Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.06 - Eksploatacja i programowanie urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 18 grudnia 2025 08:26
  • Data zakończenia: 18 grudnia 2025 08:48

Egzamin zdany!

Wynik: 31/40 punktów (77,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

W programie PLC sygnały niskie lub wysokie przypisane m.in. do wejść i wyjść dyskretnych powinny być definiowane jako zmienne w formacie

A. B
B. b
C. D
D. W
Sformułowanie odpowiedzi jako 'B', 'D' lub 'W' wskazuje na niepoprawne zrozumienie podstawowych koncepcji dotyczących reprezentacji danych w systemach PLC. Odpowiedzi te odnoszą się do jednostek niosących większą ilość danych, takich jak bajty, słowa czy podwójne słowa. Każda z tych jednostek składa się z wielu bitów, co czyni je niewłaściwymi do reprezentowania prostych stanów niski/wysoki. Użycie bajtów i słów jest typowe w kontekście przechowywania bardziej złożonych informacji, jak liczby całkowite czy tekst, a nie pojedyncze stany dyskretne. W praktyce, bity powinny być używane do stanu wejść i wyjść w systemach PLC, ponieważ ich binarna natura idealnie sprawdza się w prostych zadaniach logicznych, takich jak włączanie i wyłączanie urządzeń. Właściwe podejście do reprezentacji danych jest kluczowe dla optymalizacji wydajności systemu oraz efektywności jego działania. Omyłkowe przypisanie stanów do jednostek wyższych, takich jak bajty, prowadzi do nadmiernego zużycia pamięci oraz utrudnia programowanie i diagnostykę, co jest niezgodne z najlepszymi praktykami przemysłowymi. Zrozumienie, że bity są podstawową jednostką informacji w systemach cyfrowych, jest kluczowe dla skutecznego projektowania i implementacji systemów automatyki.

Pytanie 2

Która z podanych sieci w systemach mechatronicznych funkcjonuje jako sieć bezprzewodowa?

A. Ethernet/IP
B. ModbusTCP
C. Profinet
D. ZigBee
Wybór Ethernet/IP, Profinet oraz ModbusTCP jako odpowiedzi na to pytanie może wynikać z niepełnego zrozumienia różnic między typami sieci komunikacyjnych. Ethernet/IP oraz Profinet to technologie oparte na standardzie Ethernet, które wykorzystują przewodowe połączenia sieciowe do przesyłania danych. Obydwie sieci są szeroko stosowane w automatyce przemysłowej, gdzie niezawodność, szybkość i stabilność komunikacji mają kluczowe znaczenie. Ethernet/IP stosuje protokół TCP/IP, co czyni go zintegrowanym z istniejącymi infrastrukturami sieciowymi, natomiast Profinet jest szczególnie dostosowany do systemów automatyki i wspiera różne topologie komunikacyjne, jednak obie te technologie są z definicji przewodowe. ModbusTCP również operuje na przewodowej infrastrukturze sieciowej, wykorzystując protokół TCP/IP, co sprawia, że nie może być klasyfikowany jako sieć bezprzewodowa. Typowym błędem w ocenie tych technologii jest utożsamianie ich z nowoczesnymi rozwiązaniami bez uwzględnienia ich charakterystyki. Zrozumienie tych różnic jest kluczowe dla prawidłowego doboru technologii komunikacyjnej w różnych zastosowaniach mechatronicznych.

Pytanie 3

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 4

Jaką wartość napięcia znamionowego umieszcza się na tabliczkach trójfazowych silników prądu przemiennego?

A. Średnią półokresową
B. Skuteczną międzyfazową
C. Skuteczną fazową
D. Średnią całookresową
Poprawna odpowiedź to "Skuteczną międzyfazową", ponieważ napięcie znamionowe trójfazowych silników prądu przemiennego zawsze odnosi się do napięcia międzyfazowego. W układzie trójfazowym mamy trzy fazy, a napięcia między nimi są kluczowe dla prawidłowego działania silników. Wartość skuteczna napięcia międzyfazowego jest używana do obliczeń związanych z mocą i efektywnością urządzeń elektrycznych. Przykładowo, w zastosowaniach przemysłowych, gdzie silniki trójfazowe są powszechnie stosowane, znajomość napięcia międzyfazowego pozwala na dobór odpowiednich zabezpieczeń oraz prawidłowe projektowanie instalacji elektrycznych. Zgodnie z normami branżowymi, w dokumentacji technicznej silników prądu przemiennego, napięcia międzyfazowe powinny być jasno określone, aby zminimalizować ryzyko awarii oraz zapewnić optymalne warunki pracy urządzeń. W obliczeniach mocy, napięcia skuteczne międzyfazowe są kluczowe, ponieważ moc bierna, czynna i pozorna w układzie trójfazowym w dużej mierze zależy od tych wartości.

