Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektronik
  • Kwalifikacja: ELM.02 - Montaż oraz instalowanie układów i urządzeń elektronicznych
  • Data rozpoczęcia: 17 grudnia 2025 19:54
  • Data zakończenia: 17 grudnia 2025 20:01

Egzamin zdany!

Wynik: 32/40 punktów (80,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Czym jest watchdog?

A. system bezpośredniego dostępu do portów I/O mikroprocesora
B. rodzaj timera kontrolującego działanie mikroprocesora
C. system bezpośredniego dostępu do pamięci mikroprocesora
D. typ licznika rejestrującego impulsy zewnętrzne
Watchdog to kluczowy element w systemach mikroprocesorowych, który działa jako rodzaj timera nadzorującego ich pracę. Jego głównym zadaniem jest monitorowanie stanu pracy systemu i wykrywanie potencjalnych awarii. W momencie, gdy system przestaje odpowiadać lub wchodzi w stan zawieszenia, watchdog resetuje mikroprocesor, co pozwala na przywrócenie jego prawidłowego działania. Przykłady zastosowania zegarów watchdog są widoczne w systemach krytycznych, takich jak urządzenia medyczne czy systemy wbudowane w lotnictwie, gdzie niezawodność i ciągłość działania są kluczowe. Wdrażając watchdogi w projektach, inżynierowie stosują standardy, takie jak IEC 61508, które zapewniają odpowiedni poziom bezpieczeństwa w systemach elektronicznych. To podejście jest zgodne z najlepszymi praktykami branżowymi, które zalecają implementację mechanizmów nadzorujących, aby minimalizować ryzyko awarii systemów oraz zapewnić ich ciągłe działanie.

Pytanie 2

W trakcie konserwacji działającego zasilacza komputerowego należy

A. zmienić elementy chłodzące
B. wyczyścić styki mikroprocesora sterującego
C. wymienić kondensatory filtrujące
D. oczyścić elementy chłodzące
Wyczyścić elementy chłodzące zasilacza komputerowego to kluczowy krok w konserwacji, który ma na celu zapewnienie odpowiedniej cyrkulacji powietrza oraz efektywnego odprowadzania ciepła. W miarę użytkowania zasilacza, wentylatory i radiatory mogą zbierać kurz i inne zanieczyszczenia, co prowadzi do obniżenia wydajności chłodzenia. Wysoka temperatura wewnętrzna może skrócić żywotność podzespołów zasilacza, takich jak tranzystory czy kondensatory. Regularne czyszczenie elementów chłodzących, zgodnie z zaleceniami producentów oraz standardami branżowymi, takimi jak IPC-A-610, jest zatem nie tylko zalecane, ale wręcz niezbędne. Należy używać odpowiednich narzędzi, takich jak sprężone powietrze, aby uniknąć uszkodzenia elementów podczas czyszczenia. Przykładowo, czyszczenie zasilacza co kilka miesięcy w warunkach domowych, zwłaszcza w miejscach o dużym zapyleniu, może znacząco wpłynąć na jego niezawodność i stabilność energetyczną systemu komputerowego.

Pytanie 3

Podczas pomiaru rezystancji przy użyciu metody technicznej, woltomierz oraz amperomierz wskazują odpowiednio 40 V i 20 mA. Jaką wartość ma mierzona rezystancja?

A. 20 kΩ
B. 2 kΩ
C. 0,2 kΩ
D. 200 kΩ
Wartość mierzonej rezystancji można obliczyć korzystając z prawa Ohma, które stanowi, że rezystancja (R) jest równa napięciu (U) podzielonemu przez natężenie prądu (I). W naszym przypadku napięcie wynosi 40 V, a natężenie prądu 20 mA (co odpowiada 0,02 A). Zatem, stosując wzór R = U / I, otrzymujemy R = 40 V / 0,02 A = 2000 Ω, co można przeliczyć na kiloomy: 2000 Ω = 2 kΩ. Ta metoda pomiaru rezystancji jest szeroko stosowana w praktyce, zwłaszcza w elektronice i elektrotechnice, gdzie precyzyjne pomiary są kluczowe dla prawidłowego działania obwodów. Przykładowe zastosowanie można znaleźć w diagnostyce układów elektronicznych, gdzie pomiar rezystancji pozwala na identyfikację uszkodzeń komponentów. W branży stosuje się również tę technikę w różnych standardach pomiarowych, podkreślając jej znaczenie i niezawodność w praktyce.

Pytanie 4

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 5

Jakie urządzenia należy wykorzystać do strojenia toru pośredniej częstotliwości w radiowych odbiornikach?

A. miernik magnetoelektryczny
B. wobulator i oscyloskop
C. mostek pomiarowy
D. multimetr cyfrowy
Wobulator i oscyloskop to naprawdę ważne sprzęty, gdy mówimy o strojeniu toru pośredniej częstotliwości w radiu. Wobulator generuje różne sygnały, co jest super przydatne do testowania i dostrajania obwodów. Działa to na zasadzie modulacji sygnału, więc można bardzo precyzyjnie ustawić częstotliwość odbioru. Oscyloskop natomiast to narzędzie, które pozwala nam widzieć sygnały elektroniczne na bieżąco. Dzięki temu inżynierowie mogą dostrzegać problemy z jakością sygnału, na przykład szumy czy zniekształcenia. Weźmy na przykład sytuację, kiedy stroimy tor pośredniej częstotliwości – wobulator może wprowadzić sygnał o znanej częstotliwości, a oscyloskop pokazuje, czy odbiornik to dobrze demoduluje. Takie podejście jest naprawdę zgodne z tym, co robią specjaliści w branży i podkreśla, jak ważna jest dokładna analiza sygnałów podczas strojenia.

