Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 11 grudnia 2025 21:24
  • Data zakończenia: 11 grudnia 2025 21:50

Egzamin zdany!

Wynik: 31/40 punktów (77,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Który z pomiarów służy do oceny efektywności zabezpieczenia przed dotykiem bezpośrednim w instalacjach do 1 kV?

A. Impedancji zwarciowej
B. Rezystancji izolacji
C. Napięcia dotykowego
D. Rezystancji uziemienia
Pomiar rezystancji izolacji jest kluczowym elementem oceny skuteczności ochrony przed dotykiem bezpośrednim w instalacjach elektrycznych do 1 kV. W przypadku takich systemów, odpowiednia izolacja jest niezbędna do zapewnienia bezpieczeństwa użytkowników oraz niezawodności działania instalacji. Rezystancja izolacji wskazuje na zdolność materiału do odseparowania prądu elektrycznego od części dostępnych dla użytkowników, co jest kluczowe w kontekście ochrony przed porażeniem elektrycznym. Przykładowo, normy IEC 60364 dotyczące instalacji elektrycznych wymagają, aby pomiar rezystancji izolacji wynosił co najmniej 1 MΩ. W praktyce oznacza to, że przed oddaniem do użytku nowej instalacji, a także podczas jej regularnej konserwacji, wykonuje się pomiary rezystancji izolacji, co pozwala na identyfikację potencjalnych uszkodzeń oraz degradacji materiałów izolacyjnych. W przypadku wykrycia niskiej rezystancji należy niezwłocznie podjąć działania naprawcze, aby zapewnić bezpieczeństwo użytkowników oraz zgodność z obowiązującymi normami.

Pytanie 2

Który zestaw oznaczeń literowych barw izolacji żył jest właściwy dla przewodu przedstawionego na ilustracji?

Ilustracja do pytania
A. BK, BU, GY
B. BU, GY, GNYE
C. BN, BK, GY
D. BN, BK, GNYE
Wybór innych oznaczeń kolorystycznych, takich jak "BK, BU, GY" czy "BU, GY, GNYE", oparty jest na błędnym zrozumieniu zasad kolorystyki przewodów elektrycznych. Czarny (BK) jest często mylony z kolorem niebieskim (BU), który jednak w polskich standardach oznacza przewód neutralny tylko w niektórych kontekstach, a nie w połączeniu z innymi kolorami. Ponadto, brak brązowego przewodu fazowego w tych zestawieniach prowadzi do niebezpiecznych sytuacji, ponieważ identyfikacja przewodu fazowego jest kluczowa w każdej instalacji elektrycznej. W kontekście bezpieczeństwa, niewłaściwe oznaczenie przewodów może prowadzić do poważnych wypadków, takich jak porażenie prądem czy zwarcia. Użytkownicy często popełniają błąd, wybierając zestawienie kolorów, które nie jest zgodne z normami, ponieważ nie są świadomi, jak istotne jest przestrzeganie tych zasad dla bezpieczeństwa całej instalacji. Ostatecznie, błędne podejście do oznaczeń żył może prowadzić do trudności w diagnostyce i naprawie systemów elektrycznych, co zwiększa koszty eksploatacji i ryzyko uszkodzeń. Dlatego też istotne jest, aby znać i stosować się do przyjętych standardów w zakresie kolorystyki przewodów.

Pytanie 3

Jakiej z wymienionych czynności nie przeprowadza się w trakcie oględzin urządzenia napędowego z silnikiem elektrycznym podczas pracy?

A. Oceny stanu przewodów ochronnych oraz ich podłączenia
B. Sprawdzenia działania systemów chłodzenia
C. Kontroli stanu osłon elementów wirujących
D. Sprawdzenia szczotek i szczotkotrzymaczy
Odpowiedź dotycząca sprawdzenia szczotek i szczotkotrzymaczy jako czynności, której nie wykonuje się podczas oględzin urządzenia napędowego z silnikiem elektrycznym w czasie ruchu, jest poprawna. Podczas pracy silnika elektrycznego, szczegóły takie jak szczotki i szczotkotrzymacze nie mogą być skutecznie oceniane, ponieważ wymagają one zatrzymania silnika, aby móc przeprowadzić dokładne wizualne i techniczne badania. Szczotki są kluczowymi elementami, które przekazują prąd do wirnika i ich stan ma istotny wpływ na wydajność silnika. W praktyce, regularne kontrole tych komponentów powinny być przeprowadzane w warunkach postoju, aby uniknąć uszkodzeń i zapewnić długotrwałe, bezproblemowe funkcjonowanie napędu. Zaleca się stosowanie standardów takich jak PN-EN 60034, które określają wymagania dotyczące silników elektrycznych, oraz dokumentacji producentów, aby przestrzegać najlepszych praktyk obsługi i konserwacji urządzeń. Wnioskując, ocena stanu szczotek i szczotkotrzymaczy w czasie ruchu nie jest możliwa, co czyni tę odpowiedź prawidłową.

Pytanie 4

Podaj skuteczność świetlną źródła światła o etykiecie przedstawionej na rysunku.

Ilustracja do pytania
A. 1 180,0 lm/W
B. 81,4 lm/W
C. 206,9 lm/W
D. 14,5 lm/W
Skuteczność świetlna, określana jako stosunek strumienia świetlnego (lm) do mocy elektrycznej (W), jest kluczowym parametrem oceny efektywności źródeł światła. W opisanym przypadku źródło światła wykazuje strumień świetlny wynoszący 1180 lumenów oraz moc równą 14,5 W. Obliczając skuteczność świetlną, dzielimy strumień świetlny przez moc: 1180 lm / 14,5 W, co daje 81,4 lm/W. W praktyce, wysoka skuteczność świetlna oznacza, że źródło światła dostarcza więcej światła przy mniejszym zużyciu energii, co przekłada się na niższe rachunki za energię oraz mniejszy wpływ na środowisko. Tego typu obliczenia są istotne przy projektowaniu systemów oświetleniowych, gdzie należy brać pod uwagę zarówno efektywność energetyczną jak i komfort użytkowania. Przykładem zastosowania jest wybór oświetlenia LED, które zazwyczaj charakteryzuje się wyższą skutecznością świetlną w porównaniu do tradycyjnych żarówek, co jest zgodne z normami efektywności energetycznej obowiązującymi w wielu krajach.

Pytanie 5

Narzędzie przedstawione na ilustracji przeznaczone jest

Ilustracja do pytania
A. do zaciskania końcówek oczkowych.
B. do ściągania izolacji z żył przewodów.
C. do docinania przewodów.
D. do zaciskania końcówek tulejkowych.
Odpowiedź jest prawidłowa, ponieważ narzędzie przedstawione na ilustracji to szczypce do ściągania izolacji, które są specjalistycznym narzędziem używanym w elektryce do precyzyjnego usuwania izolacji z przewodów elektrycznych. Dzięki charakterystycznemu kształtowi ostrzy oraz zastosowanemu mechanizmowi regulacji, te szczypce umożliwiają bezpieczne usuwanie izolacji bez ryzyka uszkodzenia samej żyły przewodowej. W praktyce, umiejętność prawidłowego użycia tego narzędzia jest kluczowa w instalacjach elektrycznych, gdzie niezbędne jest zachowanie integralności przewodów. Standardy branżowe, takie jak IEC 60079 lub ANSI/NFPA 70E, podkreślają znaczenie stosowania odpowiednich narzędzi do zapewnienia bezpieczeństwa i efektywności pracy. W związku z tym, znajomość i umiejętność korzystania z narzędzi do ściągania izolacji przyczynia się do jakości i bezpieczeństwa wykonania instalacji elektrycznych.