Pytanie 5

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 6

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 7

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 8

Jakie elementy mechanizmów mechatronicznych są zabezpieczane i konserwowane poprzez proces cynkowania?

A. Elementy napędowe
B. Elementy sterujące
C. Elementy konstrukcyjne
D. Elementy sygnalizacyjne
Konstrukcyjne elementy urządzeń mechatronicznych, takie jak ramy, wsporniki i inne elementy nośne, są szczególnie narażone na działanie czynników zewnętrznych, co może prowadzić do ich korozji. Cynkowanie jest skuteczną metodą ochrony przed tym procesem, ponieważ tworzy na powierzchni warstwę cynku, która działa jako bariera dla wilgoci i innych korozjogennych substancji. Dzięki cynkowaniu, elementy te mogą zachować swoje właściwości mechaniczne oraz estetyczne przez długi czas, co jest kluczowe w wielu zastosowaniach przemysłowych. Przykładem może być przemysł budowlany, gdzie elementy konstrukcyjne, takie jak belki czy słupy, muszą być odporne na trudne warunki atmosferyczne. Dobre praktyki branżowe zalecają regularne przeglądy oraz konserwację takich elementów, aby zapewnić ich długowieczność i niezawodność. W standardzie ISO 1461 opisano wymagania dotyczące cynkowania ogniowego, co zapewnia zgodność z międzynarodowymi normami jakości.

Pytanie 9

Modulacja PWM (Pulse-Width Modulation), wykorzystywana w elektrycznych impulsowych systemach sterowania i regulacji, polega na modyfikacji

A. szerokości sygnału.
B. amplitudy sygnału.
C. fazy sygnału.
D. częstotliwości sygnału.
Modulacja PWM, czyli modulacja szerokości impulsu, jest techniką, która pozwala na kontrolowanie średniej mocy dostarczanej do obciążenia poprzez zmianę szerokości impulsów w trakcie cyklu pracy. W praktyce oznacza to, że stosując PWM, możemy efektywnie regulować jasność diod LED, prędkość silników elektrycznych, a także temperaturę w układach grzewczych. Technika ta jest szeroko stosowana w systemach automatyki oraz w elektronice użytkowej, ponieważ pozwala na oszczędność energii oraz lepszą kontrolę nad działaniem urządzeń. Zrozumienie, jak działa modulacja PWM, jest kluczowe dla inżynierów elektryków, którzy projektują nowoczesne urządzenia. W standardach branżowych, takich jak IEC 61131, modulacja PWM jest opisane jako jedna z metod sterowania, co podkreśla jej znaczenie w automatyce przemysłowej.

Pytanie 10

Dane techniczne zamieszczone w tabeli dotyczą

Rodzaj cieczy hydraulicznejolej mineralny
Zakres temperatury pracy-25°C do +80°C
Standardowa filtracja cieczy hydraulicznej90 μm
Zakres lepkości cieczy hydraulicznej16 mm²/s do 200 mm²/s
Poziom głośności65 dB (A)
Napięcie zasilania silnika230 V 50 Hz, 3x400 V 50 Hz
Napięcie zasilania rozdzielaczy24 V DC, 230 V 50 Hz
Pojemność nominalna zbiornika7 dm³20 dm³
A. sprężarki powietrza.
B. rozdzielacza hydraulicznego.
C. rozdzielacza pneumatycznego.
D. zasilacza hydraulicznego.
Zasilacz hydrauliczny jest kluczowym elementem systemów hydraulicznych, który odpowiada za dostarczanie odpowiedniego ciśnienia i przepływu cieczy roboczej, co jest niezbędne do prawidłowego działania maszyn hydraulicznych. W tabeli zamieszczono dane dotyczące cieczy hydraulicznej, co jest charakterystyczne dla zasilaczy hydraulicznych, które operują na oleju mineralnym. Przykładowo, w różnych aplikacjach przemysłowych - takich jak prasy hydrauliczne czy systemy podnoszenia - zasilacze hydrauliczne muszą spełniać określone normy jakościowe, w tym normy dotyczące filtrowania cieczy hydraulicznej, aby zapewnić ich niezawodność oraz wydajność. Zastosowanie standardów, takich jak ISO 4406, pozwala na monitorowanie stopnia zanieczyszczenia oleju, co jest kluczowe dla utrzymania optymalnej pracy zasilacza. Dodatkowo, zasilacze hydrauliczne powinny być zaprojektowane z uwzględnieniem zakresów temperatur pracy, co wpływa na ich efektywność i żywotność. Właściwe parametry techniczne, takie jak pojemność zbiornika, również odgrywają istotną rolę w zapewnieniu ciągłości operacji w zastosowaniach przemysłowych.