Pytanie 6

Na rysunku przedstawiono symbol graficzny

Ilustracja do pytania
A. tyrystora.
B. diody.
C. warystora.
D. tranzystora.
Tyrystor to super ważny element w elektronice, bo pozwala na kontrolowanie dużych prądów i napięć. Jak spojrzysz na jego symbol, to zauważysz, że przypomina diodę, ale ma dodatkową linię, która pokazuje, że to właśnie tyrystor. Często się go używa w prostownikach, regulatorach mocy czy różnych systemach zasilania. Zasada działania tyrystora jest taka, że zaczyna przewodzić prąd tylko wtedy, gdy dostanie sygnał na bramkę, dzięki czemu świetnie nadaje się do zastosowań, gdzie trzeba szybko kontrolować moc. Na przykład w systemach oświetleniowych tyrystory pozwalają na ściemnianie światła, a w silnikach dają możliwość płynnego sterowania prędkością. W elektronice ważne jest, żeby przestrzegać norm jakości i bezpieczeństwa przy projektowaniu układów z tyrystorami, bo to zapewnia ich niezawodność i długowieczność.

Pytanie 7

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 8

Aby zbadać ciągłość żył w przewodzie teletechnicznym, należy zastosować

A. galwanometr
B. częstościomierz
C. woltomierz
D. omomierz
Używanie woltomierza, częstościomierza czy galwanometru do sprawdzania ciągłości przewodów teletechnicznych to nie najlepszy pomysł. Woltomierz mierzy napięcie w obiegu elektrycznym, ale to nie mówi nic o tym, czy obwód jest ciągły. Możesz mieć napięcie na końcach przewodu, ale to nie znaczy, że przewód działa. Częstościomierz z kolei jest od mierzenia częstotliwości sygnałów, co w ogóle nie ma związku z ciągłością przewodów. To może dawać fałszywe poczucie bezpieczeństwa, bo obwód może być przerwany, nawet jeśli coś tam się mierzy. Galwanometr, mimo że można nim zmierzyć prąd, też nie jest dobrym wyborem do sprawdzania ciągłości. Skupianie się tylko na pomiarze prądu bez zerknięcia na opór może sprawić, że przeoczysz problemy z przerwami w obwodzie. Często ludzie mylą funkcje tych urządzeń, myśląc, że obecność napięcia czy prądu zawsze wskazuje na ciągłość, a to w ogóle nie jest tak prosto.

Pytanie 9

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 10

Komunikat "HDD Error" na rejestratorze wskazuje na uszkodzenie

A. kamer HD.
B. kabelka HDMI.
C. dysku twardego.
D. zasilania kamer.
Komunikat 'HDD Error' w rejestratorze jest jednoznacznym sygnałem, że występuje problem z dyskiem twardym. Dyski twarde, będące kluczowymi komponentami systemów rejestracji wideo, przechowują wszystkie nagrania oraz dane konfiguracyjne. Ich uszkodzenie może prowadzić do utraty danych, co jest szczególnie krytyczne w systemach monitoringu, gdzie bezpieczeństwo jest priorytetem. W przypadku wystąpienia takiego błędu zaleca się natychmiastowe sprawdzenie stanu dysku, na przykład poprzez skanowanie narzędziami diagnostycznymi, takimi jak CrystalDiskInfo, które mogą wykazać stan SMART dysku. Warto również zastanowić się nad regularnym tworzeniem kopii zapasowych danych, aby zminimalizować ryzyko ich utraty w przyszłości. Dobre praktyki w branży monitoringu wizyjnego obejmują również cykliczną wymianę dysków twardych oraz stosowanie dysków przeznaczonych specjalnie do pracy w systemach rejestracji wideo, które są bardziej odporne na naświetlenie i mają dłuższą żywotność.

