Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.03 - Montaż, uruchamianie i konserwacja urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 8 grudnia 2025 10:44
  • Data zakończenia: 8 grudnia 2025 11:09

Egzamin zdany!

Wynik: 34/40 punktów (85,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 2

Jakie urządzenia służą do pomiaru wartości przyśpieszenia drgań elektrycznego silnika napędowego pompy hydraulicznej, działającego w systemie mechatronicznym?

A. akcelerometry
B. tensometry
C. galwanometry
D. rotametry
Akcelerometry są urządzeniami pomiarowymi, które służą do pomiaru przyspieszeń oraz drgań w różnych systemach mechanicznych, w tym w elektrycznych silnikach napędowych, jak w przypadku pomp hydraulicznych. Ich działanie polega na rejestrowaniu przyspieszeń w różnych osiach, co pozwala na dokładne monitorowanie stanu technicznego urządzenia. Przykładowo, w przemyśle motoryzacyjnym akcelerometry są powszechnie wykorzystywane do analizy drgań pojazdów, co przyczynia się do poprawy komfortu jazdy oraz bezpieczeństwa. W kontekście układów mechatronicznych, akcelerometry mogą być zintegrowane z systemami kontroli, umożliwiając automatyczne dostosowywanie parametrów pracy maszyny w odpowiedzi na zmieniające się warunki. Zgodnie z normami ISO 5349, które dotyczą pomiaru drgań, akcelerometry stanowią standardowy sposób na zapewnienie precyzyjnych pomiarów, co skutkuje efektywniejszym zarządzaniem procesami przemysłowymi oraz minimalizowaniem ryzyka uszkodzeń sprzętu.

Pytanie 3

Napięcie testowe, strata dielektryczna, maksymalne napięcie, opór izolacji, temperatury współczynnik pojemności - to parametry znamionowe

A. rezystora
B. kondensatora
C. solenoidu
D. diody pojemnościowej
Kondensator jest elementem elektronicznym, który gromadzi ładunek elektryczny, a jego zachowanie jest określane przez szereg parametrów znamionowych, takich jak napięcie probiercze, stratność dielektryczna, dopuszczalna wartość napięcia, rezystancja izolacji oraz temperaturowy współczynnik pojemności. Napięcie probiercze odnosi się do maksymalnego napięcia, które kondensator może wytrzymać bez uszkodzeń. Stratność dielektryczna jest miarą strat energii w dielektryku, co wpływa na efektywność kondensatora. Dopuszczalna wartość napięcia to maksymalne napięcie robocze, przy którym kondensator działa prawidłowo. Rezystancja izolacji jest istotna dla przewodności dielektryka, a temperaturowy współczynnik pojemności wskazuje, jak wartość pojemności zmienia się w funkcji temperatury. W praktyce kondensatory są wykorzystywane w filtrach, układach czasowych, oraz w stabilizacji napięcia w zasilaczach, co czyni je niezbędnymi w wielu zastosowaniach elektronicznych. W branży istnieją normy, takie jak IEC 60384, które definiują wymagania dotyczące jakości i bezpieczeństwa kondensatorów.

Pytanie 4

Który miernik należy zastosować w układzie, którego schemat przedstawiono na rysunku, w celu pomiaru napięcia metodą bezpośrednią?

Ilustracja do pytania
A. Amperomierz.
B. Omomierz.
C. Watomierz.
D. Woltomierz.
Woltomierz to kluczowe narzędzie w pomiarach elektrycznych, które służy do bezpośredniego pomiaru napięcia w obwodach. Jego zastosowanie jest niezwykle istotne w praktyce, zwłaszcza w kontekście analizowania działania różnych układów elektronicznych oraz w diagnostyce systemów energetycznych. Woltomierz działa na zasadzie pomiaru różnicy potencjałów między dwoma punktami, co pozwala na dokładne określenie wartości napięcia. W praktyce, podczas pomiaru, woltomierz jest podłączany równolegle do elementu, którego napięcie chcemy zmierzyć. Warto również zaznaczyć, że korzystanie z woltomierzy cyfrowych, które oferują większą dokładność i dodatkowe funkcje analityczne, stało się powszechne w laboratoriach oraz w pracach serwisowych. W kontekście norm branżowych, pomiary napięcia powinny być przeprowadzane zgodnie z wytycznymi zawartymi w standardach IEC 61010, które określają wymagania dotyczące bezpieczeństwa przy pomiarach elektrycznych.

Pytanie 5

Zwiększenie wartości częstotliwości wyjściowej falownika zasilającego silnik indukcyjny, przy niezmiennym obciążeniu silnika, prowadzi do

A. spadku rezystancji uzwojeń
B. wzrostu rezystancji uzwojeń
C. zmniejszenia prędkości obrotowej
D. zwiększenia prędkości obrotowej
Wzrost wartości częstotliwości wyjściowej falownika zasilającego silnik indukcyjny prowadzi do zwiększenia prędkości obrotowej silnika. Wynika to z faktu, że prędkość obrotowa silnika indukcyjnego jest bezpośrednio proporcjonalna do częstotliwości zasilania, co jest opisane równaniem: n = (120 * f) / p, gdzie n to prędkość obrotowa w obrotach na minutę (RPM), f to częstotliwość w hercach (Hz), a p to liczba par biegunów silnika. W praktyce oznacza to, że zmiana częstotliwości zasilania pozwala na precyzyjne sterowanie prędkością obrotową silnika, co jest kluczowe w wielu aplikacjach przemysłowych, takich jak napędy wentylatorów, pomp czy przenośników taśmowych. Wzrost prędkości obrotowej może również skutkować zwiększeniem wydajności procesu produkcyjnego oraz optymalizacją zużycia energii, ponieważ falowniki pozwalają na dostosowanie parametrów pracy silnika w zależności od aktualnych potrzeb. Współczesne standardy w automatyce przemysłowej promują wykorzystanie falowników jako najbardziej efektywnego sposobu zarządzania napędami elektrycznymi, co przekłada się na większą elastyczność i oszczędności energetyczne.