Pytanie 6

Jaką maksymalną wartość impedancji pętli zwarcia powinien mieć obwód o napięciu 230/400 V, aby wyłącznik instalacyjny nadprądowy C10 mógł skutecznie zapewnić ochronę przed porażeniem?

A. 0,4 Ω
B. 7,7 Ω
C. 2,3 Ω
D. 4,6 Ω
Wiesz co, jeśli chodzi o maksymalną wartość impedancji pętli zwarcia dla obwodu 230/400 V z wyłącznikiem nadprądowym C10, to wynosi ona 2,3 Ω. To wyliczenie oparłem na normie PN-IEC 60364, która w sumie mówi, jakie powinny być zasady dotyczące ochrony elektrycznej. Wyłącznik C10, który działa przy prądzie 10 A, musi zadziałać szybko, kiedy pojawi się zwarcie, a do tego potrzebna jest niska impedancja pętli. W skrócie, żeby zapewnić bezpieczeństwo, trzeba pilnować, żeby ta impedancja nie była wyższa niż 2,3 Ω. Dzięki temu wyłącznik zadziała w krótkim czasie, co daje lepszą ochronę. Jakby impedancja była wyższa, to wyłącznik może działać wolniej, a to już tworzy ryzyko dla ludzi. Dlatego ważne jest, żeby regularnie mierzyć impedancję pętli zwarcia i trzymać to w ryzach.

Pytanie 7

Który z podanych łączników elektrycznych jest przeznaczony do osobnego sterowania dwiema sekcjami oświetlenia w żyrandolu?

A. Schodowy
B. Dwubiegunowy
C. Świecznikowy
D. Krzyżowy
Świecznikowy łącznik instalacyjny jest zaprojektowany w taki sposób, aby umożliwiać niezależne sterowanie różnymi sekcjami źródeł światła w lampach, w tym żyrandolach. Jego konstrukcja pozwala na włączenie i wyłączenie poszczególnych źródeł światła, co jest szczególnie przydatne w przypadku żyrandoli z wieloma żarówkami. Dzięki temu użytkownik może dostosować natężenie oświetlenia w pomieszczeniu w zależności od potrzeb, co zwiększa funkcjonalność i komfort użytkowania. Przykładowo, w jadalni, gdzie często zasiadamy z rodziną lub gośćmi, można włączyć tylko kilka żarówek, aby stworzyć przytulną atmosferę. Zastosowanie łącznika świecznikowego jest zgodne z ogólnymi normami instalacji elektrycznych, które zalecają elastyczność w sterowaniu oświetleniem. Dobrą praktyką w projektowaniu systemów oświetleniowych jest również uwzględnienie możliwości dalszej rozbudowy instalacji oraz zastosowanie łączników, które umożliwiają późniejszą modyfikację układów oświetleniowych.

Pytanie 8

Woltomierz działający na zasadzie magnetoelektrycznej, który mierzy napięcie sinusoidalnie z dodatkiem składowej stałej, wskaże wartość

A. znamionową napięcia
B. średnią napięcia
C. skuteczną napięcia
D. chwilową napięcia
Woltomierz magnetoelektryczny jest narzędziem wykorzystywanym do pomiaru napięcia, a w przypadku napięcia sinusoidalnego z składową stałą, jego wskazanie dotyczy wartości średniej. Wartość średnia napięcia sinusoidalnego, z uwzględnieniem składowej stałej, jest kluczowa w aplikacjach, gdzie istotne jest określenie efektywnego poziomu energii dostarczanej do obciążenia. W praktyce, woltomierze magnetoelektryczne są często używane w pomiarach w systemach zasilania, gdzie zrozumienie i kontrola napięcia oraz prądu są niezbędne dla zapewnienia prawidłowego działania urządzeń. Wartość średnia jest obliczana jako średnia arytmetyczna z okresu sygnału, co w przypadku napięcia sinusoidalnego z składową stałą prowadzi do lepszego zrozumienia zarówno efektywności, jak i bezpieczeństwa systemów elektrycznych. Ustalono w normach IEC, że pomiar wartości średniej jest istotny dla wielu aplikacji w inżynierii elektrycznej, co podkreśla znaczenie tej metody pomiarowej.

Pytanie 9

Na rysunku przedstawiono symbol graficzny

Ilustracja do pytania
A. iskiernika.
B. odgromnika wydmuchowego.
C. warystora.
D. odgromnika zaworowego.
Wybór odpowiedzi 'wary stora' jest poprawny, ponieważ symbol graficzny przedstawiony na rysunku rzeczywiście reprezentuje warystor, który jest kluczowym elementem w systemach ochrony przed przepięciami. Warystor działa na zasadzie zmiany rezystancji w odpowiedzi na przyłożone napięcie, co pozwala na skuteczne odprowadzanie nadmiaru energii w sytuacjach awaryjnych. Jest on często stosowany w obwodach zasilających, aby chronić urządzenia elektroniczne przed uszkodzeniami spowodowanymi nagłymi wzrostami napięcia. Standardy takie jak IEC 61643-1 określają wymagania dla urządzeń ochronnych, w tym warystorów, co czyni je niezbędnymi w projektowaniu systemów zabezpieczeń. Warto również zauważyć, że warystory są często łączone z innymi elementami ochrony, takimi jak odgromniki czy bezpieczniki, aby zapewnić kompleksową ochronę. Zastosowanie warystorów w urządzeniach domowych oraz przemysłowych pomaga w zwiększeniu ich żywotności i niezawodności.

Pytanie 10

Którym symbolem graficznym oznacza się instalację prowadzoną na drabinkach kablowych?

Ilustracja do pytania
A. B.
B. A.
C. D.
D. C.
Symbol B, który wskazujesz jako poprawny, jest zgodny z powszechnie akceptowanymi oznaczeniami w dokumentacji elektrycznej. Oznaczenie to jest używane do wskazywania instalacji prowadzonych na drabinkach kablowych, co jest niezwykle istotne w kontekście organizacji i zarządzania systemami kablowymi. Drabinki kablowe są kluczowym elementem w infrastrukturze elektroenergetycznej, ponieważ umożliwiają bezpieczne i uporządkowane prowadzenie kabli, co z kolei wpływa na efektywność oraz bezpieczeństwo instalacji. W praktyce, poprawne oznaczenie instalacji pozwala na łatwiejsze lokalizowanie i utrzymanie systemu, co jest zgodne z zasadami projektowania zgodnymi z normami IEC i PN-EN. Dodatkowo, stosowanie właściwych symboli w dokumentacji technicznej wspiera procesy inspekcyjne oraz ułatwia zrozumienie schematów przez różne zespoły pracowników. Warto także zaznaczyć, że niepoprawne oznaczenia mogą prowadzić do poważnych błędów w instalacji, co podkreśla znaczenie precyzyjnego stosowania symboliki w projektowaniu systemów elektrycznych.

Pytanie 11

Jakie oznaczenie powinna posiadać wkładka topikowa do ochrony przewodów przed skutkami zwarć i przeciążeń w obwodzie jednofazowego elektrycznego bojlera o parametrach znamionowych: PN = 3 kW, UN = 230 V?

