także przy zasilaniu urządzeń mobilnych, elektronarzędzi czy sprzętu ogrodowego. Co ciekawe, wyłącznik 30 mA nie chroni przed skutkami zwarć czy przeciążeń – do tego są bezpieczniki i wyłączniki nadprądowe – ale jeśli chodzi o ochronę życia tam, gdzie obsługa może dotknąć metalowych, potencjalnie niebezpiecznych części, nie ma lepszej opcji. Warto zapamiętać ten parametr – to taki branżowy standard i podstawa BHP na każdym stanowisku technicznym.

Pytanie 2

Do sterowania prędkością obrotową silnika prądu stałego zastosowano metodę modulacji szerokości impulsu. Pomiar wszystkich parametrów tego impulsu należy wykonać

A. multimetrem cyfrowym.
B. oscyloskopem elektronicznym.
C. reflektometrem cyfrowym.
D. mostkiem RLC.
Oscyloskop elektroniczny to w praktyce podstawowe narzędzie do analizy przebiegów napięciowych i prądowych w układach elektronicznych, zwłaszcza tam, gdzie mamy do czynienia z sygnałami zmiennymi lub impulsowymi, jak właśnie przy modulacji szerokości impulsu (PWM). W sterowaniu silnikami prądu stałego PWM jest stosowany do płynnej regulacji prędkości, bo pozwala precyzyjnie kształtować średnią wartość napięcia podawanego na uzwojenia silnika. Oscyloskop umożliwia jednoczesne zobrazowanie takich parametrów jak szerokość impulsu, częstotliwość, czas narastania, a nawet ewentualne zakłócenia czy oscylacje przebiegu. Moim zdaniem w praktyce każdy technik czy automatyk powinien umieć analizować przebiegi PWM właśnie na oscyloskopie, bo to daje znacznie lepszy obraz niż suchy odczyt wartości skutecznej z multimetru. Zresztą w branży automatyki czy serwisu napędów oscyloskop to wręcz standard diagnostyczny – bez niego ciężko byłoby wykryć nieprawidłowości w pracy sterowania, np. niestabilność, szumy czy niedopasowanie wartości wypełnienia. Dodatkowo oscyloskop pozwala na zapis i porównanie wielu przebiegów, co bardzo ułatwia diagnostykę awarii i tuning układów. Osobiście zauważyłem, że w pracy z napędami coraz częściej wymaga się zrozumienia takich narzędzi, bo zapewniają one też bezpieczeństwo pracy – szybka diagnostyka oznacza mniejsze ryzyko uszkodzeń. Warto też wspomnieć, że nowoczesne oscyloskopy cyfrowe oferują specjalne funkcje dedykowane do analizy PWM, co jeszcze bardziej ułatwia życie.

Pytanie 3

Klucz dynamometryczny należy do grupy narzędzi, które podczas naprawy można wykorzystać m.in. do

A. wbijania z odpowiednią siłą gwoździ lub innych elementów mocujących.
B. dokręcenia z odpowiednim momentem siły śrub łączących elementy.
C. pomiaru twardości materiału, z którego wykonane są śruby.
D. odkręcania z odpowiednim momentem siły wkrętów łączących elementy.
Klucz dynamometryczny to jedno z tych narzędzi, które naprawdę robi różnicę w pracy mechanika, montera czy nawet domowego majsterkowicza. Jego głównym zadaniem jest dokręcenie śruby lub nakrętki z precyzyjnie określonym momentem siły, czyli dokładnie tak mocno, jak zaleca producent danej maszyny, pojazdu czy konstrukcji. Na przykład – w mechanice samochodowej praktycznie przy każdej wymianie koła podaje się zalecany moment dokręcenia śrub, żeby uniknąć z jednej strony poluzowania się koła, a z drugiej – uszkodzenia gwintu czy odkształcenia felgi. Z mojego doświadczenia wynika, że większość poważnych awarii bierze się właśnie z bagatelizowania tego tematu. Standardy branżowe, takie jak ISO 6789, wyraźnie określają, jak powinno się sprawdzać i kalibrować klucze dynamometryczne, bo precyzja jest tutaj kluczowa. W warsztatach, gdzie podchodzą poważnie do swojej roboty, zawsze używa się klucza dynamometrycznego do dokręcania głowic silników, śrub w zawieszeniu czy nawet w rowerach sportowych – tam też ma to ogromne znaczenie dla bezpieczeństwa i trwałości sprzętu. Odpowiednie dokręcenie śrub przekłada się na pewność działania i długowieczność całego połączenia, więc moim zdaniem to narzędzie powinno być podstawą w każdej skrzynce narzędziowej.

Pytanie 4

Dla trzech czujników PT100, PT1000 i Ni100 wykonano sprawdzające pomiary rezystancji w różnych temperaturach. Które czujniki są uszkodzone?

Temperatura
°C
Rezystancja sprawdzanego rodzaju czujnika temperatury
Pt100
Ω
Pt1000
Ω
Ni100
Ω
-2092,13870,14100,00
0100,00981,00114,21
60123,241000,00123,50
A. Pt100 i Pt1000 i Ni 100
B. Pt1000 i Ni100
C. Pt100 i Ni100
D. Pt100 i Pt1000
Prawidłowo wskazałeś, że uszkodzone są czujniki Pt1000 oraz Ni100. Od razu rzuca się w oczy, że wartości rezystancji w kolumnie Pt1000 mocno odbiegają od typowych charakterystyk. Przykładowo, dla Pt1000 w temperaturze 0°C powinniśmy mieć około 1000 Ω, a tu jest 981 Ω – to już spora różnica, wykraczająca poza normę nawet dla tolerancji klasy B wg normy PN-EN 60751. Jeszcze gorzej wygląda wynik w -20°C: 870,14 Ω, gdy szacunkowo powinno być ok. 922 Ω. Dla porównania pełniący rolę wzorca Pt100 zachowuje się prawidłowo – dla 0°C dokładnie 100 Ω, w 60°C – 123,24 Ω, a dla -20°C – 92,13 Ω, czyli wszystko w granicach błędu pomiarowego. Z kolei Ni100 już przy -20°C pokazuje 100,00 Ω, kiedy fizycznie powinno być ok. 86 Ω, a w 0°C – 114,21 Ω (zamiast 100 Ω). To wygląda jakby ktoś się pomylił albo czujnik jest zamieniony z innym typem, co w praktyce jest dość częstą usterką w zakładach. Takie odchylenia mogą skutkować poważnymi błędami w sterowaniu procesem – wyobraź sobie, że taka sonda steruje piecem lub klimatyzacją. Pracując z czujnikami RTD, zawsze warto znać nie tylko typowe wartości, ale też umieć je szybko sprawdzić z tablicą lub wzorem Callendara-van Dusena. Moim zdaniem, regularne porównywanie wskazań z referencyjnym Pt100 to jedna z najlepszych praktyk, bo pozwala od razu wyłapać takie nieprawidłowości i nie dopuścić do kosztownych awarii.

Pytanie 5

Miernik przedstawiony na rysunku służy do pomiaru parametrów w instalacji

Ilustracja do pytania
A. elektrycznej.
B. komunikacyjnej.
C. hydraulicznej.
D. wentylacyjnej.
Ten przyrząd to anemometr, czyli miernik służący do pomiaru prędkości przepływu powietrza oraz często temperatury. W praktyce najczęściej spotykany jest właśnie w branży wentylacyjnej. Moim zdaniem trudno sobie wyobrazić rzetelny odbiór instalacji wentylacyjnej bez porządnych pomiarów wykonanych takim przyrządem. Anemometry są używane do sprawdzania, czy zamontowane kanały i kratki wentylacyjne zapewniają odpowiedni przepływ powietrza zgodnie z projektem lub normami, np. PN-EN 12599. Często wykorzystuje się je podczas uruchamiania nowych instalacji, ale także przy diagnostyce usterek – można szybko wykryć, gdzie występują zatory lub nieszczelności. Fajną sprawą jest też to, że współczesne anemometry pozwalają łatwo zmierzyć także temperaturę, co umożliwia np. ocenę komfortu cieplnego w pomieszczeniu. Z mojego doświadczenia wynika, że dobre praktyki branżowe wymagają, żeby taki pomiar był rutynowym elementem kontroli technicznej instalacji wentylacyjnych w obiektach użyteczności publicznej i przemysłowych. No i na koniec – bez takiego sprzętu serwisant naprawdę ma związane ręce, bo nie da się ocenić pracy instalacji "na oko".

Pytanie 6

W układzie, którego schemat pokazano na rysunku, zmierzono poziom napięć na wejściach i wyjściach bramek logicznych. Wyniki pomiarów zapisano w tabeli. Która bramka logiczna jest uszkodzona?

Pomiar
punktu
Stan logiczny
X1wysoki
X2wysoki
X3wysoki
X4niski
Aniski
Bniski
Cwysoki
Dniski
Qwysoki
Ilustracja do pytania
A. AND
B. NOT
C. XOR
D. NOR
To jest dobry trop – bramka AND w tym przypadku rzeczywiście jest uszkodzona. Patrząc na układ na schemacie i porównując z tabelą pomiarów, można zauważyć ciekawą rzecz: wejścia C jest na stanie wysokim, D na niskim, czyli zgodnie z logiką, wyjście bramki AND powinno być niskie (bo AND daje wysoki tylko jeśli oba wejścia są wysokie). Ale w tabeli Q, czyli wyjście AND, jest wysokie! To już na pierwszy rzut oka nienaturalne dla układów cyfrowych – jeśli bramka AND daje wysoki przy jednym wejściu niskim, to coś ewidentnie nie gra. W praktyce branżowej, testowanie bramek polega właśnie na szukaniu takich nielogicznych sytuacji – to typowa procedura diagnostyczna, choćby w serwisowaniu sprzętu automatyki czy prostych systemów cyfrowych. Często spotyka się uszkodzenia, w których bramka „przepuszcza” wysoki stan mimo złych warunków wejściowych. Fajnie też wiedzieć, że takie nietypowe zachowanie może być przez chwilę niezauważone w prostych testach, dlatego zawsze warto sprawdzać stany wejść i wyjść krok po kroku. Moim zdaniem takie praktyczne przećwiczenie logiki to podstawa w automatyce, mikroprocesorach czy projektowaniu PCB. Gdybyś miał do czynienia z diagnozowaniem układów cyfrowych w praktyce (np. na warsztatach), to dokładnie takie przypadki się spotyka – czasem bramka jest „przebita” i daje sygnał logicznie sprzeczny z układem. Podsumowując: dobrze rozpoznany problem, a takie myślenie naprawdę przydaje się w branży, bo pozwala szybko wyłapywać usterki, zanim popsują one większy system.