Pytanie 6

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 7

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 8

Zbyt mała lepkość oleju hydraulicznego może być wynikiem zbyt

A. niskiej ściśliwości oleju
B. niskiej temperatury oleju
C. wysokiego ciśnienia oleju
D. wysokiej temperatury oleju
Wysokie ciśnienie oleju hydraulicznego nie wpływa na jego lepkość w sposób, który prowadziłby do jej znacznego zmniejszenia. Ciśnienie w układzie hydraulicznym ma na celu przede wszystkim zapewnienie skutecznego przesyłu energii, a nie determinowanie właściwości reologicznych oleju. W kontekście układów hydraulicznych, zbyt wysokie ciśnienie może prowadzić do uszkodzeń elementów konstrukcyjnych, ale nie ma bezpośredniego związku z lepkością oleju jako taką. Niska ściśliwość oleju również nie jest czynnikiem wpływającym na jego lepkość. W rzeczywistości, ściśliwość odnosi się do zmiany objętości cieczy pod wpływem ciśnienia, co w większości przypadków nie ma istotnego wpływu na lepkość w normalnych warunkach pracy. Z kolei niska temperatura oleju może prowadzić do wzrostu lepkości, a nie jej spadku. Warto pamiętać, że lepkość oleju hydraulicznego jest zazwyczaj zmniejszana przez podwyższoną temperaturę, co jest zgodne z zasadami termodynamiki oraz reologii płynów. Dlatego identyfikowanie temperatury jako kluczowego czynnika w regulacji lepkości oleju hydraulicznego jest kluczowe dla zrozumienia działania układów hydraulicznych i ich prawidłowego funkcjonowania.

Pytanie 9

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 10

Przy jakiej temperaturze nastąpi wyłączenie grzałki w układzie dwustanowej regulacji temperatury, jeśli wartość zadana To wynosi 100 oC, a szerokość pętli histerezy H = 5 oC?

Ilustracja do pytania
A. 105,0 oC
B. 97,5 oC
C. 95,0 oC
D. 102,5 oC
W układzie z dwustanową regulacją temperatury grzałka wyłącza się, kiedy temperatura osiągnie wartość zadana powiększoną o połowę szerokości histerezy. Tu, mamy temperaturę zadaną równą 100 oC, a szerokość pętli histerezy to 5 oC, więc połowa to 2,5 oC. W praktyce to oznacza, że grzałka się wyłączy przy 102,5 oC, co obliczamy jak 100 oC + 2,5 oC. To mega ważne w automatyce, bo precyzyjne kontrolowanie temperatury wpływa na bezpieczeństwo i efektywność naszych procesów. Jak przekroczymy te 102,5 oC, to grzałka sama się wyłączy, co chroni sprzęt przed przegrzaniem. Takie regulacje spotykamy w piecach, podgrzewaczach i innych systemach przemysłowych, gdzie temperatura jest kluczowa dla jakości końcowego produktu oraz bezpieczeństwa pracy. Histereza w regulacji pomaga nam uniknąć niepotrzebnych wahań temperatury, co jest istotne w sytuacjach, gdzie stabilność jest potrzebna.

Pytanie 11

Jaką metodę należy wykorzystać do połączenia szkła z metalem?

A. Spawanie
B. Zgrzewanie
C. Klejenie
D. Nitowanie
Klejenie to najskuteczniejsza metoda łączenia szkła z metalem ze względu na różnice w ich właściwościach fizycznych i chemicznych. Szkło jest materiałem kruchym, a metal - plastycznym, co sprawia, że tradycyjne metody, takie jak zgrzewanie czy spawanie, mogą prowadzić do uszkodzenia szkła. Klejenie wykorzystuje specjalistyczne kleje, które tworzą mocne, elastyczne połączenie, a także mogą dostosować się do różnic w rozszerzalności cieplnej obu materiałów. W praktyce, odpowiednie kleje epoksydowe lub akrylowe są często stosowane do takich aplikacji, umożliwiając trwałe i estetyczne łączenie. W branży budowlanej i w przemyśle, klejenie szkła do metalowych elementów jest powszechnie stosowane w oknach strukturalnych, elewacjach oraz w produkcji mebli. Dobrą praktyką jest również stosowanie gruntów, które poprawiają adhezję kleju do powierzchni, co zwiększa trwałość i odporność połączenia na różne czynniki zewnętrzne. Takie podejście jest zgodne z normami ISO dotyczących klejenia i pozwala na uzyskanie wysokiej jakości połączeń.

Pytanie 12

Jakie połączenie można zaklasyfikować jako połączenia trwałe?