A. aM 20 A
B. gG 20 A
C. gG 16 A
D. aM 16 A
Odpowiedź gG 16 A jest prawidłowa, ponieważ wkładki topikowe oznaczone jako gG są przeznaczone do zabezpieczania obwodów przed przeciążeniami oraz zwarciami, a ich charakterystyka czasowa i prądowa jest dostosowana do zastosowań w instalacjach elektrycznych, takich jak obwody zasilające urządzenia elektryczne, w tym bojlery. W przypadku bojlera o mocy 3 kW oraz napięciu znamionowym 230 V, maksymalny prąd roboczy można obliczyć według wzoru: P = U × I, co daje prąd I równy około 13 A. Wybór wkładki gG 16 A zapewnia odpowiedni margines bezpieczeństwa, umożliwiając prawidłowe działanie urządzenia w warunkach normalnych, jednocześnie chroniąc przed skutkami zwarć. W praktyce wkładki gG są używane w sytuacjach, gdzie mogą wystąpić różne rodzaje przeciążeń, co czyni je bardziej elastycznymi i bezpiecznymi w użyciu. Oprócz tego, przy zastosowaniu wkładki gG 16 A, spełnione są normy dotyczące zabezpieczeń elektrycznych, co jest istotne dla bezpieczeństwa użytkowników i zgodności z przepisami budowlanymi.

Pytanie 12

Które czynności powinien wykonać elektryk, posiadający uprawnienia do eksploatacji urządzeń i instalacji do 1 kV, przed wymianą uszkodzonego wyłącznika nadprądowego B16 w obwodzie gniazd wtyczkowych, aby nie pozbawić zasilania płyty grzewczej i piekarnika?

Ilustracja do pytania
A. Wyłączyć wszystkie wyłączniki różnicowoprądowe.
B. Wyłączyć rozłącznik izolacyjny FR 304 32 A i wyłącznik nadprądowy S304 B16.
C. Wyłączyć wyłącznik różnicowoprądowy P312 B25A.
D. Wyłączyć wszystkie wyłączniki nadprądowe.
Wyłączenie wyłącznika różnicowoprądowego P312 B25A przed wymianą uszkodzonego wyłącznika nadprądowego B16 jest prawidłowym działaniem, ponieważ pozwala na zachowanie zasilania innych obwodów. Wyłącznik P312 B25A zabezpiecza obwody, w których znajdują się wyłączniki nadprądowe B6, B16 i B6, a więc jego wyłączenie pozwala na bezpieczną wymianę wyłącznika B16 bez pozbawiania zasilania płyty grzewczej i piekarnika, które są zasilane z innych obwodów. Praktyka ta jest zgodna z zaleceniami dotyczącymi bezpieczeństwa pracy w instalacjach elektrycznych, które nakazują minimalizowanie wyłączeń zasilania tam, gdzie to możliwe. Warto również pamiętać o dokumentacji instalacji elektrycznej, która powinna zawierać schematy, umożliwiające szybką identyfikację obwodów i ich zabezpieczeń. Dobrą praktyką jest również przeprowadzenie próby pomiarowej, aby upewnić się, że zasilanie zostało odłączone przed przystąpieniem do jakichkolwiek prac.

Pytanie 13

Który z łączników instalacyjnych przedstawionych na rysunkach należy zastosować w układzie realizującym sterowanie oświetleniem z dwóch miejsc?

Ilustracja do pytania
A. A.
B. B.
C. C.
D. D.
Łącznik schodowy, który wybrałeś, jest kluczowym elementem w systemach oświetleniowych, umożliwiającym sterowanie z dwóch różnych miejsc, co jest niezwykle przydatne w wielu zastosowaniach, jak np. w długich korytarzach czy na schodach. Dzięki zastosowaniu tego typu łącznika można w wygodny sposób włączać i wyłączać światło, co zwiększa komfort użytkowników i bezpieczeństwo. Łączniki schodowe są również zgodne z obowiązującymi normami, które zalecają ich użycie w miejscach wymagających podwójnego sterowania. W praktyce, stosując łącznik schodowy, pamiętaj o odpowiednim okablowaniu oraz zastosowaniu odpowiednich zabezpieczeń, aby zapewnić długotrwałe i niezawodne działanie instalacji. Warto również zwrócić uwagę na jakość użytych materiałów oraz zgodność z dyrektywami Unii Europejskiej, które regulują kwestie bezpieczeństwa elektrycznego, co podkreśla znaczenie dobrych praktyk w branży.

Pytanie 14

Wkładka topikowa bezpiecznika oznaczona symbolem gL służy do ochrony

A. przewodów przed przeciążeniami oraz zwarciami
B. urządzeń półprzewodnikowych przed przeciążeniami
C. silników przed przeciążeniami oraz zwarciami
D. urządzeń półprzewodnikowych przed zwarciami
Wkładka topikowa bezpiecznika oznaczona symbolem gL jest przeznaczona do zabezpieczania przewodów przed przeciążeniami i zwarciami. Oznaczenie gL wskazuje na to, że wkładki te są dostosowane do ochrony obwodów o charakterystyce A, co oznacza, że mogą one wyłączyć obwód w przypadku wystąpienia nadmiernego prądu, który może prowadzić do uszkodzenia instalacji elektrycznej. Przykładem zastosowania wkładek gL są instalacje oświetleniowe oraz obwody zasilające gniazdka, gdzie istnieje ryzyko przeciążenia spowodowanego podłączeniem wielu urządzeń. Takie bezpieczniki są zgodne z międzynarodowymi standardami IEC 60269, które określają wymagania dotyczące wkładek topikowych. Stosowanie wkładek gL w obwodach prądowych pozwala na skuteczną ochronę przed uszkodzeniami, co jest istotne zarówno z punktu widzenia bezpieczeństwa, jak i efektywności energetycznej instalacji.

Pytanie 15

Który rodzaj przewodu przedstawiono na rysunku?

Ilustracja do pytania
A. Jednodrutowy nieuzbrojony.
B. Wielożyłowy uzbrojony.
C. Wielodrutowy nieuzbrojony.
D. Jednożyłowy uzbrojony.
Właściwa odpowiedź to "Wielodrutowy nieuzbrojony", co można łatwo zidentyfikować na podstawie charakterystyki przedstawionego przewodu. Przewody wielodrutowe są powszechnie stosowane w instalacjach elektrycznych, ze względu na ich elastyczność oraz zdolność do prowadzenia prądu. Składają się z wielu cienkich drutów, które są ze sobą splecione, co zwiększa ich wydajność energetyczną i elastyczność. Zastosowanie izolacji zewnętrznej jest kluczowe, aby zapobiec przepływowi prądu do elementów otaczających, co jest zgodne z normami bezpieczeństwa, takimi jak PN-EN 60228, która określa wymagania dotyczące przewodów elektrycznych. W praktyce takie przewody są wykorzystywane w domowych instalacjach elektrycznych, w systemach oświetleniowych oraz w instalacjach przemysłowych, gdzie wymagana jest duża mobilność i odporność na różne warunki atmosferyczne. Ich nieuzbrojona konstrukcja oznacza, że nie posiadają dodatkowych elementów ochronnych, takich jak metalowe osłony, co czyni je idealnymi do użytku w miejscach, gdzie nie ma ryzyka uszkodzeń mechanicznych.

Pytanie 16

Narzędziem niezbędnym do wymiany łącznika pokazanego na zdjęciu jest wkrętak

Ilustracja do pytania
A. TROX
B. PH2
C. płaski.
D. z bitem M8
Prawidłowa odpowiedź to wkrętak płaski, który jest narzędziem odpowiednim do wymiany łącznika pokazanego na zdjęciu. Wyłączniki instalacyjne wyposażone w zacisk śrubowy wymagają użycia wkrętaka płaskiego, ponieważ jego konstrukcja pozwala na łatwe i precyzyjne wkręcanie lub wykręcanie śrub. W praktyce, wkrętak płaski jest najczęściej wykorzystywany w instalacjach elektrycznych, gdzie śruby mocujące są powszechnie stosowane. W sytuacjach, gdy zachodzi potrzeba wymiany wyłączników, zastosowanie odpowiedniego narzędzia jest kluczowe dla zapewnienia bezpieczeństwa oraz poprawności wykonania instalacji. Warto również dodać, że wkrętaki płaskie są dostępne w różnych rozmiarach, co umożliwia ich dopasowanie do konkretnego typu śrub. W przypadku niewłaściwego narzędzia może dojść do uszkodzenia śruby lub samego wyłącznika, co prowadzi do dodatkowych kosztów i ryzyka w zakresie bezpieczeństwa elektrycznego.

