Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.03 - Montaż, uruchamianie i konserwacja urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 13 lutego 2026 23:07
  • Data zakończenia: 13 lutego 2026 23:17

Egzamin zdany!

Wynik: 35/40 punktów (87,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Jaki rodzaj zaworu powinien zostać zainstalowany w systemie, aby umożliwić przepływ medium wyłącznie w jednym kierunku?

A. Bezpieczeństwa
B. Odcinający
C. Rozdzielający
D. Zwrotny
Zawór zwrotny, znany również jako zawór jednokierunkowy, jest kluczowym elementem w wielu systemach hydraulicznych oraz pneumatycznych, którego głównym zadaniem jest umożliwienie przepływu medium w jednym kierunku, jednocześnie zapobiegając cofaniu się go. Działa na zasadzie automatycznej regulacji, co oznacza, że nie wymaga zewnętrznego źródła energii do działania. Zawory te są powszechnie stosowane w aplikacjach takich jak pompy, gdzie zapobiegają cofaniu się cieczy do pompy, co mogłoby prowadzić do uszkodzenia urządzenia. W praktyce, instalacje, które wymagają ciągłego przepływu medium w określonym kierunku, korzystają z zaworów zwrotnych, aby zapewnić ich efektywność i bezpieczeństwo. Ponadto, stosowanie zaworów zwrotnych jest zgodne z dobrymi praktykami inżynieryjnymi, ponieważ minimalizuje ryzyko awarii systemu oraz zapewnia jego stabilność operacyjną. W związku z tym, zawory zwrotne są niezbędnymi komponentami w systemach, gdzie kontrola kierunku przepływu medium jest krytyczna.

Pytanie 2

Którego klucza należy użyć do zamocowania przedmiotu w uchwycie tokarki?

Ilustracja do pytania
A. A.
B. D.
C. C.
D. B.
Klucz imbusowy, oznaczony literą B, jest kluczowym narzędziem w procesie mocowania przedmiotów w uchwytach tokarskich. Jego unikalny kształt sześciokątny pozwala na efektywne wkręcanie i odkręcanie śrub z gniazdem sześciokątnym, co jest powszechnie stosowane w obrabiarkach. Użycie klucza imbusowego zapewnia pewne i stabilne mocowanie, co jest kluczowe w precyzyjnej obróbce materiałów. W praktyce, klucz imbusowy pozwala na łatwe dostosowanie siły dokręcania, co jest ważne w celu uniknięcia uszkodzeń zarówno śruby, jak i elementu mocowanego. W przemyśle metalowym oraz w warsztatach rzemieślniczych klucze imbusowe są niezbędne, ponieważ wiele maszyn i narzędzi korzysta z takich rozwiązań. Zastosowanie klucza imbusowego zgodnie z najlepszymi praktykami zwiększa bezpieczeństwo pracy i precyzję wykonywanych operacji, co wpływa na jakość końcowego produktu.

Pytanie 3

Na rysunku przedstawione zostały fragmenty dwóch elementów, które należy połączyć techniką połączenia wciskowego wtłaczanego. Jaka powinna być zależność pomiędzy wymiarami d1 i d2?

Ilustracja do pytania
A. dl ≤ d2
B. dl = d2
C. dl < d2
D. dl > d2
W odpowiedzi dl > d2 uznano, że średnica otworu (d2) musi być mniejsza od średnicy wału (d1) w połączeniu wciskowym wtłaczanym. Ta zasada jest fundamentalna dla zapewnienia stabilności i trwałości połączenia. W praktyce, podczas projektowania komponentów mechanicznych, inżynierowie często korzystają z tej zasady, aby zminimalizować ryzyko luzów i zapewnić odpowiednią siłę tarcia między elementami. Na przykład, w zastosowaniach motoryzacyjnych, takie jak łączenie wałów napędowych z osią, dokładne dopasowanie średnic jest kluczowe dla uniknięcia awarii i zwiększenia żywotności komponentów. W standardach branżowych, jak ISO lub ANSI, zaleca się określenie tolerancji wymiarowych, aby zminimalizować ryzyko nadmiernych naprężeń. Różnica pomiędzy wymiarami musi być starannie dobrana, aby umożliwić efektywne przekazywanie obciążeń, a jednocześnie unikać zbyt dużych naprężeń, które mogą prowadzić do deformacji lub pęknięć. Takie podejście jest zgodne z najlepszymi praktykami inżynieryjnymi, co podkreśla znaczenie właściwego doboru wymiarów w projektowaniu komponentów mechanicznych.

Pytanie 4

Potrojenie natężenia prądu przepływającego przez rezystor o niezmiennej rezystancji spowoduje, że ilość ciepła wydzielającego się w nim wzrośnie

A. sześciokrotnie
B. dwukrotnie
C. dziewięciokrotnie
D. trzykrotnie
Odpowiedź "dziewięciokrotnie" jest poprawna, ponieważ zgodnie z prawem Joule'a, moc wydzielająca się w rezystorze jest proporcjonalna do kwadratu natężenia prądu płynącego przez ten rezystor. Prawo to można zapisać jako P = I²R, gdzie P to moc, I to natężenie prądu, a R to rezystancja. Jeśli natężenie prądu wzrasta trzykrotnie (I -> 3I), moc wydzielająca się w rezystorze staje się P' = (3I)²R = 9I²R, co oznacza, że moc wzrasta dziewięciokrotnie. W praktyce, takie zjawisko ma kluczowe znaczenie w projektowaniu obwodów elektrycznych i systemów grzewczych, gdzie kontrola wydzielanego ciepła jest istotna dla bezpieczeństwa i efektywności energetycznej. Zrozumienie tej zależności pozwala inżynierom na odpowiednie dobieranie wartości rezystancji oraz zabezpieczeń, aby uniknąć przegrzewania się elementów w obwodach elektronicznych, co może prowadzić do awarii lub uszkodzeń sprzętu. W branży elektronicznej i elektrycznej, przestrzeganie tych zasad jest niezbędne dla zapewnienia niezawodności i trwałości urządzeń.

