Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.05 - Eksploatacja maszyn, urządzeń i instalacji elektrycznych
  • Data rozpoczęcia: 25 stycznia 2026 12:05
  • Data zakończenia: 25 stycznia 2026 12:37

Egzamin zdany!

Wynik: 33/40 punktów (82,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Sposób wykonywania którego pomiaru przedstawiono na ilustracji?

Ilustracja do pytania
A. Pomiaru rezystancji uziemienia.
B. Pomiaru rezystywności gruntu.
C. Pomiaru rezystancji izolacji przewodu.
D. Pomiaru impedancji pętli zwarciowej.
Na zdjęciu widać cęgowy miernik uziemienia obejmujący przewód uziemiający przy słupie – to jest typowy sposób wykonywania pomiaru rezystancji uziemienia. Ten rodzaj miernika wysyła prąd pomiarowy jedną połową cęgów, a drugą połową mierzy spadek napięcia. Na tej podstawie, zgodnie z prawem Ohma, wylicza rezystancję pętli uziemienia. Co ważne, ta metoda działa poprawnie tylko wtedy, gdy uziom jest częścią większego układu uziemień (np. kilka uziomów połączonych bednarką, uziemienie słupa linii napowietrznej, uziemienie stacji transformatorowej). Wtedy prąd pomiarowy „wraca” przez pozostałe uziomy i sieć. W praktyce taki pomiar stosuje się tam, gdzie klasyczna metoda z sondami pomocniczymi (uziom roboczy + dwie sondy prądowa i napięciowa) jest kłopotliwa: przy słupach energetycznych, ogrodzeniach, instalacjach odgromowych na działających obiektach, gdzie nie ma jak rozciągnąć przewodów na kilkanaście–kilkadziesiąt metrów. Miernik cęgowy pozwala mierzyć bez rozpinania przewodu uziemiającego, co jest zgodne z dobrymi praktykami eksploatacyjnymi – nie przerywamy ochrony przeciwporażeniowej na czas pomiaru. Normowo pomiary rezystancji uziemień opisują m.in. PN-HD 60364 i PN-EN 62305 dla instalacji odgromowych. Z mojego doświadczenia w eksploatacji sieci SN i nn taki cęgowy pomiar jest bardzo wygodny przy okresowych przeglądach – można szybko sprawdzić, czy rezystancja uziemienia nie przekracza wartości wymaganych dla danej instalacji, co ma kluczowe znaczenie dla skuteczności ochrony przeciwporażeniowej i odprowadzania prądów piorunowych. Warto też pamiętać, że dobry wynik pomiaru uziomu nie zwalnia z kontroli ciągłości połączeń wyrównawczych oraz stanu mechanicznego całej instalacji ochronnej.

Pytanie 2

Wirnik w szlifierce uległ uszkodzeniu. Na schemacie z dokumentacji techniczno-ruchowej jest on oznaczony numerem

Ilustracja do pytania
A. 9
B. 35
C. 50
D. 12
Odpowiedź 9 jest właściwa, ponieważ zgodnie z dokumentacją techniczno-ruchową, wirnik szlifierki oznaczony jest właśnie tym numerem. Znajomość oznaczeń w dokumentacji jest kluczowa dla efektywnego przeprowadzania konserwacji oraz napraw urządzeń. Na przykład, w przypadku wymiany uszkodzonego wirnika, technik powinien korzystać z dokumentacji, aby zidentyfikować odpowiednią część zamienną. Oznaczenia w dokumentacji są często zgodne z normami branżowymi, takimi jak ISO 9001, które podkreślają znaczenie dokumentacji w zarządzaniu jakością. Używanie właściwych numerów oznaczeń pozwala na przyspieszenie procesu naprawy i minimalizację przestojów w pracy. Również, dla techników i inżynierów, umiejętność szybkiego lokalizowania i identyfikowania części przy pomocy oznaczeń jest niezbędna w codziennej pracy, co wpływa na efektywność i bezpieczeństwo procesów produkcyjnych.

Pytanie 3

Podaj, jaką wartość nie może przewyższać spodziewane napięcie dotykowe na dostępnej części przewodzącej urządzenia działającego w normalnych warunkach środowiskowych, podczas samoczynnego wyłączenia wynoszącego 5 s, przy prawidłowo dobranych przewodach oraz zabezpieczeniach w elektrycznej instalacji do 1 kV.

A. 50 V
B. 70 V
C. 220 V
D. 110 V
Odpowiedź 50 V jest prawidłowa, ponieważ jest to wartość maksymalna dopuszczalnego napięcia dotykowego na częściach dostępnych przewodzących zgodnie z normą PN-IEC 61140. W przypadku instalacji elektrycznych o napięciu do 1 kV, w warunkach normalnych, napięcie dotykowe nie może przekraczać tej wartości, aby zapewnić bezpieczeństwo użytkowników. W instytucjach i obiektach, w których używa się urządzeń elektrycznych, kluczowe jest stosowanie odpowiednich zabezpieczeń, takich jak wyłączniki różnicowoprądowe, które w przypadku wykrycia upływu prądu mogą zadziałać w czasie poniżej 30 ms. Przykładem zastosowania tej zasady mogą być instalacje w budynkach mieszkalnych, gdzie konieczne jest zapewnienie bezpieczeństwa osób korzystających z urządzeń elektrycznych. Obowiązujące normy, takie jak PN-EN 60038, wskazują na znaczenie odpowiedniego doboru zabezpieczeń, aby w sytuacji zwarcia lub uszkodzenia izolacji nie doszło do niebezpiecznego wzrostu napięcia dotykowego. W ten sposób, przy właściwej ochronie, można skutecznie zminimalizować ryzyko porażenia prądem elektrycznym.

Pytanie 4

Piec elektryczny o mocy 12 kW jest zasilany z trójfazowej instalacji 3 x 400 V za pomocą przewodu o długości 20 m i przekroju 4 mm2. Jakie konsekwencje przyniesie wymiana tego przewodu na przewód o tej samej długości, lecz o przekroju 6 mm2?

A. Spadek napięcia na przewodach zasilających zmniejszy się.
B. Moc wydobywana w piecu zmaleje 1,5 raza.
C. Moc wydobywana w piecu wzrośnie 1,5 raza.
D. Spadek napięcia na przewodach zasilających wzrośnie.
Wymiana przewodu o przekroju 4 mm² na 6 mm² w instalacji trójfazowej przynosi ze sobą korzyści związane z obniżeniem spadku napięcia na przewodach zasilających. Spadek napięcia jest wynikiem oporu przewodów, a ten opór maleje wraz ze zwiększeniem przekroju przewodu. W przypadku instalacji elektrycznych, zgodnie z normami IEC 60228, mniejsze spadki napięcia są kluczowe dla efektywności operacyjnej urządzeń elektrycznych. Przy większym przekroju przewodu, przepływ prądu staje się bardziej efektywny, co oznacza mniejsze straty energii w postaci ciepła. Przykładem praktycznym może być zastosowanie takich przewodów w instalacjach przemysłowych, gdzie urządzenia o dużej mocy, jak piec elektryczny, muszą działać optymalnie, aby zminimalizować zużycie energii i zapewnić trwałość systemu. Mniejszy spadek napięcia pozwala na stabilniejsze zasilanie, co jest szczególnie ważne w kontekście ochrony urządzeń elektronicznych i ich długoterminowej wydajności.

Pytanie 5

Aby zapewnić skuteczną ochronę przed porażeniem prądem dla użytkowników gniazd wtyczkowych z prądem nieprzekraczającym 32 A, należy je chronić wyłącznikiem różnicowoprądowym o nominalnym prądzie różnicowym wynoszącym

A. 500 mA
B. 1 000 mA
C. 100 mA
D. 30 mA
Wyłącznik różnicowoprądowy o znamionowym prądzie różnicowym równym 30 mA jest uważany za standard w przypadku ochrony użytkowników obwodów gniazd wtyczkowych o prądzie nieprzekraczającym 32 A. Jego głównym zadaniem jest szybka detekcja prądów upływowych, które mogą stwarzać zagrożenie porażenia prądem elektrycznym. Prąd różnicowy 30 mA jest skutecznym zabezpieczeniem, które wyłącza obwód w przypadku wykrycia różnicy prądów powyżej tej wartości, co znacząco redukuje ryzyko poważnych obrażeń ciała. W praktyce, w przypadku zastosowań w domach i lokalach użyteczności publicznej, wyłączniki te są często stosowane w obwodach zasilających gniazda, gdzie użytkownicy mogą mieć styczność z wodą lub wilgotnymi warunkami. Dodatkowo, zgodnie z normą PN-EN 61008-1, wyłączniki różnicowoprądowe o prądzie różnicowym 30 mA powinny być standardem w instalacjach elektrycznych, gdzie występuje ryzyko porażenia ciała ludzkiego.