Pytanie 11

Do zakresu przeglądu technicznego łopatkowych kompresorów powietrza nie należy

A. wymiana wkładki sprzęgła bezpośredniego napędu stopnia sprężającego w ustalonym czasie
B. obserwacja poziomu hałasu lub drgań stopnia sprężającego
C. wymiana manometru w każdym przypadku
D. pomiar poboru energii elektrycznej przez silnik
Wybór odpowiedzi dotyczącej każdorazowej wymiany manometru jako elementu, który nie wchodzi w zakres przeglądu technicznego łopatkowych kompresorów powietrza, jest uzasadniony. Manometr, jako instrument pomiarowy, jest poddawany kalibracji i wymianie w zależności od jego stanu, lecz nie jest to standardowa procedura przeglądowa. Przeglądy techniczne koncentrują się przede wszystkim na monitorowaniu parametrów operacyjnych, takich jak głośność, wibracje oraz pobór prądu przez silnik, co jest kluczowe dla oceny efektywności i bezpieczeństwa pracy urządzenia. W praktyce, regularne sprawdzanie stanu technicznego kompresora powinno obejmować analizę wyników pomiarów, co pozwala na wczesne wykrycie ewentualnych usterek. Standardy branżowe, takie jak normy ISO dotyczące zarządzania jakością, zalecają systematyczne przeglądy wszystkich istotnych komponentów maszyny, aby zapewnić ich długotrwałą funkcjonalność i minimalizować ryzyko awarii. W związku z tym, odpowiedź dotycząca manometru jest poprawna, gdyż jego wymiana nie jest regularnie uwzględniana w standardowych przeglądach technicznych.

Pytanie 12

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 13

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 14

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 15

Jak określa się punkt zerowy elementu poddawanego obróbce na maszynie CNC?

A. Jest określany przez producenta maszyny w trakcie jej projektowania
B. Jest ustalana z uwzględnieniem sposobu mocowania elementu, z tego miejsca narzędzie rozpocznie proces obróbczy
C. Jego lokalizacja może być ustawiona w dowolny sposób, zaleca się, aby ustalić ten punkt na osi elementu
D. Jego lokalizacja jest ustalana w zależności od typu oraz celu wykorzystywanego narzędzia do obróbki
Prawidłowa odpowiedź wskazuje, że punkt zerowy przedmiotu toczenia w obrabiarce CNC może być ustalony w dowolnym miejscu, chociaż zaleca się lokalizację na osi przedmiotu. Ustalenie punktu zerowego jest kluczowym krokiem w procesie obróbczy, ponieważ od tego punktu rozpoczyna się cała operacja toczenia. W praktyce, umiejscowienie punktu zerowego na osi przedmiotu pozwala na uzyskanie większej precyzji i powtarzalności obróbki. Zgodnie z dobrą praktyką, operatorzy powinni upewnić się, że punkt ten jest dobrze zdefiniowany, aby uniknąć błędów, które mogą prowadzić do odrzucenia części. Wiele nowoczesnych obrabiarek CNC oferuje funkcje automatycznej detekcji punktu zerowego, co może znacznie usprawnić proces przygotowania maszyny. Dobrze ustalony punkt zerowy ma również kluczowe znaczenie w kontekście dalszych operacji, takich jak frezowanie czy wiercenie, gdzie precyzyjna lokalizacja narzędzia względem przedmiotu jest niezbędna do osiągnięcia wysokiej jakości obróbki.