Pytanie 11

Nieprawidłowa impedancja falowa kabla koncentrycznego wskazuje na uszkodzenie

A. ekranu.
B. żyły.
C. izolacji zewnętrznej.
D. izolacji wewnętrznej.
Wybór odpowiedzi dotyczącej ekranu kabla koncentrycznego jako źródła problemów z impedancją falową może wynikać z błędnego zrozumienia funkcji poszczególnych elementów konstrukcyjnych kabla. Ekran pełni rolę ochronną, zabezpieczając przed zakłóceniami elektromagnetycznymi, jednak jego uszkodzenie rzadziej skutkuje bezpośrednią zmianą impedancji falowej. Przypadek uszkodzenia ekranu mógłby prowadzić do problemów z ekranowaniem, co w konsekwencji może wpłynąć na jakość sygnału, ale nie ma to bezpośredniego wpływu na impedancję falową. Wybór odpowiedzi dotyczącej uszkodzenia izolacji zewnętrznej również jest mylny, ponieważ ta warstwa ma głównie na celu ochronę kabla przed uszkodzeniami mechanicznymi i warunkami atmosferycznymi, a nie bezpośrednio wpływa na parametry elektryczne. Z kolei uszkodzenie żyły kabla, czyli przewodnika, również nie jest bezpośrednim powodem zmian w impedancji, chociaż mogłoby spowodować przerwy w sygnale. W związku z tym, wybierając te odpowiedzi, można popaść w pułapkę myślową, koncentrując się na zewnętrznych aspektach konstrukcji kabla, zamiast na kluczowej roli izolacji wewnętrznej, która jest odpowiedzialna za stabilność parametrów elektrycznych i jakości sygnału. W praktyce, prawidłowa ocena stanu kabla koncentrycznego wymaga znajomości ogólnych zasad jego działania, a także umiejętności diagnozowania specyficznych uszkodzeń i ich wpływu na funkcjonalność systemów komunikacyjnych.

Pytanie 12

Aby połączyć kartę sieciową komputera PC z routerem, należy użyć kabla z wtykami

A. JACK
B. RJ-45
C. BNC
D. DIN
Odpowiedź RJ-45 jest poprawna, ponieważ wtyki RJ-45 są standardowo używane do łączenia komputerów z routerami w sieciach lokalnych (LAN). RJ-45 to złącze, które obsługuje kable Ethernet, co umożliwia przesyłanie danych z dużymi prędkościami, typowo od 10 Mbps do 10 Gbps, w zależności od zastosowanego standardu (np. 10BASE-T, 100BASE-TX, 1000BASE-T). Wtyki te mają osiem styków, co pozwala na przesyłanie danych w formie zbalansowanej, co zwiększa odporność na zakłócenia elektromagnetyczne. Użycie kabla z wtykami RJ-45 jest zgodne z międzynarodowymi standardami, takimi jak ISO/IEC 11801. W praktyce, RJ-45 jest najczęściej spotykanym złączem w domowych i biurowych sieciach komputerowych. Przykładem zastosowania jest podłączenie laptopa do routera, aby uzyskać stabilne połączenie internetowe. Warto również wspomnieć o różnych kategoriach kabli Ethernet, takich jak Cat5e, Cat6, które różnią się prędkościami transferu oraz zakresem częstotliwości, co również wpływa na ich zastosowanie w różnych sieciach.

Pytanie 13

Symbol przedstawiony na rysunku jest stosowany do oznaczania tranzystora

Ilustracja do pytania
A. polowego złączowego z kanałem typu N
B. polowego złączowego z kanałem typu P
C. bipolarnego PNP
D. bipolarnego NPN
Odpowiedź dotycząca tranzystora bipolarnego NPN jest poprawna, ponieważ symbol przedstawiony na rysunku jednoznacznie identyfikuje ten typ tranzystora. W tranzystorze NPN prąd przepływa od kolektora do emitera, a strzałka na symbolu wskazuje kierunek prądu z bazy do emitera, co jest charakterystyczne dla tranzystorów NPN. W praktyce tranzystory NPN są powszechnie stosowane w układach wzmacniaczy, przełącznikach oraz w obwodach cyfrowych. Są one kluczowymi elementami w konstrukcji współczesnych układów elektronicznych, spełniającym normy IEC 60747. Wzmacniacze oparte na tranzystorach NPN mają wiele zastosowań, od prostych aplikacji audio po bardziej złożone systemy komunikacyjne, gdzie wymagane są niskie szumy oraz wysoka linowość. Zrozumienie działania tranzystorów NPN jest fundamentem dla dalszej nauki o bardziej złożonych układach elektronicznych.

Pytanie 14

Który z wymienionych standardów nie opiera się na komunikacji radiowej?

A. IrDA
B. NFC
C. WiFi
D. Bluetooth
IrDA (Infrared Data Association) to standard komunikacyjny, który wykorzystuje podczerwień do przesyłania danych pomiędzy urządzeniami. W odróżnieniu od pozostałych standardów wymienionych w pytaniu, takich jak WiFi, NFC i Bluetooth, które operują na falach radiowych, IrDA działa w zakresie podczerwieni, co oznacza, że wymaga bezpośredniej linii wzroku między nadajnikiem a odbiornikiem. Przykładem zastosowania IrDA mogą być połączenia między urządzeniami mobilnymi a drukarkami, gdzie dane są przesyłane bezprzewodowo, ale w sposób wymagający precyzyjnego ustawienia obu urządzeń. IrDA była powszechnie stosowana w starszych telefonach komórkowych oraz laptopach do przesyłania plików. Ze względu na swoje ograniczenia, takie jak krótki zasięg oraz konieczność utrzymania linii wzroku, IrDA nie zdołała utrzymać konkurencyjnej pozycji wobec technologii radiowych, które oferują większą wszechstronność i wygodę. Warto również zauważyć, że IrDA była jednym z pierwszych standardów w zakresie bezprzewodowej komunikacji, co czyni ją przykładem historycznym w kontekście rozwoju technologii transmisji danych.

Pytanie 15

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 16

Jaka wartość w systemie szesnastkowym odpowiada binarnej liczbie 01101101?