Pytanie 5

Na rysunku przedstawiono tabliczki znamionowej

Ilustracja do pytania
A. transformatora
B. autotransformatora.
C. silnik indukcyjnego.
D. silnika prądu stałego.
Odpowiedź dotycząca silnika indukcyjnego jest poprawna, ponieważ tabliczka znamionowa zawiera istotne informacje techniczne typowe dla tego rodzaju silników. Silniki indukcyjne, znane również jako asynchroniczne, są powszechnie stosowane w przemyśle i automatyce ze względu na swoją niezawodność i prostotę konstrukcji. Parametry takie jak moc, prędkość obrotowa oraz napięcie zasilania są kluczowe dla ich działania. Dodatkowo, oznaczenie 'Typ SKg 100L-4B' sugeruje specyfikacje silnika, w tym rozmiar oraz liczbę biegunów, co bezpośrednio wpływa na jego charakterystyki operacyjne. W praktyce, silniki indukcyjne są najlepszym wyborem do zastosowań wymagających stałej prędkości obrotowej przy zmiennym obciążeniu, jak np. w pompach, wentylatorach czy przenośnikach taśmowych. Znajomość tych specyfikacji oraz ich poprawne interpretowanie jest kluczowe w procesie doboru silnika do konkretnej aplikacji przemysłowej.

Pytanie 6

Na rysunku przedstawiono elementy połączenia

Ilustracja do pytania
A. kołkowego.
B. sworzniowego.
C. nitowego.
D. gwintowego.
Odpowiedź dotycząca połączenia sworzniowego jest poprawna, ponieważ na zdjęciu przedstawione są typowe elementy montażowe, które są charakterystyczne dla tej metody łączenia. Połączenie sworzniowe składa się z otworu w jednym z elementów oraz sworznia, który pasuje do tego otworu. Zastosowanie pierścieni segera, które zapobiegają wysunięciu się sworznia, jest standardem w wielu zastosowaniach mechanicznych, co zwiększa trwałość i stabilność połączenia. Sworznie są często wykorzystywane w konstrukcjach maszyn, w których wymagana jest możliwość ruchu obrotowego lub przesuwnego elementów, takich jak zawiasy drzwi czy elementy ruchome w maszynach. Przykładem zastosowania połączeń sworzniowych jest przemysł motoryzacyjny, gdzie stosuje się je w układach zawieszenia do łączenia różnych komponentów. Zrozumienie zasad działania połączeń sworzniowych oraz ich zastosowań w praktyce jest kluczowe dla inżynierów i techników zajmujących się projektowaniem i budową maszyn.

Pytanie 7

Jaką metodę należy wykorzystać do pomiaru prędkości obrotowej wirnika silnika napędzającego system mechatroniczny?

A. Stroboskopową
B. Ultradźwiękową
C. Radiometryczną
D. Termoluminescencyjną
Odpowiedź stroboskopowa jest prawidłowa, ponieważ technika ta jest powszechnie stosowana do pomiaru prędkości obrotowej wirujących elementów, takich jak wały silników. Stroboskopowe pomiary opierają się na zjawisku stroboskopowym, które wykorzystuje krótkie impulsy światła emitowane przez stroboskop do oświetlania wirującego obiektu. W momencie, gdy częstotliwość błysków stroboskopu jest zsynchronizowana z prędkością obrotową wału, obiekt wydaje się zatrzymany, co pozwala dokładnie określić jego prędkość obrotową. Przykładem zastosowania tej metody mogą być sytuacje w przemyśle, gdzie konieczne jest monitorowanie prędkości wałów w maszynach produkcyjnych. Metoda stroboskopowa jest również preferowana w badaniach laboratoryjnych, ponieważ nie wpływa na działanie mierzonych elementów, co jest zgodne z najlepszymi praktykami w inżynierii. Dodatkowo, ta metoda jest szeroko opisana w normach takich jak ISO 24410, które określają wymagania dotyczące pomiarów prędkości obrotowej.

Pytanie 8

Którymi cyframi oznaczono moduły wejść i wyjść dyskretnych sterownika PLC?

Ilustracja do pytania
A. Wejścia cyfrowe – 3, wyjścia cyfrowe – 4.
B. Wejścia cyfrowe – 2, wyjścia cyfrowe – 1.
C. Wejścia cyfrowe – 1, wyjścia cyfrowe – 3.
D. Wejścia cyfrowe – 4, wyjścia cyfrowe – 2.
Poprawna odpowiedź to wejścia cyfrowe – 4, wyjścia cyfrowe – 2. W kontekście sterowników PLC, liczba modułów wejść i wyjść jest kluczowym elementem określającym zdolności systemu automatyki. Oznaczenia cyfr 4 i 2 przypisane do modułów odzwierciedlają rzeczywiste konfiguracje w systemie. Moduł wejść cyfrowych oznaczony jako 'DC DIGITAL INPUTS' z cyfrą 4 wskazuje na możliwość przyjmowania czterech różnych sygnałów wejściowych, co jest istotne w kontekście zbierania danych z czujników czy przycisków. Z kolei moduł wyjść cyfrowych 'DIGITAL OUTPUTS' z cyfrą 2 oznacza, że system może kontrolować dwa urządzenia wyjściowe, co jest niezbędne w automatyzacji procesów, takich jak włączanie silników czy przekaźników. Znajomość liczby modułów pozwala na odpowiednie planowanie rozwoju systemu oraz możliwości jego rozbudowy. W zastosowaniach przemysłowych istotne jest, aby liczba wejść i wyjść była zgodna z wymaganiami aplikacji, co wpływa na efektywność i niezawodność całego układu sterowania.

Pytanie 9

Tachogenerator przy obrotach 1000 obr./min. wytwarza napięcie 30 V. Jaką wartość napięcia wygeneruje ten tachogenerator przy prędkości obrotowej 200 obr./min?

A. 15 V
B. 5 V
C. 6 V
D. 3 V
Prądnica tachometryczna działa na zasadzie generowania napięcia proporcjonalnego do prędkości obrotowej. W tym przypadku, przy prędkości obrotowej 1000 obr./min, prądnica generuje napięcie wynoszące 30 V. Możemy obliczyć napięcie przy niższej prędkości obrotowej, stosując proporcję. Zauważmy, że 200 obr./min to 20% 1000 obr./min. Jeśli napięcie jest proporcjonalne do prędkości, to przy 200 obr./min prądnica wygeneruje 20% z 30 V, co daje 6 V. Tego rodzaju obliczenia są powszechnie stosowane w inżynierii, szczególnie w systemach automatyki, gdzie precyzyjne pomiary napięcia są kluczowe dla prawidłowego działania urządzeń. Przykładowo, w systemach pomiarowych oraz w kontrolach zadań w automatyce przemysłowej, znajomość zależności między prędkością a generowanym napięciem pozwala na optymalizację procesów oraz zwiększenie efektywności energetycznej.