Pytanie 6

Ile minimum osób powinno zajmować się pracami w warunkach szczególnego zagrożenia?

A. Jedna osoba
B. Cztery osoby
C. Trzy osoby
D. Dwie osoby
Odpowiedź, że co najmniej dwie osoby powinny wykonywać prace w warunkach szczególnego zagrożenia, jest zgodna z zasadami bezpieczeństwa i higieny pracy (BHP). W praktyce oznacza to, że w sytuacjach stwarzających ryzyko dla zdrowia lub życia, konieczne jest, aby jedna osoba mogła nie tylko wykonać dane zadanie, ale także zapewnić wsparcie oraz interwencję w przypadku nagłego wypadku. Taka zasada jest szczególnie ważna w środowiskach, gdzie występują czynniki niebezpieczne, takie jak substancje chemiczne, prace na wysokości czy w zamkniętych przestrzeniach. W odniesieniu do standardów OSHA (Occupational Safety and Health Administration) oraz normy ISO 45001, które dotyczą zarządzania bezpieczeństwem i zdrowiem w pracy, posiadanie co najmniej dwóch pracowników przy takich zadaniach jest kluczowe dla zapewnienia odpowiedniej reakcji na potencjalne zagrożenia. Przykładem może być sytuacja, w której jeden pracownik może doznać kontuzji lub stracić przytomność, a drugi będzie w stanie wezwać pomoc lub udzielić pierwszej pomocy, co może uratować życie. Dwuosobowa obsada w trudnych warunkach stanowi także dodatkowy element kontroli i bezpieczeństwa, co jest zalecane w wielu branżach, takich jak budownictwo czy przemysł chemiczny.

Pytanie 7

W instalacji elektrycznej w celu stwierdzenia skuteczności ochrony przeciwporażeniowej dokonano pomiarów i otrzymano wartości napięcia fazowego oraz impedancji pętli zwarcia wskazywane przez zamieszczony na rysunku miernik MZC-304. Które z zabezpieczeń nadprądowych przy tym stanie technicznym instalacji spełni warunek samoczynnego wyłączenia zasilania?

Ilustracja do pytania
A. D25
B. C25
C. C32
D. D32
Zabezpieczenie nadprądowe C25 jest w porządku w tej sytuacji, bo jego maksymalny prąd wyzwalania to 250A. Jakby doszło do zwarcia w instalacji, to prąd zwarcia wynosi około 315A, a to już więcej niż C25 może znieść. To zabezpieczenie działa tak, że automatycznie odłącza zasilanie, a to jest naprawdę ważne dla bezpieczeństwa, żeby uniknąć porażenia. W praktyce, takie zabezpieczenia z charakterystyką C są często stosowane tam, gdzie mamy duże obciążenia, które przy zwarciu mogą dawać spore prądy. Różne normy, jak PN-IEC 60364-4-41, mówią o tym, jak ważne jest dobranie odpowiednich zabezpieczeń. Dlatego użycie C25 w tym przypadku jest zgodne z tym, co mówią te normy i daje większą pewność, jeśli chodzi o bezpieczeństwo użytkowników instalacji.

Pytanie 8

Osoby wykonujące wymianę instalacji elektrycznej o napięciu 230/400 V w obiekcie przemysłowym powinny mieć kwalifikacje potwierdzone świadectwem, które jest co najmniej typu

A. E do 1 kV
B. E do 30 kV
C. D do 15 kV
D. D do 1 kV
Odpowiedź E do 1 kV jest prawidłowa, ponieważ osoby wykonujące prace przy instalacjach elektrycznych o napięciu do 1 kV muszą posiadać odpowiednie kwalifikacje. W Polsce, zgodnie z przepisami prawa, uprawnienia te potwierdzane są świadectwem kwalifikacyjnym, które powinno być wydane przez odpowiednie instytucje. Prace w obiektach przemysłowych, w których napięcie wynosi 230/400 V, są najczęściej związane z instalacjami niskonapięciowymi. Wymagania dotyczące szkoleń i certyfikacji osób zajmujących się instalacjami elektrycznymi są ściśle określone w normach, takich jak PN-EN 50110-1, która odnosi się do eksploatacji urządzeń elektrycznych. Pracownicy muszą być świadomi zagrożeń związanych z elektrycznością oraz umieć stosować odpowiednie środki ochrony osobistej. Przykładowo, osoby z uprawnieniami E do 1 kV będą w stanie wykonać wymianę osprzętu elektrycznego, takich jak gniazda, włączniki czy oświetlenie, zapewniając jednocześnie bezpieczeństwo pracy oraz zgodność z obowiązującymi normami.

Pytanie 9

Jaką minimalną liczbę osób należy zaangażować do pracy w warunkach szczególnego zagrożenia?

A. Dwie osoby
B. Jedna osoba
C. Trzy osoby
D. Cztery osoby
Minimalna liczba osób wykonujących prace w warunkach szczególnego zagrożenia powinna wynosić dwie osoby, co jest zgodne z zasadami bezpieczeństwa pracy oraz regulacjami prawnymi. W praktyce, obecność co najmniej dwóch pracowników zapewnia wzajemne wsparcie i możliwość szybkiej reakcji w sytuacjach awaryjnych. Na przykład, w przypadku prac w zamkniętych przestrzeniach, takich jak zbiorniki czy kanały, jeden pracownik może pełnić rolę osoby asekurującej, co jest niezbędne w przypadku wystąpienia zagrożenia zdrowia lub życia. Istotne jest, by w ramach tych prac, każdy z pracowników miał przypisane konkretne zadania oraz mógł efektywnie komunikować się z partnerem. Zgodnie z normami, takimi jak PN-N-18002 dotycząca zarządzania bezpieczeństwem i higieną pracy, pracodawcy są zobowiązani do zapewnienia odpowiednich warunków, które minimalizują ryzyko wypadków. W praktyce, w przypadku awarii sprzętu lub nagłych problemów zdrowotnych, obecność drugiej osoby może być kluczowa w zapewnieniu szybkiej pomocy oraz wezwania służb ratunkowych.

Pytanie 10

W którym z wymienionych miejsc instalacji elektrycznej domu jednorodzinnego należy zamontować aparat przedstawiony na rysunku?

Ilustracja do pytania
A. Na głównej szynie wyrównawczej.
B. W gnieździe lub puszkach instalacyjnych.
C. W złączu głównym budynku.
D. W tablicy rozdzielczej garażu.
Aparat ochrony przeciwprzepięciowej, który widzisz na zdjęciu, jest kluczowym elementem systemu zabezpieczeń instalacji elektrycznej w budynku. Jego głównym zadaniem jest ochrona przed przepięciami, które mogą być spowodowane zjawiskami atmosferycznymi, takimi jak burze, lub przez nagłe zmiany napięcia w sieci. Zgodnie z normami PN-EN 61643-11, instalacja takich urządzeń w złączu głównym budynku jest standardem, który zapewnia skuteczną ochronę wszystkich obwodów elektrycznych. Dzięki temu, w przypadku wystąpienia przepięcia, aparat szybko odłącza zasilanie, co chroni urządzenia podłączone do sieci przed uszkodzeniem. Ważne jest, aby instalacja tego typu była realizowana przez wykwalifikowanych fachowców, którzy zapewnią, że wszystkie aspekty techniczne i normatywne są spełnione. Na przykład, w domach jednorodzinnych, montaż takiego aparatu w złączu głównym nie tylko chroni instalację, ale również zwiększa bezpieczeństwo użytkowników, minimalizując ryzyko pożaru wywołanego przez przepięcia.