A. 6D
B. 7B
C. BC
D. C6
Odpowiedź 6D jest poprawna, ponieważ liczba binarna 01101101 w systemie szesnastkowym odpowiada wartości 6D. Aby zrozumieć, jak dokonano tej konwersji, warto zauważyć, że system binarny jest systemem pozycyjnym z podstawą 2, a system szesnastkowy ma podstawę 16. Liczbę binarną dzielimy na grupy po cztery bity, co daje nam 0110 i 1101. Następnie każdą z tych grup zamieniamy na odpowiadające wartości w systemie szesnastkowym: 0110 to 6, a 1101 to D. Tak więc, 01101101 to 6D w systemie szesnastkowym. W praktyce takie konwersje są niezwykle ważne, szczególnie w programowaniu na poziomie niskim oraz przy pracy z systemami sprzętowymi, gdzie operacje na bitach i bajtach są powszechne. Rozumienie konwersji między systemami liczbowymi jest fundamentalne w inżynierii oprogramowania oraz w projektowaniu systemów cyfrowych, gdzie często zachodzi potrzeba interpretacji wartości binarnych w bardziej zrozumiałych dla ludzi systemach, takich jak hex.

Pytanie 17

Na rysunku przedstawiono kompas elektroniczny składający się z dwóch geodezyjnych odbiorników GPS umieszczonych na jednej osi oraz oprogramowania służącego do zapisywania danych pomiarowych. Urządzeniem tym nie można zmierzyć

Ilustracja do pytania
A. azymutu.
B. kąta elewacji.
C. wysokości.
D. prędkości wiatru.
Kompas elektroniczny to naprawdę fajne narzędzie, które korzysta z dwóch odbiorników GPS. Dzięki nim można precyzyjnie określić swoje położenie, co jest mega ważne w geodezji i nawigacji. Na przykład, kiedy robimy pomiary wysokości czy ustalamy azymut – czyli kąt między północą a jakimś punktem – to właśnie te odbiorniki robią swoje. A azymut to kluczowy element, jeśli chodzi o orientację w terenie. Z drugiej strony, kąt elewacji jest używany w astronomii i inżynierii, żeby określić, pod jakim kątem patrzymy na dany obiekt względem horyzontu. Ale pamiętaj, że kompas elektroniczny nie zmierzy prędkości wiatru – do tego potrzebujemy anemometrów, które są specjalnie zaprojektowane do pomiarów ruchu powietrza. Warto zrozumieć, jakie są możliwości i ograniczenia różnych technologii, bo to pomoże nam podejmować lepsze decyzje w pracy z danymi.

Pytanie 18

Który z czynników wpływa na zasięg sieci WLAN w obrębie budynku?

A. Liczba użytkowników
B. Grubość ścian oraz stropów
C. Temperatura otoczenia
D. Poziom wilgotności powietrza
Grubość ścian i stropów jest kluczowym czynnikiem wpływającym na zasięg sieci WLAN w budynkach. Materiały budowlane, z których wykonane są ściany i stropy, mogą znacząco tłumić sygnał radiowy. Na przykład, ściany z betonu, cegły czy metalu posiadają większą gęstość, co powoduje, że sygnał radiowy ma trudności z ich przenikaniem. W praktyce oznacza to, że sieć bezprzewodowa może mieć ograniczony zasięg w obszarach oddzielonych grubymi ścianami. Standardy takie jak IEEE 802.11 określają parametry wydajności sieci WLAN, które powinny być brane pod uwagę przy projektowaniu instalacji. Warto również pamiętać o zastosowaniach praktycznych, takich jak użycie wzmacniaczy sygnału (repeaters) lub punktów dostępowych (access points) w celu zwiększenia zasięgu w trudnych warunkach. Dobrze zaprojektowana sieć WLAN powinna uwzględniać układ budynku oraz zastosowane materiały, aby zapewnić optymalne pokrycie sygnałem.

Pytanie 19

Która modulacja jest stosowana w zakresie fal długich?

A. Impulsowa
B. Fazy
C. Amplitudy
D. Częstotliwości
W przypadku fal długich, inne techniki modulacji, takie jak modulacja fazy, modulacja impulsowa czy modulacja częstotliwości, nie są standardowo stosowane, co wynika z ich ograniczeń w kontekście transmisji na dużych odległościach. Modulacja fazy, mimo że może zapewnić pewne korzyści w zakresie odporności na zakłócenia, wymaga bardziej skomplikowanego sprzętu odbiorczego i nie jest optymalna dla pasma fal długich, które charakteryzuje się dużymi długościami fal i specyficznymi właściwościami propagacyjnymi. Z kolei modulacja impulsowa jest bardziej związana z systemami telekomunikacyjnymi i nie jest powszechnie używana w kontekście radiowym. Modulacja częstotliwości (FM), choć popularna w innych pasmach, również nie znajduje zastosowania w falach długich z powodu limitacji w zakresie zasięgu i przenoszenia sygnałów na dużych odległościach. Dla słuchaczy radiowych kluczowe jest zrozumienie, że modulacja amplitudy jest bardziej skuteczna w tego typu aplikacjach, co sprawia, że inne metody nie spełniają wymagań praktycznych. Typowym błędem jest założenie, że każda technika modulacji jest uniwersalna i można ją stosować w dowolnym kontekście, co prowadzi do nieprawidłowych wniosków o jej efektywności w specyficznych warunkach transmisji.