Pytanie 16

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 17

Aby na rysunku oznaczyć promień łuku, należy zastosować literę

A. Φ
B. D
C. X
D. R
Odpowiedź "R" jest poprawna, ponieważ w rysunku technicznym promień łuku oznacza się literą "R". Termin ten wywodzi się od angielskiego słowa "radius", które z kolei oznacza promień. Użycie symbolu "R" jest standardem w praktyce inżynieryjnej oraz architektonicznej, zgodnym z normami ISO oraz innymi wytycznymi branżowymi. W kontekście rysunku technicznego, precyzyjne oznaczenie promienia jest kluczowe dla zachowania właściwych proporcji oraz parametrów konstrukcyjnych. Na przykład, w projektowaniu elementów mechanicznych, takich jak wały, zębatki czy różnego rodzaju połączenia, właściwe oznaczenie promieni łuków ma kluczowe znaczenie dla prawidłowego dopasowania komponentów. Dobre praktyki w rysunku technicznym zalecają stosowanie jasnych i zrozumiałych symboli, co pozwala uniknąć błędów w interpretacji rysunków przez różnych wykonawców. Warto również dodać, że w przypadku bardziej złożonych projektów, w których występują różne promienie, stosowanie symbolu "R" jako oznaczenia jest niezwykle pomocne w identyfikacji i weryfikacji tych parametrów na etapie wytwarzania.

Pytanie 18

Właściwości takie jak moc silnika, liczba cylindrów, stopień sprężania, pojemność zbiornika, efektywność oraz ciśnienie są typowe dla

A. sprężarki tłokowej
B. silnika hydraulicznego
C. pompy hydraulicznej
D. siłownika pneumatycznego
Podczas oceny sprężarek tłokowych musisz zwrócić uwagę na kilka istotnych parametrów, takich jak moc silnika, liczba cylindrów, stopnie sprężania czy pojemność zbiornika. Te rzeczy są naprawdę ważne w różnych branżach, od klimatyzacji po chłodnictwo. Sprężarka tłokowa działa tak, że tłok w cylindrze przesuwa się, a to właśnie zwiększa ciśnienie gazu. Dzięki takim wskaźnikom jak ciśnienie robocze czy wydajność powietrza inżynierowie mogą dobrać sprzęt do konkretnego zastosowania, gdzie potrzebna jest odpowiednia moc sprężania. Ogólnie znajomość tych parametrów pozwala na lepsze projektowanie i dobór sprężarek, co jest ważne w branży. Rozumienie tych kwestii jest kluczowe, jeśli chcesz, żeby systemy działały efektywnie i były niezawodne.

Pytanie 19

Jaką metodę pomiaru zastosowano w celu zmierzenia temperatury pracy urządzenia mechatronicznego, przy użyciu elementu pomiarowego Pt100?

A. Bezkontaktową termowizyjną
B. Bezkontaktową pirometryczną
C. Kontaktową rezystancyjną
D. Kontaktową termoelektryczną
Wybór nieprawidłowej metody pomiaru może prowadzić do wielu błędów w interpretacji danych dotyczących temperatury. Odpowiedzi związane z metodami termoelektrycznymi, takie jak kontaktowa termoelektryczna i bezkontaktowa termoelektryczna, opierają się na zasadzie wykorzystania zjawiska Seebecka, które polega na generowaniu napięcia w wyniku różnicy temperatur między dwoma różnymi metalami. W przypadku urządzeń mechatronicznych, które wymagają stałego monitorowania temperatury, ta metoda może być mniej precyzyjna, zwłaszcza gdy źródło ciepła jest niestabilne. Metody bezkontaktowe, jak termowizyjna czy pirometryczna, są przydatne w sytuacjach, gdzie nie można zastosować czujników kontaktowych, jednak w kontekście pomiaru temperatury urządzeń mechatronicznych mogą prowadzić do błędnych wyników z powodu odbicia ciepła, promieniowania oraz otoczenia, w którym wykonywany jest pomiar. W kontekście standardów przemysłowych, pomiar kontaktowy zapewnia wyższą dokładność i mniejsze ryzyko błędów, co czyni go bardziej odpowiednim w zastosowaniach wymagających precyzyjnego monitorowania temperatury. Dlatego ważne jest, aby zrozumieć różnice między tymi metodami i odpowiednio dobierać je do specyfikacji danego zadania pomiarowego.

Pytanie 20

Jakie ciśnienie cieczy powinno być w układzie hydraulicznym, aby siłownik o powierzchni czynnej tłoka A = 80 cm2 był w stanie wygenerować siłę F = 150 kN?