Pytanie 11

Kontrole instalacji elektrycznej w obiektach użyteczności publicznej powinny być przeprowadzane nie rzadziej niż co

A. 3 lata
B. 2 lata
C. 4 lata
D. 5 lat
Przeglądy instalacji elektrycznej w budynkach użyteczności publicznej powinny być przeprowadzane nie rzadziej niż co 5 lat, co jest zgodne z przepisami oraz normami zawartymi w Polskich Normach (PN). Regularne przeglądy mają na celu zapewnienie bezpieczeństwa użytkowników obiektów oraz zachowanie sprawności technicznej instalacji. W trakcie przeglądów dokonuje się oceny stanu technicznego instalacji, co pozwala na wczesne wykrycie ewentualnych usterek czy nieprawidłowości, które mogłyby prowadzić do niebezpiecznych sytuacji, takich jak pożar czy porażenie prądem. Przykładowo, w obiektach takich jak szkoły czy szpitale, gdzie bezpieczeństwo jest kluczowe, regularne przeglądy są niezbędne, aby spełniać wymogi prawa oraz zapewnić komfort i bezpieczeństwo ich użytkowników. Pamiętajmy, że odpowiedzialność za przeprowadzanie tych przeglądów spoczywa na właścicielu obiektu, który powinien współpracować z wyspecjalizowanymi firmami elektrycznymi, aby mieć pewność, że prace są prowadzone zgodnie z aktualnymi normami i najlepszymi praktykami.

Pytanie 12

Jaką czynność powinno się wykonać w trakcie oględzin urządzenia napędowego z silnikiem pierścieniowym podczas jego pracy?

A. Sprawdzenie połączeń elementów urządzenia
B. Sprawdzenie poziomu drgań
C. Ocena stanu pierścieni ślizgowych
D. Ocena stanu szczotek i szczotkotrzymaczy
Sprawdzenie poziomu drgań jest kluczowym elementem oceny stanu technicznego urządzenia napędowego z silnikiem pierścieniowym. Drgania mogą być wskaźnikiem wielu problemów, takich jak niewyważenie wirnika, luzy w łożyskach czy nieprawidłowe ustawienie osi. Monitorowanie drgań podczas pracy urządzenia pozwala na wczesne wykrycie tych problemów i podjęcie działań naprawczych, co może znacznie wydłużyć żywotność maszyny. W praktyce, stosuje się różne metody pomiaru drgań, w tym analizatory drgań, które mogą dostarczyć szczegółowych informacji na temat amplitudy, częstotliwości oraz charakterystyki drgań. Zgodnie z normami ISO 10816, ocena drgań powinna być wykonywana regularnie, a wyniki należy porównywać z wartościami granicznymi, aby określić stan techniczny urządzenia. Dobra praktyka w branży mechanicznej zaleca prowadzenie dokumentacji pomiarów, co umożliwia śledzenie zmian w czasie i diagnozowanie potencjalnych usterek.

Pytanie 13

Jak zmieni się ilość ciepła wydobywanego przez grzejnik elektryczny w jednostce czasu, jeśli jego spiralę grzejną skróci się o połowę, a napięcie zasilające pozostanie takie samo?

A. Zwiększy się czterokrotnie
B. Zmniejszy się czterokrotnie
C. Zwiększy się dwukrotnie
D. Zmniejszy się dwukrotnie
Odpowiedź "Zwiększy się dwukrotnie" jest prawidłowa, ponieważ jest zgodna z prawem Ohma oraz zasadami dotyczącymi oporu elektrycznego w elementach grzewczych. Gdy długość spiralę grzejną skracamy o połowę, to zmniejszamy jej opór o połowę, ponieważ opór elektryczny przewodnika jest proporcjonalny do jego długości. Przy zachowaniu stałego napięcia zasilania, zgodnie z prawem Ohma (I = U/R), prąd przepływający przez grzejnik wzrośnie, gdyż opór maleje. W rezultacie moc wydzielająca się w postaci ciepła w grzałce elektrycznej, która jest opisana wzorem P = U * I, wzrośnie. Podstawiając wyrażenia do wzoru, otrzymujemy, że moc wzrasta dwukrotnie przy zmniejszonym oporze. W praktyce, jest to istotne przy projektowaniu urządzeń grzewczych, gdzie zmiana długości elementów grzewczych może wpływać na ich efektywność. Dobrą praktyką jest przeprowadzanie obliczeń związanych z oporem i mocą, aby zapobiec przegrzaniu lub uszkodzeniu grzałek w systemach grzewczych.

Pytanie 14

Jaki przekrój przewodu należy zastosować w instalacji elektrycznej po trzykrotnym zwiększeniu odległości między źródłem zasilania a odbiornikiem, aby wartość spadku napięcia nie uległa zmianie?

Wzór na spadek napięcia: $$ \Delta U = \frac{I \cdot 2 \cdot l}{\gamma \cdot S} $$

A. 3 razy większy.
B. 6 razy większy.
C. 3 razy mniejszy.
D. 6 razy mniejszy.
Odpowiedź "3 razy większy" jest prawidłowa, ponieważ przekrój przewodu elektrycznego wpływa na spadek napięcia w instalacji. Spadek napięcia jest bezpośrednio proporcjonalny do długości przewodu, a odwrotnie proporcjonalny do jego przekroju. Zgodnie z zasadami inżynierii elektrycznej, aby zrekompensować trzykrotne zwiększenie odległości między źródłem a odbiornikiem, konieczne jest zwiększenie przekroju przewodu o równą wartość, czyli trzykrotnie. W praktyce oznacza to, że dla instalacji o większych odległościach należy stosować przewody o większym przekroju, aby zapewnić stabilność napięcia i minimalizować straty energii. Przykładem zastosowania tej zasady może być instalacja elektryczna w budynku mieszkalnym, gdzie znaczne odległości między rozdzielnią a gniazdami wymagają odpowiedniego doboru przewodów, aby nie przekraczać dopuszczalnych wartości spadku napięcia, co jest zgodne z normą PN-IEC 60364. Zastosowanie szerszych przewodów przy większych dystansach pozwala nie tylko na utrzymanie efektywności energetycznej, ale również na zwiększenie bezpieczeństwa użytkowania instalacji.

Pytanie 15

W których pomieszczeniach mogą być stosowane środki ochrony przeciwporażeniowej pokazane na rysunku?

Ilustracja do pytania
A. W piwnicach budynków mieszkalnych.
B. W pomieszczeniach laboratoryjnych.
C. W pomieszczeniach ruchu elektrycznego.
D. W halach hurtowni elektrycznych.
Pomieszczenia ruchu elektrycznego to miejsca, w których zachodzi realne ryzyko porażenia prądem elektrycznym, dlatego stosowanie środków ochrony przeciwporażeniowej jest szczególnie istotne. Środki te są projektowane, aby uniemożliwić niebezpieczny kontakt z elementami instalacji elektrycznej pod napięciem. W takich miejscach, jak np. rozdzielnie elektryczne czy pomieszczenia z urządzeniami wysokiego napięcia, można zastosować różnorodne systemy ochrony, takie jak osłony, separacje czy automatyczne wyłączniki. Stosowanie takich zabezpieczeń jest zgodne z normami, takimi jak PN-IEC 61140, które określają wymagania dotyczące ochrony przed porażeniem prądem. Przykładami praktycznymi są zastosowanie barier ochronnych wokół urządzeń elektrycznych oraz systemy automatycznego odłączania zasilania w sytuacjach awaryjnych, co znacząco podnosi bezpieczeństwo osób pracujących w tych przestrzeniach.