Pytanie 10

Podsystem mechatroniczny prasy hydraulicznej został wyposażony w terminal HMI. To urządzenie nie pozwala jedynie

A. na wizualizację przebiegu pracy prasy
B. na pomiar parametrów procesowych prasy
C. na załączanie i wyłączanie pracy prasy
D. na odczyt wartości zmierzonych parametrów
Każda z błędnych odpowiedzi pokazuje różne nieporozumienia, jeśli chodzi o rolę HMI w systemie mechatronicznym prasy hydraulicznej. Odczytywanie zmierzonych parametrów, włączanie i wyłączanie prasy oraz wizualizacja pracy to funkcje, które są ważne dla interfejsów HMI. Problemem jest to, że mylimy HMI z urządzeniem pomiarowym. Tak naprawdę HMI jest jak pośrednik, który pokazuje dane z innych czujników, jak te od ciśnienia czy temperatury. Typowo myśli się, że interfejs użytkownika może sam mierzyć procesy, co jest dużym błędem. Takie myślenie może prowadzić do nieporozumień w danych i złego zarządzania procesem produkcyjnym. W rzeczywistości, pomiar parametrów wymaga użycia specjalnych urządzeń pomiarowych, które integruje się z systemem HMI, by pokazać wyniki w przejrzysty sposób. Dobrą praktyką jest regularne kalibrowanie czujników i upewnienie się, że odczyty są dobrze widoczne na interfejsie HMI, żeby wspierać operatorów w podejmowaniu decyzji.

Pytanie 11

Wskaż gatunek stali, z której należy wykonać niepodatne na korozję żaroodporne ramię robota przemysłowego.

Ilustracja do pytania
A. 1.0037
B. 1.3343
C. 1.4541
D. 1.2311
Stal 1.4541, znana również jako stal austenityczna, nierdzewna i żaroodporna, charakteryzuje się wysoką odpornością na korozję oraz stabilnością w wysokich temperaturach. Zawiera istotne ilości chromu i niklu, co wpływa na jej strukturę i właściwości. Użycie takiej stali w konstrukcji ramion robotów przemysłowych jest zgodne z najlepszymi praktykami inżynieryjnymi, szczególnie w aplikacjach, gdzie wymagane są odporność na działanie agresywnych substancji chemicznych oraz zdolność do pracy w trudnych warunkach termicznych. Przykładowo, w branży automatyzacji przemysłowej, roboty wyposażone w elementy ze stali 1.4541 mogą być stosowane w procesach spawania, pakowania, czy transportu w warunkach wysokiej wilgotności lub wysokich temperatur. Dodatkowo, stal ta spełnia normy dotyczące materiałów do kontaktu z żywnością, co czyni ją jeszcze bardziej uniwersalnym wyborem.

Pytanie 12

Jakiego urządzenia należy użyć do określenia natężenia prądu płynącego przez urządzenie bez konieczności przerywania obwodu?

A. Multimetra uniwersalnego
B. Amperomierza tablicowego
C. Multimetra analogowego
D. Amperomierza cęgowego
Amperomierz cęgowy jest narzędziem, które pozwala na pomiar natężenia prądu w obwodzie bez konieczności przerywania go. Działa na zasadzie pomiaru pola magnetycznego generowanego przez przepływający prąd. W praktyce oznacza to, że wystarczy nałożyć cęgowy uchwyt na przewód, przez który płynie prąd, aby uzyskać dokładny odczyt. Takie podejście jest niezwykle przydatne w sytuacjach, gdy wyłączenie obwodu mogłoby spowodować zakłócenia w pracy urządzeń, na przykład w przypadku urządzeń przemysłowych czy elektronicznych. Amperomierze cęgowe są często stosowane w branży elektroenergetycznej oraz przy konserwacji i naprawach sprzętu elektrycznego. Warto również zauważyć, że nowoczesne modele amperomierzy cęgowych mogą mieć dodatkowe funkcje, takie jak pomiar napięcia, rezystancji czy częstotliwości, co czyni je wielofunkcyjnymi narzędziami, które spełniają standardy branżowe dotyczące bezpieczeństwa i wydajności.

Pytanie 13

Wskaźnikiem sygnałów logicznych określono poziomy logiczne na wejściach i wyjściach bramek układu przedstawionego na rysunku. Stwierdzono, że nieprawidłowo działa bramka

Ilustracja do pytania
A. NAND
B. Ex-NOR
C. NOT
D. NOR
Bramka Ex-NOR, znana również jako bramka równolitości, ma kluczową rolę w cyfrowych systemach logiki. Jej główną właściwością jest to, że zwraca wartość logiczną 1, gdy oba wejścia są zgodne, co oznacza, że mają tę samą wartość. W przypadku, gdy oba wejścia mają wartość 0, wyjście powinno być 1. W przedstawionym układzie, gdy oba wejścia miały wartość 0, a wyjście wskazywało 0, wskazuje to na awarię bramki. Zastosowanie Ex-NOR w różnych układach cyfrowych, takich jak komparatory czy sprzężenia zwrotne w układach sekwencyjnych, podkreśla znaczenie jej prawidłowego działania. W praktyce, każda nieprawidłowość w działaniu bramki Ex-NOR może prowadzić do błędów w logice systemu, co może mieć dalekosiężne konsekwencje w aplikacjach, jak automatyka przemysłowa czy systemy komunikacyjne. W związku z tym, zrozumienie i systematyczna kontrola poprawności działania bramek logicznych są kluczowe dla inżynierów i projektantów systemów cyfrowych.

Pytanie 14

Element przedstawiony na rysunku uzyskano w wyniku

Ilustracja do pytania
A. toczenia.
B. walcowania.
C. tłoczenia.
D. frezowania.
Odpowiedź "tłoczenia" jest jak najbardziej trafna. To, co widzimy na rysunku, naprawdę pasuje do obróbki plastycznej zwanej tłoczeniem. W dużym skrócie, chodzi o to, że materiał formuje się pod wpływem siły, co pozwala na wyprodukowanie różnych kształtów i detali, jak wgłębienia czy wypukłości, które są widoczne na tym obrazku. Tłoczenie to super metoda, którą często wykorzystuje się w przemyśle, na przykład w motoryzacji, elektronice czy przy produkcji części do konstrukcji. Te branże potrzebują bardzo precyzyjnych i powtarzalnych efektów, więc tłoczenie się świetnie sprawdza. No i warto wspomnieć, że można je stosować zarówno na zimno, jak i na gorąco, co daje jeszcze większe możliwości, jeśli chodzi o różne materiały, jak stal, aluminium czy różne tworzywa sztuczne.