Pytanie 7

Które z wymienionych w tabeli czynności wchodzą w zakres kontroli systemu detekcji metali zainstalowanego w instalacji automatyki linii produkcyjnej, jeżeli od ostatniej kontroli w pełnym zakresie upłynęły 2 tygodnie?

Lp.CzynnośćCzęstotliwość
1Sprawdzenie mocowania detektora do podłoża1 raz dziennie
2Kontrola obwodu zasilania i połączeń elektrycznych1 raz dziennie
3Kontrola połączeń sygnałowych wg. wytycznych zapisanych w dokumencie „Sprawdzanie wpływu zakłóceń zewnętrznych (elektrycznych i mechanicznych) na elementy systemu detekcji"co 7 dni
4Sprawdzanie detekcji z pomocą wzorców kalibracyjnych zgodnie z wewnątrzzakładowymi normami bezpieczeństwaco 14 dni
5Dostrojenie detektoraco 30 dni
6Gruntowne czyszczenie detektoraco 30 dni
A. 1, 2
B. 1, 2, 3, 4
C. 1, 2, 4
D. 1, 2, 3
Wybrałeś właściwy zestaw czynności, które należy wykonać po upływie 2 tygodni od ostatniej pełnej kontroli systemu detekcji metali. Wynika to bezpośrednio z harmonogramu przedstawionego w tabeli. Codziennie trzeba sprawdzać mocowanie detektora oraz kontrolować obwody zasilania i połączenia elektryczne – to takie podstawy, o których się nie zapomina, bo zapewniają ciągłość pracy urządzenia. Kontrola połączeń sygnałowych powinna być przeprowadzana co 7 dni, więc po 2 tygodniach ta czynność też powinna być uwzględniona – nierzadko w praktyce się o tym zapomina, bo wydaje się mniej istotna od codziennych sprawdzeń, a to błąd. Najważniejsza nowość po 14 dniach to sprawdzenie detekcji wzorcami kalibracyjnymi, zgodnie z zakładowymi procedurami i normami bezpieczeństwa. To krytyczny etap, bo tylko taki test daje pewność, że detektor reaguje na realne zagrożenia. Często się spotyka w przemyśle spożywczym czy farmaceutycznym takie wymagania, bo tam nie ma miejsca na kompromisy w kwestii wykrywania ciał obcych. Dostrojenie detektora i gruntowne czyszczenie są przewidziane dopiero po 30 dniach. Na co dzień nie ma sensu ich robić, chyba że jest ewidentna potrzeba, np. po awarii czy w przypadku nagłego spadku skuteczności wykrywania. Stosując się do tego harmonogramu, działasz zgodnie z dobrymi praktykami utrzymania ruchu i minimalizujesz ryzyko wystąpienia kosztownych przestojów. Z mojego doświadczenia wynika, że regularność i skrupulatność w tych kontrolach to podstawa niezawodności całej linii produkcyjnej.

Pytanie 8

Jeżeli przyrząd pomiarowy PI12 wskazuje prawidłową wartość ciśnienia, a przyrząd pomiarowy PI11 mierzący ciśnienie w układzie regulacji temperatury wskazuje wartość równą 0 MPa (jak na przedstawionym rysunku), może to oznaczać

Ilustracja do pytania
A. zamknięty zawór ręczny dopływu zimnego roztworu soku.
B. nieszczelność wężownicy wymiennika ciepła.
C. brak sygnału sterującego z regulatora temperatury.
D. otwarty ręczny zawór dopływu zimnego roztworu soku.
W tej sytuacji prawidłowa odpowiedź to brak sygnału sterującego z regulatora temperatury. W takim układzie automatycznej regulacji bardzo istotne jest sprawne przesyłanie sygnałów między regulatorem a elementem wykonawczym (najczęściej zaworem regulacyjnym). Jeżeli PI12 pokazuje prawidłowe ciśnienie po stronie wymiennika, a PI11, umieszczony jeszcze przed wymiennikiem, pokazuje 0 MPa, sugeruje to, że zawór sterujący nie otwiera się – najczęściej z powodu braku sygnału z regulatora. W praktyce często spotyka się, że operatorzy skupiają się na fizycznych elementach instalacji, a tymczasem przyczyna leży po stronie automatyki. Z mojego doświadczenia wynika, że przy pierwszych objawach nieprawidłowości warto sprawdzić nie tylko sam zawór, ale też połączenia sygnałowe i ustawienia regulatora. Przemysłowe standardy (np. PN-EN 61511 dotycząca bezpieczeństwa funkcjonalnego) jasno podkreślają wagę poprawnej komunikacji w układach sterowania. To też świetny przykład, jak teoria przekłada się na praktykę – bo nawet jeśli wszystko mechanicznie jest OK, bez sygnału sterującego układ po prostu przestaje działać. Właśnie dlatego w branży kładzie się taki nacisk na regularne testy sygnałów, przeglądy automatyki i szybkie wykrywanie usterek na linii transmisji danych.

Pytanie 9

W oparciu o informację zapisaną w przedstawionym fragmencie dokumentacji sterownika PLC jednym z działań, których nie należy podejmować w ramach konserwacji sterownika jest

Rozdział 8. Konserwacja jednostki PLC. (fragment)
„Jednostka PLC nie posiada żadnych części, które mogłyby być serwisowane przez użytkownika. Wszystkie czynności naprawcze mogą być przeprowadzone tylko przez profesjonalny personel.
W przypadku wystąpienia usterki, należy najpierw spróbować ustalić przyczynę posługując się kodami błędów, które zostały opisane w dokumentacji oraz przeprowadzić konserwację sterownika PLC. Jeżeli sterownik PLC nadal nie będzie działał, należy przekazać go do lokalnego serwisu producenta."
A. sprawdzenie mocowania sterownika na szynie TH35.
B. przeprowadzenie testu uruchomieniowego jednostki.
C. poprawa jakości połączeń elektrycznych między zasilaczem a sterownikiem.
D. wymiana przekaźnika w niedziałającym wyjściu sterownika.
To jest prawidłowa odpowiedź, bo zgodnie z informacją zawartą w dokumentacji sterownika PLC, użytkownik absolutnie nie powinien samodzielnie wykonywać żadnych czynności serwisowych, które ingerują w elementy elektroniczne czy wymieniają części, takie jak przekaźniki. Producent wyraźnie podkreśla, że wszelkie naprawy i wymiany komponentów należy zlecić wykwalifikowanemu serwisowi. Takie podejście ma swoje uzasadnienie – po pierwsze, chodzi o bezpieczeństwo użytkownika, a po drugie, o zachowanie gwarancji i pewności sprawności urządzenia. Moim zdaniem to jedna z tych rzeczy, które mogą wydawać się trywialne, bo przecież wymiana przekaźnika często nie jest trudna, ale jednak w przypadku nowoczesnych sterowników PLC nie chodzi o samą umiejętność, tylko o ryzyko uszkodzenia układu, utratę gwarancji czy nawet zagrożenie pożarowe. W branży automatyki takie podejście to standard – użytkownik nie grzebie wewnątrz urządzenia, tylko dba o zewnętrzne warunki, czystość, poprawność połączeń, stabilność montażu i ogólny stan instalacji. Przykładowo, dopuszczalne czynności to sprawdzanie mocowania na szynie TH35 czy sprawdzenie połączeń zasilania. Takie działania pozwalają zapobiec wielu awariom bez naruszania konstrukcji urządzenia. Warto pamiętać, że dokumentacja to podstawa i trzeba się jej trzymać – w przeciwnym razie można sobie narobić więcej szkody niż pożytku.

Pytanie 10

Który rysunek przedstawia przyrząd do pomiaru różnicy ciśnień?

A. Rysunek 1.
Ilustracja do odpowiedzi A
B. Rysunek 4.
Ilustracja do odpowiedzi B
C. Rysunek 3.
Ilustracja do odpowiedzi C
D. Rysunek 2.
Ilustracja do odpowiedzi D
Wybrałeś prawidłową odpowiedź – rysunek 4 przedstawia przyrząd do pomiaru różnicy ciśnień, czyli tzw. manometr różnicowy. W praktyce taki miernik jest niezastąpiony wszędzie tam, gdzie musisz znać dokładnie różnicę ciśnień pomiędzy dwoma punktami, a nie tylko wartość ciśnienia względem atmosfery. Typowe zastosowania to na przykład monitoring filtrów (w wentylacji, klimatyzacji czy filtracji wody), gdzie wzrost różnicy ciśnień informuje, że filtr się zatyka. Moim zdaniem, takie rozwiązania są bardzo wygodne, bo pozwalają szybko ocenić stan instalacji bez konieczności liczenia czy przeliczania wyników z dwóch osobnych manometrów. Widać od razu, czy różnica ciśnień przekroczyła dopuszczalną wartość. Branżowe standardy, jak np. norma PN-EN 837, zalecają stosowanie manometrów różnicowych właśnie tam, gdzie precyzyjny pomiar tej różnicy ma kluczowe znaczenie dla bezpieczeństwa czy efektywności procesu. Osobiście uważam, że każdy, kto choć raz musiał diagnozować problemy z przepływem w instalacjach na podstawie dwóch zwykłych manometrów, doceni wygodę i precyzję dedykowanego miernika różnicy ciśnień. Warto też zwrócić uwagę na podwójne króćce przyłączeniowe – to właśnie po nich najłatwiej rozpoznać ten typ urządzenia.

Pytanie 11

Oględziny instalacji hydraulicznej obejmują

A. pomiar natężenia prądu obciążenia pompy.
B. wymianę rozdzielacza.
C. sprawdzenie stanu przewodów.
D. wymianę filtra oleju w układzie.
Sprawdzenie stanu przewodów to absolutna podstawa, jeśli chodzi o oględziny instalacji hydraulicznej. To nie jest tylko rzucenie okiem na węże czy rurki, lecz dokładna ocena, czy nie ma przetarć, pęknięć, wycieków i czy opaski mocujące są odpowiednio dokręcone. Moim zdaniem regularne inspekcje przewodów mogą zapobiec bardzo kosztownym awariom, bo nawet drobny wyciek w układzie powoduje utratę ciśnienia, a przy okazji grozi zabrudzeniem środowiska i ryzykiem wypadku w miejscu pracy. W wielu zakładach, zgodnie z normami PN-EN ISO 4413, oględziny przewodów są obowiązkowym elementem harmonogramu przeglądów okresowych. Branżowo mówi się, że „najtańsza naprawa to ta, której udało się uniknąć”, więc dokładne oględziny pozwalają wykryć zużycie zanim zrobi się z tego poważny problem. Doświadczony serwisant zawsze zwraca uwagę na ślady oleju, deformacje, a nawet nietypowe ułożenie węży. Z mojego doświadczenia wynika, że lekceważenie drobiazgów na tym etapie często kończy się przestojem maszyny. Oględziny instalacji hydraulicznej w praktyce zaczynają się właśnie od przewodów – to taki standard bezpieczeństwa i jakości.