A. Sworzniowe
B. Wciskowe
C. Wpustowe
D. Nitowane
Odpowiedź "Nitowane" jest poprawna, ponieważ połączenia nitowane zaliczają się do grupy połączeń nierozłącznych, co oznacza, że ich demontaż jest skomplikowany i wymaga specjalistycznych narzędzi. Połączenia te są powszechnie stosowane w przemyśle lotniczym, motoryzacyjnym oraz w konstrukcjach stalowych, gdzie kluczowa jest wysoka wytrzymałość na obciążenia oraz odporność na zmiany temperatury. Nity, jako elementy łączące, są stosowane do łączenia blach, profili i innych komponentów, gdzie istotna jest trwałość oraz bezpieczeństwo. W praktyce, standardy takie jak ISO 14588 definiują wymagania dotyczące nitu, co zapewnia ich odpowiednią jakość. W przypadku naprawy lub demontażu konstrukcji nitowanych, często konieczne jest przewiercenie nitów, co podkreśla ich nierozłączny charakter. Warto również dodać, że połączenia nitowane są preferowane w sytuacjach, gdzie nie ma możliwości zastosowania spawania, np. w konstrukcjach, które mają być poddawane różnym cyklom pracy temperaturowej.

Pytanie 13

W przedstawionym na rysunku siłowniku dwustronnego działania ruch tłoka odbywa się w kierunku wskazanym strzałką. Która komora oznaczona została literą B?

Ilustracja do pytania
A. Podtłokowa.
B. Spływowa.
C. Tłoczna.
D. Nadtłokowa.
Tak, odpowiedź "tłoczna" jest jak najbardziej trafna. Komora B w siłowniku dwustronnego działania to właśnie to miejsce, gdzie olej hydrauliczny wchodzi pod ciśnieniem, a to powoduje ruch tłoka w stronę strzałki. W siłownikach hydraulicznych ta komora tłoczna jest mega ważna, bo to ona przenosi energię do mechanizmu. Moim zdaniem, żeby siłowniki działały jak należy, trzeba zrozumieć, jak różnie te komory pełnią swoje funkcje. Komora tłoczna odpowiada za wytwarzanie siły, która zmienia energię hydrauliczną w ruch. W praktyce, zwłaszcza w maszynach budowlanych czy systemach automatyzacji, efektywność siłowników zależy od tego, jak dobrze znamy zasady hydrauliki i jak to zastosujemy w projektach. Standardy ISO 4413 czy ANSI B93 pomagają w tym, bo ich przestrzeganie podnosi niezawodność i wydajność układów hydraulicznych.

Pytanie 14

Jakie narzędzie powinno się zastosować do przygotowania przewodu LgY 0,75 mm2 przed jego montażem w listwie zaciskowej?

A. Zaciskarkę tulejek
B. Zaciskarkę konektorów
C. Klucz płaski
D. Klucz dynamometryczny
Zaciskarka tulejek jest narzędziem przeznaczonym do trwałego łączenia przewodów z różnymi typami konektorów, co jest kluczowe w procesie przygotowania przewodu LgY 0,75 mm² do montażu w listwie zaciskowej. Użycie zaciskarki pozwala na uzyskanie solidnego i niezawodnego połączenia, które jest zgodne z normami bezpieczeństwa oraz standardami branżowymi, takimi jak PN-EN 60352. Przykładem zastosowania zaciskarki tulejek jest łączenie przewodów w instalacjach elektrycznych, gdzie wymagane jest zapewnienie wysokiej jakości połączeń elektrycznych, zwłaszcza w sytuacjach, gdy przewody są narażone na wibracje lub zmiany temperatury. Przeprowadzenie prawidłowego zaciskania pozwala na uzyskanie niskiej rezystancji połączenia, co jest kluczowe dla efektywności energetycznej oraz bezpieczeństwa użytkowania instalacji. Korzystając z dobrej jakości zaciskarki, można również uniknąć problemów związanych z luźnymi połączeniami, które mogą prowadzić do przegrzewania się przewodów i potencjalnych zagrożeń pożarowych.

Pytanie 15

Jakie narzędzie należy zastosować do pomiaru luzów pomiędzy powierzchniami elementów konstrukcyjnych?

A. mikrometr
B. szczelinomierz
C. suwmiarka
D. liniał
Szczelinomierz to narzędzie pomiarowe, które jest szczególnie zaprojektowane do określania luzów i szczelin pomiędzy elementami konstrukcyjnymi. Jego konstrukcja umożliwia precyzyjne pomiary w trudnych warunkach pracy, gdzie inne narzędzia, takie jak suwmiarka czy mikrometr, mogą nie dostarczyć wystarczającej dokładności. Szczelinomierze są często stosowane w różnych branżach, w tym w mechanice precyzyjnej, motoryzacji i inżynierii lotniczej, gdzie kontrola luzów pomiędzy ruchomymi elementami jest kluczowa dla zapewnienia prawidłowego funkcjonowania maszyn. Na przykład, w silnikach spalinowych precyzyjne pomiary luzów między zaworami a gniazdami zaworowymi są niezbędne do zapewnienia optymalnej wydajności silnika oraz minimalizacji zużycia. W standardach branżowych, takich jak ISO, podkreśla się znaczenie stosowania odpowiednich narzędzi do pomiarów luzów, co czyni szczelinomierz najlepszym wyborem w tego typu aplikacjach.

Pytanie 16

Którego z wymienionych przyrządów pomiarowych należy użyć do wykonania pomiaru szerokości bardzo głębokiego otworu nieprzelotowego blisko dna w sposób przedstawiony na ilustracji?