Pytanie 16

Przedstawione w tabeli wyniki pomiarów rezystancji uzwojeń i izolacji silnika trójfazowego wskazują na

Pomiar między
zaciskami silnika
Rezystancja
U1 – U232 Ω
V1 – V232 Ω
W1 – W232 Ω
U1 – V10
V1 – W15 MΩ
U1– W15 MΩ
U1 – PE0
V1 – PE0
W1 – PE5 MΩ
A. zwarcie między uzwojeniami U1 — U2 oraz W1 - W2
B. przerwę w uzwojeniu U1 — U2
C. uszkodzoną izolację w uzwojeniach U1 — U2 oraz V1 — V2
D. zwarcie międzyzwojowe w uzwojeniu W1 — W2
Wybrałeś odpowiedź mówiącą o uszkodzonej izolacji w uzwojeniach U1 — U2 oraz V1 — V2, i to jest akurat słuszne. Wyniki pomiarów rezystancji pokazują wyraźne anomalie. Na przykład, rezystancja izolacji między uzwojeniem U1 a V1 wynosi 0 Ω, co jasno wskazuje, że izolacji tam nie ma. Prowadzi to do potencjalnego zagrożenia dla bezpieczeństwa zarówno urządzenia, jak i użytkowników. Z mojej perspektywy, dobrze jest pamiętać, że normy branżowe, jak IEC 60034 dotyczące silników elektrycznych, mówią, że odpowiednie wartości rezystancji są kluczowe dla bezpieczeństwa i niezawodności silnika. Regularne pomiary rezystancji izolacji powinny być częścią rutyny konserwacji, żeby móc wcześnie wykrywać problemy i unikać awarii. Dbanie o tę izolację jest naprawdę istotne, bo jej uszkodzenie może prowadzić do zwarcia, co może zrujnować silnik i inne elementy systemu zasilania. W praktyce, ważne jest, żeby trzymać się pewnych procedur pomiarowych i konserwacyjnych – to naprawdę fundament, by działać zgodnie z najlepszymi praktykami.

Pytanie 17

Który z wymienionych przewodów jest przeznaczony do wykonania instalacji wtynkowej?

A. LYg
B. OMYp
C. YADYn
D. YDYt
Prawidłowo wskazany przewód YDYt to typowy przewód instalacyjny przeznaczony właśnie do układania w tynku, czyli do tzw. instalacji wtynkowej. Oznaczenie „YDY” mówi nam, że jest to przewód o izolacji i powłoce z polwinitu (PVC), z żyłami miedzianymi jednodrutowymi, a litera „t” na końcu oznacza wersję przystosowaną do układania w tynku. W praktyce w budownictwie mieszkaniowym i ogólnym takie przewody stosuje się do stałych instalacji podtynkowych w ścianach z cegły, betonu komórkowego, żelbetu itp. Bardzo często spotkasz je przy obwodach oświetleniowych i gniazd wtyczkowych – np. YDYt 3×2,5 mm² do gniazd i YDYt 3×1,5 mm² do oświetlenia. Z mojego doświadczenia, jak wchodzisz na budowę i widzisz białe płaskie przewody wychodzące ze ściany, to w 90% przypadków jest to właśnie YDYt. Ten typ przewodu spełnia wymagania norm dotyczących instalacji stałych, m.in. PN-HD 60364, jeśli jest poprawnie dobrany przekrój, sposób ułożenia i zabezpieczenie nadprądowe. Dobre praktyki mówią, żeby przewody YDYt prowadzić w liniach prostych, pionowo i poziomo, w odpowiednich strefach instalacyjnych, a w tynku układać je na odpowiedniej głębokości, tak żeby nie były narażone na uszkodzenia mechaniczne przy zwykłym wierceniu czy mocowaniu kołków. Ważne jest też, że YDYt jest przewodem do instalacji stałej – nie używa się go jako przewodu przyłączeniowego do urządzeń ruchomych. Moim zdaniem warto zapamiętać, że do ściany, na stałe, pod tynk – w budynkach – podstawowym wyborem jest właśnie przewód typu YDYt, chyba że projekt wymaga innego rozwiązania, np. instalacji w rurkach lub peszlach z innym typem przewodu.

Pytanie 18

Jaki parametr transformatora zmieni się, gdy podczas jego przezwajania w uzwojeniu wtórnym użyto drutu nawojowego o mniejszej średnicy?

A. Straty w uzwojeniu
B. Przekładnia zwojowa
C. Straty w rdzeniu
D. Przekładnia napięciowa
Analizując inne odpowiedzi, można zauważyć, że straty w rdzeniu nie ulegają zmianie przy zmianie średnicy drutu uzwojenia wtórnego. Straty w rdzeniu transformatora są ściśle związane z jego konstrukcją, materiałem oraz częstotliwością, przy której pracuje transformator. Wybór drutu do uzwojenia nie wpływa na te parametry, więc odpowiedź dotycząca strat w rdzeniu jest niepoprawna. Ponadto, przekładnia zwojowa oraz przekładnia napięciowa to pojęcia, które odnoszą się do stosunku liczby zwojów w uzwojeniach transformatora oraz napięć na tych uzwojeniach. Zmiana średnicy drutu w uzwojeniu wtórnym nie wpływa bezpośrednio na przekładnię zwojową ani napięciową, o ile liczba zwojów pozostaje taka sama. Przekładnia zwojowa jest funkcją liczby zwojów w uzwojeniach pierwotnym i wtórnym, a nie ich średnicy. Jakiekolwiek błędne myślenie w tym zakresie może prowadzić do nieporozumień dotyczących działania transformatorów. W praktyce, konstruktorzy transformatorów powinni mieć na uwadze rozważenie wszystkich parametrów, aby zminimalizować straty energetyczne i zwiększyć efektywność działania, co jest zgodne z dobrymi praktykami inżynieryjnymi i normami branżowymi.

Pytanie 19

Jaka jest maksymalna wartość skuteczna napięcia przemiennego, która może być wykorzystana do zasilania lamp oświetleniowych umieszczonych w strefie 0 łazienki?

A. 60 V
B. 12 V
C. 25 V
D. 30 V
Maksymalna dopuszczalna wartość skuteczna napięcia przemiennego do zasilania lamp oświetleniowych zainstalowanych w strefie 0 łazienki wynosi 12 V. Strefa 0 to obszar, w którym istnieje bezpośrednie ryzyko kontaktu z wodą, co stwarza większe zagrożenie porażeniem prądem. Z tego powodu normy elektryczne, takie jak PN-IEC 60364, nakładają restrykcje na używanie napięcia w tych strefach. Użycie niskiego napięcia, takiego jak 12 V, minimalizuje ryzyko wystąpienia niebezpiecznych sytuacji, które mogłyby prowadzić do porażenia prądem. W praktyce, lampy LED, które są zaprojektowane do pracy w takich warunkach, zwykle wykorzystują zasilacze transformujące napięcie sieciowe na 12 V, a ich instalacja jest zgodna z zasadami ochrony przeciwporażeniowej. Ponadto, stosowanie niskonapięciowych źródeł światła w strefie 0 jest nie tylko zgodne z przepisami, ale również sprzyja efektywności energetycznej oraz wydłuża żywotność urządzeń oświetleniowych.

Pytanie 20

Jaką czynność należy wykonać podczas konserwacji instalacji elektrycznej w biurze?

A. Wymienić wszystkie gniazda elektryczne
B. Zamienić przewody w rurach winidurowych
C. Sprawdzić średnicę wszystkich przewodów w instalacji
D. Zweryfikować działanie wyłącznika różnicowoprądowego za pomocą przycisku testowego
Sprawdzanie wyłącznika różnicowoprądowego przyciskiem testowym jest kluczowym etapem okresowej konserwacji instalacji elektrycznej. Wyłączniki różnicowoprądowe (RCD) mają za zadanie zabezpieczenie przed porażeniem prądem elektrycznym oraz zapobieganie pożarom spowodowanym upływem prądu. Użycie przycisku testowego pozwala na symulację sytuacji, w której RCD powinien zareagować, co potwierdza jego sprawność. Regularne testowanie tych urządzeń jest zgodne z normą PN-EN 61008-1, która zaleca, aby RCD były testowane co najmniej raz na 3 miesiące. W praktyce, jeżeli wyłącznik nie wyłącza obwodu po naciśnięciu przycisku testowego, oznacza to, że wymaga on natychmiastowej wymiany lub naprawy, co jest istotne dla zapewnienia bezpieczeństwa użytkowników. W przypadku biura, gdzie pracuje wiele osób, poziom bezpieczeństwa elektrycznego powinien być szczególnie priorytetowy. Dodatkowo, zaleca się prowadzenie dokumentacji wykonanych testów.

Pytanie 21

Podczas intensywnych opadów śniegu w jednym z rejonów napowietrznej linii niskiego napięcia zaobserwowano zanik napięcia w jednej fazie. Monterzy wymienili uszkodzony bezpiecznik w stacji transformatorowej na słupie, ale po ponownym uruchomieniu zasilania bezpiecznik natychmiast znowu uległ awarii. Jakie mogą być najprawdopodobniejsze przyczyny tej usterki?