Pytanie 20

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 21

Użycie akumulatora żelowego w ekstremalnie niskich temperaturach prowadzi do

A. konieczności obniżenia napięcia ładowania
B. obniżenia pojemności akumulatora
C. wzrostu pojemności akumulatora
D. konieczności podwyższenia prądu ładowania
Użytkowanie akumulatora żelowego w bardzo niskich temperaturach prowadzi do zmniejszenia jego pojemności ze względu na zwiększony opór wewnętrzny, który występuje w wyniku niskich temperatur. W takich warunkach, chemiczne reakcje zachodzące w elektrolitach są spowolnione, co skutkuje obniżeniem zdolności akumulatora do przekazywania energii. Na przykład, w temperaturach poniżej -10°C, akumulatory żelowe mogą tracić nawet 30% swojej nominalnej pojemności. Z tego powodu, w praktyce, akumulatory te powinny być używane w warunkach, które zapewniają im optymalne temperatury pracy, zazwyczaj w zakresie 0°C do 40°C. W przypadku zastosowań w bardzo zimnym klimacie, warto rozważyć użycie akumulatorów przystosowanych do takich warunków, albo zainwestować w systemy ogrzewania akumulatorów, które pomogą utrzymać odpowiednią temperaturę operacyjną, co jest zgodne z rekomendacjami wielu producentów akumulatorów oraz standardami branżowymi.

Pytanie 22

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 23

Jakiego typu złącza mogą być zaciskane przy pomocy narzędzia przedstawionego na zdjęciu?

Ilustracja do pytania
A. HDMI
B. TNC
C. RJ-45
D. BNC
Zaciskarka przedstawiona na zdjęciu jest dedykowana do złącz RJ-45, które są powszechnie stosowane w sieciach komputerowych Ethernet. Złącza te umożliwiają efektywne łączenie urządzeń, takich jak routery, komputery czy przełączniki. Zaciskanie końcówek RJ-45 polega na umieszczeniu odpowiednio przygotowanego kabla w złączu i użyciu narzędzia, które łączy przewody z złączem, zapewniając stabilne połączenie. W praktyce, złącza RJ-45 są zgodne z normami TIA/EIA-568, które określają standardy dla okablowania strukturalnego w budynkach. Warto także zwrócić uwagę na różnice między wtykami typu RJ-45 a innymi typami złącz, które nie wymagają zaciskania, jak na przykład HDMI. Zastosowanie zaciskarki do RJ-45 pozwala na elastyczność w konfiguracji sieci oraz możliwość szybkiego wykonywania przewodów na miejscu, co jest szczególnie ważne w dynamicznie zmieniających się środowiskach biurowych.

Pytanie 24

W jakim celu nosi się opaskę antyelektrostatyczną na ręku podczas wymiany podzespołów lub układów scalonych w nowoczesnych urządzeniach elektronicznych?

A. Aby chronić układy scalone CMOS przed szkodliwym działaniem ładunków elektrostatycznych gromadzących się na ciele montera
B. Aby chronić montera przed porażeniem prądem elektrycznym z zasilenia urządzenia elektronicznego
C. Aby chronić układy scalone TTL przed niekorzystnym wpływem ładunków elektrostatycznych nagromadzonych na ciele montera
D. Aby zabezpieczyć montera przed szkodliwym działaniem ładunków elektrostatycznych nagromadzonych w urządzeniu
Opaska antyelektrostatyczna na rękę jest kluczowym elementem zabezpieczającym podczas pracy z delikatnymi komponentami elektronicznymi, szczególnie z układami scalonymi CMOS. Układy te są szczególnie wrażliwe na ładunki elektrostatyczne, które mogą powodować uszkodzenia, a nawet zniszczenie elementów. Opaska działa na zasadzie uziemienia ciała montera, co pozwala na rozproszenie nagromadzonych ładunków elektrostatycznych, eliminując ryzyko ich przekazania na wrażliwe komponenty. Przykładem praktycznego zastosowania opaski może być wymiana pamięci RAM czy procesora w komputerze stacjonarnym. W takich sytuacjach, nie tylko zapobiega się uszkodzeniu pojedynczych układów, ale także zwiększa się ogólną niezawodność urządzenia. Zgodnie z normami IPC (Institute for Interconnecting and Packaging Electronics), stosowanie opasek antyelektrostatycznych jest standardową procedurą w procesach montażu i serwisowania elektroniki, co dodatkowo podkreśla ich znaczenie w branży.

Pytanie 25

Które urządzenie pozwoli szybko sprawdzić poprawność połączeń w kablu internetowym zakończonym wtykami RJ-45?