Ilustracja do pytania
A. Wysokościomierza.
B. Mikrometru wewnętrznego.
C. Średnicówki czujnikowej.
D. Głębokościomierza.
Wybór niewłaściwego przyrządu pomiarowego do pomiaru szerokości głębokiego otworu nieprzelotowego może prowadzić do poważnych błędów i nieścisłości w wynikach. Głębokościomierz, który służy głównie do pomiaru głębokości w otworach, nie jest przystosowany do określenia średnicy, co czyni go nieodpowiednim w tej sytuacji. Podobnie, wysokościomierz, który jest używany do pomiarów wysokości lub różnic wysokości, również nie daje możliwości pomiaru średnicy otworu. Mikrometr wewnętrzny jest narzędziem precyzyjnym, jednak jego zastosowanie ogranicza się do pomiarów otworów o mniejszych głębokościach i na ogół nie nadaje się do pomiaru w głębokich otworach nieprzelotowych, gdzie dostęp do dna otworu może być ograniczony. Wybierając niewłaściwe narzędzie, można także napotkać problemy z odczytem wyników, co prowadzi do błędnych wniosków i może skutkować nieefektywnym działaniem w dalszych etapach procesu produkcyjnego. Ważne jest, aby przed podjęciem decyzji o wyborze narzędzia, dokładnie ocenić specyfikę pomiaru oraz wymagania dotyczące precyzji, co jest kluczowe w standardach jakościowych przemysłu.

Pytanie 17

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 18

Które z wymienionych materiałów sztucznych jest najbardziej odpowiednie do wytwarzania kół zębatych?

A. Poliamid
B. Lateks
C. Poliuretan
D. Silikon
Poliamid, znany również jako nylon, jest jednym z najlepszych tworzyw sztucznych do produkcji kół zębatych ze względu na swoje doskonałe właściwości mechaniczne. Ma wysoką wytrzymałość na rozciąganie oraz odporność na ścieranie, co czyni go idealnym materiałem do zastosowań, gdzie występują znaczne obciążenia. Dzięki niskiemu współczynnikowi tarcia, poliamid zmniejsza zużycie energii i przedłuża żywotność elementów mechanicznych. Przykłady zastosowania obejmują przemysł motoryzacyjny, gdzie koła zębate z poliamidu są używane w układach przekładniowych, a także w urządzeniach przemysłowych, takich jak maszyny CNC. Poliamid jest także odporny na działanie olejów i rozpuszczalników, co dodatkowo zwiększa jego wszechstronność. Zgodnie z dobrymi praktykami inżynieryjnymi, wybór poliamidu do produkcji kół zębatych jest zgodny z wieloma normami branżowymi, co potwierdza jego zalety w kontekście efektywności i trwałości w aplikacjach inżynieryjnych.

Pytanie 19

Obróbka ręczna przedstawiona na rysunku to

Ilustracja do pytania
A. skrobanie.
B. docieranie.
C. polerowanie.
D. piłowanie.
Skrobanie to technika obróbcza, która polega na usuwaniu cienkich warstw materiału z powierzchni obrabianego przedmiotu. Na rysunku widoczne jest narzędzie ręczne, skrobak, które idealnie pasuje do tej metody. Skrobanie jest szczególnie istotne w obróbce metali, gdzie precyzja wymiarowa i jakość powierzchni są kluczowe. Umożliwia ono osiągnięcie tolerancji na poziomie mikrometrów, co jest niezbędne w zastosowaniach inżynieryjnych, takich jak produkcja precyzyjnych maszyn czy narzędzi. Stosowanie skrobaka przyczynia się do uzyskania gładkiej powierzchni, co z kolei wpływa na właściwości tribologiczne i trwałość części. W praktyce, skrobanie jest wykorzystywane do naprawy oraz regeneracji zużytych powierzchni, co pozwala na oszczędności związane z wymianą elementów. W branży metalowej oraz mechanicznej, skrobanie jest uznawane za jedną z podstawowych technik obróbczych, co podkreśla jego znaczenie w kształtowaniu wysokiej jakości produktów.

Pytanie 20

Na podstawie rysunku określ sposób mocowania siłownika pneumatycznego.

Ilustracja do pytania
A. Kołnierzowe.
B. Wahliwe.
C. Gwintowe.
D. Na łapach.
Wybór niewłaściwego mocowania siłownika pneumatycznego może prowadzić do nieefektywności w działaniu całego systemu. Możliwość mocowania gwintowego nie jest odpowiednia w kontekście wahliwości, ponieważ polega na stałym, sztywnym połączeniu, które nie pozwala na ruch w żadnym kierunku. Tego typu mocowanie jest stosowane głównie w aplikacjach, gdzie nie jest wymagany ruch dynamiczny, a stabilność połączenia jest kluczowa. Z drugiej strony, mocowanie na łapach, które zazwyczaj stosuje się w prostopadłych lub stałych układach, również nie odpowiada wymaganiom wahliwego ruchu. Takie podejście ogranicza możliwości ułożenia elementów i może prowadzić do uszkodzeń w przypadku, gdy siłownik musi działać w zakresie ruchu, co jest jego podstawową funkcjonalnością. Kołnierzowe mocowanie, mimo że solidne i wytrzymałe, również nie oferuje możliwości wahliwości, a raczej zapewnia stałą, sztywną pozycję. Dobrym przykładem błędnego myślenia w tym kontekście może być założenie, że każdy typ mocowania może być zamiennie używany, co w praktyce prowadzi do niewłaściwych zastosowań i ryzyka awarii. Kluczowe jest zrozumienie, że dobór odpowiedniego mocowania jest ściśle związany z zakresem ruchu i funkcjonalnością siłownika, co stanowi fundament skutecznego projektowania systemów pneumatycznych.

Pytanie 21

Jaki czujnik powinno się wykorzystać do pomiaru wartości natężenia pola magnetycznego?