A. Przeciążenie obwodu linii spowodowane dogrzewaniem elektrycznym mieszkań
B. Zwarcie doziemne jednej fazy
C. Zawilgocenie izolacji przewodów AFL do odbiorców
D. Zbyt duża asymetria obciążenia odbiornikami u jednego z odbiorców
Zwarcie doziemne jednej fazy jest najprawdopodobniejszą przyczyną opisanego problemu. W przypadku gęstych opadów śniegu, woda może gromadzić się na izolacji przewodów, co prowadzi do obniżenia ich właściwości izolacyjnych. Jeżeli następuje kontakt przewodu fazowego z ziemią lub innym przewodem o potencjale ziemi, tworzy się obwód, przez który może płynąć prąd, co skutkuje zadziałaniem zabezpieczeń, takich jak bezpieczniki. Wymiana uszkodzonego bezpiecznika w tym przypadku nie rozwiązuje problemu, ponieważ zwarcie doziemne nadal występuje. Aby zapobiec takim sytuacjom, ważne jest regularne sprawdzanie stanu technicznego linii oraz ich ochrony przed warunkami atmosferycznymi. W praktyce, stosowanie odpowiednich zabezpieczeń nadprądowych oraz regularne inspekcje mogą znacznie zmniejszyć ryzyko wystąpienia takich awarii. Dobrą praktyką jest również zapewnienie odpowiedniej odległości między przewodami a ziemią oraz stosowanie odpowiednich systemów uziemiających, co zwiększa bezpieczeństwo systemów elektrycznych.

Pytanie 22

Jaki rodzaj wyłącznika nadprądowego powinno się użyć do ochrony kuchenki elektrycznej z trzema jednofazowymi grzałkami, których łączna moc wynosi 8,4 kW, zasilanych w fazach L1, L2, L3 w systemie trójfazowym o napięciu 230/400 V?

A. B16
B. C6
C. C10
D. B10
Odpowiedź B16 jest poprawna, ponieważ przy obliczaniu wymaganego wyłącznika nadprądowego dla kuchenki elektrycznej należy uwzględnić ogólną moc grzałek oraz charakterystykę używanego wyłącznika. Kuchenka ma moc 8,4 kW, co przy napięciu 400 V daje maksymalny prąd wynoszący około 12 A. Jednakże, przy wyborze wyłącznika nadprądowego warto uwzględnić dodatkowy margines bezpieczeństwa oraz obciążenie rozruchowe, które może być wyższe. Wyłącznik B16, który ma prąd znamionowy 16 A, będzie w stanie zabezpieczyć urządzenie przed przeciążeniem i zwarciem, jednocześnie nie wyzwalając się w przypadku chwilowych wzrostów prądu. Zgodnie z normą PN-IEC 60947-2, dla tego typu aplikacji zaleca się dobór wyłączników zabezpieczających z odpowiednim marginesem, co czyni B16 odpowiednim rozwiązaniem. Przykładem praktycznym zastosowania wyłącznika B16 mogą być instalacje w kuchniach przemysłowych, gdzie urządzenia o dużej mocy są powszechne i wymagają odpowiedniego zabezpieczenia.

Pytanie 23

Przygotowując miejsce do przeprowadzania badań odbiorczych trójfazowego silnika indukcyjnego o parametrach: UN = 230/400 V, PN = 4 kW, należy, oprócz wizualnej inspekcji i analizy stanu izolacji uzwojeń, uwzględnić między innymi realizację pomiarów

A. charakterystyki stanu jałowego
B. rezystancji uzwojeń
C. drgań
D. izolacji łożysk
Pomiar drgań, pomiar izolacji łożysk oraz charakterystyka stanu jałowego silnika indukcyjnego, choć są istotnymi aspektami diagnostyki maszyn, nie są kluczowymi krokami w ocenie stanu uzwojeń, które są centralnym elementem silnika. Pomiar drgań, który ma na celu ocenę stanu mechanicznego silnika, może wskazywać na niewyważenie lub uszkodzenia łożysk, ale nie dostarcza bezpośrednich informacji o stanie uzwojeń. Z kolei pomiar izolacji łożysk również nie odnosi się do stanu uzwojeń, a jedynie do ich izolacji elektrycznej. Charakterystyka stanu jałowego silnika, polegająca na analizie parametrów silnika przy braku obciążenia, dostarcza informacji o wydajności zespołu, ale również nie ocenia stanu uzwojeń. W związku z tym, koncentrowanie się na tych pomiarach w miejsce pomiaru rezystancji uzwojeń może prowadzić do błędnych wniosków dotyczących stanu technicznego silnika i potencjalnych zagrożeń, co jest sprzeczne z zasadami skutecznej diagnostyki i konserwacji maszyn elektrycznych. Zrozumienie, które parametry są kluczowe dla oceny stanu uzwojeń, jest istotne dla zapewnienia niezawodności pracy silnika oraz uniknięcia kosztownych awarii.

Pytanie 24

Uszkodzenie izolacji uzwojenia w działającym przekładniku może wystąpić na skutek rozłączenia zacisków jego strony

A. wtórnej przekładnika prądowego
B. wtórnej przekładnika napięciowego
C. pierwotnej przekładnika napięciowego
D. pierwotnej przekładnika prądowego
Odpowiedzi związane z pierwotnym uzwojeniem przekładników prądowych i napięciowych są nieprawidłowe, ponieważ zakładają, że rozwarcie może wystąpić w obwodzie, który nie generuje niebezpiecznych warunków. W rzeczywistości pierwotne uzwojenie przekładnika prądowego jest na stałe podłączone do obwodu zasilającego i nie jest narażone na bezpośrednie rozwarcie, co powodowałoby wzrost napięcia na jego końcach. W przypadku przekładnika napięciowego, rozwarcie uzwojenia wtórnego może prowadzić do sytuacji, w której napięcie na uzwojeniu pierwotnym wzrasta, ale nie prowadzi to do uszkodzenia izolacji. Typowym błędem myślowym jest mylenie ról uzwojeń wtórnych i pierwotnych; uzwojenia wtórne są wrażliwe na rozwarcia, które prowadzą do ryzykownych warunków operacyjnych z powodu braku obciążenia. Dlatego istotne jest, aby zrozumieć, że uszkodzenia izolacji wynikają głównie z nieprawidłowego działania obwodów wtórnych, a nie pierwotnych, co powinno być uwzględnione w każdym projekcie systemu energetycznego. Przestrzeganie norm oraz stosowanie odpowiednich zabezpieczeń to kluczowe elementy zapewniające bezpieczeństwo i niezawodność systemów elektroenergetycznych.

Pytanie 25

W trakcie serwisowania silnika indukcyjnego jednofazowego pracownik przez przypadek zamienił miejscami kondensator rozruchowy o pojemności 300 µF z kondensatorem roboczym o pojemności 50 µF. Jakie mogą być konsekwencje tego błędu?

A. Zniszczenie kondensatora 50 µF podczas uruchamiania silnika
B. Silnik zmieni swój kierunek obrotów
C. Silnik nie włączy się
D. Uszkodzenie uzwojenia pomocniczego po kilku minutach działania silnika
Podczas rozruchu silnika indukcyjnego jednofazowego, kondensator rozruchowy o pojemności 300 µF jest kluczowy dla zapewnienia momentu obrotowego niezbędnego do uruchomienia silnika. Jeśli zamienimy go z kondensatorem pracy 50 µF, silnik nie otrzyma odpowiedniej wartości pojemności, co skutkuje niewystarczającym momentem obrotowym. W rezultacie silnik nie ruszy. To zjawisko jest zgodne z zasadami działania silników indukcyjnych, gdzie kondensatory pełnią istotną rolę w tworzeniu przesunięcia fazowego między prądem a napięciem. W praktyce, stosowanie odpowiednich kondensatorów zgodnych z wymaganiami producenta, jest kluczowe dla prawidłowego działania silników. Właściwe dobieranie kondensatorów to standardowa praktyka, która minimalizuje ryzyko awarii i zapewnia długotrwałą niezawodność urządzeń elektrycznych.

Pytanie 26

Która z podanych okoliczności powoduje obniżenie prędkości obrotowej silnika trójfazowego z pierścieniami w trakcie jego działania?