Pytanie 17

Który łącznik przedstawiono na rysunku?

Ilustracja do pytania
A. Podwójny schodowy.
B. Świecznikowy.
C. Podwójny krzyżowy.
D. Dwubiegunowy.
Odpowiedź jest prawidłowa, ponieważ na zdjęciu przedstawiono łącznik elektryczny typu podwójnego schodowego. Tego rodzaju łącznik posiada dwa niezależne przyciski, z których każdy służy do sterowania oddzielnym obwodem oświetleniowym. Jest to niezwykle przydatne rozwiązanie w przypadku schodów, gdzie możliwe jest włączanie i wyłączanie oświetlenia zarówno z dołu, jak i z góry. Przykładowo, instalacja takiego łącznika w domu jednorodzinnym pozwala na komfortowe korzystanie z oświetlenia nawet po zmroku. Dodatkowo, zgodnie z normami i najlepszymi praktykami w dziedzinie instalacji elektrycznych, stosowanie łączników schodowych zwiększa bezpieczeństwo w ruchu oraz komfort użytkowników, minimalizując ryzyko poślizgnięć i upadków. Warto również zauważyć, że często łącznik podwójny schodowy jest wykorzystywany w systemach automatyki budowlanej, co pozwala na integrację z różnymi źródłami światła i systemami sterowania. Dzięki temu możliwe jest dostosowanie oświetlenia do indywidualnych potrzeb użytkowników.

Pytanie 18

Jaką z wymienionych czynności kontrolnych należy przeprowadzić po zainstalowaniu trójfazowego silnika elektrycznego?

A. Mierzenie temperatury stojana
B. Weryfikacja symetrii napięcia zasilającego
C. Sprawdzenie kierunku obrotów wału silnika
D. Mierzenie prędkości obrotowej
Sprawdzenie kierunku obrotów wału silnika elektrycznego jest kluczowym krokiem po jego montażu, ponieważ niewłaściwy kierunek obrotów może prowadzić do uszkodzenia silnika oraz urządzeń, z którymi jest połączony. W praktyce, wiele aplikacji wymaga, aby silnik obracał się w określonym kierunku, co jest szczególnie ważne w systemach napędowych, takich jak pompy, wentylatory czy maszyny robocze. Warto również pamiętać, że w przypadku silników trójfazowych zmiana kierunku obrotów jest możliwa poprzez zamianę miejscami dwóch dowolnych przewodów zasilających. Zgodnie z normami branżowymi, przed uruchomieniem silnika należy zawsze sprawdzić jego kierunek obrotów, aby zagwarantować prawidłowe działanie i uniknąć potencjalnych awarii. Dodatkowo, sprawdzenie kierunku obrotów może być dokumentowane w protokole uruchomieniowym, co jest zgodne z najlepszymi praktykami w zakresie zarządzania jakością oraz bezpieczeństwem w pracy. Warto także wspomnieć, że w przypadku silników używanych w automatyce przemysłowej, kierunek obrotów jest często monitowany przez systemy kontrolne, które mogą automatycznie reagować na nieprawidłowości.

Pytanie 19

Które z poniższych oznaczeń dotyczy wyłącznika silnikowego?

A. Ex9BP-N 4P C10
B. Z-MS-16/3
C. FRCdM-63/4/03
D. SM 25-40
Oznaczenie Z-MS-16/3 odnosi się do wyłącznika silnikowego, który jest kluczowym elementem w instalacjach elektrycznych zasilających silniki. Wyłączniki silnikowe są zaprojektowane, aby zabezpieczać silniki przed przeciążeniem, zwarciem oraz innymi nieprawidłowościami w pracy. Z-MS-16/3 to przykład wyłącznika, który może być stosowany w instalacjach przemysłowych, gdzie ochrona silników jest niezbędna dla zapewnienia ciągłości pracy oraz bezpieczeństwa. Wyłączniki te działają na zasadzie automatycznego wyłączenia zasilania w przypadku wykrycia nieprawidłowego prądu, co zapobiega uszkodzeniom zarówno silnika, jak i samej instalacji elektrycznej. W praktyce, ich zastosowanie jest szczególnie istotne w aplikacjach takich jak pompy, wentylatory, kompresory czy maszyny robocze. Przykładowo, w przypadku silnika napędzającego dużą maszynę, zastosowanie Z-MS-16/3 pozwala na szybkie odłączenie zasilania, co minimalizuje ryzyko kosztownych awarii i przestojów. Ponadto, wyłączniki te powinny być zgodne z normami IEC 60947-4-1, co zapewnia ich wysoką jakość oraz niezawodność.

Pytanie 20

Na podstawie tabeli 2 dobierz dławik indukcyjny do oprawy oświetleniowej, w której znajdują się dwie świetlówki o długości 60 cm, wybrane z tabeli 1.

Ilustracja do pytania
A. L 18W
B. L 22W
C. L 36W
D. L 32W
Wybieranie dławika, który nie ma odpowiedniej mocy do świetlówek, to dość powszechny błąd. Dławiki L 22W, L 18W czy L 32W po prostu nie dadzą rady zasilać dwóch świetlówek T8, które każda mają 18W. Zbyt słaby dławik może prowadzić do różnych problemów - świetlówki mogą migotać lub nawet w ogóle nie działać. Dodatkowo, może to zwiększyć zużycie energii oraz skrócić żywotność zarówno dławika, jak i świetlówek. Bezpieczeństwo też nie jest bez znaczenia, bo dławiki niewłaściwie dobrane do obciążenia mogą się przegrzewać, co jest niebezpieczne. W elektryce naprawdę warto trzymać się zasad doboru komponentów i zalecań producentów. Dlatego dobrze jest przeanalizować wymagania obciążeniowe i stosować odpowiednie dławiki, bo to może uchronić przed typowymi błędami przy montażu oświetlenia.

Pytanie 21

Jaką metodę należy zastosować do bezpośredniego pomiaru rezystancji przewodów?

A. cyfrowy watomierz
B. analogowy omomierz
C. watomierz oraz amperomierz
D. amperomierz oraz woltomierz
Omomierz analogowy jest specjalistycznym narzędziem pomiarowym, które pozwala na dokładne mierzenie rezystancji przewodów. Jego działanie opiera się na zastosowaniu prądu stałego, który przepływa przez przewód, a następnie mierzy spadek napięcia. W oparciu o te dane oblicza się wartość rezystancji zgodnie z prawem Ohma, które mówi, że R = U/I, gdzie R to rezystancja, U to napięcie, a I to natężenie prądu. W praktyce omomierze są często wykorzystywane do lokalizacji i diagnozy usterek w instalacjach elektrycznych, oceny stanu przewodów w urządzeniach oraz podczas wykonywania przeglądów technicznych. Stosowanie omomierza analogowego ma swoje zalety, takie jak prostota obsługi oraz bezpośrednie odczyty na skali, co może być korzystne w przypadku szybkich pomiarów. Dobrym przykładem zastosowania omomierza jest kontrola przewodów uziemiających, gdzie niska rezystancja jest kluczowa dla bezpieczeństwa systemów elektrycznych, co jest zgodne z normami PN-EN 62305 dotyczącymi ochrony odgromowej i uziemień.

Pytanie 22

Jakie działania są uwzględnione w procederze oględzin systemu elektrycznego w budynku mieszkalnym?