Pytanie 15

Po sprawdzeniu zgodności połączeń (Rysunek II.) z dokumentacją techniczną (Rysunek I.) wynika, że błędnie wybrany jest

Ilustracja do pytania
A. siłownik Al
B. przekaźnik KI
C. rozdzielacz VI
D. przekaźnik K2
Odpowiedź 'rozdzielacz VI' jest prawidłowa, ponieważ po porównaniu Rysunku I z Rysunkiem II można zauważyć istotne różnice w podłączeniu cewki tego elementu. Na Rysunku I, cewki rozdzielacza VI są poprawnie podłączone do styków 2 i 4, co jest zgodne z dokumentacją techniczną. Natomiast na Rysunku II, cewki te są podłączone do styków 1 i 4, co wskazuje na błąd w połączeniach. W praktyce, prawidłowe podłączenie elementów w układach elektrycznych jest kluczowe dla zapewnienia ich właściwego funkcjonowania oraz bezpieczeństwa. Niezgodności w podłączeniach mogą prowadzić do uszkodzenia komponentów, a także do potencjalnych zagrożeń pożarowych. Dlatego tak ważne jest, aby zawsze dokładnie porównywać schematy z rzeczywistymi połączeniami, zwracając szczególną uwagę na numery styków i ich funkcje. Przestrzeganie standardów dokumentacji technicznej, takich jak normy IEC czy obowiązujące przepisy BHP, ma fundamentalne znaczenie w pracy inżyniera oraz technika. W sytuacjach takich jak modernizacje systemów, zawsze należy weryfikować, czy zmiany wprowadzone w instalacji są zgodne z dokumentacją, aby uniknąć poważnych błędów i zapewnić niezawodność systemu.

Pytanie 16

Sprężarka typu śrubowego jest sprężarką

A. wyporową
B. turbinową
C. przepływową
D. rotacyjną
Sprężarki turbinowe nie są tym samym, co sprężarki śrubowe, ponieważ opierają się na zupełnie innej zasadzie działania. Turbiny sprężają gaz poprzez jego przyspieszenie w wirnikach, co prowadzi do wzrostu ciśnienia. Ta metoda jest bardziej charakterystyczna dla sprężarek używanych w silnikach lotniczych lub w systemach generacji energii. Z kolei sprężarki wyporowe działają na zasadzie zmiany objętości, gdzie tłok porusza się w cylindrze, sprężając gaz. To rozwiązanie, chociaż powszechnie stosowane w mniejszych urządzeniach, ma swoje ograniczenia w kontekście efektywności przy dużych przepływach. Ostatnią z wymienionych opcji, sprężarki przepływowe, również różnią się od sprężarek rotacyjnych, gdyż ich konstrukcja opiera się na ciągłym przepływie gazu przez układ, co czyni je bardziej odpowiednimi dla specyficznych zastosowań przemysłowych, a nie uniwersalnych. Mylenie tych różnych typów sprężarek wynika często z niewłaściwego zrozumienia ich mechanizmów działania, co prowadzi do błędnych wniosków. Kluczowe jest zrozumienie, że każdy typ sprężarki ma swoje unikalne cechy, zalety i ograniczenia, które determinują ich zastosowanie w praktyce. Właściwy dobór sprężarki powinien być uzależniony od specyficznych wymagań procesu oraz warunków operacyjnych.

Pytanie 17

Co znaczy zaświecenie czerwonej diody oznaczonej skrótem BATF na panelu kontrolnym sterownika PLC?

A. Potrzeba zmian w parametrach programu
B. Tryb funkcjonowania CPU
C. Brak baterii podtrzymującej zasilanie
D. Tryb wstrzymania CPU
Wybierając odpowiedzi dotyczące trybów pracy CPU czy konieczności zmiany parametrów programu, można łatwo dojść do nieporozumień, które mogą wpływać na sposób, w jaki użytkownicy interpretują komunikaty sygnalizacyjne w sterownikach PLC. Tryb pracy CPU odnosi się do stanu, w którym procesor kontroluje różne operacje w systemie, a informacja o trybie zatrzymania CPU dotyczy momentu, gdy urządzenie nie wykonuje żadnych operacji. Obie te odpowiedzi są mylące, gdyż nie odnoszą się do problemu zasilania i nie wskazują na rzeczywistą przyczynę zamknięcia systemu. Stwierdzenie, że zaświecenie diody BATF oznacza konieczność zmiany parametrów programu, także może prowadzić do błędnych działań operacyjnych. Zmiana parametrów wymaga przemyślanej analizy i często nie wiąże się bezpośrednio z problemami zasilania. Użytkownicy mogą mylnie zakładać, że problemy związane z diodą oznaczają konieczność dostosowania ustawień, co w rzeczywistości może prowadzić do dalszych komplikacji w działaniu systemu. Kluczowe jest zrozumienie, że komunikaty diodowe na panelu sygnalizacyjnym są zaprojektowane do bezpośredniego informowania o konkretnych problemach, a ich interpretacja powinna się skupiać na podstawowych funkcjach urządzenia, takich jak podtrzymywanie pamięci przez baterię.

Pytanie 18

Metoda osuszania sprężonego powietrza, w której w pierwszej fazie usuwana jest para wodna oraz olej za pomocą węgla aktywowanego, a w drugiej następuje odessanie pary wodnej w kapilarach żelu krzemionkowego, określana jest jako

A. konwekcją
B. absorpcją
C. desorpcją
D. adsorpcją
Proces osuszania sprężonego powietrza, określany jako adsorpcja, jest kluczowym elementem w wielu zastosowaniach przemysłowych. W pierwszym etapie, węgiel aktywowany działa jako filtr, eliminując parę wodną oraz olej, co jest istotne dla zachowania jakości sprężonego powietrza. Węgiel aktywowany ma dużą powierzchnię oraz porowatą strukturę, co umożliwia efektywne wchłanianie substancji lotnych, a zatem jest powszechnie stosowany w systemach klimatyzacyjnych i wentylacyjnych. Następnie w drugim etapie, żel krzemionkowy, który również charakteryzuje się dużą powierzchnią adsorpcyjną, skutecznie absorbuje pozostałą parę wodną, co pozwala na uzyskanie wysokiej jakości powietrza o niskiej wilgotności. Przykładem zastosowania adsorpcji w przemyśle może być produkcja elektroniki, gdzie sucha atmosfera jest kluczowa dla uniknięcia uszkodzeń komponentów. Stosowanie systemów opartych na adsorpcji jest zgodne z normami, takimi jak ISO 8573, które definiują wymagania dotyczące czystości sprężonego powietrza.

Pytanie 19

Jakie zasilanie należy zastosować do silnika, którego tabliczka znamionowa została przedstawiona na fotografii?