Ilustracja do pytania
A. B.
B. C.
C. A.
D. D.
Urządzenie oznaczone literą D to tester kabli sieciowych, które jest kluczowym narzędziem w diagnostyce oraz utrzymaniu sieci komputerowych. Testery kabli pozwalają na szybkie i dokładne sprawdzenie poprawności połączeń w kablach zakończonych wtykami RJ-45, co jest niezwykle istotne w kontekście zapewnienia stabilności oraz wydajności sieci. Użycie testera polega na podłączeniu obu końców kabla do urządzenia; tester następnie przeprowadza sekwencję testów, weryfikując, czy wszystkie żyły są poprawnie połączone, co pozwala szybko zidentyfikować ewentualne błędy, takie jak zwarcia, otwarte obwody czy błędne kolejności żył. Stanowi to nieocenione wsparcie w sytuacjach, gdy napotykamy problemy z połączeniem, a także w procesie instalacji nowych kabli, gdzie przestrzeganie standardów TIA/EIA-568A/B jest kluczowe dla zapewnienia wysokiej jakości transmisji sygnałów. Korzystanie z tego narzędzia to nie tylko najlepsza praktyka, ale również oszczędność czasu i kosztów w dłuższej perspektywie.

Pytanie 26

Przedstawiony element stosowany jest do kontroli

Ilustracja do pytania
A. obecności dymu.
B. stężenia tlenku węgla.
C. położenia okien, drzwi.
D. zmian promieniowania podczerwonego.
Odpowiedź dotycząca położenia okien i drzwi jest prawidłowa, ponieważ element zaprezentowany na zdjęciu to kontaktron, który został zaprojektowany do monitorowania stanu otwarcia i zamknięcia okien oraz drzwi. Kontaktrony działają na zasadzie detekcji magnetycznej - jeden z ich elementów jest instalowany na ruchomej części (np. drzwiach), a drugi na stałej (np. futrynie). Kiedy drzwi lub okno są zamknięte, oba elementy są blisko siebie, co zapewnia zamknięcie obwodu elektrycznego. Gdy drzwi lub okno zostaną otwarte, odległość między nimi powoduje przerwanie obwodu, co aktywuje system alarmowy. Kontaktrony są powszechnie stosowane w systemach zabezpieczeń budynków, a ich niezawodność i prostota montażu czynią je standardowym rozwiązaniem w branży. Przykładem zastosowania mogą być systemy alarmowe w domach, biurach oraz obiektach przemysłowych, gdzie bezpieczeństwo jest kluczowe. Dodatkowo, stosując kontaktrony w połączeniu z odpowiednim systemem centralnym, możemy monitorować i kontrolować stan wszystkich punktów dostępu do budynku, co zwiększa poziom bezpieczeństwa oraz komfortu użytkowników.

Pytanie 27

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 28

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 29

Ile maksymalnie urządzeń można podłączyć do Multiswitcha 9/8 w systemie telewizyjnym?

A. 1 antenę satelitarną z konwerterem single oraz 8 odbiorników
B. 1 antenę satelitarną z konwerterem quatro i 8 odbiorników
C. 2 anteny satelitarne z konwerterami quatro i 8 odbiorników
D. 2 anteny satelitarne z konwerterami single oraz 8 odbiorników
Multiswitch 9/8 jest urządzeniem, które umożliwia rozdzielenie sygnału z anten satelitarnych do wielu odbiorników telewizyjnych. W przypadku wybierania konwerterów, kluczowe jest zrozumienie różnicy między konwerterami typu single oraz quatro. Konwertery single mogą obsługiwać tylko jeden sygnał, co znacznie ogranicza możliwości rozbudowy systemu. Natomiast konwertery quatro, które zawierają cztery wyjścia (LNB low i high dla polaryzacji poziomej oraz LNB low i high dla polaryzacji pionowej), pozwalają na pełne wykorzystanie możliwości multiswitcha. Dlatego podłączenie dwóch anten satelitarnych z konwerterami quatro do multiswitcha oraz 8 odbiorników jest rozwiązaniem optymalnym. Umożliwia to jednoczesne odbieranie różnych programów telewizyjnych przez wiele osób, co jest istotne w każdym nowoczesnym systemie telewizyjnym, a także spełnia standardy branżowe dotyczące instalacji telekomunikacyjnych.

Pytanie 30

Kiedy w obwodzie prądu stałego rezystancja obciążenia jest taka sama jak rezystancja wewnętrzna źródła, to mówi się

A. o przerwie w obwodzie
B. o dopasowaniu energetycznym
C. o stanie nieustalonym
D. o zwarciu w obwodzie
Odpowiedź "o dopasowaniu energetycznym" jest prawidłowa, ponieważ odnosi się do sytuacji, w której rezystancja obciążenia równa jest rezystancji wewnętrznej źródła prądu. W takim przypadku osiągamy maksymalną transfer energii do obciążenia, co jest zasadą znaną jako twierdzenie o maksymalnym transferze mocy. Z praktycznego punktu widzenia oznacza to, że urządzenie podłączone do źródła będzie działać z największą efektywnością, ponieważ straty energii są minimalne. To zjawisko jest często wykorzystywane w aplikacjach audio, gdzie głośniki muszą być dobrze dopasowane do wzmacniacza, aby uzyskać optymalną jakość dźwięku. W inżynierii elektrycznej i elektronicznej, dopasowanie energetyczne jest kluczowe przy projektowaniu układów, aby zapewnić ich stabilność i wydajność. Na przykład, w sieciach telekomunikacyjnych, dopasowanie impedancji jest ważne dla minimalizacji refleksji sygnału i utraty danych. Zatem, zrozumienie tej zasady pozwala inżynierom na skuteczne projektowanie systemów elektronicznych.