A. Pomiar rezystancji izolacji przewodów, weryfikacja ciągłości przewodów ochronnych
B. Mierzenie ciągłości przewodów ochronnych i czynnych w obwodach odbiorczych, a także ocena efektywności ochrony w razie uszkodzenia za pomocą automatycznego wyłączenia zasilania
C. Nastawienie sprzętu zabezpieczającego i sygnalizacyjnego, ocena dostępności urządzeń, co umożliwia komfortową obsługę, identyfikację oraz konserwację
D. Kontrola zabezpieczeń z użyciem SELV, PELV, separacji elektrycznej lub nieuziemionych połączeń wyrównawczych lokalnych
Wybór odpowiedzi związanej z pomiarem rezystancji izolacji przewodów i sprawdzeniem ciągłości przewodów ochronnych może wydawać się logiczny, jednakże nie obejmuje kluczowego aspektu oględzin instalacji elektrycznej, jakim jest nastawienie urządzeń zabezpieczających. Oględziny powinny skupiać się nie tylko na pomiarach, ale także na funkcjonalności i dostępności urządzeń, które mają na celu ochronę użytkowników przed zagrożeniami. Pomiar rezystancji izolacji jest istotny, ale nie wystarczy sam w sobie, aby zapewnić bezpieczeństwo instalacji. Z kolei sprawdzenie ochrony poprzez separację elektryczną lub inne metody, takie jak SELV czy PELV, jest ważne w kontekście ochrony przed porażeniem prądem, ale również nie wyczerpuje tematu oględzin. Kluczowym aspektem jest również zrozumienie, że urządzenia zabezpieczające muszą być regularnie nastawiane oraz testowane, aby spełniały swoje funkcje w momencie awarii. Odpowiedź dotycząca pomiaru ciągłości przewodów również nie oddaje pełnego obrazu, ponieważ nie uwzględnia aspektu dostępności czy identyfikacji urządzeń, które są niezbędne dla ich efektywnej konserwacji. To prowadzi do niepełnej oceny stanu instalacji oraz potencjalnych zagrożeń, co jest kluczowe dla zapewnienia bezpieczeństwa w budynku mieszkalnym.

Pytanie 23

W jakiej kolejności należy włączać styczniki w układzie przedstawionym na schemacie, aby przeprowadzić prawidłowy rozruch silnika, przy zamkniętym wyłączniku Q1?

Ilustracja do pytania
A. W odstępach czasu kolejno: K41M, K42M, K1M
B. Najpierw K1M i K41M, następnie wyłączyć K41M, a włączyć K42M
C. W odstępach czasu kolejno: K1M, K42M, K41M
D. Najpierw K1M i K42M, następnie wyłączyć K42M, a włączyć K41M
Wybór odpowiedzi "W odstępach czasu kolejno: K41M, K42M, K1M" jest poprawny, ponieważ odzwierciedla najlepsze praktyki w zakresie rozruchu silników elektrycznych. Włączając stycznik K41M jako pierwszy, uzwojenia silnika są połączone w gwiazdę, co znacznie redukuje prąd rozruchowy i chroni silnik przed przeciążeniem. Zmniejszenie prądu rozruchowego jest kluczowe, aby uniknąć uszkodzenia silnika. Po aktywowaniu K41M, włączenie K42M przestawia silnik w tryb pracy z pełnym obciążeniem, co jest niezbędne do osiągnięcia optymalnej wydajności. Ostatnim krokiem jest włączenie K1M, które zasila silnik, umożliwiając jego normalną pracę. Taka sekwencja jest zgodna z zasadami bezpieczeństwa i efektywności energetycznej w systemach elektrycznych. Dobrze zaplanowana sekwencja włączania styczników jest istotna, aby uniknąć ryzyka uszkodzenia sprzętu oraz zapewnić stabilność w pracy maszyny.

Pytanie 24

Jakie oznaczenia oraz jaka wartość minimalnego prądu znamionowego powinna mieć wkładka topikowa, służąca do ochrony przewodów przed skutkami zwarć i przeciążeń w obwodzie jednofazowego elektrycznego bojlera o danych znamionowych: PN = 3 kW, UN = 230 V?

A. aR 16 A
B. aM 20 A
C. gB 20 A
D. gG 16 A
Wybór wkładki topikowej gG 16 A jest poprawny, ponieważ wkładki te są przeznaczone do ochrony obwodów przed przeciążeniem oraz zwarciem. W przypadku bojlera elektrycznego o mocy znamionowej 3 kW i napięciu 230 V, obliczamy maksymalny prąd znamionowy przy użyciu wzoru I = P / U, co daje I = 3000 W / 230 V ≈ 13 A. Wkładka gG 16 A zapewnia odpowiednią ochronę, gdyż jej wartość prądu znamionowego jest większa niż obliczona wartość prądu roboczego, co oznacza, że nie będzie zbyt szybko przerywała pracy urządzenia podczas normalnego użytkowania. Dodatkowo, wkładki gG charakteryzują się dobrą zdolnością do łapania zwarć, co jest kluczowe w przypadku bojlerów, które mogą doświadczać nagłych skoków prądu. Zastosowanie odpowiedniej wkładki topikowej jest ważne dla zapewnienia bezpieczeństwa instalacji oraz długowieczności urządzeń. W normach IEC 60269 podano, że wkładki gG są odpowiednie do ochrony przed przeciążeniami oraz zwarciami w obwodach instalacji elektrycznych, co czyni je dobrym wyborem w tym przypadku.

Pytanie 25

W trakcie korzystania z instalacji elektrycznej często dochodzi do zadziałania wyłącznika różnicowoprądowego. Jakie mogą być przyczyny tej usterki?

A. Częściowe zwarcie w instalacji elektrycznej pomiędzy przewodem L a PE
B. Użycie wyłącznika o zbyt długim czasie reakcji
C. Zwarcie w instalacji elektrycznej pomiędzy przewodem L a N
D. Wykorzystywanie urządzeń o zbyt dużej mocy
Długi czas działania wyłącznika nie jest główną przyczyną częstego zadziałania RCD. Wyłączniki różnicowoprądowe są tak skonstruowane, żeby działały w określonym czasie, kiedy wykryją problemy z prądem upływowym. Więc długi czas zadziałania bardziej może dotyczyć innych zabezpieczeń, jak wyłączniki nadprądowe, które mają swoje własne parametry. Zwarcie między przewodem L a N w ogóle nie powoduje zadziałania RCD, bo nie wytwarza prądu upływowego do ziemi, co jest kluczowe do aktywacji RCD. Również używanie urządzeń o zbyt dużej mocy nie ma związku, bo RCD nie reaguje na przeciążenie, tylko na różnice w prądzie. Często błędne rozumowanie prowadzi do mylenia funkcji różnych zabezpieczeń elektrycznych i braku połączenia między rodzajem zwarcia a reakcją RCD, co może prowadzić do niewłaściwej diagnostyki i realnych zagrożeń.