A. Ultradźwiękowy
B. Tensometryczny
C. Pojemnościowy
D. Hallotronowy
Czujnik hallotronowy jest specjalistycznym urządzeniem, które wykrywa obecność i natężenie pola magnetycznego. Zasada jego działania opiera się na efekcie Hall'a, który polega na wytwarzaniu napięcia poprzecznego na przewodniku, gdy przepływa przez niego prąd i jest jednocześnie poddany działaniu pola magnetycznego. Dzięki temu czujniki hallotronowe znajdują szerokie zastosowanie w różnych dziedzinach, takich jak motoryzacja (np. w systemach ABS), automatyka przemysłowa oraz urządzenia elektroniczne. Charakteryzują się wysoką czułością i precyzją, co czyni je najlepszym wyborem do pomiarów natężenia pola magnetycznego. Ich instalacja i użytkowanie są zgodne z powszechnie uznawanymi standardami branżowymi, co dodatkowo podnosi ich wartość w zastosowaniach przemysłowych. Warto również zwrócić uwagę na rozwój technologii, gdzie czujniki hallotronowe są integralną częścią nowoczesnych systemów pomiarowych i automatyzacyjnych.

Pytanie 22

Które z wymienionych narzędzi należy zastosować podczas wymiany układu scalonego na płytce drukowanej, widocznej na zdjęciu?

Ilustracja do pytania
A. Lutownicę i odsysacz.
B. Pęsetę i zaciskarkę.
C. Śrubokręt i szczypce.
D. Ucinaczki i pilnik.
Lutownica i odsysacz to kluczowe narzędzia w procesie wymiany układu scalonego na płytce drukowanej. Lutownica, jako narzędzie do podgrzewania cyny, pozwala na jej roztopienie, co jest niezbędne do skutecznego odłączenia układu od płytki. Odsysacz jest równie ważny, gdyż umożliwia usunięcie nadmiaru roztopionej cyny, co minimalizuje ryzyko uszkodzenia ścieżek przewodzących na płytce. Użycie tych narzędzi zgodnie z najlepszymi praktykami branżowymi zapewnia nie tylko efektywność, ale także bezpieczeństwo całego procesu. Na przykład, podczas pracy z płytkami PCB, ważne jest, aby unikać przegrzania komponentów, co może prowadzić do ich uszkodzenia lub zmniejszenia wydajności. Dobrze jest również używać odsysacza w celu precyzyjnego usunięcia cyny, co z kolei pozwala na łatwiejsze umiejscowienie nowego układu scalonego. Warto również zwrócić uwagę na to, że lutownica powinna być odpowiednio kalibrowana, a temperatura lutowania dostosowana do specyfiki używanej cyny.

Pytanie 23

Na rysunku przedstawiono fragment urządzenia z zamontowaną smarowniczką (kalamitką). Które z przedstawionych na rysunkach narzędzi należy zastosować do jego smarowania?

Ilustracja do pytania
A. D.
B. C.
C. B.
D. A.
Wybór odpowiedzi B, C lub D nie jest właściwy, ponieważ każde z tych narzędzi ma inne zastosowanie i nie spełnia wymagań związanych z smarowaniem smarowniczek. Opryskiwacz, reprezentowany przez odpowiedź B, jest narzędziem zaprojektowanym do rozpylania cieczy, co nie jest zgodne z zasadami precyzyjnego smarowania. Odpowiedź C, pistolet do kleju, jest narzędziem przeznaczonym do aplikacji materiałów klejących, a nie smaru, co czyni go całkowicie nieodpowiednim wyborem do smarowania mechanizmów. Z kolei pistolet do malowania, wskazany w odpowiedzi D, jest narzędziem stosowanym do nakładania farb i lakierów, a nie smarów. Takie pomyłki często wynikają z myślenia, które nie uwzględnia specyfiki i przeznaczenia poszczególnych narzędzi. W praktyce technicznej kluczowe jest, aby odpowiednio dobierać narzędzia do konkretnego zadania, co zapobiega nieefektywnemu smarowaniu i potencjalnym uszkodzeniom maszyn. Warto pamiętać, że skuteczne smarowanie ma bezpośredni wpływ na wydajność i żywotność urządzeń, a także na bezpieczeństwo ich użytkowania.

Pytanie 24

Które urządzenie ma symbol graficzny przedstawiony na rysunku?

Ilustracja do pytania
A. Sprężarka pneumatyczna.
B. Pompa hydrauliczna.
C. Silnik pneumatyczny.
D. Silnik hydrauliczny.
Pompa hydrauliczna jest kluczowym elementem wielu systemów hydraulicznych, a jej symbol graficzny jest standardowo stosowany w dokumentacji technicznej. Oznaczenie to, składające się z okręgu oraz strzałki wskazującej kierunek przepływu, jednoznacznie identyfikuje to urządzenie. Pompy hydrauliczne są używane w różnych aplikacjach, takich jak maszyny budowlane, pojazdy użytkowe oraz systemy automatyki przemysłowej. Działają na zasadzie przetwarzania energii mechanicznej na energię hydrauliczną, co pozwala na efektywne przenoszenie dużych obciążeń przy stosunkowo niskim zużyciu energii. Zgodnie z normami ISO, symbole hydrauliczne powinny być zgodne z ustalonymi standardami, aby ułatwić zrozumienie schematów przez techników i inżynierów. Zrozumienie symboliki jest kluczowe dla efektywnej komunikacji w projektowaniu oraz utrzymaniu systemów hydraulicznych.