A. 1,875 bara
B. 1875 barów
C. 187,5 bara
D. 18,75 bara
Analizując pozostałe odpowiedzi, warto zwrócić szczególną uwagę na błędne zrozumienie relacji między siłą, ciśnieniem a powierzchnią tłoka. Odpowiedzi takie jak 1,875 bara czy 18,75 bara sugerują, że osoba udzielająca odpowiedzi może nie dostrzegać proporcji między jednostkami. Przy obliczaniu ciśnienia, kluczowe jest prawidłowe przeliczenie jednostek. 1,875 bara to zbyt niskie ciśnienie, które w żadnym przypadku nie mogłoby wygenerować siły 150 kN na powierzchni 80 cm², ponieważ przy takim ciśnieniu uzyskalibyśmy siłę nieprzekraczającą 15 kN, co jest znacznie poniżej wymaganej wartości. Z kolei odpowiedź 187,5 bara, choć poprawna, wyjaśnia, dlaczego takie podejście jest właściwe. 1875 barów to zbyt wysoka wartość ciśnienia, która mogłaby prowadzić do uszkodzenia układów hydraulicznych. Takie błędy często wynikają z nieprawidłowej interpretacji wzoru i błędnego przeliczania jednostek, co skutkuje znacznymi różnicami w obliczeniach. W hydraulice, precyzyjne obliczenia są niezbędne, a zrozumienie podstawowych zasad, takich jak prawo Pascala, jest kluczowe dla efektywnego projektowania systemów. Nie można też zapominać, że w praktyce, ciśnienie musi być dostosowane do specyfikacji komponentów układu, co może się różnić w zależności od zastosowania i wymagań technicznych. Zastosowanie nieprawidłowych wartości ciśnienia może prowadzić do awarii, a w skrajnych przypadkach do zagrażających życiu wypadków w miejscu pracy.

Pytanie 21

Jedną z metod umożliwiających identyfikację nieprawidłowości w pracy urządzeń oraz instalacji mechatronicznych o dużej mocy jest technologia obrazowania w podczerwieni. Który z wymienionych instrumentów jest stosowany w takich badaniach?

A. Kamera termograficzna
B. Termometr elektroniczny
C. Oscyloskop cyfrowy
D. Tester kabli
Kamera termowizyjna to zaawansowane narzędzie, które wykorzystuje technologię obrazowania w podczerwieni do analizy rozkładu temperatury na powierzchniach obiektów. Dzięki temu możliwe jest wykrywanie nieprawidłowości w działaniu urządzeń mechatronicznych dużej mocy, takich jak silniki, transformatory czy układy chłodzenia. Przykładowo, w przemyśle energetycznym kamery termowizyjne są wykorzystywane do monitorowania stanu transformatorów, co pozwala na wczesne wykrycie przegrzewania się komponentów i tym samym zapobiegnięcie awariom. Technologia ta znajduje zastosowanie również w diagnostyce budynków, gdzie pozwala na identyfikację strat ciepła i nieszczelności. Warto podkreślić, że zgodnie z normami branżowymi, regularne używanie kamer termograficznych powinno być częścią strategii zarządzania utrzymaniem ruchu, co znacząco podnosi efektywność operacyjną oraz bezpieczeństwo systemów mechatronicznych.

Pytanie 22

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 23

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 24

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 25

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 26

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 27

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 28

Urządzenia mechatroniczne, które jako napędy wykorzystują silniki komutatorowe, nie powinny być stosowane w

A. pomieszczeniach z klimatyzacją
B. pomieszczeniach o niskich temperaturach
C. zadaszonej hali produkcyjnej
D. pomieszczeniach narażonych na wybuch
Silniki komutatorowe są powszechnie stosowane w aplikacjach mechatronicznych, jednak ich użycie w pomieszczeniach zagrożonych wybuchem jest niebezpieczne. Generowane przez nie iskry mogą stanowić bezpośrednie źródło zapłonu w obecności łatwopalnych gazów i pyłów, co jest zgodne z normami bezpieczeństwa, takimi jak ATEX (Dyrektywa Unii Europejskiej dotycząca sprzętu przeznaczonego do pracy w atmosferze wybuchowej). W praktyce, w takich środowiskach wybiera się silniki bezkomutatorowe lub inne konstrukcje zabezpieczone przed wybuchem, co minimalizuje ryzyko zapłonu. Warto zwrócić uwagę, że w przemyśle chemicznym, naftowym czy gazowym, użycie odpowiednich silników zgodnych z normami IECEx jest kluczowe dla zapewnienia bezpieczeństwa operacji. Prawidłowy dobór urządzeń napędowych w tych warunkach nie tylko spełnia wymogi prawne, ale także zabezpiecza ludzi i mienie przed poważnymi zagrożeniami.