Pytanie 31

Na którym zdjęciu pokazane zostały szczypce do cięcia przewodów, drutów i opasek?

Ilustracja do pytania
A. B.
B. D.
C. A.
D. C.
Odpowiedź D. to strzał w dziesiątkę! Szczypce boczne, które widzisz na obrazku, są naprawdę fajnym narzędziem, zwłaszcza w elektronice. Używa się ich do precyzyjnego cięcia kabli i drutów, a ich krótkie ostrza dają świetną kontrolę nad cięciem. Długie uchwyty pozwalają na użycie większej siły, co jest super ważne, jak masz twardsze materiały do obróbki. W większości sytuacji przy montażu komponentów elektronicznych musimy dobrze przyciąć przewody, żeby wszystko ładnie wyglądało i działało jak należy. Wiadomo, że używanie odpowiednich narzędzi w pracy to nie tylko kwestia efektywności, ale też bezpieczeństwa. Dlatego szczypce boczne są tu idealnym wyborem, bo pozwalają uniknąć uszkodzenia innych elementów.

Pytanie 32

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 33

Który układ cyfrowy należy wykorzystać do konwersji kodu BCD na kod dla wyświetlacza siedmiosegmentowego?

A. Enkoder
B. Koder
C. Dekoder
D. Transkoder
Jeśli w kontekście zamiany kodu BCD na kod dla wyświetlacza siedmiosegmentowego wybrałeś coś innego jak dekoder, koder czy enkoder, to niewątpliwie coś poszło nie tak. Dekoder zamienia sygnały binarne na specjalne sygnały wyjściowe i jest użyteczny, gdy chcemy aktywować jedno z wielu wyjść na podstawie danych wejściowych, ale nie jest stworzony do konwersji z BCD. Koder działa z kolei odwrotnie - przyjmuje sygnały z różnych linii i skraca je do krótszego kodu binarnego, więc też nie pasuje do naszej sytuacji. Co do enkodera, to on zamienia sygnały analogowe na cyfrowe, więc w ogóle nie wchodzi w grę. Generalnie, wybór niewłaściwych układów często bierze się z braku zrozumienia, czym te komponenty się różnią i jakie mają zastosowania. Zamiast tego, do tej konwersji potrzebny jest transkoder, który jest właściwie do tego stworzony i wszystko działa tak, jak trzeba.

Pytanie 34

Jakie są poprawne etapy, które należy wykonać przy demontażu uszkodzonej kamery monitorującej?

A. Zasilanie wyłączyć, przewód sygnałowy odłączyć, przewody zasilające odłączyć, kamerę zdemontować
B. Zasilanie wyłączyć, przewody zasilające odłączyć, przewód sygnałowy odłączyć, kamerę zdemontować
C. Przewód sygnałowy odłączyć, zasilanie wyłączyć, przewody zasilające odłączyć, kamerę zdemontować
D. Zasilanie wyłączyć, przewody zasilające odłączyć, kamerę zdemontować, przewód sygnałowy odłączyć
Zgadza się, żeby bezpiecznie zdemontować kamerę, najpierw musisz wyłączyć zasilanie. To podstawowa zasada, bo zapobiega nieprzyjemnym sytuacjom, jak porażenie prądem. Potem odłączasz przewody zasilające, ale z zachowaniem ostrożności, bo nie chcesz zrobić zwarcia. Kiedy już masz wszystko odłączone, to czas na przewód sygnałowy. To ważne, żeby nie uszkodzić systemu monitoringu. Na końcu, jak masz pewność, że wszystko jest odłączone, możesz przystąpić do demontażu kamery. Takie podejście pozwala na bezpieczne i sprawne serwisowanie sprzętu, a to bardzo ważne, żeby wszystko działało jak należy.

Pytanie 35

Aby stworzyć niewidoczną dla ludzkiego oka barierę świetlną, należy zastosować

A. zestaw składający się z diody LED emitującej światło podczerwone oraz fotodiody
B. zestaw składający się z diody LED emitującej światło widzialne oraz fotodiody
C. fototranzystor
D. transoptor
Zestaw złożony z diody LED emitującej światło podczerwone i fotodiody jest idealnym rozwiązaniem do tworzenia niewidocznych dla oka ludzkiego barier świetlnych. Dioda LED podczerwonego emituje fale świetlne, które są niewidoczne dla ludzkiego oka, co pozwala na instalowanie systemów detekcji bez zauważalnych elementów. Fotodioda działa jako detektor, rejestrując światło podczerwone tylko wtedy, gdy obiekt zakłóca ten wiązkę. Takie rozwiązania są szeroko stosowane w systemach alarmowych, automatyce domowej oraz w przemyśle do wykrywania obecności ludzi lub przedmiotów. Zastosowanie podczerwieni zwiększa niezawodność systemu, minimalizując ryzyko fałszywych alarmów wywołanych przez światło dzienne. Dodatkowo, standardy dotyczące bezpieczeństwa i efektywności energetycznej wymagają użycia takich technologii w nowoczesnych instalacjach, co czyni tę metodę zgodną z dobrymi praktykami branżowymi.