Pytanie 12

Wskaż, na podstawie przedstawionej tabliczki silnika indukcyjnego klatkowego, znamionowe wartości napięcia i prądu, jeśli uzwojenia silnika skojarzone są w trójkąt a częstotliwość napięcia zasilania wynosi 50 Hz.

Ilustracja do pytania
A. 460 V, 3,45 A
B. 230 V, 5,97 A
C. 265 V, 5,97 A
D. 400 V, 3,45 A
Dobrze wyłapałeś, że przy zasilaniu silnika indukcyjnego klatkowego napięciem o częstotliwości 50 Hz i połączeniu uzwojeń w trójkąt („D”), wartości znamionowe napięcia i prądu zgodnie z tabliczką znamionową wynoszą odpowiednio 230 V i 5,97 A. Tak to się właśnie odczytuje: producent zawsze podaje dwie wartości napięć/prądów – pierwsza dotyczy pracy w układzie trójkąta (D), druga w gwieździe (Y). W praktyce, taki wybór połączenia stosuje się w zależności od tego, jakie napięcie mamy dostępne w instalacji – w Polsce najczęściej 400 V, czyli silnik łączymy w gwiazdę, ale czasem (np. w starszych instalacjach czy gdzieś za granicą) mamy 230 V międzyfazowe i wtedy połączenie w trójkąt jest jak znalazł. Z mojego doświadczenia dużo osób myli się i bierze pod uwagę tylko wartości napięcia z drugiej kolumny, a przecież przy doborze zabezpieczeń czy rozruchu to właśnie te szczegóły są kluczowe. Na tabliczce zawsze szukaj oznaczenia „D/Y” i pamiętaj, że najpierw idzie „D” – trójkąt, potem „Y” – gwiazda. Wbrew pozorom, taka dokładność to nie jest tylko teoria – w praktyce niewłaściwy dobór napięcia lub połączenia może kończyć się przegrzewaniem uzwojeń albo nawet spaleniem silnika. Warto więc w takich tematach nie iść na skróty i kierować się dobrymi praktykami branżowymi. No i jeszcze jedno: zawsze sprawdzaj, czy dane z tabliczki zgadzają się z warunkami pracy – to podstawa bezpieczeństwa i niezawodności instalacji.

Pytanie 13

W układzie przedstawionym na rysunku, wciśnięcie przycisku S0 powoduje załączenie cewek K1 i K2 przekaźników, a następnie po odliczeniu 30 sekund nie następuje załączenie cewki Y1 elektrozaworu. Jedną z przyczyn wadliwego działania układu może być uszkodzenie

Ilustracja do pytania
A. zestyku -K1:13-14.
B. zestyku -K2:13-14.
C. przycisku -S1.
D. cewki -K1.
Wybrałeś odpowiedź dotyczącą uszkodzenia zestyku -K2:13-14 i to jest prawidłowe rozumowanie. W tym układzie ten właśnie zestyk odpowiada za podanie napięcia na cewkę Y1 po odliczeniu zadanych 30 sekund przez przekaźnik czasowy -K2. Z doświadczenia wiem, że to bardzo częsta usterka w realnych rozdzielnicach – zabrudzone, wypalone lub mechanicznie zablokowane styki nie przewodzą prądu, przez co kolejne urządzenia w sekwencji nie załączają się. Inżynierowie automatyki zawsze powinni na to zwracać uwagę podczas diagnostyki, bo objaw – brak załączenia elementu końcowego mimo poprawnej pracy wcześniejszych – niemal zawsze wiąże się z niesprawnością odpowiedniego zestyku pomocniczego. Zgodnie z normami branżowymi (np. PN-EN 60947), regularna kontrola i czyszczenie styków to podstawa dobrej praktyki eksploatacyjnej, szczególnie w układach z przekaźnikami czasowymi i automatycznym sterowaniem. Praktyka pokazuje, że wymiana styku lub całego przekaźnika przynosi natychmiastowy efekt. Podsumowując, jeśli cewki K1 i K2 działają prawidłowo, a Y1 nie reaguje po czasie, zawsze najpierw sprawdź zestyk K2:13-14 – to klasyczny element, który najczęściej zawodzi w tym typie aplikacji.

Pytanie 14

Z którego układu sieciowego należy zasilić urządzenie, jeżeli na schemacie sieć zasilającą oznaczono 400 V ~3/PEN?

A. TN - S
B. TT
C. TN - C
D. IT
Sieć oznaczona jako 400 V ~3/PEN to typowy przykład układu TN-C, gdzie przewód neutralny (N) i ochronny (PE) występują jako wspólny przewód PEN. W praktyce spotkasz takie rozwiązania chociażby w starszych instalacjach przemysłowych albo na głównych liniach rozdzielczych w dużych zakładach. Moim zdaniem, zrozumienie, czym się różni TN-C od innych układów, daje solidne podstawy do dalszego ogarniania elektroinstalacji. W TN-C przewód PEN pełni jednocześnie funkcję ochronną oraz roboczą, więc urządzenia zasilane z takiej sieci muszą być odpowiednio do tego przystosowane – szczególnie przy podłączaniu obudów metalowych. Standardy, np. PN-HD 60364, dokładnie opisują zasady stosowania tego układu, a w praktyce istotne jest, by pamiętać o ograniczeniach: na przykład nie wolno stosować gniazd z bolcem ochronnym bezpośrednio w układzie TN-C, jeśli nie ma wyodrębnionego PE. W nowych instalacjach częściej stosuje się TN-S lub TN-C-S, ale TN-C nadal jest obecny i trzeba wiedzieć, jak się z nim obchodzić. Warto też wiedzieć, że przy modernizacji często robi się przejście z TN-C na TN-S właśnie przez rozdzielenie PEN na PE i N. To taka rzecz, którą każda osoba z branży powinna mieć w małym palcu.

Pytanie 15

Z przedstawionego fragmentu dokumentacji technicznej regulatora cyfrowego PID wynika, że nastawę członu

Ilustracja do pytania
A. D można zmieniać od 0 do 2000 sekund.
B. I można zmieniać od 0 do 3600 sekund.
C. P można zmieniać od 0 do 2600.
D. P można zmieniać od 0 do 3600.
Odpowiedź wskazująca, że nastawę członu I można zmieniać od 0 do 3600 sekund, jest w pełni zgodna z dokumentacją techniczną przedstawioną na grafice. Wynika z niej jasno, że parametr I (czyli stała czasowa całkowania PID) można ustawiać w zakresie od 0 do 3600 sekund, przy czym wartość 0 wyłącza ten człon w algorytmie regulatora. To bardzo praktyczne – w aplikacjach, gdzie dynamika procesu różni się znacząco, możliwość tak szerokiej regulacji pozwala bardzo precyzyjnie dostrajać regulator do potrzeb konkretnej instalacji. Przykładowo, dla układów z dużą bezwładnością lepiej sprawdzą się dłuższe stałe czasowe, natomiast tam, gdzie reakcje powinny być szybkie, czas całkowania ustawia się niższy. W branży automatyki przyjmuje się właśnie takie zakresy jako standard, bo pozwalają one na szeroką uniwersalność urządzenia. Często spotykam się z sytuacją, gdzie wstępna konfiguracja zakłada krótkie czasy, ale potem, w praktyce, użytkownicy regulują parametr w stronę wydłużenia, aby uniknąć przeregulowań. Tak szeroki zakres daje swobodę i jest wręcz niezbędny w nowoczesnych sterownikach PID. Możliwość całkowitego wyłączenia członu I przez ustawienie 0 też jest bardzo użyteczna – czasem proces w ogóle nie wymaga korekcji stałej błędu w czasie i wtedy taka opcja bardzo się przydaje. Z mojego doświadczenia wynika, że świadomość tej opcji pozwala uniknąć wielu problemów z niestabilnością czy długim czasem ustalania się sygnału sterującego.

Pytanie 16

Wykonano okresową kontrolę stanu technicznego dwóch optycznych czujników zbliżeniowych, których wyniki pomiarów zanotowano w tabeli. Na podstawie wyników można stwierdzić, że stan techniczny

Kod czujnikaParametry katalogoweZmierzone wartości odległości
(odległość przy której następuje zmiana stanu wyjścia czujnika)
mm
Strefa zadziałania
mm
Histereza
w zakresie
%
z 1 na 0
przy oddalaniu
od próbki pomiarowej
z 0 na 1
przy zbliżaniu
do próbki pomiarowej
B1-14A160±10%6652
B2-14A190±10%9688
A. obu czujników jest prawidłowy.
B. czujnika B2-14A1 wyklucza jego ponowny montaż w układzie.
C. obu czujników wyklucza ich ponowny montaż w układzie.
D. czujnika B1-14A1 wyklucza jego ponowny montaż w układzie.
Zwróć uwagę, jak ważne jest dokładne porównanie zmierzonych parametrów czujnika z wartościami katalogowymi i dopuszczalną tolerancją. W przypadku czujnika B1-14A1 katalogowa strefa zadziałania wynosi 60 mm, a dopuszczalna histereza to ±10%, co daje granice od 54 mm do 66 mm. Jednakże, patrząc na wyniki pomiarów – przy oddalaniu (z 1 na 0) uzyskano 66 mm, a przy zbliżaniu (z 0 na 1) 52 mm. Widać wyraźnie, że jedna z wartości, czyli 52 mm, jest poniżej dolnej granicy tolerancji. To praktycznie oznacza, że czujnik nie działa zgodnie z założeniami producenta i jego montaż może prowadzić do nieprzewidywalnych zachowań układu automatyki. W realnej praktyce przemysłowej zawsze należy odrzucać czujniki, które choćby jednym parametrem nie mieszczą się w wymaganiach – bezpieczeństwo i powtarzalność działania są kluczowe. Czujnik B2-14A1 mieści się w założeniach: dla strefy 90 mm i tolerancji ±10% zakres to 81-99 mm, a zmierzone wartości (88 i 96 mm) są poprawne. Gdyby zignorować takie odstępstwa jak w B1-14A1, to w układzie mogłyby pojawić się liczne problemy: fałszywe sygnały, przestoje maszyn czy nawet uszkodzenia. Moim zdaniem, w codziennej pracy automatyk powinien zawsze dokładnie dokumentować takie odchylenia i nie ryzykować montażu wadliwego elementu – to po prostu oszczędza czas i nerwy potem.