Pytanie 26

Rysunek przedstawia oprawę oświetlenia

Ilustracja do pytania
A. pośredniego - klasy V
B. przeważnie bezpośredniego - klasy II
C. przeważnie pośredniego - klasy IV
D. bezpośredniego - klasy I
Wybór odpowiedzi wskazującej na przeważające oświetlenie bezpośrednie lub klasy niższe w kontekście oprawy oświetleniowej na rysunku jest konsekwencją nieprawidłowego zrozumienia podstawowych zasad klasyfikacji opraw oświetleniowych. Oświetlenie bezpośrednie, które zazwyczaj klasyfikuje się jako klasa I lub II, polega na emisji światła bezpośrednio z oprawy na obiekty bez pośrednictwa dodatkowych powierzchni. Takie podejście jest właściwe dla przestrzeni, gdzie konieczne jest skoncentrowane źródło światła, jednak w przypadku rysunku, oprawa została zaprojektowana w sposób, który eliminowałby ryzyko olśnienia oraz nadmiernej koncentracji światła w jednym punkcie. W efekcie, klasy IV i V, które obejmują oświetlenie przeważnie pośrednie oraz pośrednie, są bardziej odpowiednie dla zrównoważonego rozkładu oświetlenia. Pomijając tę subtelność, można wpaść w pułapkę myślenia, że wszystkie oprawy muszą emitować światło w sposób bezpośredni, co jest błędnym założeniem. Należy również uwzględnić, że standardy oświetleniowe, takie jak EN 12464, jednoznacznie wskazują na korzyści płynące z zastosowania opraw pośrednich w kontekście poprawy ergonomii oraz komfortu wizualnego, co jest kluczowe w środowiskach pracy oraz przestrzeniach publicznych.

Pytanie 27

Jakie czynności nie są częścią przeglądów instalacji elektrycznej?

A. oględzin
B. pomiarów napięcia oraz rezystancji izolacji
C. przeprowadzania konserwacji i napraw
D. przyjęcia do eksploatacji
Odpowiedzi dotyczące pomiarów napięć i rezystancji izolacji, konserwacji i napraw oraz oględzin wskazują na istotne aspekty przeglądów instalacji elektrycznej. Przeglądy te mają na celu ocenę stanu technicznego instalacji oraz wykrywanie potencjalnych problemów, które mogą zagrażać bezpieczeństwu użytkowania. Pomiar napięć jest kluczowy, ponieważ pozwala na ocenę poprawności działania instalacji oraz identyfikację ewentualnych spadków napięcia, które mogą wpływać na efektywność działania urządzeń elektrycznych. Rezystancja izolacji jest równie ważna, gdyż niska wartość tego parametru może wskazywać na uszkodzenia izolacji, co z kolei zwiększa ryzyko porażenia prądem elektrycznym. Konserwacja i naprawa instalacji to działania, które są integralną częścią jej eksploatacji, zapewniającą długoterminowe działanie oraz bezpieczeństwo. Oględziny wizualne pozwalają na szybką identyfikację uszkodzeń, co jest kluczowe dla zapobiegania poważniejszym awariom. Często pojawia się mylne przekonanie, że przyjęcie do eksploatacji jest częścią rutynowych przeglądów, podczas gdy w rzeczywistości jest to oddzielny proces związany z zakończeniem budowy i uruchomieniem nowej instalacji. Różnice te są kluczowe dla zrozumienia cyklu życia instalacji elektrycznej oraz dla zapewnienia, że wszystkie działania są wykonywane zgodnie z obowiązującymi normami i standardami branżowymi.

Pytanie 28

Jakie urządzenia elektryczne są częścią instalacji przyłączeniowej obiektu budowlanego?

A. Zabezpieczenia przedlicznikowe oraz licznik energii elektrycznej
B. Wyłącznik różnicowoprądowy oraz ograniczniki przepięć
C. Transformator słupowy z rozłącznikiem
D. Zabezpieczenia nadprądowe poszczególnych obwodów
Zabezpieczenia przedlicznikowe i licznik energii to naprawdę ważne elementy, które wchodzą w skład przyłącza budynku. Te zabezpieczenia, jak wyłączniki nadprądowe i różnicowoprądowe, mają za zadanie chronić zarówno instalację, jak i nas samych przed przeciążeniem czy porażeniem prądem. Licznik energii z kolei pozwala nam śledzić, ile energii zużywamy, co jest potrzebne przy rozliczeniach z dostawcą prądu. Jeśli dobrze dobierzemy te zabezpieczenia, to zgodnie z normami PN-IEC 60364, będziemy w lepszej sytuacji. W razie awarii, zabezpieczenia powinny odciąć zasilanie, co chroni sprzęt i nas, ludzi, w budynku. Wszystko sprowadza się do tego, żeby dobrze zamontować i dobrać te elementy, bo to klucz do bezpieczeństwa i sprawności energetycznej budynku. Dlatego ważne, żeby wartości prądowe były dopasowane tak, by instalacja działała optymalnie i uniknęła nagłych przerw w dostawie energii.

Pytanie 29

Na podstawie opisu określ, jaką puszkę instalacyjną przedstawiono na rysunku.

Ilustracja do pytania
A. Natynkową hermetyczną.
B. Podtynkową hermetyczną.
C. Przeciwogniową.
D. Do montażu gniazd i wyłączników.
Prawidłowa odpowiedź to "Natynkowa hermetyczna", co jest zgodne z charakterystyką puszki instalacyjnej PHS-1, która ma zabezpieczenie IP44. Oznaczenie to wskazuje, że puszka jest odporna na ciała stałe o średnicy większej niż 1 mm oraz na krople wody padające pod różnymi kątami. Puszki natynkowe hermetyczne są powszechnie stosowane w miejscach, gdzie występuje ryzyko kontaktu z wilgocią, co czyni je idealnym rozwiązaniem w instalacjach przemysłowych oraz w obiektach użyteczności publicznej. Ich budowa, w tym dławice bezgwintowe i zaciski gwintowe izolowane, zapewnia nie tylko bezpieczeństwo, ale również łatwość montażu. Stosowanie takich puszek zgodnie z normami IEC 60529 oraz PN-EN 60670-1 przyczynia się do zwiększenia bezpieczeństwa instalacji elektrycznych, a także minimalizuje ryzyko uszkodzeń spowodowanych warunkami atmosferycznymi. Przykłady zastosowania obejmują obiekty budowlane narażone na działanie czynników zewnętrznych, takie jak tereny przemysłowe, magazyny, a także instalacje w ogrodach i na zewnątrz budynków.

Pytanie 30

W celu sprawdzenia poprawności działania dwóch wyłączników różnicowoprądowych EFI-2-25/003 pracujących w instalacji elektrycznej zmierzono ich różnicowe prądy zadziałania. Na podstawie wyników pomiarów zamieszczonych w tabeli, określ poprawność działania tych wyłączników przy założeniu, że zmierzony różnicowy prąd zadziałania powinien wynosić (0,5 ÷ 1) IΔN.

Wyłącznik różnicowoprądowyZmierzony prąd różnicowoprądowy
IΔ w mA
115
225
A. Oba sprawne.
B. Oba niesprawne.
C. 1 - sprawny, 2 - niesprawny.
D. 1 - niesprawny, 2 - sprawny.
Oba wyłączniki różnicowoprądowe EFI-2-25/003 są uznawane za sprawne, ponieważ zmierzone prądy różnicowe wynoszą odpowiednio 15 mA oraz 25 mA, co mieści się w zakresie 0,5 ÷ 1 IΔN, gdzie IΔN wynosi 30 mA. Oznacza to, że obydwa wyłączniki działają prawidłowo, co jest zgodne z normami bezpieczeństwa, które zalecają, aby różnicowe prądy zadziałania były w tym zakresie. Przykładem praktycznego zastosowania tych wyłączników może być ochrona ludzi przed porażeniem prądem oraz zabezpieczenie instalacji elektrycznych przed skutkami upływu prądu. Warto również zaznaczyć, że zgodnie z normą PN-EN 61008-1, wyłączniki różnicowoprądowe powinny być regularnie testowane, aby zapewnić ich niezawodność, a pomiary powinny być wykonywane przez wykwalifikowany personel. Odpowiednie testowanie pozwala na wczesne wykrycie potencjalnych usterek, co jest kluczowe dla bezpieczeństwa użytkowników oraz trwałości instalacji elektrycznych.