Pytanie 29

Jakie działania regulacyjne powinny zostać przeprowadzone w napędzie mechatronicznym opartym na przemienniku częstotliwości oraz silniku indukcyjnym, aby zwiększyć prędkość obrotową wirnika bez zmiany wartości poślizgu?

A. Proporcjonalnie zmniejszyć wartość częstotliwości oraz napięcia zasilającego
B. Proporcjonalnie zwiększyć wartość częstotliwości oraz napięcia zasilającego
C. Obniżyć wartość częstotliwości napięcia zasilającego
D. Zwiększyć wartość napięcia zasilającego
Zwiększenie proporcjonalnie wartości częstotliwości i napięcia zasilającego jest kluczowe dla poprawnej regulacji prędkości wirowania wirnika silnika indukcyjnego. Prędkość synchroniczna, a więc i prędkość wirowania, jest bezpośrednio związana z częstotliwością zasilania, co oznacza, że zwiększenie częstotliwości prowadzi do wzrostu prędkości obrotowej. Jednocześnie, aby nie zmieniać wartości poślizgu, co jest istotnym parametrem w pracy silnika, należy równocześnie zwiększyć napięcie zasilające. W przeciwnym razie, przy wyższej częstotliwości, reaktancja indukcyjna silnika wzrasta, co może prowadzić do spadku prądu w uzwojeniu i tym samym zmniejszenia momentu obrotowego. Proporcjonalne zwiększenie napięcia zasilającego pozwala na kompensację tych zmian, co jest zgodne z najlepszymi praktykami w inżynierii mechatronicznej. Na przykład, w zastosowaniach przemysłowych, takich jak przekładnie w maszynach CNC, odpowiednia regulacja tych parametrów jest kluczowa dla zapewnienia stabilności i efektywności pracy systemu.

Pytanie 30

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 31

Jakim skrótem literowym określa się oprogramowanie do tworzenia wizualizacji procesów industrialnych?

A. CAD
B. CAM
C. CAE
D. SCADA
SCADA, czyli Supervisory Control and Data Acquisition, to kluczowy system stosowany w automatyce przemysłowej, który umożliwia monitorowanie oraz kontrolowanie procesów technologicznych w czasie rzeczywistym. W praktyce SCADA zbiera dane z różnorodnych czujników i urządzeń, co pozwala na wizualizację procesów na interaktywnych panelach operatorskich. Tego typu systemy są stosowane w różnych branżach, w tym w energetyce, wodociągach, transporcie oraz przemyśle chemicznym. SCADA umożliwia nie tylko zbieranie danych, ale także ich analizę i generowanie raportów, co jest istotne dla podejmowania decyzji zarządzających. Dodatkowo, systemy SCADA często integrują różne protokoły komunikacyjne, takie jak Modbus czy OPC, co zapewnia ich elastyczność i interoperacyjność. W dobie Przemysłu 4.0 SCADA odgrywa także kluczową rolę w implementacji IoT (Internet of Things), co otwiera nowe możliwości w zakresie automatyzacji i optymalizacji procesów przemysłowych.

Pytanie 32

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 33

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 34

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 35

Aby ocenić jakość aktualnych połączeń elektrycznych w systemie mechatronicznym, należy najpierw przeprowadzić pomiar

A. spadku napięcia na komponentach
B. mocy pobieranej przez urządzenie
C. ciągłości połączeń
D. rezystancji izolacji pomiędzy obudową urządzenia a przewodem zasilającym
Pomiar ciągłości połączeń jest kluczowym krokiem w ocenie jakości połączeń elektrycznych w urządzeniu mechatronicznym. Gwarantuje on, że prąd może swobodnie przepływać przez wszystkie połączenia, co jest niezbędne do prawidłowego działania urządzenia. W praktyce, pomiar ten wykonuje się za pomocą multimetru, który wskazuje, czy obwód jest zamknięty, co bezpośrednio przekłada się na niezawodność systemów elektrycznych. W przypadku wykrycia przerwy, można zidentyfikować i naprawić problem, co jest zgodne z dobrą praktyką inżynieryjną. W branży mechatronicznej, gdzie urządzenia są często narażone na wibracje i zmiany temperatury, regularne sprawdzanie ciągłości połączeń jest kluczowe dla utrzymania wysokiej jakości i bezpieczeństwa systemów. Warto także zauważyć, że zgodnie z normami IEC 60364, ocena ciągłości połączeń jest integralną częścią kontroli jakości instalacji elektrycznych, co potwierdza jej znaczenie w codziennej praktyce inżynieryjnej.

Pytanie 36

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 37

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 38

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 39

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 40

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.