Pytanie 17

Oględziny instalacji hydraulicznej obejmują

A. wymianę filtra oleju w układzie.
B. wymianę rozdzielacza.
C. pomiar natężenia prądu obciążenia pompy.
D. sprawdzenie stanu przewodów.
Odpowiedź jest trafna, bo oględziny instalacji hydraulicznej faktycznie polegają głównie na sprawdzeniu stanu przewodów, złącz oraz innych elementów instalacji pod kątem uszkodzeń, przecieków czy zużycia. To taki podstawowy krok, który zawsze się wykonuje przed każdą większą naprawą czy nawet rutynową konserwacją. Chodzi o to, żeby możliwie szybko wykryć potencjalne nieszczelności, pęknięcia, otarcia izolacji czy nawet luzujące się opaski. Moim zdaniem, w praktyce często lekceważy się znaczenie regularnych oględzin i dopiero poważniejsza awaria przypomina, jak kluczowe jest takie profilaktyczne podejście. W standardach branżowych, np. PN-EN 982 dotyczącej bezpieczeństwa instalacji hydraulicznych, wyraźnie wskazuje się właśnie na konieczność wizualnej kontroli przewodów i połączeń. Dodatkowo, oględziny pozwalają wychwycić takie drobiazgi jak wycieki na połączeniach gwintowanych czy oznaki starzenia się gumowych elementów. Sam już kilka razy przekonałem się, że zwykłe zajrzenie pod osłony przewodów potrafi zaoszczędzić masę kłopotów i kosztów. Warto pamiętać, że sprawdzenie przewodów to nie tylko patrzenie, ale też dotykanie, szukanie miejsc miękkich, które mogą zwiastować pęknięcie. Ostatecznie, regularność tych oględzin jest ważniejsza niż nawet najbardziej zaawansowane narzędzia diagnostyczne – bo większość awarii zaczyna się właśnie od drobnych, widocznych objawów.

Pytanie 18

W której kolejności należy wykonać wymienione w tabeli działania mające na celu sprawdzenie działania systemu sterowania, w którym użyto sterownika PLC?

Nr czynnościCzynności
1Zaprogramowanie sterownika PLC
2Symulacja programowa działania programu
3Uruchomienie testowe w układzie rzeczywistym.
4Uruchomienie testowe z wykorzystaniem stanowiska symulacyjnego.
A. 1-2-4-3
B. 1-2-3-4
C. 1-3-2-4
D. 1-4-2-3
Właśnie taka kolejność – najpierw programowanie sterownika PLC, potem symulacja programowa, dalej testowanie na stanowisku symulacyjnym i na końcu uruchomienie systemu w rzeczywistym układzie – to jest coś, co faktycznie się sprawdza w praktyce. Branża automatyki od lat promuje takie podejście etapowe, bo minimalizuje to ryzyko kosztownych błędów. Na początku przygotowujemy kod sterownika – tu wszystko jeszcze dzieje się w komputerze. Potem symulacja programowa pozwala wyłapać głupie pomyłki, jeszcze bez podłączania sprzętu. Następnym krokiem jest stanowisko symulacyjne, czyli taki zamknięty poligon – można poćwiczyć, sprawdzić reakcje programu na sygnały, a jak coś pójdzie nie tak, nie rozwalisz maszyny. Dopiero na końcu podchodzimy do testów na obiekcie, czyli w rzeczywistym układzie. Szczerze mówiąc, większość poważnych błędów da się wyłapać na tych wcześniejszych etapach, dlatego duże firmy i normy np. IEC 61131-3 zalecają właśnie taki rozkład jazdy. Moim zdaniem w pracy automatyka ważne jest, żeby nie lekceważyć tych symulacji, bo to ułatwia później życie i oszczędza czas na uruchomieniach. Wbrew pozorom, te etapy nie są stratą czasu – wręcz przeciwnie, to inwestycja w bezpieczeństwo i pewność działania systemu.

Pytanie 19

W układzie zasilacza hydraulicznego przedstawionego na rysunku, na czerwono zapaliła się lampka kontrolna H1. Która interpretacja przyczyny wygenerowania takiej informacji diagnostycznej jest prawidłowa?

Ilustracja do pytania
A. Poziom cieczy hydraulicznej w układzie spadł poniżej dopuszczalnej wartości.
B. Powstanie nieszczelności na złączu T stacji zasilania hydraulicznego.
C. Poziom zanieczyszczenia wkładu filtrującego został przekroczony.
D. Ciśnienie na wyjściu P stacji zasilania hydraulicznego spadło do zera.
Lampka kontrolna H1 w zasilaczu hydraulicznym bardzo często jest powiązana z czujnikiem różnicy ciśnień na filtrze. W praktyce, jeśli poziom zanieczyszczenia wkładu filtrującego przekroczy wartość graniczną, wzrasta opór przepływu cieczy przez filtr. To skutkuje właśnie wzrostem różnicy ciśnień, co w prostych układach sygnalizowane jest zapaleniem się kontrolki – tu oznaczonej jako H1. Moim zdaniem jest to jedno z najbardziej intuicyjnych i logicznych rozwiązań w branży hydraulicznej, bo od razu informuje obsługę, że trzeba filtr wymienić lub wyczyścić. Producenci maszyn (np. wg norm PN-EN ISO 4413) zalecają stosowanie takich wskaźników, bo regularna kontrola czystości cieczy hydraulicznej wpływa bezpośrednio na żywotność pompy, zaworów i innych elementów układu. W realnej pracy spotykałem się z sytuacjami, gdy ignorowanie tej lampki skutkowało poważnymi awariami i drogimi naprawami – wystarczyło wymienić wkład na czas, żeby sprzęt działał bez zarzutu. Warto też wiedzieć, że zbyt mocno zanieczyszczony filtr może spowodować nawet rozszczelnienie układu lub jego przegrzanie, więc zapalona H1 to nie sygnał do zignorowania, tylko bezpośredni komunikat o konieczności interwencji serwisowej. Takie rozwiązanie jest obecnie standardem w nowoczesnych systemach hydraulicznych i jest bardzo pozytywnie oceniane przez inspektorów technicznych.

Pytanie 20

W celu oceny stanu technicznego indukcyjnych czujników zbliżeniowych wykonano pomiary ich częstotliwości przełączeń. Wyniki pomiarów zapisanych w tabeli wskazują, że stan techniczny

Ilustracja do pytania
A. czujnika B2 wskazuje konieczność jego wycofania z eksploatacji.
B. czujników B1, B2 i B3 wymaga bezwzględnego ich wycofania z dalszej eksploatacji.
C. czujnika B1 nie pozwala na dalszą eksploatację i konieczność wymiany.
D. czujników B1, B2 i B3 pozwala na ich dalszą eksploatację.
Dobrze zauważone, że stan techniczny czujników B1, B2 i B3 pozwala na ich dalszą eksploatację. Wynika to z faktu, że maksymalna prędkość wirowania tarczy, przy której wyjście czujnika zmienia swój stan, jest zgodna z oczekiwanymi wartościami, wynikającymi z wzoru f_p = n_max * N, gdzie N to liczba impulsów na obrót (w tym przypadku 12). To wskazuje, że każdy z czujników osiąga wymaganą częstotliwość przełączeniową i nie wykazuje objawów zużycia ani degradacji, które mogłyby ograniczać ich funkcjonalność. Z praktyki mogę powiedzieć, że w tego typu aplikacjach bardzo ważne jest nie tylko przestrzeganie parametrów katalogowych, ale też regularne sprawdzanie czujników pod kątem stabilności działania. W zakładach przemysłowych często spotyka się sytuacje, gdzie użytkownicy ignorują takie podstawowe kontrole, a potem dziwią się awariom. Standardy techniczne, np. normy IEC dotyczące czujników zbliżeniowych, zalecają cykliczną weryfikację parametrów czujników, właśnie po to, żeby zapobiegać nieoczekiwanym przestojom. Moim zdaniem dobrze, że w tym przypadku czujniki przeszły test pozytywnie, bo to świadczy też o prawidłowym doborze komponentów do warunków pracy – to niby oczywiste, ale w praktyce często się o tym zapomina. Jeśli czujnik pracuje w granicach swoich parametrów, nie ma podstaw do jego wymiany czy wycofania z eksploatacji. To takie trochę suche i techniczne, ale naprawdę ważne, żeby nie wymieniać komponentów na zapas, tylko wtedy, kiedy rzeczywiście jest to uzasadnione.

Pytanie 21

Na podstawie przedstawionych w tabeli wyników pomiarów parametrów wyłączników różnicowoprądowych wskaż, które z wyłączników mogą być dalej eksploatowane w instalacji automatyki.

Lp.Typ urządzenia różnicowoprądowegoTestIDn
mA
Iw
mA
tw
ms
tz
ms
1.P 304 80-500-ST500315252500
2.P 304 25-100-ACN1006845200
3.P 304 25-30-ACT303326200
4.P 312 B-20-30-ACT301147200
5.P 312 B-20-30-ACT302225200
6.P 312 B-20-30-ACT3022215200
IDn – prąd różnicowy urządzenia różnicowoprądowego, mA Iw – zmierzony prąd różnicowy zadziałania, mA
tw– zmierzony czas zadziałania, ms
A. 1, 2 i 3
B. 2, 3 i 6
C. 3, 5 i 6
D. 1, 4 i 5
Wybór wyłączników o numerach 1, 4 i 5 jest jak najbardziej uzasadniony, gdy zna się podstawowe kryteria oceny poprawności działania wyłączników różnicowoprądowych. Kluczowe są tutaj dwa parametry: Iw (prąd zadziałania) oraz tw (czas zadziałania). Zgodnie z normą PN-EN 61008-1 wyłącznik różnicowoprądowy powinien zadziałać przy prądzie równym lub większym od 0,5×IDn, ale nie większym niż IDn. Czas zadziałania nie powinien przekraczać 300 ms (dla wyłączników typu AC do 30 mA), a w praktyce dobrze, jeśli nie przekracza 200 ms – wtedy mamy pewność, że urządzenie jest szybkie i bezpieczne.<br>Patrząc na pozycje 1, 4 i 5, wszystkie mają prąd zadziałania poniżej wartości nominalnej (IDn), a czas zadziałania nie przekracza dopuszczalnych norm. Przykładowo, w pozycji 1 prąd zadziałania wynosi 315 mA przy IDn 500 mA, czyli mieści się w zakresie. W pozycjach 4 i 5 również jest spory zapas bezpieczeństwa – wyłączniki reagują szybko, dużo poniżej granicy 200 ms. W praktyce takie urządzenia można bez obaw eksploatować, bo zapewniają skuteczną ochronę przeciwporażeniową. Sam miałem nie raz okazję sprawdzać te wartości w instalacjach automatyki budynkowej i muszę przyznać, że wyniki zbliżone do tych z tabeli to praktycznie wzorcowy przypadek. Generalnie, jeśli po teście pomiarowym urządzenie reaguje szybko i przy bezpiecznym prądzie – nie ma przeciwwskazań do dalszego użytkowania. Warto też pamiętać, że regularne testowanie wyłączników różnicowoprądowych to podstawa bezpieczeństwa – w szczególności w środowisku automatyki, gdzie stabilność i pewność wyłączenia są kluczowe.