Pytanie 31

Który schemat montażowy instalacji oświetleniowej przedstawionej na zamieszczonym planie jest prawidłowy?

Ilustracja do pytania
A. B.
B. A.
C. D.
D. C.
Schemat C. przedstawia prawidłowe podłączenie instalacji oświetleniowej, co jest kluczowe dla bezpieczeństwa i funkcjonalności systemu. W tym schemacie przewody fazowe (L) są właściwie podłączone do przełącznika bistabilnego, co umożliwia sterowanie oświetleniem z jednego miejsca. Przewody neutralne (N) są bezpośrednio podłączone do lamp, co jest zgodne z normami bezpieczeństwa. Taki układ zapewnia, że w momencie wyłączenia przełącznika, nie ma napięcia na lampach, co minimalizuje ryzyko porażenia prądem. Ponadto, stosowanie przełączników bistabilnych jest zgodne z dobrymi praktykami w projektowaniu instalacji oświetleniowych, co podnosi komfort użytkowania. Warto również zaznaczyć, że zgodnie z normami PN-IEC 60364, odpowiednie podłączenie przewodów jest fundamentalne dla prawidłowego funkcjonowania instalacji oraz jej bezpieczeństwa.

Pytanie 32

Którego silnika dotyczy przedstawiony schemat?

Ilustracja do pytania
A. Jednofazowego.
B. Indukcyjnego.
C. Obcowzbudnego.
D. Szeregowego.
Schemat przedstawia silnik prądu stałego obcowzbudny, co można zidentyfikować dzięki oddzielnym uzwojeniom wzbudzenia oraz obecności komutatora. Silniki obcowzbudne charakteryzują się tym, że mają niezależne źródło zasilania dla uzwojenia wzbudzenia i twornika, co pozwala na lepsze sterowanie momentem obrotowym i prędkością silnika. W praktyce, silniki te są szeroko stosowane w aplikacjach, gdzie wymagana jest duża elastyczność w kontroli prędkości, takich jak w systemach napędowych w pojazdach elektrycznych czy w automatyce przemysłowej. Dzięki zastosowaniu komutatora, silniki obcowzbudne mogą pracować z różnymi wartościami napięcia, co czyni je idealnym wyborem w aplikacjach wymagających dynamicznej regulacji. W standardach branżowych, takich jak IEC czy NEMA, silniki obcowzbudne znajdują uznanie jako efektywne urządzenia do zastosowań wymagających precyzyjnego sterowania oraz wysokiej wydajności energetycznej.

Pytanie 33

Który rodzaj źródła światła przedstawiono na ilustracji?

Ilustracja do pytania
A. Żarowe.
B. Wyładowcze wysokoprężne.
C. Półprzewodnikowe.
D. Wyładowcze niskoprężne.
Wybór innych typów źródeł światła, takich jak wyładowcze niskoprężne, półprzewodnikowe czy wyładowcze wysokoprężne, jest nieprawidłowy z kilku powodów. Wyładowcze niskoprężne, takie jak lampy fluorescencyjne, działają na zasadzie wyładowania elektrycznego w gazie, co skutkuje zupełnie inną charakterystyką świetlną. Te lampy emitują miękkie, rozproszone światło o niższej temperaturze barwowej w porównaniu do lamp halogenowych, co sprawia, że są mniej odpowiednie do zastosowań wymagających intensywności oraz jakości światła. Półprzewodnikowe źródła światła, jak diody LED, charakteryzują się wysoką efektywnością energetyczną oraz długą żywotnością, ale również różnią się od żarówek halogenowych pod względem jakości emitowanego światła. W kontekście oświetlenia akcentującego, lampy LED mogą nie osiągać takiej samej temperatury barwowej, co lampy halogenowe. Wyładowcze wysokoprężne, z kolei, to lampy stosowane w oświetleniu ulicznym czy przemysłowym, które generują bardzo silne światło, ale mają ograniczone zastosowanie w kontekście domowym. Wybór niewłaściwego źródła światła może prowadzić do niezadowolenia z jakości oświetlenia oraz wyższych kosztów eksploatacji. Dlatego zrozumienie różnic pomiędzy tymi technologiami jest kluczowe w doborze odpowiednich źródeł światła do konkretnych zastosowań.

Pytanie 34

Jaką wielkość przekroju powinien mieć przewód ochronny PE, który stanowi żyłę w wielożyłowym przewodzie, jeżeli przewody fazowe mają przekrój 16 mm2?

A. 16 mm2
B. 25 mm2
C. 4,0 mm2
D. 10 mm2
Wybór nieodpowiedniego przekroju dla przewodu PE może prowadzić do poważnych konsekwencji w instalacjach elektrycznych. Przykładowo, odpowiedzi sugerujące mniejsze przekroje, takie jak 4,0 mm² lub 10 mm², są niezgodne z normami, ponieważ nie zapewniają wystarczającej nośności prądowej i mogą nie przewodzić prądów zwarciowych, co naraża użytkowników na niebezpieczeństwo. Zbyt mały przekrój przewodu ochronnego zwiększa opór, co może prowadzić do przegrzewania się przewodu i ewentualnych uszkodzeń instalacji. Natomiast wybór 25 mm², choć większy, nie jest uzasadniony w tym przypadku, ponieważ nadmiarowy przekrój nie wpływa na poprawę bezpieczeństwa, a może generować niepotrzebne koszty i komplikacje w instalacji. W praktyce, nadmiarowy przekrój przewodu PE może wprowadzać dodatkowe problemy, takie jak trudności w instalacji czy manipulacji przewodami w ograniczonej przestrzeni. Zrozumienie tych zasad jest kluczowe dla projektantów instalacji elektrycznych, ponieważ bezpieczeństwo instalacji powinno być priorytetem, a stosowanie właściwych przekrojów przewodów jest częścią dobrych praktyk inżynieryjnych. Dlatego kluczowe jest, aby podczas projektowania systemów elektrycznych kierować się obowiązującymi normami oraz zasadami, które zapewniają nie tylko efektywność, ale i bezpieczeństwo użytkowników.

Pytanie 35

Które aparaty oznaczono na schemacie cyframi 1 i 2?

Ilustracja do pytania
A. 1 – wyłącznik różnicowoprądowy; 2 – wyłącznik nadprądowy.
B. 1 – wyłącznik różnicowoprądowy; 2 – odłącznik instalacyjny.
C. 1 – wyłącznik nadprądowy; 2 – odłącznik instalacyjny.
D. 1 – wyłącznik nadprądowy; 2 – wyłącznik nadprądowy.
Wybrana odpowiedź jest poprawna, ponieważ aparaty oznaczone na schemacie cyframi 1 i 2 to wyłącznik różnicowoprądowy oraz wyłącznik nadprądowy. Wyłącznik różnicowoprądowy, oznaczony cyfrą 1, jest systemem zabezpieczającym przed porażeniem prądem elektrycznym poprzez odłączenie obwodu w przypadku wykrycia różnicy prądów między przewodami fazowymi a neutralnymi. Jego charakterystyczne cechy to przycisk testowy oraz oznaczenia N i PE, które wskazują na jego połączenia z przewodami neutralnym i ochronnym. Wyłącznik nadprądowy, oznaczony cyfrą 2, służy do ochrony obwodów przed przeciążeniem oraz zwarciami, automatycznie odłączając zasilanie w takich sytuacjach. W praktyce, stosowanie tych urządzeń jest kluczowe dla zapewnienia bezpieczeństwa instalacji elektrycznych w budynkach mieszkalnych i przemysłowych. Zgodnie z normą PN-EN 61008, wyłączniki różnicowoprądowe powinny być stosowane w miejscach szczególnie narażonych na porażenie prądem, co czyni je niezbędnym elementem w każdej nowoczesnej instalacji.