Pytanie 25

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 26

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 27

Zwiększenie wartości częstotliwości wyjściowej falownika zasilającego silnik AC skutkuje

A. wzrostem reaktancji uzwojeń
B. zwiększeniem prędkości obrotowej
C. zmniejszeniem prędkości obrotowej
D. spadkiem reaktancji uzwojeń
Wzrost wartości częstotliwości wyjściowej falownika zasilającego silnik prądu przemiennego prowadzi do wzrostu prędkości obrotowej silnika. Jest to związane z zasadą działania silników asynchronicznych, gdzie prędkość obrotowa silnika jest bezpośrednio proporcjonalna do częstotliwości zasilania. Przykładowo, w silniku trójfazowym pracującym w trybie asynchronicznym, prędkość nominalna (n) jest obliczana według wzoru n = (120 * f) / p, gdzie f to częstotliwość zasilania, a p to liczba par biegunów. W praktyce, regulacja częstotliwości za pomocą falownika pozwala na precyzyjne dostosowanie prędkości obrotowej silnika do wymogów procesu technologicznego, co jest kluczowe w aplikacjach takich jak napędy wentylatorów, pomp, czy transportu taśmowego. Dobre praktyki w inżynierii automatyki sugerują, że należy starannie dobierać parametry falownika i silnika, aby zapewnić ich efektywność i niezawodność w dłuższym okresie użytkowania.

Pytanie 28

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 29

Jaką rolę odgrywają cewki w systemach elektrycznych?

A. Tworzą przeszkodę elektryczną
B. Zbierają energię w polu elektrycznym
C. Tworzą przeszkodę optyczną
D. Zbierają energię w polu magnetycznym
Cewki, czyli induktory, mają naprawdę ważną rolę w naszych obwodach elektrycznych, bo gromadzą energię w polu magnetycznym. Jak przez nie płynie prąd, wokół nich tworzy się pole magnetyczne, a jego siła zależy od natężenia prądu. Co ciekawe, kiedy ten prąd się zmienia, energia w polu magnetycznym może być uwalniana, co jest podstawą działania wielu urządzeń elektronicznych. Cewki znajdziesz niemal wszędzie – w filtrach, transformatorach czy obwodach rezonansowych. Weźmy na przykład filtry LC: cewki w nich blokują niepożądane częstotliwości w sygnałach audio i radiowych, przez co uzyskujemy lepszy dźwięk. Z resztą, w projektowaniu obwodów cewki są często używane w aplikacjach zabezpieczających przed przepięciami, co jest naprawdę istotne dla ochrony naszych komponentów elektronicznych.

Pytanie 30

Demontaż niepodłączonego elementu, przedstawionego na rysunku, zamontowanego na szynie DIN wymaga użycia

Ilustracja do pytania
A. wkrętaka o specjalnych końcówkach.
B. klucza nasadowego.
C. klucza z regulowaną szerokością rozstawu szczęk.
D. wkrętaka płaskiego.
Wybór wkrętaka płaskiego jako narzędzia do demontażu elementu zamontowanego na szynie DIN jest prawidłowy, ponieważ ten typ narzędzia został zaprojektowany do odciągania dźwigni blokującej, która jest typową konstrukcją w urządzeniach montowanych na szynach DIN, jak np. wyłączniki nadprądowe. W praktyce, aby wymontować ten element, należy najpierw zlokalizować dźwignię blokującą, a następnie włożyć wkrętak płaski w szczelinę i delikatnie pociągnąć, co pozwala na zwolnienie mechanizmu blokującego. Tego rodzaju operacje są powszechne w instalacjach elektrycznych, gdzie konieczna jest wymiana lub konserwacja urządzeń. Prawidłowe użycie narzędzi, takich jak wkrętaki płaskie, jest zgodne z normami bezpieczeństwa oraz dobrymi praktykami, które zalecają użycie odpowiednich narzędzi do konkretnego zadania, co minimalizuje ryzyko uszkodzenia urządzeń oraz zapewnia bezpieczeństwo użytkownika.

Pytanie 31

Na którym rysunku przedstawiono mocowanie kołnierzowe siłowników pneumatycznych?

Ilustracja do pytania
A. A.
B. C.
C. B.
D. D.
Poprawna odpowiedź to "B". Rysunek B przedstawia siłownik pneumatyczny z kołnierzem montażowym, który jest kluczowym elementem w instalacjach pneumatycznych. Kołnierz montażowy umożliwia stabilne połączenie siłownika z innymi komponentami maszyny, zapewniając odpowiednie ułożenie i minimalizując drgania podczas pracy. W praktyce zastosowanie kołnierza jest szczególnie istotne w kontekście urządzeń, które wymagają precyzyjnego pozycjonowania, takich jak roboty przemysłowe czy automatyczne linie produkcyjne. Warto zwrócić uwagę na standardy montażowe, takie jak ISO 6431, które określają wymiary i tolerancje kołnierzy. Dobrze zaprojektowane mocowanie kołnierzowe nie tylko zwiększa bezpieczeństwo, ale także ułatwia konserwację siłowników poprzez szybki dostęp do ich elementów. Dodatkowo, prawidłowe mocowanie wpływa na żywotność siłownika, zmniejszając ryzyko uszkodzeń związanych z niewłaściwym zamocowaniem.

Pytanie 32

Jakie z wymienionych elementów powinny być stosowane, aby uniknąć wycieków płynów?