Pytanie 36

Podczas serwisowania konkretnego urządzenia elektronicznego, technik zauważył, że można usunąć usterkę poprzez wymianę modułu (koszt zakupu nowego modułu - 230 zł, czas trwania naprawy - 0,5 godziny) lub poprzez naprawę uszkodzonego modułu (koszt zakupu uszkodzonych elementów - 57 zł, czas trwania naprawy - 3 godziny). Koszt jednej roboczogodziny wynosi 68 zł. Koszt dostarczenia naprawionego urządzenia do klienta to 50 zł. Technik zaproponował klientowi najtańsze rozwiązanie, polegające na

A. wymianie całego modułu bez dostarczania naprawionego urządzenia do klienta.
B. naprawie uszkodzonego modułu z dowozem urządzenia do klienta.
C. wymianie całego modułu z dowozem urządzenia do klienta.
D. naprawie uszkodzonego modułu bez dostarczenia naprawionego urządzenia do klienta.
Naprawa uszkodzonego modułu bez dostarczenia naprawionego urządzenia do domu klienta jest najtańszym rozwiązaniem, które zostało zaproponowane przez pracownika. Analizując koszty, naprawa modułu wymaga wydatku 57 zł na zakup uszkodzonych elementów oraz 204 zł za roboczogodziny (3 godziny x 68 zł), co łącznie daje 261 zł. W przypadku wymiany modułu, koszty wynoszą 230 zł za nowy moduł oraz 34 zł za roboczogodziny (0,5 godziny x 68 zł), co daje 264 zł. Do tego należy doliczyć koszt dostarczenia naprawionego urządzenia, który wynosi 50 zł. Kiedy uwzględnimy dostarczenie, całkowity koszt naprawy uszkodzonego modułu wynosi 311 zł, co czyni naprawę bez dostarczenia bardziej opłacalną. Poprawne podejście w sytuacjach tego rodzaju opiera się na analizie kosztów oraz efektywności, co jest kluczowe w pracy serwisanta. Pracownicy powinni kierować się zasadą minimalizacji kosztów przy zachowaniu jakości usług, co jest zgodne z najlepszymi praktykami w branży serwisowej.

Pytanie 37

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 38

Podczas regularnego przeglądu systemu telewizyjnego należy między innymi

A. zmierzyć poziom sygnału w gniazdku abonenckim oraz ocenić jakość połączeń wtyków F
B. zmierzyć impedancję falową kabla koncentrycznego
C. oczyścić oraz pomalować antenę, a następnie ją ustawić
D. określić rezystancję falową kabla i w razie potrzeby ją skorygować
Pomiar poziomu sygnału w gnieździe abonenckim oraz sprawdzenie jakości połączeń wtyków F jest kluczowym krokiem w ramach okresowego przeglądu instalacji telewizyjnej. Umożliwia to ocenę, czy sygnał docierający do odbiornika jest wystarczającej jakości dla prawidłowego odbioru programów telewizyjnych. Zmierzony poziom sygnału powinien mieścić się w zalecanym zakresie, zazwyczaj pomiędzy -10 dBmV a +10 dBmV, co zapewnia stabilny odbiór bez zakłóceń. Jakość połączeń wtyków F jest także istotna, ponieważ ich niewłaściwe podłączenie może prowadzić do strat sygnału, co w dłuższej perspektywie może skutkować degradacją jakości obrazu. Sprawdzanie i ewentualne poprawianie tych połączeń jest zgodne z najlepszymi praktykami branżowymi, które podkreślają znaczenie regularnych kontroli w celu zapewnienia wysokiej jakości sygnału i długiej żywotności instalacji. Dodatkowo, pomiar impedancji falowej kabla koncentrycznego, choć istotny, nie jest bezpośrednio związany z ocena jakości sygnału w gnieździe abonenckim.

Pytanie 39

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 40

Luty miękkie obejmują luty

A. miedziano-fosforowe
B. mosiężne
C. srebrne
D. cynowo-ołowiowe i bezołowiowe
Odpowiedzi dotyczące mosiężnych, srebrnych oraz miedziano-fosforowych lutów są nieprawidłowe, ponieważ te materiały nie są klasyfikowane jako luty miękkie. Luty mosiężne, składające się głównie z miedzi i cynku, charakteryzują się wyższą temperaturą topnienia i są klasyfikowane jako luty twarde, co uniemożliwia ich stosowanie w aplikacjach wymagających niskotemperaturowego lutowania. Srebro, będące metalem szlachetnym, jest stosowane w lutach srebrnych, które również mają wyższą temperaturę topnienia i są bardziej odpowiednie dla połączeń wymagających dużych obciążeń mechanicznych oraz odporności na wysokie temperatury. Luty miedziano-fosforowe z kolei, chociaż są wykorzystywane w niektórych zastosowaniach, również nie mieszczą się w kategorii lutów miękkich, gdyż mają zastosowanie w lutowaniu twardym, szczególnie w instalacjach miedzianych. Wybór lutów powinien być oparty na właściwościach materiałów oraz wymaganiach konkretnej aplikacji. Zrozumienie tych różnic jest kluczowe dla uniknięcia błędów w lutowaniu, które mogą prowadzić do awarii połączeń oraz zmniejszenia trwałości całych układów elektronicznych.