Ilustracja do pytania
A. Trójfazowe, 230 V
B. Trójfazowe, 400 V
C. Napięcie stałe, 84 V
D. Jednofazowe, 400 V
Odpowiedź "Trójfazowe, 400 V" jest poprawna, ponieważ na tabliczce znamionowej silnika znajduje się oznaczenie "3~ 400 V". Oznacza to, że silnik zbudowany jest do pracy w systemie trójfazowym z napięciem wynoszącym 400 V. Silniki trójfazowe są powszechnie stosowane w przemyśle ze względu na ich wyższą efektywność oraz mniejsze straty energii w porównaniu do silników jednofazowych. W zastosowaniach przemysłowych, gdzie wymagane są większe moce, zasilanie trójfazowe jest standardem, ponieważ pozwala na równomierne obciążenie linii zasilających oraz umożliwia lepsze wykorzystanie mocy. Warto również zwrócić uwagę na to, że przy podłączeniu silnika do zasilania, które nie odpowiada jego wymaganiom, może dojść do uszkodzenia wirnika, przegrzewania silnika lub w ogóle braku jego działania. Dlatego tak ważne jest, aby przy wyborze zasilania kierować się oznaczeniami na tabliczkach znamionowych oraz stosować się do branżowych standardów, aby zapewnić bezpieczeństwo i efektywność pracy urządzeń.

Pytanie 20

Na rysunku przedstawiono m.in.

Ilustracja do pytania
A. suport poprzeczny.
B. wałek pociągowy.
C. imadło.
D. uchwyt tokarski.
Uchwyt tokarski jest kluczowym elementem wyposażenia tokarni, który umożliwia precyzyjne mocowanie obrabianych przedmiotów. Jego konstrukcja składa się z dwóch lub więcej szczęk, które mogą być regulowane za pomocą kluczy. Dzięki temu uchwyt jest w stanie zacisnąć różne średnice elementów, co czyni go niezwykle wszechstronnym i niezbędnym w procesach obróbczych. W praktyce, uchwyty tokarskie występują w różnych rozmiarach i kształtach, co pozwala na ich zastosowanie w zależności od typu obrabianego materiału oraz specyfiki pracy na tokarce. Użycie uchwytu tokarskiego zgodnie z dobrą praktyką obróbcza nie tylko zwiększa efektywność pracy, ale również zapewnia bezpieczeństwo operatora, ponieważ odpowiednie mocowanie elementu minimalizuje ryzyko jego usunięcia lub uszkodzenia podczas obróbki. Warto pamiętać, że uchwyty tokarskie są projektowane zgodnie z normami, takimi jak ISO 9001, co gwarantuje ich wysoką jakość i niezawodność w zastosowaniach przemysłowych.

Pytanie 21

Typowym elementem konstrukcji siłownika, przygotowanego do współpracy z bezdotykowymi czujnikami położenia krańcowego, jest

A. tłumik
B. magnes stały
C. membrana
D. zawór dławiący
Magnes stały jest kluczowym elementem siłowników przystosowanych do współpracy z bezdotykowymi sensorami położeń krańcowych, ponieważ umożliwia precyzyjne i niezawodne określenie pozycji roboczej siłownika. Bezdotykowe sensory, takie jak czujniki Halla, działają w oparciu o pole magnetyczne generowane przez magnes stały, co pozwala na zdalne monitorowanie i kontrolowanie pracy siłownika bez ryzyka mechanicznego zużycia. Przykładem zastosowania jest automatyka przemysłowa, gdzie magnesy stałe są wykorzystywane w siłownikach do precyzyjnego pozycjonowania w systemach transportowych. Dobrym standardem w branży jest stosowanie magnesów neodymowych ze względu na ich wysoką siłę magnetyczną oraz kompaktowe wymiary, co przekłada się na mniejsze rozmiary i większą efektywność systemów automatyki. Ponadto, zastosowanie magnesów stałych zwiększa żywotność komponentów, zmniejsza koszty utrzymania i zwiększa niezawodność całego systemu, co jest zgodne z najlepszymi praktykami inżynieryjnymi.

Pytanie 22

W barach są skalowane

A. manometry
B. przepływomierze
C. prędkościomierze
D. wiskozymetry
Manometry to urządzenia pomiarowe, które służą do określania ciśnienia w różnych systemach. W kontekście barów, manometry są szczególnie ważne w kontrolowaniu ciśnienia gazów i cieczy, co jest kluczowe w wielu procesach przemysłowych oraz w instalacjach hydraulicznych i pneumatycznych. Przykładowo, w przemyśle gazowym manometry umożliwiają monitorowanie ciśnienia w zbiornikach, co jest niezbędne dla zapewnienia bezpieczeństwa i efektywności systemu. W praktyce, manometry są również używane w medycynie, na przykład do pomiaru ciśnienia krwi, co ilustruje ich wszechstronność. Standardy branżowe, takie jak ISO 5171, określają parametry, które manometry muszą spełniać, aby zapewnić wiarygodność i dokładność pomiarów. Ponadto, manometry różnią się rodzajem zastosowanego medium, mogą być stosowane w warunkach wysokotemperaturowych lub w środowiskach agresywnych chemicznie, co dodatkowo podkreśla ich znaczenie w szerokiej gamie aplikacji.

Pytanie 23

Który z poniższych języków programowania dla sterowników PLC jest językiem tekstowym?

A. IL (Instruction List) - lista instrukcji - lista instrukcji
B. ST (Structured Text) - tekst strukturalny
C. SFC (SeΩuential Function Chart) - schemat sekwencji funkcji
D. FBD (Function Block Diagram) - schemat bloków funkcyjnych
SFC, FBD i ST to też języki programowania, które wykorzystuje się w PLC, ale tu jest mały szkopuł – nie są one tekstowe. SFC, czyli Sequential Function Chart, to bardziej graficzny sposób przedstawienia działania systemu. Pokazuje, jak przebiegają operacje w formie diagramu, co jest fajne dla wizualizacji, ale nie przypomina zwykłego kodu. FBD, czyli Function Block Diagram, działa na podobnej zasadzie – tworzy się tam bloki funkcyjne i łączy je jako rysunki. To ułatwia modelowanie systemów, ale znowu, to nie tekst. ST, czyli Structured Text, jest bardziej skomplikowanym językiem tekstowym, bliskim tym wysokiego poziomu jak Pascal czy C. Chociaż ST jest tekstowy, to w tym przypadku odpowiedzią nie jest, bo IL to najprostszy z tekstowych języków do PLC. Wiele osób myli języki graficzne z tekstowymi, co często prowadzi do takich błędów. Takie zrozumienie poziomów abstrakcji jest kluczowe, zwłaszcza przy nauce programowania w automatyce.