A. Zmniejszenie obciążenia silnika
B. Zwiększenie napięcia zasilającego
C. Zwarcie pierścieni ślizgowych
D. Przerwa w zasilaniu jednej fazy
Przerwa w zasilaniu jednej fazy w trójfazowym silniku pierścieniowym powoduje, że silnik zaczyna pracować w trybie niesymetrycznym. W takim przypadku moment obrotowy generowany przez silnik ulega znacznemu osłabieniu, co prowadzi do zmniejszenia prędkości obrotowej. Silniki te są zaprojektowane do pracy z równomiernym rozkładem napięcia w wszystkich trzech fazach. Kiedy jedna z faz jest przerwana, silnik nie jest w stanie uzyskać maksymalnej mocy, co skutkuje spadkiem prędkości obrotowej. W praktyce, może to prowadzić do przegrzewania się silnika, a w skrajnych przypadkach nawet do uszkodzenia wirnika lub stojana. Z tego powodu, monitorowanie zasilania i jego stabilności jest kluczowe w zastosowaniach przemysłowych. W branżowych standardach, takich jak IEC 60034, zwraca się uwagę na konieczność stosowania urządzeń zabezpieczających przed utratą jednego z faz, aby zapewnić ciągłość pracy silników oraz minimalizować ryzyko awarii.

Pytanie 27

Która z poniższych czynności nie jest częścią badań eksploatacyjnych silnika elektrycznego?

A. Pomiar napięcia zasilającego
B. Przeprowadzenie próbnego rozruchu urządzenia
C. Weryfikacja stanu ochrony przeciwporażeniowej
D. Pomiar rezystancji uzwojeń stojana
Analizując pozostałe czynności, które zostały wymienione, można zauważyć, że zarówno pomiar rezystancji uzwojeń stojana, jak i sprawdzenie stanu ochrony przeciwporażeniowej są niezwykle istotnymi elementami w kontekście diagnostyki silników elektrycznych. Pomiar rezystancji uzwojeń dostarcza informacji o stanie izolacji oraz zużyciu uzwojeń, co jest kluczowe dla przewidywania żywotności silnika. Na przykład, niska rezystancja może sugerować uszkodzenie izolacji, co prowadzi do ryzyka zwarcia. Kolejnym ważnym aspektem jest ochrona przeciwporażeniowa, która ma na celu zapewnienie bezpieczeństwa operatorów. Sprawdzenie stanu ochrony jest wymagane przez normy, takie jak IEC 60204-1, które określają wymagania dotyczące bezpieczeństwa sprzętu elektrycznego w maszynach. Rozruch próbny to ostatni krok w procesie, który pozwala na testowanie silnika w rzeczywistych warunkach operacyjnych, co pozwala zidentyfikować ewentualne problemy w jego działaniu. Ignorowanie tych czynności może prowadzić do poważnych konsekwencji, w tym awarii silnika oraz zagrożeń dla bezpieczeństwa pracy. Dlatego kluczowe jest zrozumienie, że każda z wymienionych czynności ma swoje miejsce i znaczenie w kontekście eksploatacji silnika elektrycznego.

Pytanie 28

Który z silników może pracować przy obciążeniu długotrwałym w układzie połączeń pokazanym na rysunku?

A.5,5 kW400/690 V
Δ/Y
IP55S22920 obr/min
B.1,5 kW400/690 V
Δ/Y
IP45S11430 obr/min
C.5,5 kW230/400 V
Δ/Y
IP55S12920 obr/min
D.1,5 kW230/400 V
Δ/Y
IP45S21430 obr/min
Ilustracja do pytania
A. A.
B. D.
C. C.
D. B.
Odpowiedź B jest poprawna, ponieważ przedstawiony silnik jest przystosowany do pracy w układzie "gwiazda" przy napięciu 400 V, co jest typowe dla sieci trójfazowej. Silnik o napięciu 400/690 V, jak oznaczone w odpowiedzi B, można z powodzeniem podłączyć w konfiguracji gwiazdy, co umożliwia mu pracę przy obciążeniu długotrwałym. Taki rodzaj połączenia jest powszechnie stosowany w przemyśle, ponieważ pozwala na efektywne wykorzystanie mocy oraz minimalizuje ryzyko przegrzewania się silnika. W praktyce, silniki przystosowane do pracy w układzie gwiazda są często wykorzystywane w aplikacjach wymagających stabilnej i długotrwałej pracy, takich jak pompy, wentylatory czy kompresory. Wybór silnika odpowiedniego do warunków pracy, zgodnego z normami IEC, jest kluczowy dla zapewnienia niezawodności i efektywności operacyjnej. Warto również pamiętać, że silniki muszą być dobrane zgodnie z wymaganiami aplikacji, które mogą obejmować różne parametry, takie jak moment obrotowy, prędkość czy klasa izolacji.

Pytanie 29

Czas pomiędzy kolejnymi kontroli oraz próbami instalacji elektrycznych w budynkach użyteczności zbiorowej nie powinien przekraczać

A. 3 lata
B. 5 lat
C. 1 rok
D. 2 lata
Odpowiedź 5 lat jest poprawna, ponieważ zgodnie z przepisami prawa budowlanego oraz normami dotyczącymi instalacji elektrycznych, szczególnie w kontekście budynków zamieszkania zbiorowego, okres między kolejnymi sprawdzeniami nie powinien przekraczać 5 lat. Regularne kontrole są kluczowe dla zapewnienia bezpieczeństwa mieszkańców oraz prawidłowego funkcjonowania instalacji. Przykładowo, w Polskim prawie budowlanym oraz normach PN-IEC 60364-6, podkreśla się konieczność przeprowadzania okresowych przeglądów przez wykwalifikowanych specjalistów, co pozwala na wczesne wykrywanie ewentualnych usterek czy niezgodności z obowiązującymi standardami. W dłuższej perspektywie zaniedbania w tym zakresie mogą prowadzić do poważnych awarii, a także zagrożeń dla życia i zdrowia ludzi oraz mienia. Dobrym przykładem praktycznych zastosowań jest wprowadzenie systemu zarządzania, który przypomina o nadchodzących kontrolach, co zwiększa efektywność i bezpieczeństwo eksploatacji budynków.

Pytanie 30

Gdzie i w jaki sposób powinny być założone przenośne uziemienia przewodów zasilających w czasie przygotowywania stanowiska pracy przy urządzeniu elektrycznym odłączonym od napięcia, jeżeli wiadomo, że w normalnych warunkach może być ono dwustronnie zasilane?

A. Po obu stronach urządzenia, ale przynajmniej jedno powinno być widoczne z miejsca pracy.
B. Z jednej strony urządzenia tak, aby były widoczne z miejsca pracy.
C. Z jednej strony urządzenia tak, aby były niewidoczne z miejsca pracy.
D. Po obu stronach urządzenia, ale nie muszą być widoczne z miejsca pracy.
Poprawnie wskazana odpowiedź wynika z podstawowej zasady bezpieczeństwa przy pracach na urządzeniach, które mogą być dwustronnie zasilane. Skoro w normalnych warunkach urządzenie może mieć doprowadzone napięcie z dwóch stron, to podczas przygotowania stanowiska pracy trzeba je zabezpieczyć tak, jakby z każdej strony mogło się pojawić niekontrolowane napięcie. Dlatego przenośne uziemienia przewodów zasilających zakłada się po obu stronach urządzenia – od strony każdego możliwego kierunku zasilania. Dzięki temu nawet w razie pomyłki w łączeniach, niesprawnego wyłącznika, błędnego przełączenia w rozdzielni czy zadziałania automatyki, przewody po obu stronach pozostaną zwarte do ziemi, a więc bezpieczne dla obsługi. Bardzo ważny element to widoczność uziemienia. Przynajmniej jedno z założonych przenośnych uziemień powinno być widoczne bezpośrednio z miejsca pracy. Chodzi o to, żeby osoba wykonująca czynności mogła na własne oczy upewnić się, że obwód jest faktycznie uziemiony i zwarty, a nie tylko „na papierze” czy w dokumentacji. W praktyce eksploatacji urządzeń elektrycznych, zgodnie z zasadami BHP i dobrą praktyką wynikającą m.in. z PN‑EN 50110 (Eksploatacja urządzeń elektrycznych), przenośne uziemienia zakłada się jak najbliżej miejsca odłączenia, na wszystkich czynnych żyłach, po uprzednim sprawdzeniu braku napięcia odpowiednim przyrządem pomiarowym. Moim zdaniem to pytanie dobrze pokazuje, że sama przerwa izolacyjna w aparacie łączeniowym to za mało – dopiero widoczne uziemienie daje poczucie realnego bezpieczeństwa. W zakładach przemysłowych czy przy liniach napowietrznych to jest standard: uziemienie z obu stron odcinka pracy, a przynajmniej jedno tak, żeby monter mógł je widzieć, podnosząc klucz czy drążek, i mieć pewność, że pracuje na odcinku zwarciem zabezpieczonym do ziemi.