Pytanie 22

Który przyrząd pomiarowy powinien być użyty w celu dokładnego pomiaru rezystancji z przedziału od 10⁶ do 10⁷ kΩ?

A. Gigaomomierz.
B. Mostek Thomsona.
C. Galwanometr.
D. Mostek Wiena.
Zagadnienie pomiaru bardzo dużych rezystancji bywa mylące, szczególnie gdy mamy do wyboru kilka różnych przyrządów pomiarowych. Często można pomyśleć, że galwanometr, dzięki swojej czułości na małe prądy, sprawdzi się w tej roli, ale w praktyce on sam nie mierzy rezystancji – może jedynie wykryć minimalny przepływ prądu, a do konkretnych pomiarów wysokich rezystancji po prostu nie jest przeznaczony. Mostek Wiena również wydaje się być zaawansowany technicznie, jednak głównym jego przeznaczeniem jest precyzyjny pomiar średnich i niskich wartości rezystancji, szczególnie w zastosowaniach laboratoryjnych – do megaomowych wartości raczej się go nie używa, bo nie gwarantuje stabilności i dokładności przy tak dużych opornościach. Jeszcze inny typowy błąd myślowy to wybór mostka Thomsona, który rzeczywiście jest bardzo ceniony przy pomiarach niskich rezystancji, zwłaszcza w przewodnikach czy przewodach, ale jego konstrukcja i sposób działania po prostu uniemożliwiają prawidłowe działanie w obszarze megaomów. W praktyce branżowej stosuje się zawsze przyrządy specjalnie zaprojektowane do wysokich rezystancji, czyli gigaomomierze. To wynika nie tylko z wymagań norm (np. PN-EN 61557), ale i z logicznej konieczności: tylko one zapewniają odpowiednie napięcia pomiarowe i techniki kompensacyjne gwarantujące precyzyjne odczyty. Moim zdaniem najczęstsza pułapka to przecenianie możliwości klasycznych mostków albo galwanometrów – one są świetne w swoim zakresie, ale do bardzo wysokich rezystancji się po prostu nie nadają i mogą dawać fałszywy obraz rzeczywistości. W branży elektroenergetycznej i technice laboratoryjnej po prostu nie ma kompromisów – liczy się dobór przyrządu do zakresu, a w tym przypadku tylko gigaomomierz spełnia wymagania pomiarowe i bezpieczeństwa.

Pytanie 23

Na podstawie przedstawionych w tabeli wyników pomiarów parametrów wyłączników różnicowoprądowych wskaż, które z wyłączników nie mogą być dalej eksploatowane w instalacji automatyki.

Lp.Typ wyłącznika różnicowoprądowegoDziałanie TESTIΔₙ
mA
Iw
mA
tw
ms
tz
ms
1.P 304 80-300-SNie300315252500
2.P 304 25-100-ACTak1006875200
3.P 304 25-30-ACTak3047126200
4.P 312 B-20-30-ACTak302847200
5.P 312 B-20-30-ACTak302225200
6.P 312 B-20-30-ACTak3020180200
IΔₙ – prąd różnicowy znamionowy, mA
Iw – zmierzony prąd różnicowy zadziałania, mA
tw – zmierzony czas zadziałania, ms
tz – największy dopuszczalny czas zadziałania, ms
A. 3 i 6
B. 1 i 3
C. 2 i 4
D. 2 i 5
Dokładnie takie wyłączniki jak 1 i 3 nie powinny być dalej eksploatowane, bo nie spełniają podstawowych wymagań bezpieczeństwa określonych dla wyłączników różnicowoprądowych. W przypadku wyłącznika nr 1 już sama informacja o braku działania przycisku TEST dyskwalifikuje ten aparat – to jest absolutny must have w każdej kontroli eksploatacyjnej. Jeśli test nie działa, nie mamy żadnej pewności, że wyłącznik zadziała przy realnym zagrożeniu porażeniem prądem. Poza tym prąd różnicowy zadziałania (Iw) dla tej sztuki wynosi 315 mA, a prąd znamionowy to 300 mA – mógłby jeszcze przejść, ale czas zadziałania (tw = 252 ms) jest już mocno na granicy – dla ochrony przeciwporażeniowej lepiej, jak ten czas jest jak najkrótszy. Dodatkowo wyłącznik 3 ma Iw wyższy od IΔn (47 mA vs. 30 mA), co świadczy o zbyt wysokim progu zadziałania. To nie są warunki dopuszczalne zgodnie z normami, takimi jak PN-EN 61008 czy 61009. Z mojej praktyki wynika, że takie wyłączniki stanowią po prostu zagrożenie dla ludzi i sprzętu. W automatyce przemysłowej, gdzie niezawodność detekcji prądu upływu jest kluczowa, nie ma miejsca na półśrodki. W praktyce, jeśli choć jeden z parametrów (przycisk TEST, Iw, tw) odbiega od normy, należy niezwłocznie wymienić wyłącznik. Warto pamiętać, że użytkowanie niesprawnych różnicówek to nie tylko ryzyko dla życia, ale i odpowiedzialność prawna. Zawsze lepiej dmuchać na zimne – bezpieczeństwo to podstawa każdego układu automatyki.

Pytanie 24

Z przedstawionego fragmentu dokumentacji technicznej wynika, że wyznaczenie wartości przepływu w przypadku użycia tego przetwornika polega na pomiarze

Ilustracja do pytania
A. lepkości przepływającej cieczy.
B. temperatury przepływającego gazu.
C. prędkości obrotowej wiatraczka anemometru.
D. różnicy ciśnień na kryzie.
To właśnie różnica ciśnień na kryzie jest podstawowym parametrem, jaki wykorzystuje się do wyznaczania wartości przepływu przy zastosowaniu tego typu przetwornika, zwanego często przetwornikiem różnicy ciśnień lub po prostu DP transmitterem. Cała zasada działania opiera się na prawach hydrodynamiki – kiedy medium przepływa przez zwężkę w rurze (czyli np. kryzę), po jej obu stronach powstaje różnica ciśnień: przed kryzą ciśnienie jest wyższe, za kryzą wyraźnie spada. Ta różnica jest ściśle zależna od ilości przepływającej cieczy lub gazu – takie zależności opisuje np. prawo Bernoulliego czy wzór na przepływ objętościowy przez zwężkę. W praktyce to bardzo popularna metoda – moim zdaniem zdecydowanie najczęściej wybierana w przemyśle procesowym, bo jest stosunkowo tania i dość precyzyjna. Typowo mierzy się różnicę ciśnień na dwóch punktach (p1 i p2), a przetwornik zamienia to na sygnał elektryczny, który trafia do systemu sterowania lub rejestratora. Warto pamiętać, że zgodnie z normami (np. PN-EN ISO 5167) taka technika wymaga dokładnego przygotowania instalacji, odpowiednich odcinków prostych rur, dobrej kalibracji urządzenia, a nawet uwzględnienia rodzaju medium. W codziennej praktyce spotkasz się z tym w elektrociepłowniach, wodociągach, rafineriach, ale też w laboratoriach. Fajnie, że to rozumiesz, bo to jedna z podstaw automatyki przemysłowej!

Pytanie 25

Który rysunek przedstawia przyrząd do pomiaru ciśnienia w układzie pneumatycznym?

A. Rysunek 2.
Ilustracja do odpowiedzi A
B. Rysunek 1.
Ilustracja do odpowiedzi B
C. Rysunek 4.
Ilustracja do odpowiedzi C
D. Rysunek 3.
Ilustracja do odpowiedzi D
Wybrałeś rysunek przedstawiający manometr, czyli przyrząd służący do pomiaru ciśnienia w układzie pneumatycznym. To jest absolutna podstawa w każdej instalacji sprężonego powietrza czy dowolnym systemie, w którym istotne jest monitorowanie ciśnienia roboczego. Manometr, zazwyczaj wyskalowany w barach lub Pascalach, pozwala operatorowi na bieżąco kontrolować, czy ciśnienie mieści się w bezpiecznych granicach wyznaczonych przez producenta urządzeń. W praktyce, bez poprawnie zamontowanego i działającego manometru trudno mówić o bezpiecznej i wydajnej pracy układu. Z mojego doświadczenia wynika, że większość awarii w pneumatyce zaczyna się właśnie od nieuwagi przy pomiarach ciśnienia. Branżowe normy, jak chociażby PN-EN ISO 12100 czy wytyczne UDT, wręcz wymagają stosowania takich przyrządów wszędzie tam, gdzie ciśnienie przekracza wartości bezpieczne dla człowieka i maszyny. Ciekawostka: w nowoczesnych instalacjach coraz częściej spotyka się cyfrowe manometry z możliwością podłączenia do systemów monitoringu, ale klasyczny, analogowy manometr pozostaje niezastąpiony przy szybkim i niezawodnym odczycie. Warto też pamiętać o regularnej kalibracji tego przyrządu, aby uniknąć przekłamań pomiarowych.

Pytanie 26

Dla trzech czujników PT100, PT1000 i Ni100 wykonano sprawdzające pomiary rezystancji w różnych temperaturach. Które czujniki są uszkodzone?