Pytanie 24

Na rysunku zamieszczono symbol graficzny

Ilustracja do pytania
A. przekaźnika.
B. wyłącznika silnikowego.
C. stycznika.
D. ochronnika przeciwprzepięciowego.
Symbol graficzny przedstawiony na rysunku to typowy symbol wyłącznika silnikowego, który jest kluczowym elementem w systemach zasilania silników elektrycznych. Wyłącznik silnikowy pełni funkcję zabezpieczającą, chroniąc silniki przed skutkami przeciążenia oraz zwarcia, co ma fundamentalne znaczenie w zachowaniu bezpieczeństwa instalacji elektrycznych. W kontekście trójfazowego zasilania, wyłącznik silnikowy jest zazwyczaj wyposażony w trzy pary styków, co umożliwia równoczesne odłączenie każdej z faz zasilających. Przykładem zastosowania wyłączników silnikowych są aplikacje w przemysłowych systemach automatyki, gdzie zapewniają one nie tylko ochronę silników, ale również ułatwiają ich uruchamianie i zatrzymywanie. Dodatkowo, standardy takie jak IEC 60947-4-1 określają wymagania dotyczące dobrego projektowania i użytkowania wyłączników silnikowych, co jest kluczowe dla zapewnienia ich efektywności oraz bezpieczeństwa w zastosowaniach przemysłowych.

Pytanie 25

Które z wymienionych narzędzi należy zastosować podczas wymiany układu scalonego na płytce drukowanej, widocznej na zdjęciu?

Ilustracja do pytania
A. Śrubokręt i szczypce.
B. Ucinaczki i pilnik.
C. Pęsetę i zaciskarkę.
D. Lutownicę i odsysacz.
Lutownica i odsysacz to kluczowe narzędzia w procesie wymiany układu scalonego na płytce drukowanej. Lutownica, jako narzędzie do podgrzewania cyny, pozwala na jej roztopienie, co jest niezbędne do skutecznego odłączenia układu od płytki. Odsysacz jest równie ważny, gdyż umożliwia usunięcie nadmiaru roztopionej cyny, co minimalizuje ryzyko uszkodzenia ścieżek przewodzących na płytce. Użycie tych narzędzi zgodnie z najlepszymi praktykami branżowymi zapewnia nie tylko efektywność, ale także bezpieczeństwo całego procesu. Na przykład, podczas pracy z płytkami PCB, ważne jest, aby unikać przegrzania komponentów, co może prowadzić do ich uszkodzenia lub zmniejszenia wydajności. Dobrze jest również używać odsysacza w celu precyzyjnego usunięcia cyny, co z kolei pozwala na łatwiejsze umiejscowienie nowego układu scalonego. Warto również zwrócić uwagę na to, że lutownica powinna być odpowiednio kalibrowana, a temperatura lutowania dostosowana do specyfiki używanej cyny.

Pytanie 26

W jaki sposób należy podłączyć przewody do złącz przedstawionych na fotografii?

Ilustracja do pytania
A. Za pomocą klejenia.
B. Wtykowo bez użycia narzędzi.
C. Poprzez skręcenie kluczem oczkowym.
D. Za pomocą lutowania.
Dobra robota, odpowiedź "Wtykowo bez użycia narzędzi" jest właściwa. Złącza, które widzisz na zdjęciu, są śrubowe, a to oznacza, że możesz podłączyć przewody w dość prosty sposób, po prostu je wsuwając. Włożenie odizolowanego końca przewodu do otworu w złączu i przykręcenie śruby nie wymaga żadnych narzędzi, co jest sporym ułatwieniem. W praktyce dzięki temu łatwiej wymienia się przewody i robi konserwację, bez obaw o uszkodzenie złącza. Pamiętaj tylko, że ważne jest, żeby zachować odpowiednią kolejność i sposób podłączania – solidne połączenie to podstawa, żeby nie było problemów z przewodnością. Połączenia wtykowe są też estetyczne i zwiększają bezpieczeństwo, dlatego są tak popularne w różnych zastosowaniach.

Pytanie 27

Jakim skrótem literowym określa się język drabinkowy?

A. IL
B. STL
C. FBD
D. LD
Język drabinkowy, znany jako LD, to jeden z najpopularniejszych języków w automatyce przemysłowej. Używa się go często do programowania sterowników PLC. Struktura tego języka wygląda jak drabinka, gdzie po bokach są zasilania, a w środku masz linie, które pokazują logikę działania. To strasznie ułatwia wszystko, bo dzięki temu operatorzy mogą szybko zrozumieć, co się dzieje w systemie. Przykładowo, jeśli chcemy, żeby silnik ruszał w zależności od czujnika, to właśnie w diagramie drabinkowym można to zobaczyć i łatwo poprawić, gdy coś nie działa. W praktyce LD jest zgodny z normą IEC 61131-3, która ustala zasady dla różnych języków programowania w automatyce, dlatego jest w zasadzie standardem w tej branży. W moim zdaniu to naprawdę dobry wybór do prostszych układów.

Pytanie 28

Za pomocą przedstawionego na rysunku przyrządu można zmierzyć prędkość obrotową elementów napędowych urządzenia mechatronicznego metodą

Ilustracja do pytania
A. stroboskopową.
B. laserową.
C. wibroakustyczną.
D. elektromagnetyczną.
No to tak, odpowiedź jest jak najbardziej na plus. Tachometr laserowy to świetny wybór, bo naprawdę fajnie mierzy prędkość obrotową. Działa to tak, że wiązka laserowa odbija się od obracającego się obiektu, co daje dokładne wyniki. To mega ważne w mechatronice, gdzie liczy się precyzja i niezawodność. W różnych dziedzinach, jak automatyka czy robotyka, ten sprzęt jest nie do przebicia. Na przykład, gdy technicy serwisują maszyny, używają tachometru laserowego do sprawdzania prędkości obrotowej wałów napędowych, co pozwala im na wcześniejsze wykrycie potencjalnych problemów. W branży motoryzacyjnej też jest nieoceniony, zwłaszcza przy testowaniu silników, gdzie dokładność pomiarów ma ogromne znaczenie dla osiągów pojazdów. A co ważne, pomiar laserowy jest nieinwazyjny, więc nie ma ryzyka uszkodzenia mierzonych elementów, co jest naprawdę na plus.

Pytanie 29

Na podstawie widoku płytki drukowanej i schematu ideowego wskaż, który element należy zamontować na płytce drukowanej w miejscu oznaczonym C3.