A. Uszczelki
B. Zawleczki
C. Podkładki
D. Płytki
Uszczelki są kluczowym elementem w wielu zastosowaniach, które mają na celu zapobieganie wyciekaniu płynów. Działają one na zasadzie wypełnienia przestrzeni między dwoma lub więcej elementami, co eliminuje możliwość przedostawania się cieczy. W praktyce uszczelki są stosowane w połączeniach rur, zbiornikach, pompach oraz silnikach, gdzie ich rola jest nieoceniona. Na przykład, w silnikach spalinowych uszczelki głowicy są niezbędne, aby zapobiec wyciekowi oleju oraz płynu chłodzącego, co mogłoby prowadzić do poważnych uszkodzeń. W branży produkcyjnej i przemysłowej stosuje się różne materiały do produkcji uszczelek, takie jak guma, silikon, teflon czy materiały kompozytowe, które są dostosowane do specyficznych warunków pracy. Zgodność z normami ISO oraz innymi standardami branżowymi zapewnia, że uszczelki spełniają wymagania dotyczące szczelności i odporności na różne czynniki chemiczne i termiczne. Zastosowanie uszczelek zgodnie z najlepszymi praktykami znacząco wpływa na trwałość i efektywność systemów, w których są stosowane.

Pytanie 33

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 34

Jaki aparat elektryczny jest wykorzystywany do ochrony silnika indukcyjnego przed przeciążeniem?

A. Stycznik elektromagnetyczny
B. Przekaźnik termobimetalowy
C. Wyłącznik nadmiarowy
D. Wyłącznik różnicowoprądowy
Wyłącznik nadmiarowy, stycznik elektromagnetyczny oraz wyłącznik różnicowoprądowy to urządzenia, które pełnią różne funkcje w systemach elektrycznych, ale nie są odpowiednie do zabezpieczenia silnika indukcyjnego przed przeciążeniem. Wyłącznik nadmiarowy, mimo że jest używany do ochrony przed przeciążeniem, działa na zasadzie automatycznego wyłączania obwodu przy przekroczeniu określonego prądu. Jednak nie jest on dostosowany do specyficznych warunków pracy silników indukcyjnych, gdzie ważne jest szybkie reagowanie na zmiany obciążenia. Stycznik elektromagnetyczny, z drugiej strony, służy do załączania i wyłączania obwodów elektrycznych, a jego zadanie polega na kontrolowaniu przepływu energii elektrycznej, a nie na monitorowaniu stanu przeciążenia. Wyłącznik różnicowoprądowy jest przeznaczony głównie do ochrony ludzi przed porażeniem prądem elektrycznym, a jego działanie opiera się na wykrywaniu różnicy prądu między przewodami zasilającymi, co nie ma związku z przeciążeniem silnika. Wybór niewłaściwego urządzenia do ochrony silnika może prowadzić do uszkodzenia sprzętu, a także do niebezpieczeństwa dla użytkowników. Dlatego ważne jest, aby w odpowiedni sposób dobierać komponenty zabezpieczające zgodnie z ich funkcjami oraz zaleceniami producentów i normami branżowymi.

Pytanie 35

Aby połączyć dwa stalowe elementy w procesie zgrzewania, należy

A. stopić je w miejscu zetknięcia bez użycia spoiwa.
B. stopić je w miejscu styku z użyciem spoiwa.
C. docisnąć je podczas podgrzewania miejsca łączenia.
D. wprowadzić płynne spoiwo pomiędzy te elementy.
Zgrzewanie to proces łączenia materiałów, w którym kluczowe jest zastosowanie odpowiedniego nacisku oraz podgrzewania w miejscu styku elementów. W odpowiedzi wskazano, że łączone materiały należy docisnąć z jednoczesnym ich podgrzaniem, co jest zgodne z zasadami zgrzewania oporowego oraz zgrzewania elektrycznego. W procesie tym ciepło generowane jest w wyniku oporu elektrycznego, co prowadzi do stopienia metalu w miejscu styku, a następnie do jego związania. Praktycznym przykładem zastosowania tej metody jest produkcja konstrukcji stalowych, gdzie zgrzewanie jest powszechnie używane do łączenia blach. Kluczowym aspektem jest kontrola temperatury oraz siły docisku, co powinno być zgodne z normami, takimi jak ISO 14731, które określają wymagania dotyczące zgrzewania. Zgrzewanie zapewnia wytrzymałe połączenia, co jest niezbędne w przemyśle motoryzacyjnym, budowlanym oraz w produkcji urządzeń przemysłowych.

Pytanie 36

Którego podzespołu schemat przedstawiono na rysunku?

Ilustracja do pytania
A. B.
B. A.
C. D.
D. C.
Poprawna odpowiedź A odnosi się do schematu pneumatycznego przygotowania powietrza, który składa się z trzech podstawowych elementów: filtru, regulatora ciśnienia oraz smarownicy. Te komponenty odgrywają kluczową rolę w systemach pneumatycznych, zapewniając, że powietrze dostarczane do urządzeń jest czyste, odpowiednio sprężone oraz naoliwione. Filtr eliminuje zanieczyszczenia, co jest niezbędne, aby uniknąć uszkodzeń pneumatycznych komponentów. Regulator ciśnienia pozwala na precyzyjne ustawienie ciśnienia roboczego, co jest istotne dla zapewnienia efektywności pracy narzędzi pneumatycznych, a smarownica dostarcza odpowiednią ilość oleju do ruchomych części, co zwiększa ich żywotność. W praktyce, stosowanie zestawu filtr-regulator-smarownica (FRL) jest standardem w wielu aplikacjach przemysłowych, co potwierdzają normy ISO 4414 dotyczące systemów pneumatycznych. Dlatego odpowiedź A jest właściwa, gdyż idealnie odwzorowuje ten typ układu, który jest niezbędny w wielu procesach automatyzacji i produkcji.