Temperatura
°C
Rezystancja sprawdzanego rodzaju czujnika temperatury
Pt100
Ω
Pt1000
Ω
Ni100
Ω
-2084,22921,60100,00
092,161000,00114,21
60101,241232,40123,50
A. Pt100 i Pt1000 i Ni 100
B. Pt1000 i Ni100
C. Pt100 i Pt1000
D. Pt100 i Ni100
No i super, to jest właśnie prawidłowy tok rozumowania. Jak dobrze się przyjrzeć wynikom pomiarów, widać, że Pt1000 reaguje prawidłowo — dla 0°C rezystancja wynosi dokładnie 1000 Ω, a dla reszty temperatur wartości są zgodne z charakterystyką platynowych czujników oporowych wg normy IEC 60751. Pt100 powinien mieć 100 Ω przy 0°C, a tu jest 92,16 Ω, co już pokazuje, że coś jest nie tak — dość spore odchylenie, wyraźnie poniżej normy. Dla -20°C powinno być ok. 92,16 - 7,94 = 84,22 Ω, więc akurat tu niby się zgadza, ale skoro dla 0°C jest 92,16 Ω, to znaczy, że czujnik przesunął się o ok. -8 Ω w całym zakresie. To typowy objaw uszkodzenia lub złego doboru czujnika. Z kolei Ni100 dla -20°C pokazuje 100 Ω, a przy 0°C już 114,21 Ω — to kompletnie nielogiczne, bo dla niklu przy 0°C powinno być dokładnie 100 Ω. Widać, że czujnik niklowy totalnie się rozjechał. W praktyce, jeśli takie rozbieżności pojawią się podczas legalizacji albo kalibracji czujników, od razu wiadomo, że dany czujnik trzeba zastąpić. W automatyce przemysłowej czy HVAC dokładność takich czujników decyduje często o bezpieczeństwie i jakości procesu. Z mojego doświadczenia zawsze warto porównywać wyniki do normy i korzystać z tabel przelicznikowych. Często spotykałem się z błędnym lutowaniem przewodów czy mechanicznie uszkodzonym elementem pomiarowym — i właśnie takie objawy dają podobne wyniki. Warto pamiętać też, że Pt1000 jest coraz częściej stosowany, bo daje precyzyjniejsze pomiary przy długich przewodach, a tutaj akurat ten czujnik jest zdrowy. Dobre rozpoznanie, gratuluję wiedzy praktycznej!

Pytanie 27

Którego klucza należy użyć w celu wymiany czujników indukcyjnych przedstawionych na rysunku?

Ilustracja do pytania
A. Hakowego.
B. Płaskiego.
C. Imbusowego.
D. Nasadowego.
Do wymiany czujników indukcyjnych, takich jak na tym zdjęciu, zdecydowanie najlepszym wyborem będzie klucz płaski. To wynika głównie z konstrukcji typowych czujników – mają one gwintowany korpus z wyraźnie zaznaczoną częścią sześciokątną, która służy właśnie do chwytania kluczem płaskim. Moim zdaniem, w praktyce warsztatowej to jest najprostsze i najbezpieczniejsze rozwiązanie – nie ryzykujemy uszkodzenia gwintu czy plastikowych elementów. Warto wiedzieć, że w branżowych standardach (np. normy dotyczące montażu czujników automatyki przemysłowej) takie mocowanie jest typowe. Klucz płaski umożliwia szybkie i bezproblemowe dokręcenie, a potem odkręcenie czujnika podczas serwisu. Często spotyka się tę sytuację przy obsłudze linii produkcyjnych, gdzie liczy się sprawność działania i minimalizowanie przestojów. Dodatkowo, przy zastosowaniu klucza płaskiego łatwiej kontrolować moment dokręcenia, co jest istotne, żeby nie uszkodzić czujnika. Warto też pamiętać, że klucz płaski jest jednym z podstawowych narzędzi w każdej skrzynce narzędziowej automatyka – bo po prostu często się go używa do tego typu komponentów. Z mojego doświadczenia, jeśli tylko mamy dostęp, płaski sprawdza się najlepiej, a wymiana trwa dosłownie chwilę.

Pytanie 28

Czujnik indukcyjny zbliżeniowy o strefie działania 15 mm dla stali miękkiej jest ustawiony w odległości 12 mm od elementów wykonanych z tej stali i zliczanych na taśmie produkcyjnej. O jaką minimalną odległość należy przybliżyć czujnik, aby skutecznie wykrywał elementy wykonane z mosiądzu?

Rodzaj materiałuWspółczynnik korekcji
Stal miękka1,0
Stal nierdzewna0,7
Mosiądz0,4
Miedź0,2
Aluminium0,3
A. 2 mm
B. 6 mm
C. 3 mm
D. 4 mm
Bardzo dobrze, właśnie tak powinno się do tego podejść. Czujniki indukcyjne mają różne strefy działania w zależności od materiału wykrywanego detalu. Strefa podana przez producenta (czyli te 15 mm) dotyczy zawsze stali miękkiej, która jest materiałem wzorcowym – jej współczynnik korekcji to 1,0. Dla mosiądzu ten współczynnik wynosi tylko 0,4, więc efektywna strefa działania czujnika dla mosiądzu to 15 mm × 0,4, czyli 6 mm. Jeśli czujnik był ustawiony na 12 mm (optymalnie dla stali), a elementy są teraz z mosiądzu, to niestety, lecz taki dystans jest za duży – czujnik po prostu ich nie wykryje. Czujnik trzeba więc przybliżyć do 6 mm od elementów z mosiądzu, żeby zapewnić pewną detekcję. Takie przeskalowanie odległości to standardowa praktyka w automatyce i warto to zawsze sprawdzać w dokumentacji czujnika. Moim zdaniem, w zakładzie produkcyjnym często się o tym zapomina, a potem pojawiają się niepotrzebne błędy przy modernizacjach linii czy zmianie materiału detalu. Dobrze jest też pamiętać, żeby zostawić mały zapas bezpieczeństwa, bo warunki na produkcji bywają różne, a czujniki mogą się z czasem rozkalibrować. Generalnie, jeśli spotkasz się z innymi materiałami, zawsze korzystaj z tabeli korekcji – to naprawdę oszczędza czas i nerwy przy uruchamianiu automatyki.

Pytanie 29

W której pozycji należy ustawić pokrętło wyboru funkcji przekaźnika czasowego, aby realizował funkcję opóźnionego załączenia bez pracy cyklicznej?

Ilustracja do pytania
A. W pozycji A.
B. W pozycji D.
C. W pozycji C.
D. W pozycji B.
Ustawienie pokrętła w pozycji A jest dokładnie tym, czego potrzeba do realizacji funkcji opóźnionego załączenia bez pracy cyklicznej. W praktyce oznacza to, że po podaniu napięcia sterującego przekaźnik odczekuje zaprogramowany czas, a dopiero potem załącza wyjście – i trzyma je aktywne do momentu odstawienia zasilania. Moim zdaniem to najbardziej typowa i najczęściej używana funkcja przy automatyzacji oświetlenia klatek schodowych, wentylatorów łazienkowych albo różnych urządzeń, które mają się włączyć dopiero po upływie pewnego czasu. Właśnie w takich przypadkach nie chcemy, żeby urządzenie startowało cyklicznie – wystarczy jedno opóźnione załączenie. Standardy branżowe, takie jak IEC 60947-5-1, podkreślają wagę dobrego doboru funkcji czasowej do aplikacji, żeby niepotrzebnie nie wprowadzać złożoności i zapobiegać niepożądanym stanom pracy. Z doświadczenia wiem, że ustawienie trybu na opóźnione załączenie bardzo pomaga w eliminacji efektów niepożądanego buforowania lub drgań styków. Warto pamiętać też o prawidłowym doborze zakresu czasu – ustawianie za krótkiego lub za długiego opóźnienia może prowadzić do niepraktycznej pracy automatu. Generalnie, jeżeli zależy Ci na prostym opóźnieniu bez powtarzania cyklu, to pozycja A jest idealna i zgodna z ogólnie przyjętymi praktykami montażu i eksploatacji przekaźników czasowych.

Pytanie 30

Które zaciski są wejściami sterującymi przekaźnika elektronicznego przedstawionego na ilustracji?

Ilustracja do pytania
A. 2 i 3
B. 3 i 4
C. 1 i 4
D. 1 i 2
Zaciski 3 i 4 to właśnie wejścia sterujące w tym przekaźniku elektronicznym typu SSR (Solid State Relay). Zawsze warto zwrócić uwagę na oznaczenia producenta – tutaj jasno jest napisane, że INPUT (czyli wejście sterujące) to właśnie 3 i 4, a OUTPUT (czyli wyjście obciążenia) to 1 i 2. Taki przekaźnik steruje się napięciem podanym na zaciski wejściowe, tutaj w bardzo szerokim zakresie 50-280V AC – to ogromny plus, bo można go stosować w wielu typowych instalacjach przemysłowych. W praktyce, takie SSR-y są wykorzystywane choćby do sterowania grzałkami, pompami, silnikami czy oświetleniem – wszędzie tam, gdzie zależy nam na szybkiej, beziskrowej pracy i wysokiej niezawodności. Moim zdaniem warto przyzwyczaić się do sprawdzania etykiet – nie zawsze układ fizyczny przekaźnika mówi wszystko, a pomyłki przy podłączaniu mogą skończyć się uszkodzeniem sprzętu. Branżowe standardy, takie jak IEC czy DIN, zalecają zawsze identyfikować wejścia i wyjścia na podstawie oznaczeń producenta, co podnosi bezpieczeństwo instalacji. Dodatkowo, SSR-y z wejściami AC są świetne do automatyki budynkowej i przemysłowej, eliminując typowe problemy przekaźników mechanicznych, jak drgania styków czy zużycie mechaniczne.

Pytanie 31

Które czynności naprawcze będzie można wykonać w instalacji automatyki, posługując się narzędziami przedstawionymi na rysunku?