Ilustracja do pytania
A. Element 1.
B. Element 4.
C. Element 3.
D. Element 2.
Zgadza się, że element 2 to kondensator elektrolityczny o pojemności 100uF. To pasuje do tego, co widzimy w schemacie na miejscu oznaczonym C3. Wiesz, dobór odpowiednich komponentów w obwodach jest naprawdę ważny, bo od tego zależy, jak całość będzie działać. Kondensatory mają do odegrania sporo ról, zwłaszcza w filtracji sygnałów i stabilizacji napięcia. Gdybyśmy użyli kondensatora o innej pojemności, to mogłoby to wprowadzać jakieś zakłócenia w pracy urządzenia. Dlatego warto być dokładnym w projektowaniu i trzymać się specyfikacji, które podają producenci. Używanie komponentów zgodnych z normami, takimi jak IPC-2221, to dobry pomysł, bo to pomaga uniknąć problemów. No i pamiętajmy o montażu kondensatorów – jeśli podłączymy je źle, to możemy stracić ich wydajność. Dlatego warto mieć pod ręką dobrą dokumentację i umieć czytać schematy.

Pytanie 30

Które urządzenie ma symbol graficzny taki jak na rysunku?

Ilustracja do pytania
A. Pompa hydrauliczna.
B. Silnik hydrauliczny.
C. Sprężarka pneumatyczna.
D. Silnik pneumatyczny.
Pompa hydrauliczna to takie urządzenie, które zamienia energię mechaniczną na hydrauliczną. To ważny element w wielu systemach hydraulicznych, więc warto o nim wiedzieć. Na rysunku można zobaczyć symbol graficzny, który pokazuje cechy pompy. Kształt koła to wirnik lub tłok, a trójkąt pokazuje, w którą stronę płynie medium. Pompy hydrauliczne znajdują zastosowanie w różnych dziedzinach, jak budownictwo, motoryzacja czy przemysł maszynowy. Jest nawet norma ISO 4413, która mówi, jakie powinny być wymagania dla systemów hydraulicznych. Dlatego znajomość tych symboli i ich zastosowania jest kluczowa, szczególnie dla inżynierów i techników, którzy projektują hydraulikę. Wybranie odpowiedniej pompy ma wpływ na efektywność i bezpieczeństwo całego systemu. Generalnie, zrozumienie, jak działają pompy hydrauliczne, pozwala na lepsze projektowanie i użytkowanie tych systemów, co w efekcie przynosi oszczędności i większą wydajność.

Pytanie 31

Instalacje pneumatyczne powinny być montowane pod lekkim kątem wznoszącym, aby ułatwić

A. spływ kondensatu wodnego do najniższego punktu instalacji
B. odfiltrowanie cząstek stałych z powietrza
C. rozbijanie kropli oleju strumieniem sprężonego powietrza
D. rozchodzenie się mgły olejowej w instalacji
Odpowiedź dotycząca spływu kondensatu wodnego do najniższego punktu instalacji jest poprawna, ponieważ odpowiednie nachylenie instalacji pneumatycznych jest kluczowe dla efektywnego zarządzania kondensatem. W instalacjach wykorzystujących sprężone powietrze, wilgoć ma tendencję do skraplania się w chłodniejszych miejscach, co prowadzi do powstawania kondensatu. Utrzymywanie niewielkiego kąta wznoszącego pozwala na naturalny spływ kondensatu do wyznaczonych punktów odprowadzających, co minimalizuje ryzyko osadzania się wody w rurach. Praktyczne przykłady skutecznego zarządzania kondensatem można znaleźć w branżach takich jak przemysł spożywczy czy farmaceutyczny, gdzie odpowiednie odprowadzanie wody jest kluczowe dla zachowania jakości produktu. Normy branżowe, takie jak ISO 8573, podkreślają znaczenie zarządzania jakością powietrza sprężonego, co obejmuje również kontrolę kondensatu, co dodatkowo uzasadnia konieczność stosowania odpowiedniego nachylenia rur.

Pytanie 32

Przyłącze "T" zaworu hydraulicznego przedstawionego na rysunku należy podłączyć do

Ilustracja do pytania
A. siłownika dwustronnego działania.
B. pompy.
C. siłownika jednostronnego działania.
D. zbiornika oleju.
Odpowiedź 'zbiornik oleju' jest prawidłowa, ponieważ przyłącze 'T' w zaworach hydraulicznych pełni rolę przyłącza zwrotnego, które odprowadza olej z powrotem do zbiornika w sytuacjach, gdy układ nie wymaga jego dalszego ciśnienia. W standardowych układach hydraulicznych, gdy zawór znajduje się w pozycji neutralnej, olej, który nie jest używany do napędu siłowników, musi być odprowadzany, aby uniknąć nadmiernego ciśnienia w systemie. Dobrą praktyką inżynieryjną jest odpowiednie podłączenie tego przyłącza, aby zapewnić prawidłowy obieg oleju i bezpieczeństwo układu. Na przykład, w układach z siłownikami hydraulicznymi, które często przechodzą w stan neutralny, olej powinien być odprowadzany do zbiornika, aby zminimalizować ryzyko uszkodzenia komponentów hydraulicznych poprzez nadmierne ciśnienie. Przykładowo, w maszynach budowlanych, takich jak koparki czy podnośniki, odpowiednie podłączenie przyłącza T do zbiornika oleju jest kluczowe dla efektywnej pracy i bezpieczeństwa operacji.

Pytanie 33

Aby zmierzyć naprężenia normalne (ściśnięcia, rozciągnięcia), należy użyć

A. pirometru
B. termometru
C. tachometru
D. tensometru
Tensometr jest urządzeniem służącym do pomiaru naprężeń normalnych, takich jak ściskanie i rozciąganie. Działa na zasadzie pomiaru odkształceń, które następnie przelicza na wartości naprężeń zgodnie z zasadą Hooke'a. Dzięki temu, tensometry są niezwykle ważne w inżynierii mechanicznej i materiałowej, gdzie precyzyjne pomiary naprężeń są kluczowe dla oceny wytrzymałości materiałów oraz konstrukcji. Przykłady zastosowania tensometrów obejmują badania wytrzymałościowe elementów konstrukcyjnych, takich jak belki, stropy czy mosty. W standardach takich jak ISO 9513 określono metody kalibracji tensometrów, co pozwala na uzyskanie wiarygodnych wyników. Dobre praktyki w stosowaniu tensometrów obejmują również ich odpowiedni dobór do rodzaju materiału oraz warunków pomiarowych, co zapewnia rzetelność i dokładność uzyskanych wyników. Dodatkowo, stosowane są różne typy tensometrów, w tym tensometry foliowe, które umożliwiają pomiary na różnorodnych powierzchniach, co zwiększa ich wszechstronność w zastosowaniach inżynieryjnych.