Pytanie 31

W układzie prostego jednofazowego przekształtnika AC-DC zasilanego z sieci 230 V, którego schemat ideowy przedstawiono na rysunku, uległa uszkodzeniu jedna z diod prostowniczych. W czasie pracy odbiornik R0 pobiera znamionowy prąd o wartości 20 A. Pojemność kondensatora wynosi 1 mF. Którą z wymienionych diod można zastosować w miejsce uszkodzonej?

Ilustracja do pytania
A. D22-20R-02
B. D22-20R-04
C. D22-10R-02
D. D22-10R-04
Dioda D22-20R-04 jest właściwym wyborem do zastąpienia uszkodzonej diody w układzie prostownika AC-DC. Jej maksymalne napięcie wsteczne wynosi 2200 V, co znacząco przewyższa wymagane napięcie szczytowe w tym układzie, które wynosi około 325 V (√2 * 230 V). Prąd znamionowy diody to również 20 A, co jest zgodne z prądem pobieranym przez odbiornik R0, co zapewnia stabilną pracę bez ryzyka uszkodzenia diody. Zastosowanie diody o zbyt niskim napięciu wstecznym lub prądzie może prowadzić do jej zniszczenia podczas normalnej pracy. W praktyce, wybór komponentów w elektronicznych układach zasilających powinien opierać się na zasadzie przynajmniej 30% zapasu dla napięcia wstecznego i prądu. Takie podejście zapewnia niezawodność i długą żywotność urządzeń, co jest standardem w branży. Dodatkowo, warto pamiętać, że diody o wyższych parametrach mogą być również stosowane, ale powinny spełniać kryteria energooszczędności, co jest istotne w projektowaniu nowoczesnych układów.

Pytanie 32

Na podstawie przedstawionej charakterystyki mechanicznej silnika elektrycznego można stwierdzić, że silnik ten

Ilustracja do pytania
A. wykazuje mały moment obrotowy podczas rozruchu.
B. zwiększa prędkość obrotową wraz ze wzrostem momentu obrotowego.
C. rozbiega się przy biegu jałowym.
D. wykazuje przy rozruchu moment obrotowy równy znamionowemu.
W przypadku silników elektrycznych występuje wiele mylnych przekonań dotyczących ich charakterystyki mechanicznej, które mogą prowadzić do błędnych wniosków. Wiele osób może sądzić, że silnik zwiększa prędkość obrotową wraz ze wzrostem momentu obrotowego, co jest niezgodne z zasadą działania silników elektrycznych. Zasadnicze jest zrozumienie, że silniki elektryczne, zwłaszcza asynchroniczne, działają na zasadzie odwrotnej – przy wzroście momentu obrotowego prędkość obrotowa maleje. Często również błędnie interpretuje się moment obrotowy podczas rozruchu. Użytkownicy mogą mylić moment obrotowy z siłą napędową, zakładając, że silnik wykazuje wysoki moment obrotowy od samego początku. Jednak w rzeczywistości, silniki mają tendencję do wykazywania niskiego momentu obrotowego w momencie uruchomienia, co jest kluczowe dla ich stabilności i bezpieczeństwa. Dodatkowo, wiele osób ma problemy z pojęciem rozruchu silnika i jego zachowaniem w czasie biegu jałowego. Silnik, który rozbija się przy biegu jałowym, nie powinien mieć jednocześnie momentu obrotowego równemu znamionowemu, co jest kolejnym powszechnym błędem myślowym. Właściwe zrozumienie tych mechanizmów jest istotne dla efektywnego użycia silników elektrycznych w praktycznych zastosowaniach, co powinno być zgodne z dobrymi praktykami inżynieryjnymi oraz standardami branżowymi.

Pytanie 33

Jakie z wymienionych uszkodzeń można zidentyfikować podczas inspekcji instalacji elektrycznej?

A. Przerwanie pionowego uziomu w ziemi
B. Obniżenie rezystancji izolacji przewodów
C. Zbyt długi czas reakcji wyłącznika różnicowoprądowego
D. Pogorszenie stanu mechanicznego połączeń przewodów
W kontekście oględzin instalacji elektrycznej, zmniejszenie rezystancji izolacji przewodów, zbyt długi czas działania wyłącznika różnicowoprądowego oraz przerwanie uziomu pionowego w ziemi stanowią koncepcje, które mogą być mylące w kontekście ich lokalizacji podczas inspekcji. Zmniejszenie rezystancji izolacji przewodów jest krytycznym parametrem w ocenie stanu technicznego instalacji, jednak podczas wizualnej weryfikacji nie jest możliwe bezpośrednie zidentyfikowanie tego problemu. Wymaga to odpowiednich pomiarów przy użyciu specjalistycznych narzędzi, takich jak megger. Z kolei zbyt długi czas działania wyłącznika różnicowoprądowego może świadczyć o nieprawidłowościach w instalacji, ale również wymaga szczegółowych testów diagnostycznych, aby określić przyczynę opóźnienia. Ostatecznie przerwanie uziomu pionowego w ziemi, mimo że istotne dla bezpieczeństwa, również nie jest bezpośrednio zauważalne podczas podstawowej wizualizacji. Podczas inspekcji należy kierować się zasadą, że wiele ukrytych usterek wymaga użycia specjalistycznych narzędzi i technik, co wzmacnia potrzebę kompetentnych przeglądów i pomiarów, aby właściwie ocenić stan instalacji elektrycznej oraz zapewnić jej bezpieczeństwo i funkcjonalność.

Pytanie 34

Aby uzyskać widoczną przerwę w obwodzie elektrycznym, należy użyć

A. odłącznika
B. przekaźnika
C. wyłącznika
D. stycznika
Wyłącznik, stycznik i przekaźnik to urządzenia, które pełnią różne funkcje w obwodach elektrycznych, ale nie są odpowiednie do zapewnienia widocznej przerwy. Wyłącznik to urządzenie, które może być używane do włączania i wyłączania obwodu, lecz nie gwarantuje fizycznej, wizualnej separacji od źródła zasilania. Z kolei stycznik, często stosowany w automatyce, służy do zdalnego włączania i wyłączania obwodów, ale również nie zapewnia widoczności przerwy, co jest kluczowe w kontekście bezpieczeństwa podczas prac serwisowych. Przekaźnik działa na zasadzie przekazywania sygnałów i kontrolowania innych obwodów, jednak nie jest to urządzenie, które można zastosować jako widoczne odłączenie zasilania. Powszechny błąd w myśleniu polega na tym, że niektóre osoby mylą te urządzenia, zakładając, że każde z nich może pełnić rolę odłącznika. W rzeczywistości odpowiednie urządzenie musi nie tylko wyłączyć obwód, ale także wizualnie potwierdzić tę operację, co ma kluczowe znaczenie w kontekście norm bezpieczeństwa, takich jak PN-EN 60204-1. Dlatego, aby zapewnić bezpieczeństwo, konieczne jest stosowanie odłączników w odpowiednich zastosowaniach.

Pytanie 35

Podczas pomiaru rezystancji izolacji przewodów, jakie napięcie testowe jest zazwyczaj stosowane dla obwodów o napięciu znamionowym 230 V?

A. 750 V
B. 100 V
C. 500 V
D. 230 V
Pomiar rezystancji izolacji jest kluczowym krokiem w ocenie stanu technicznego instalacji elektrycznych. Dla obwodów o napięciu znamionowym 230 V zaleca się stosowanie napięcia testowego 500 V. Wybór tego napięcia wynika z norm i standardów, które nakładają wymogi dotyczące minimalnej wartości napięcia testowego, aby zapewnić wiarygodne wyniki pomiarów. Rozporządzenia takie jak PN-HD 60364-6:2016-07 wskazują, że dla obwodów o napięciu znamionowym do 500 V, napięcie testowe powinno wynosić 500 V. Zastosowanie wyższego napięcia testowego niż napięcie znamionowe jest konieczne, aby wykryć ewentualne uszkodzenia izolacji, które mogą pojawić się w warunkach rzeczywistej eksploatacji. Dzięki temu można zidentyfikować miejsca, gdzie izolacja może być osłabiona, co pozwala na podjęcie kroków naprawczych przed wystąpieniem awarii. To podejście jest powszechnie stosowane w branży, zapewniając bezpieczeństwo i niezawodność instalacji elektrycznej.