Ilustracja do pytania
A. Nitowanie.
B. Spawanie.
C. Lutowanie.
D. Klejenie.
Właściwa odpowiedź to lutowanie, bo zestaw narzędzi pokazanych na obrazku to idealny komplet do pracy z elektroniką i automatyką. Mamy tu lutownicę transformatorową, cynę, kalafonię oraz tak zwane trzecie ręce, które bardzo pomagają w precyzyjnym ustawieniu elementów podczas lutowania. Lutownica to podstawowe narzędzie do trwałego łączenia przewodów, elementów elektronicznych czy naprawy płytek PCB. Praktyka pokazuje, że bez lutowania trudno sobie wyobrazić jakiekolwiek naprawy w instalacjach automatyki, bo tam praktycznie zawsze mamy do czynienia z połączeniami lutowanymi – zwłaszcza na płytkach drukowanych. Kalafonia służy do oczyszczania i zabezpieczania miejsc lutowania, poprawia przyczepność lutu. Cyna stanowi materiał, który po stopieniu tworzy trwałe połączenie przewodów czy nóżek elementów. W branży automatyki uważa się lutowanie za jeden z podstawowych procesów naprawczych, zgodnie np. z normą IPC-A-610 dotyczącą jakości połączeń lutowanych. Z mojego doświadczenia powiem, że dobrze wykonane lutowanie zapewnia niezawodność i trwałość instalacji, co jest kluczowe w automatyce przemysłowej. Moim zdaniem każdy technik powinien na co dzień korzystać z takich narzędzi i znać podstawy lutowania w praktyce – to naprawdę ułatwia życie.

Pytanie 32

W układzie elektropneumatycznym przedstawionym na rysunku po wciśnięciu przycisku S0 tłoczysko siłownika 1A1 wysuwa się, natomiast nie wsuwa się, mimo iż przekaźnik czasowy K2 odliczył czas 10 sekund. Powodem wadliwej pracy układu może być usterka polegająca na

Ilustracja do pytania
A. niesprawności czujnika B1
B. nieciągłości połączenia -Y2:A2/L-
C. niesprawności czujnika B2
D. nieciągłości połączenia -Y1:A2/L-
Powodem, dla którego siłownik 1A1 nie wraca do położenia wyjściowego po odliczeniu czasu przez przekaźnik K2, jest nieciągłość połączenia -Y2:A2/L-. To właśnie elektromagnes Y2 odpowiada za powrót tłoczyska siłownika, sterując zaworem 1V1 w odpowiednim kierunku. Brak napięcia na uzwojeniu Y2, spowodowany przerwą w połączeniu z potencjałem L- na zacisku A2, skutkuje brakiem reakcji elementu wykonawczego, nawet jeśli reszta układu działa prawidłowo. W praktyce bardzo często spotyka się sytuacje, gdzie drobne uszkodzenie przewodu, luźny zacisk lub utlenienie styków prowadzi do takich objawów. Według dobrych praktyk – zawsze należy sprawdzać ciągłość obwodu na całej długości, nawet jeśli na pierwszy rzut oka wydaje się wszystko w porządku. Moim zdaniem, w codziennej eksploatacji układów elektropneumatycznych, właśnie takie proste usterki sprawiają najwięcej problemów diagnostycznych i niejednokrotnie prowadzą do długotrwałych przestojów. Standardy branżowe wskazują też na konieczność stosowania regularnej kontroli zacisków oraz wykonywania testów ciągłości przewodów, aby zapobiegać takim sytuacjom. Warto dodać, że podobne objawy mogą wystąpić w przypadku uszkodzenia innych przewodów zasilających cewki, dlatego zawsze trzeba podejść do diagnostyki metodycznie. Usterka ta nie ma wpływu na wysuw tłoczyska – ponieważ za ten ruch odpowiada elektromagnes Y1 – ale całkowicie blokuje możliwość powrotu siłownika, przez co cykl pracy maszyny zostaje przerwany.

Pytanie 33

Która wielkość procesowa jest regulowana w układzie przedstawionym na rysunku?

Ilustracja do pytania
A. Ciśnienie.
B. Lepkość względna.
C. Temperatura.
D. Strumień objętości.
Właściwa odpowiedź to temperatura, bo cały układ przedstawiony na rysunku jest klasycznym przykładem automatycznej regulacji temperatury. Mamy tutaj czujnik lub przetwornik pomiarowy, który mierzy aktualną temperaturę obiektu, np. cieczy w zbiorniku, i przekazuje ten sygnał do regulatora procesu. Regulator porównuje wartość zadaną z wartością rzeczywistą i w razie potrzeby uruchamia element wykonawczy (najczęściej przekaźnik lub SSR), aby zasilić grzałkę. Dzięki temu temperatura w regulowanym obiekcie utrzymuje się na zadanym poziomie. Takie rozwiązania często spotyka się w przemyśle spożywczym, laboratoriach, a nawet w domowych kotłach CO czy piekarnikach. Moim zdaniem, opanowanie tej zasady jest kluczowe w automatyce, bo podobny schemat pojawia się w różnych branżach, a znajomość działania takiego układu pozwala projektować oraz diagnozować systemy regulacji. W praktyce bardzo ważna jest też kalibracja czujnika oraz odpowiednie dobranie algorytmu regulacji (np. PID), bo to decyduje o stabilności i dokładności utrzymania temperatury. Warto wiedzieć, że zgodnie z normami ISO i praktykami branżowymi, właściwa regulacja temperatury to podstawa bezpieczeństwa procesów technologicznych i jakości wyrobu. Z mojego punktu widzenia, jeśli ktoś chce pracować w automatyce, to takie układy powinien znać na wylot.

Pytanie 34

Który z wymienionych czujników pomiarowych umożliwi pomiar temperatury, podając bezpośrednio na swoim wyjściu wartość napięcia odpowiadającą wartości mierzonej wielkości?

A. Czujnik typu J
B. Czujnik Ni1000
C. Czujnik PTC
D. Czujnik Pt100
Czujnik typu J to klasyczny przykład termopary, która bezpośrednio generuje napięcie elektryczne proporcjonalne do różnicy temperatur między swoim złączem pomiarowym a odniesienia. To rozwiązanie od lat świetnie sprawdza się w przemyśle – na przykład w piecach hutniczych, procesach spalania czy układach automatyki energetycznej. Moim zdaniem, to niesamowicie praktyczne, bo nie trzeba żadnego dodatkowego przetwornika typu mostek ani zasilania czujnika, żeby uzyskać sygnał napięciowy – wystarczy mierzyć napięcie na końcówkach termopary. Chociaż sygnał jest niewielki (rzędu kilku do kilkudziesięciu milivoltów w typowych zakresach), to jednak ten bezpośredni pomiar napięcia jest bardzo wygodny w aplikacjach przemysłowych, gdzie liczy się prostota i niezawodność. Warto pamiętać, że termopary są ustandaryzowane – typ J, zgodnie z normą PN-EN 60584, ma określoną charakterystykę napięciową i można go stosować praktycznie w każdym systemie automatyki czy sterowania. Z mojego doświadczenia, termopary to podstawa wszędzie tam, gdzie liczy się szybka reakcja czujnika i szeroki zakres pomiarowy – od bardzo niskich do naprawdę wysokich temperatur. Oczywiście, trzeba pamiętać o kompensacji temperatury odniesienia (tzw. zimnego złącza), ale to już detal praktyczny w torze pomiarowym. Podsumowując, wybór czujnika typu J do tego zadania to nie tylko prawidłowa, ale i bardzo przemyślana opcja.

Pytanie 35

W układzie sterowania przedstawionym na rysunku, cewki przekaźników K2 i K3 nie zostały aktywowane, lampka H1 nie świeci, mimo iż jednocześnie naciśnięto sprawne technicznie przyciski S1 i S3. Taki objaw między innymi może wskazywać na uszkodzenie zestyku przekaźnika

Ilustracja do pytania
A. -K2:13-14.
B. -K1:23-24.
C. -K3:11-12.
D. -K1:13-14.
Wybrałeś odpowiedź dotyczącą zestyku -K1:23-24 i to jest prawidłowy trop. Zestyk ten pełni kluczową rolę w sterowaniu dalszą częścią układu. Gdy przyciski S1 oraz S3 są wciśnięte, a przekaźniki K2 i K3 nie reagują i lampka H1 nie świeci, można wnioskować, że prąd nie przepływa dalej – właśnie przez zestyk K1:23-24. Moim zdaniem często ten błąd pojawia się w praktyce, bo właśnie styki pomocnicze przekaźników odpowiadają za przekazywanie sygnału do kolejnych elementów – tu do cewki K2 i K3 oraz lampki H1. W zakładach automatyki zawsze się mówi, żeby przy diagnostyce układów najpierw sprawdzać styki przekaźników, szczególnie te, które „przerywają” cały tor sterujący. Jeśli zestyk jest uszkodzony albo zaśniedziały, układ nie ruszy dalej, mimo poprawnego działania wszystkich innych elementów. Dodatkowo, zgodnie z dobrymi praktykami branżowymi oraz normami dotyczącymi niezawodności układów sterowania (np. PN-EN 60204-1), kluczowe styki powinny być regularnie kontrolowane i serwisowane. Warto też pamiętać o tym, jak ważna jest dokumentacja i oznaczanie styków na schematach – bez tego trudno byłoby szybko zlokalizować przyczynę awarii. Sam miałem kiedyś przypadek, gdzie wymiana zestyku pomocniczego rozwiązała godzinną zagwozdkę na linii produkcyjnej.

Pytanie 36

Wymianę uszkodzonego aparatu do kontroli obecności faz w układzie zasilającym, przedstawionym na rysunku, należy przeprowadzić przy użyciu

Ilustracja do pytania
A. kluczy oczkowych.
B. szczypiec bocznych.
C. wkrętaków płaskich.
D. kluczy imbusowych.
Wybranie wkrętaków płaskich jako narzędzia do wymiany uszkodzonego aparatu do kontroli obecności faz to strzał w dziesiątkę z punktu widzenia praktyki elektrycznej. W przeważającej większości rozdzielnic czy aparatów modułowych, jak te widoczne na zdjęciu, do demontażu czy montażu sprzętu używamy właśnie wkrętaków płaskich, bo większość śrub mocujących przewody i aparaty jest właśnie na płaski rowek. To narzędzie daje precyzję i odpowiednią siłę przy dokręcaniu, co jest bardzo ważne, żeby nie uszkodzić samego urządzenia ani nie pozostawić luźnych połączeń – a to z kolei mogłoby prowadzić do grzania się styków lub nawet pożaru. Z doświadczenia wiem, że użycie odpowiedniego, dobrze dopasowanego wkrętaka zdecydowanie skraca czas pracy i minimalizuje ryzyko uszkodzenia elementów instalacji. Zgodnie z wytycznymi producentów i zasadami BHP, zawsze należy stosować narzędzia izolowane przeznaczone do pracy pod napięciem, nawet jeśli obwód jest wyłączony – dla własnego bezpieczeństwa. Warto też pamiętać, że wkrętaki płaskie są najbardziej uniwersalne i w 80% przypadków, jeśli chodzi o aparaturę modułową, one się sprawdzają najlepiej. To taki podstawowy must-have każdego elektryka, podobnie jak próbnik czy kombinerki. Warto mieć w skrzynce narzędziowej kilka rozmiarów, żeby dobrać idealnie do konkretnej śruby.