Pytanie 36

Miernikiem, którego przełącznik zakresów przedstawiono na rysunku, nie można zmierzyć

Ilustracja do pytania
A. rezystancji izolacji.
B. impedancji pętli zwarcia.
C. ciągłości połączeń.
D. parametrów wyłączników RCD.
Wszystkie pozostałe odpowiedzi mogą być mylone z rzeczywistymi możliwościami miernika, co prowadzi do nieporozumień w zakresie jego zastosowania. Pomiar parametrów wyłączników RCD, ciągłości połączeń oraz impedancji pętli zwarcia jest możliwy dzięki odpowiednim zakresom, które są dostępne w większości nowoczesnych mierników elektrycznych. Ważne jest zrozumienie, że wyłączniki RCD, czyli różnicowoprądowe, wymagają pomiaru impedancji, aby ocenić ich skuteczność w ochronie przed porażeniem prądem. Ciągłość połączeń jest również istotna, ponieważ zapewnia, że prąd elektryczny prawidłowo przepływa przez układ, co jest niezbędne dla bezpieczeństwa i wydajności instalacji. Jednakże, pomiar rezystancji izolacji nie można wykonać na tym mierniku, co może prowadzić do błędnych wniosków o stanie izolacji w instalacjach elektrycznych. Często, użytkownicy zastanawiają się, dlaczego ich mierniki nie oferują pomiaru rezystancji izolacji, co może prowadzić do przekonania, że urządzenie jest niewłaściwe lub wadliwe. W rzeczywistości, kluczowe jest, aby posiadać odpowiednie narzędzia, takie jak mierniki izolacji, które są specjalnie zaprojektowane do przeprowadzania tego rodzaju pomiarów, zgodnie z normami bezpieczeństwa oraz najlepszymi praktykami przemysłowymi.

Pytanie 37

Na której ilustracji przedstawiono kabel typu YAKY?

Ilustracja do pytania
A. Na ilustracji 1.
B. Na ilustracji 2.
C. Na ilustracji 3.
D. Na ilustracji 4.
Kabel typu YAKY to jeden z najczęściej stosowanych kabli energetycznych, który charakteryzuje się szczególnymi właściwościami izolacyjnymi. W kontekście omawianej ilustracji, kabel na ilustracji 2 wykazuje cechy typowe dla kabli YAKY, takie jak izolacja z polwinitu oraz oplot z PVC. Izolacja ta zapewnia wysoką odporność na działanie czynników atmosferycznych, a także na uszkodzenia mechaniczne, co czyni go idealnym do zastosowań w instalacjach wewnętrznych i zewnętrznych. Kable YAKY są często wykorzystywane w budownictwie do zasilania różnych urządzeń oraz w instalacjach oświetleniowych, ponieważ ich konstrukcja pozwala na bezpieczne prowadzenie energii elektrycznej. Dodatkowo, w ramach norm europejskich, kable YAKY spełniają wymagania dotyczące bezpieczeństwa przeciwpożarowego i ochrony środowiska, jak również są zgodne z dyrektywami RoHS, co potwierdza ich przydatność w nowoczesnych instalacjach elektrycznych.

Pytanie 38

Który przewód jest oznaczony literami PE?

A. Ochronno-neutralny
B. Fazowy
C. Neutralny
D. Ochronny
Odpowiedź "Ochronny" jest poprawna, ponieważ przewód oznaczony symbolem literowym PE (Protective Earth) jest przewodem ochronnym, który ma na celu zapewnienie bezpieczeństwa użytkowników instalacji elektrycznych. Jego główną funkcją jest odprowadzenie prądu do ziemi w przypadku wystąpienia awarii, co minimalizuje ryzyko porażenia prądem elektrycznym. W praktyce, przewód PE powinien być zawsze połączony z metalowymi częściami urządzeń elektrycznych, co tworzy skuteczną barierę ochronną. W zgodzie z normami IEC 60439 oraz PN-EN 60204-1, stosowanie przewodów ochronnych jest obowiązkowe w każdym systemie elektrycznym, aby zminimalizować ryzyko wystąpienia niebezpiecznych sytuacji. Warto również pamiętać, że przewód PE nie należy mylić z przewodem neutralnym (N), który pełni inną rolę w obiegu prądu, a ich pomylenie może prowadzić do poważnych problemów w instalacji. Dlatego wiedza o odpowiednich oznaczeniach przewodów jest kluczowa w zapewnieniu bezpieczeństwa i prawidłowego funkcjonowania systemów elektrycznych.

Pytanie 39

W instalacjach elektrycznych w budynkach mieszkalnych o napięciu 230 V nie wolno używać opraw oświetleniowych zrealizowanych w klasie ochrony

A. 0
B. II
C. III
D. I
Odpowiedź 0 jest prawidłowa, ponieważ oprawy oświetleniowe w klasie ochronności 0 nie mają żadnego zabezpieczenia przed porażeniem elektrycznym. W instalacjach elektrycznych o napięciu 230 V, które są powszechnie stosowane w mieszkaniach, użycie opraw klasy 0 stwarza poważne ryzyko dla użytkowników. Oprawy te nie są wyposażone w żadne izolacje ani mechanizmy, które mogłyby zapobiec kontaktowi z częściami naładowanymi prądem. Przykładem zastosowania standardów bezpieczeństwa jest norma PN-HD 60364, która określa wymagania dotyczące ochrony przed porażeniem elektrycznym oraz klasyfikację urządzeń. W codziennym użytkowaniu, stosowanie opraw oświetleniowych klasy II, które posiadają dodatkowe źródła izolacji, jest kluczowe, aby zapewnić bezpieczeństwo w przypadku awarii. Właściwe dobieranie opraw oświetleniowych zgodnie z ich klasą ochronności ma na celu minimalizację ryzyka porażenia elektrycznego oraz poprawę ogólnego bezpieczeństwa instalacji elektrycznej w budynkach mieszkalnych.

Pytanie 40

Wyznacz całkowity względny błąd pomiarowy rezystancji izolacyjnej przewodów, jeśli wskazania miernika wyniosły 200,0 MΩ, a jego niepewność to ± (3% w.w. + 8 cyfr)?

A. 3,0%
B. 6,8%
C. 8,3%
D. 3,4%
Aby obliczyć całkowity względny błąd pomiaru rezystancji izolacji, musimy uwzględnić zarówno błąd procentowy, jak i błąd wyrażony w cyfrach. W naszym przypadku, merkur wskazał wartość 200,0 MΩ, a jego niedokładność wynosi ± (3% w.w. + 8 cyfr). Najpierw obliczamy 3% z 200,0 MΩ, co daje 6,0 MΩ. Następnie dodajemy wartość 8 cyfr, co w tym przypadku oznacza 0,00000008 Ω. W rzeczywistości 8 cyfr nie wpływa znacząco na wynik w skali MΩ, ale dla pełności obliczeń uwzględniamy tę wartość. Tak więc całkowity błąd pomiarowy wynosi 6,0 MΩ. Aby obliczyć względny błąd, dzielimy błąd przez zmierzoną wartość i mnożymy przez 100%. Liczba ta daje nam 3,0%. Jednak aby uzyskać całkowity błąd, należy dodać błędy z różnych źródeł, co prowadzi do ostatecznego wyniku 3,4%. Taki sposób obliczania błędów pomiarowych jest zgodny z zaleceniami standardów ISO oraz dobrymi praktykami w dziedzinie metrologii, którymi powinni kierować się wszyscy inżynierowie pracujący z pomiarami elektrycznymi.