Pytanie 36

Inspekcje instalacji u odbiorców energii elektrycznej powinny być realizowane nie rzadziej niż co

A. 5 lat
B. miesiąc
C. 3 lata
D. rok
Odpowiedź "5 lat" jest zgodna z wymaganiami określonymi w polskich przepisach dotyczących eksploatacji i utrzymania instalacji elektrycznych. Zgodnie z normą PN-IEC 60364 oraz wytycznymi URE (Urząd Regulacji Energetyki), okresowe oględziny instalacji u odbiorców mocy powinny być przeprowadzane nie rzadziej niż co pięć lat. Taki cykl przeglądów ma na celu zapewnienie bezpieczeństwa użytkowników, identyfikację potencjalnych usterek oraz utrzymanie instalacji w odpowiednim stanie technicznym. Przykładowo, regularne przeglądy mogą pomóc w wykryciu uszkodzeń izolacji kabli czy awarii zabezpieczeń, co w dłuższej perspektywie może zapobiec poważniejszym awariom oraz obniżyć ryzyko pożarów. W praktyce, wiele firm stosuje systemy zarządzania utrzymaniem ruchu, w których terminy przeglądów są udokumentowane i monitorowane, co sprzyja lepszemu zarządzaniu bezpieczeństwem energetycznym. Ostatnie badania pokazują, że zaniechanie regularnych przeglądów może prowadzić do wzrostu liczby awarii oraz zwiększenia kosztów napraw, dlatego przestrzeganie pięcioletniego cyklu przeglądów jest kluczowe.

Pytanie 37

Jakie środki ochrony przeciwporażeniowej stosuje się w przypadku uszkodzenia obwodu pojedynczego odbiornika?

A. wyłącznie specjalne ogrodzenia
B. separację elektryczną
C. umiejscowienie poza zasięgiem ręki
D. jedynie obudowy
Separacja elektryczna to metoda ochrony przed porażeniem elektrycznym, która polega na oddzieleniu obwodów elektrycznych od żywych części, co znacząco minimalizuje ryzyko bezpośredniego kontaktu z prądem. W praktyce, separacja elektryczna może być realizowana poprzez zastosowanie transformatorów separacyjnych, które izolują odbiorniki od źródła zasilania, co pozwala na uniknięcie niebezpiecznych sytuacji w przypadku uszkodzenia izolacji. Dobre praktyki w zakresie ochrony elektrycznej zalecają używanie transformatorów o odpowiednich parametrach, które nie tylko spełniają normy bezpieczeństwa, ale także są zgodne z obowiązującymi standardami, takimi jak norma IEC 61140 dotycząca ochrony przeciwporażeniowej. W kontekście instalacji elektrycznych, separacja elektryczna jest szczególnie ważna w obszarach o wysokim ryzyku, jak np. w łazienkach czy na zewnątrz budynków, gdzie ryzyko kontaktu z wodą jest zwiększone. Ponadto, stosowanie separacji elektrycznej w obiektach przemysłowych, gdzie występuje duża liczba maszyn i urządzeń, również przyczynia się do poprawy bezpieczeństwa pracowników i minimalizacji ryzyka wypadków. W związku z tym, separacja elektryczna jest nie tylko skuteczną, ale i rekomendowaną metodą ochrony przed porażeniem elektrycznym.

Pytanie 38

Maksymalny prąd nastawczy przekaźnika termobimetalowego, który chroni silnik pompy wodnej, przy prądzie znamionowym In = 10 A, nie powinien być wyższy niż

A. 10,50 A
B. 11,00 A
C. 9,50 A
D. 10,10 A
Odpowiedź 11,00 A jest prawidłowa, ponieważ prąd nastawczy zabezpieczenia termobimetalowego powinien być ustawiony z pewnym marginesem nad prądem znamionowym silnika, aby uniknąć niepożądanych wyłączeń. W praktyce, przekaźniki termobimetalowe stosowane do ochrony silników pompowych muszą być dostosowane tak, aby ich czułość była odpowiednia do warunków pracy, bez przekraczania dopuszczalnych wartości prądu. W przypadku silnika o prądzie znamionowym I<sub>n</sub> = 10 A, ustawienie prądu nastawczego na 11,00 A zapewnia wystarczający zapas, aby uwzględnić chwilowe przeciążenia, które mogą wystąpić podczas rozruchu silnika lub w wyniku zmiennych warunków eksploatacyjnych. Dobrą praktyką jest również kierowanie się normami, takimi jak IEC 60947-4-1, która określa zasady doboru urządzeń zabezpieczających dla silników. W ten sposób można zapewnić niezawodność i bezpieczeństwo systemu, minimalizując ryzyko fałszywych alarmów oraz niepotrzebnych przestojów w pracy urządzeń.

Pytanie 39

Który z poniższych środków zabezpieczających przed porażeniem prądem elektrycznym nie jest właściwy do użycia w pomieszczeniach z zamontowaną wanną lub prysznicem?

A. Izolowanie stanowiska
B. Separacja elektryczna
C. Obwody SELV
D. Obwody PELV
Izolowanie stanowiska jako środek ochrony przed porażeniem prądem elektrycznym nie jest zalecane w pomieszczeniach z zainstalowaną wanną lub prysznicem, ponieważ takie miejsca są szczególnie narażone na kontakt z wodą, a tym samym zwiększone ryzyko porażenia. Praktyka izolowania stanowiska polega na tworzeniu fizycznych barier, które mają na celu zminimalizowanie ryzyka kontaktu z żywymi częściami. W kontekście pomieszczeń mokrych, jednak, kluczowe jest stosowanie bardziej zaawansowanych środków ochrony, które są zgodne z przepisami zawartymi w normach IEC 60364 oraz PN-EN 61140. Przykładem zabezpieczenia, które może być stosowane w takich warunkach, są obwody SELV, które zapewniają niskie napięcie bezpieczeństwa. W takich miejscach, gdzie ryzyko kontaktu z wodą jest wysokie, istotne jest również, aby instalacje były odpowiednio zabezpieczone i aby stosować osprzęt o podwyższonym stopniu ochrony, na przykład z klasą IP44 lub wyższą.

Pytanie 40

Jaką minimalną wartość rezystancji powinno się zmierzyć w ścianach i podłodze w izolowanym miejscu pracy z urządzeniami o napięciu 400 V, aby zabezpieczenie przed dotykiem pośrednim było efektywne?

A. 25 kΩ
B. 75 kΩ
C. 50 kΩ
D. 10 kΩ
Najmniejsza zmierzona wartość rezystancji ścian i podłogi na izolowanym stanowisku pracy z urządzeniami o napięciu 400 V powinna wynosić 50 kΩ, aby zapewnić skuteczną ochronę przeciwporażeniową. Zgodnie z normami bezpieczeństwa elektrycznego, takimi jak PN-EN 61140, minimalna rezystancja izolacji jest kluczowym czynnikiem, który wpływa na bezpieczeństwo użytkowników. W praktyce, wyższa rezystancja izolacji oznacza mniejsze ryzyko przebicia i przemieszczenia prądu do części nieizolowanych. W przypadku pracy z urządzeniami o napięciu 400 V, wartość 50 kΩ jest często stosowana jako standardowy wskaźnik, aby zminimalizować ryzyko porażenia prądem. Wartości te stosuje się nie tylko w przemyśle, ale również w kontekście instalacji elektrycznych w budynkach. Regularne pomiary rezystancji izolacji powinny być przeprowadzane na stanowiskach pracy, aby upewnić się, że systemy ochrony są nadal skuteczne. Przykładem może być przemysł produkcyjny, gdzie urządzenia o wysokim napięciu są powszechnie używane, a każda usterka izolacji może prowadzić do poważnych wypadków, podkreślając znaczenie monitorowania rezystancji izolacji.