Pytanie 37

Który przyrząd powinien być użyty w celu dokładnego pomiaru rezystancji z przedziału od 10⁹ do 10¹⁰ Ω?

A. Gigaomomierz.
B. Mostek Thomsona.
C. Galwanometr.
D. Mostek Wiena.
Wybór przyrządu do pomiaru rezystancji, zwłaszcza w zakresie tak wysokim jak 10⁹ do 10¹⁰ Ω, wymaga zrozumienia ograniczeń klasycznych metod pomiarowych. Galwanometr, chociaż wykorzystywany był dawniej do detekcji bardzo małych prądów, w praktyce nie sprawdza się samodzielnie do pomiaru rezystancji na tak wysokim poziomie. Jego czułość nie wystarcza, a przy tak wysokich rezystancjach pojawia się problem zakłóceń, upływności czy nawet wpływu wilgotności powietrza na wynik. Mostek Wiena to precyzyjne narzędzie do pomiaru rezystancji, ale jego zakres działania jest ograniczony i praktycznie nie nadaje się do pracy z gigaomami. W laboratoriach fizycznych mostki służą raczej do dokładnych pomiarów małych i średnich oporności – w zastosowaniach powyżej kilku megaomów zaczynają pojawiać się błędy wynikające z upływności i niedoskonałości izolacji kabli mostka. Podobnie Mostek Thomsona, choć w praktyce jest bardzo użyteczny przy pomiarze bardzo niskich rezystancji (np. przewodów czy połączeń stykowych), zupełnie nie nadaje się do pomiarów w zakresie wysokoomowym. Częstym błędem jest myślenie, że każdy mostek nadaje się do każdej rezystancji – niestety, w branży elektrycznej każdy zakres wymaga innego podejścia i dedykowanych narzędzi. Wysokie rezystancje mierzy się zawsze specjalistycznymi miernikami, czyli właśnie gigaomomierzami, które generują wysokie napięcia testowe (najczęściej kilkaset lub kilka tysięcy woltów) i są odpowiednio ekranowane oraz zabezpieczone przed wpływem czynników zewnętrznych. Takie podejście wynika nie tylko z praktyki, ale też z formalnych zaleceń branżowych i normatywnych (np. wspomniana PN-EN 61557). Warto pamiętać, że próba pomiaru wysokiej rezystancji nieadekwatnym sprzętem może prowadzić do rażąco błędnych wyników i poważnych konsekwencji – od złych decyzji eksploatacyjnych po zagrożenie bezpieczeństwa. Dlatego do pomiarów w zakresie gigaomów stosuje się wyłącznie gigaomomierze i żadna z pozostałych propozycji nie zapewni rzetelnych rezultatów.

Pytanie 38

Która czynność nie należy do zakresu przeglądów okresowych instalacji pomiarowej w układach automatycznej regulacji?

A. Sprawdzenie zakresów sygnałów wyjściowych przetworników.
B. Regeneracja izolacji sieciowych przewodów zasilających.
C. Kalibracja położenia pomiarowego czujników.
D. Sprawdzenie działania przyrządów wskaźnikowych.
W przypadku przeglądów okresowych instalacji pomiarowej w układach automatycznej regulacji, najważniejsze jest skupienie się na tych czynnościach, które bezpośrednio wpływają na jakość, dokładność oraz niezawodność pomiarów i przekazywania sygnałów. Kalibracja położenia pomiarowego czujników jest kluczowa, bo zapewnia, że urządzenia pomiarowe nie pokazują fałszywych wartości z powodu mechanicznego przesunięcia lub zużycia elementów. Sprawdzenie działania przyrządów wskaźnikowych pozwala upewnić się, że operatorzy widzą rzeczywisty obraz procesu, a nie zamrożone lub przekłamane wskazania – z mojego doświadczenia to często niedoceniana czynność, która potrafi uratować przed poważną awarią technologiczną. Z kolei sprawdzanie zakresów sygnałów wyjściowych przetworników to absolutna podstawa, bo w praktyce właśnie tam pojawiają się błędy, które mogą wpłynąć na całą pętlę regulacji. To, co często wprowadza w błąd, to myślenie, że wszystkie elementy elektryczne w szafie automatyki wymagają tych samych zabiegów konserwacyjnych. Jednak regeneracja izolacji przewodów zasilających nie należy do typowych czynności serwisowych instalacji pomiarowej i zwykle dotyczy generalnych przeglądów instalacji elektrycznej, a nie automatyki jako takiej. Standardy branżowe, takie jak PN-EN 61010 czy PN-EN 61511, jasno rozdzielają te obszary. Typowym błędem jest wrzucanie do jednego worka czynności pomiarowych i elektrycznych – a to dwie różne bajki pod względem przeglądów. W praktyce, przegląd okresowy aparatury pomiarowej skupia się na sprawdzeniu poprawnej pracy urządzeń pomiarowych, ich kalibracji i diagnostyce, a nie na naprawie czy regeneracji izolacji przewodów energetycznych.

Pytanie 39

Podczas wykonywania diagnostyki elektronicznego przetwornika ciśnienia stwierdzono niestabilność jego prądowego sygnału wyjściowego w zakresie pomiarowym 4 ÷ 20 mA. Wskaż, na podstawie Tabeli usterek, możliwą przyczynę nieprawidłowego działania przetwornika.

Tabela usterek przetwornika p/I
ObjawyPrzyczynyDziałania
Brak sygnału 4÷20 mANieprawidłowe podłączenie zasilania
  • Sprawdzić połączenie zgodnie z rozdziałem „Procedura podłączania" i w razie konieczności skorygować zgodnie z rozdziałem „Schemat połączeń"
Brak zasilania
  • Sprawdzić kable pod kątem uszkodzeń; w razie potrzeby naprawić
Napięcie robocze zbyt niskie lub rezystancja obciążenia zbyt wysoka
  • Sprawdzić wartość napięcia roboczego; w razie potrzeby dostosować
Sygnał 4÷20 mA niestabilnyFluktuacje poziomu
  • Ustawić czas zakowania za pomocą modułu wyświetlania i regulacji lub oprogramowania PACTware
Brak kompensacji ciśnienia
  • Sprawdzić kompensację ciśnienia w obudowie i w razie konieczności wyczyścić
Sygnał prądowy przekracza 22 mA lub jest poniżej 3,6 mAWadliwy moduł elektroniczny lub komora pomiarowa
  • Wymienić przyrząd lub odesłać go do naprawy
Ilustracja do pytania
A. Wadliwy moduł elektroniczny.
B. Nieprawidłowe podłączenie zasilania.
C. Brak zasilania.
D. Brak kompensacji ciśnienia atmosferycznego.
Poprawnie wskazana została przyczyna – brak kompensacji ciśnienia atmosferycznego. To bardzo typowy i jednocześnie często niedoceniany problem w eksploatacji przetworników ciśnienia, zwłaszcza tych pracujących w warunkach przemysłowych, gdzie kurz, para wodna czy inne zanieczyszczenia mogą zablokować układ kompensacji. Przetworniki p/I muszą mieć możliwość porównywania ciśnienia mierzonego z bieżącym ciśnieniem otoczenia (atmosferycznym), a jeśli np. kanał kompensacyjny jest zatkany albo membrana nie działa poprawnie, sygnał wyjściowy zaczyna pływać albo reagować niestabilnie na faktyczne zmiany ciśnienia procesu. Moim zdaniem to jeden z bardziej podchwytliwych przypadków w praktyce – czasem szuka się winy po stronie zasilania, kabla czy elektroniki, a wystarczy po prostu przedmuchać kanał kompensacji. Warto też pamiętać, że według standardów branżowych (np. PN-EN 61298), producent zawsze wymaga regularnej kontroli i czyszczenia układu kompensacji. Sam miałem sytuację, gdzie niestabilność sygnału wyjściowego była spowodowana pajęczyną w kanale kompensacji – wydaje się śmieszne, ale takie rzeczy się zdarzają. Dobre praktyki to sprawdzanie tej sekcji przetwornika minimum raz na kwartał, a w trudnych warunkach nawet częściej. Pozwala to uniknąć niepotrzebnych kosztów serwisowych i przestojów produkcyjnych.

Pytanie 40

Którą z wymienionych korekt należy wprowadzić w układzie, aby sygnalizator H1 migał z częstotliwością 0,5 Hz i wypełnieniem 50%?

Ilustracja do pytania
A. Ustawienie czasu 0,5 sekundy na obu przekaźnikach -K2 i -K3.
B. Zmiana ustawień czasu z 2 na 1 sekundę na przekaźniku czasowym -K2.
C. Zmiana ustawień czasu z 1 na 3 sekundy na przekaźniku czasowym -K3.
D. Ustawienie czasu 2 sekundy na obu przekaźnikach -K2 i -K3.
To jest właśnie ta poprawna odpowiedź! Odpowiednia zmiana ustawień czasu z 2 na 1 sekundę na przekaźniku czasowym -K2 powoduje, że układ zaczyna generować sygnał o częstotliwości 0,5 Hz i idealnym wypełnieniu 50%. Kluczowe jest tutaj zrozumienie, jak działają przekaźniki czasowe w typowym układzie migacza – jeden z nich ustala czas świecenia sygnalizatora, drugi – czas jego wygaszenia. Jeśli oba czasy są równe po 1 sekundzie, cykl trwa 2 sekundy: 1 sekunda sygnalizator świeci, 1 sekunda jest zgaszony. To właśnie klasyczne wypełnienie 50%, co jest bardzo często wymagane np. w sygnalizacji awaryjnej, ostrzegawczej czy różnych systemach sterowania przemysłowego. Praktyka pokazuje, że takie ustawienie czasów daje prosty, niezawodny i zrozumiały efekt, zgodny ze standardami branżowymi (np. PN-EN 60204-1). Warto pamiętać, że w codziennych sytuacjach techników najczęstszy błąd to ustawienie różnych czasów i uzyskanie nierównego wypełnienia – a wtedy układ nie spełnia wymagań norm i praktyki. Gdybyś chciał kiedyś zmodyfikować taki układ pod inne parametry, to zasada jest prosta: suma czasów to okres, a stosunek jednego czasu do okresu daje wypełnienie – bardzo uniwersalna i przydatna wiedza w automatyce!