Pytanie 37

Tensomer foliowy powinien być zamocowany do podłoża

A. klejem
B. nitem
C. śrubą
D. zszywką
Tensomer foliowy to naprawdę ważny materiał w budownictwie i przemyśle, więc jego mocowanie do podłoża za pomocą kleju ma sens z kilku powodów. Klej tworzy trwałe i elastyczne połączenie, co jest mega istotne, bo folia może się kurczyć lub rozciągać w zależności od temperatury czy wilgotności. Ważne, żeby używać odpowiednich klejów – najlepiej takich, które są dopasowane do folii i podłoża. Na przykład, kleje poliuretanowe czy akrylowe dobrze się sprawdzają, bo mają dobrą przyczepność i są odporne na warunki atmosferyczne. Przy klejeniu trzeba też dobrze przygotować powierzchnię – czyli usunąć kurz i tłuszcz, żeby to wszystko trzymało się jak należy. Generalnie, mocowanie folii klejem to norma w branży, bo to zapewnia długotrwałą stabilność, co się później opłaca, jeżeli chodzi o koszty.

Pytanie 38

Do zdejmowania izolacji z przewodów elektrycznych należy zastosować narzędzie przedstawione na rysunku

Ilustracja do pytania
A. C.
B. A.
C. D.
D. B.
Szczypce do ściągania izolacji, oznaczone literą D, są specjalistycznym narzędziem zaprojektowanym do zdejmowania izolacji z przewodów elektrycznych. Dzięki swojej konstrukcji, pozwalają na precyzyjne i kontrolowane usunięcie izolacji bez uszkadzania samego przewodu. To kluczowe, ponieważ uszkodzenie przewodu może prowadzić do niebezpieczeństw związanych z przewodnictwem elektrycznym, takich jak zwarcia czy przerwy w obwodzie. W praktyce, użycie odpowiednich szczypiec eliminuje ryzyko przypadkowego przecięcia przewodu, co jest powszechnym problemem przy używaniu nieodpowiednich narzędzi. Zaleca się, aby w każdej instalacji elektrycznej stosować narzędzia zgodne z normami bezpieczeństwa oraz z zasadami BHP, co zapewnia nie tylko wygodę pracy, ale przede wszystkim bezpieczeństwo użytkowników. Zastosowanie szczypiec do ściągania izolacji jest niezbędne w procesach montażowych i konserwacyjnych, gdzie precyzja i bezpieczeństwo są kluczowe. Dobrze dobrane narzędzia w znaczący sposób zwiększają efektywność pracy oraz minimalizują ryzyko wystąpienia usterek.

Pytanie 39

W układzie cyfrowym, którego strukturę i stany logiczne przedstawiono na rysunku, wskaż która bramka nie działa prawidłowo.

Ilustracja do pytania
A. Bramka C.
B. Bramka B.
C. Bramka D.
D. Bramka A.
Bramka B jest rzeczywiście jedynym elementem układu, który wykazuje nieprawidłowe działanie. W przypadku bramki AND, która przyjmuje dwa wejścia, oczekiwany wynik logiczny przy stanie 0 i 1 na wejściu powinien wynosić 0. Jednak w analizowanym schemacie odnotowano, że na wyjściu bramki B uzyskano wynik 1, co jest niezgodne z podstawowymi zasadami działania tej bramki. W praktycznych zastosowaniach, takich jak projektowanie układów cyfrowych i systemów logicznych, niezwykle istotne jest, aby każdy komponent działał zgodnie ze swoimi specyfikacjami. Zrozumienie logiki działania bramek i umiejętność diagnozowania ich awarii jest kluczowa, szczególnie w kontekście budowy wydajnych systemów elektronicznych. W przypadku wykrycia błędów należy zawsze przeprowadzić dokładną analizę schematu oraz wyników wyjściowych, aby zidentyfikować przyczynę problemów oraz dokonać odpowiednich poprawek. Użycie symulatorów logicznych również może być bardzo pomocne w wizualizacji działania poszczególnych bramek, co pozwala na lepsze zrozumienie ich funkcji.

Pytanie 40

Ilustracja przedstawia proces

Ilustracja do pytania
A. zgrzewania.
B. szlifowania.
C. cięcia plazmą.
D. spawania łukowego.
Cięcie plazmą to zaawansowana technologia obróbcza, która wykorzystuje wysokotemperaturową plazmę do precyzyjnego cięcia metali. Na przedstawionej ilustracji dostrzegamy charakterystyczny wygląd procesu, gdzie jasna plazmowa wiązka koncentruje się na materiale, umożliwiając jego szybkie i dokładne przecięcie. Ta metoda jest szczególnie ceniona w przemyśle, gdzie wymagana jest wysoka jakość cięcia oraz minimalne zniekształcenie krawędzi. Cięcie plazmowe charakteryzuje się dużą prędkością pracy, co pozwala na oszczędność czasu podczas produkcji i obróbki. Technologia ta jest często wykorzystywana w maszynach CNC, co dodatkowo zwiększa jej precyzję i powtarzalność. Standardy branżowe, takie jak ISO 9013, opisują wymagania dotyczące jakości cięcia plazmowego, co czyni tę metodę nie tylko skuteczną, ale i zgodną z międzynarodowymi normami. Warto zaznaczyć, że cięcie plazmą znajduje zastosowanie w wielu branżach, od produkcji stalowej, przez przemysł motoryzacyjny, aż po konstrukcje budowlane.