Pytanie 34

Na której ilustracji przedstawiono prawidłowe ułożenie przewodu hydraulicznego?

Ilustracja do pytania
A. Na ilustracji 4.
B. Na ilustracji 2.
C. Na ilustracji 3.
D. Na ilustracji 1.
Wybór innej ilustracji, zamiast ilustracji 2, może wynikać z kilku powszechnych błędów myślowych, które warto zrozumieć, aby uniknąć podobnych pomyłek w przyszłości. Często zdarza się, że osoby analizujące ułożenie przewodów hydraulicznych nie zwracają uwagi na zagięcia oraz kąt nachylenia przewodu. Niekorzystne ułożenie przewodu, jak pokazano na pozostałych ilustracjach, może prowadzić do zwiększonego ryzyka uszkodzeń, takich jak pęknięcia czy przetarcia, co ma bezpośredni wpływ na sprawność całego systemu. Zagięcia pod zbyt ostrym kątem generują dodatkowe napięcia w materiale przewodu, co przyspiesza jego zużycie. Właściwe zrozumienie dynamiki płynów oraz obciążeń działających na przewody hydrauliczne jest kluczowe, aby prawidłowo je zamontować. Wiele osób mylnie uważa, że wygląd przewodu jest wystarczający do oceny jego prawidłowości, jednak należy brać pod uwagę również dynamikę i ruch płynów wewnątrz systemu. Zastosowanie się do standardów branżowych, takich jak ISO 4413, może pomóc w uniknięciu błędów montażowych, które mogą mieć poważne konsekwencje dla funkcjonowania hydrauliki. Warto również zauważyć, że nieodpowiednie ułożenie może prowadzić do awarii, co w konsekwencji może skutkować nie tylko stratami finansowymi, ale także zagrożeniem dla bezpieczeństwa. Dlatego tak istotne jest, aby każde ułożenie przewodu hydraulicznego było przemyślane i zgodne z najlepszymi praktykami w tej dziedzinie.

Pytanie 35

Jaką kinematykę reprezentuje przedstawiony na rysunku manipulator?

Ilustracja do pytania
A. OOO
B. OPP
C. OPO
D. PPP
Odpowiedź PPP jest poprawna, ponieważ kinematyka manipulatora zależy od rodzaju połączeń między jego segmentami. W przedstawionym rysunku zauważamy, że manipulator posiada trzy przeguby przesuwne, co klasyfikuje go jako manipulator typu PPP. Przegub przesuwny, zwany również przegubem pryzmatycznym, pozwala na ruch liniowy wzdłuż jednej osi, co skutkuje prostotą i precyzją w aplikacjach wymagających dokładnych przesunięć. Tego rodzaju manipulatory są szeroko stosowane w automatyzacji procesów, takich jak montaż, pakowanie czy transport, gdzie niezbędne jest precyzyjne pozycjonowanie obiektów. Zgodnie z normami ISO dotyczących kinematyki robotów, manipulatory PPP wykazują dużą efektywność w zadań związanych z manipulacją obiektami o regularnych kształtach. Dodatkowo, w praktyce inżynieryjnej, analiza i projektowanie systemów opartych na manipulatorach PPP są znane ze swojej modułowości i łatwości w adaptacji do zmieniających się potrzeb produkcyjnych.

Pytanie 36

Tyrystor, w którym anoda ma dodatni potencjał, a katoda i bramka mają potencjał ujemny, znajduje się w stanie

A. zaporowym
B. przewodzenia
C. blokowania
D. nasycenia
Tyrystor, kiedy anoda ma dodatni potencjał, a bramka i katoda mają potencjał ujemny, jest w stanie blokowania. To znaczy, że nie przewodzi prądu, mimo że teoretycznie mógłby. Takie blokowanie jest naprawdę ważne w sytuacjach, gdzie trzeba kontrolować przepływ prądu, jak na przykład w prostownikach czy w różnych układach regulacji mocy. Żeby tyrystor zaczął przewodzić, trzeba najpierw podać impuls napięcia na bramkę, co zmienia jego stan na przewodzenie. W praktyce blokowanie tyrystora pomaga unikać niechcianych przepływów prądu, co jest istotne dla bezpieczeństwa obwodów i zasilaczy. Dzięki temu, że tyrystory są tak często używane w elektronice, szczególnie w zarządzaniu energią, warto wiedzieć, jak działają w stanie blokowania, bo to naprawdę ma ogromne znaczenie.

Pytanie 37

W celu oceny stanu technicznego przycisku S1 wykonano pomiary rezystancji, których wyniki przedstawiono w tabeli. Na ich podstawie można stwierdzić, że przycisk S1 posiada styk

Nazwa elementuPomiar rezystancji styków w Ω
Przed przyciśnięciemPo przyciśnięciu
Przycisk S10,22
A. NC, który jest niesprawny.
B. NO, który jest sprawny.
C. NC, który jest sprawny.
D. NO, który jest niesprawny.
Odpowiedź, że przycisk S1 posiada styk NC (Normally Closed) i jest sprawny, jest prawidłowa z kilku ważnych powodów. Zmierzona rezystancja wynosząca 0,22 Ω przed przyciśnięciem wskazuje, że styk jest zamknięty, co oznacza, że prąd może swobodnie przepływać. Po naciśnięciu przycisku rezystancja wzrasta do wartości nieskończoności, co oznacza, że styk otwiera się i przestaje przewodzić prąd. Tego rodzaju działanie jest typowe dla styków NC, które w normalnym stanie są zamknięte, a ich funkcja polega na otwieraniu obwodu po aktywacji. Przykład zastosowania to systemy alarmowe, w których normalnie zamknięte styki są wykorzystywane do monitorowania otwarcia drzwi lub okien. W przypadku awarii, styk otwarty sygnalizuje alarm, co jest zgodne z najlepszymi praktykami w dziedzinie automatyki i zabezpieczeń. Dobrze skonstruowane obwody powinny być projektowane w taki sposób, aby minimalizować ryzyko fałszywych alarmów, co czyni przyciski NC idealnym rozwiązaniem dla wielu zastosowań.

Pytanie 38

Do montażu pneumatycznego zaworu rozdzielającego przy pomocy wkręta przedstawionego na rysunku, należy użyć wkrętaka typu

Ilustracja do pytania
A. Pozidriv
B. Tora
C. Tri-Wing
D. Philips
Odpowiedź "Tri-Wing" jest prawidłowa, ponieważ wkręty tego typu charakteryzują się unikalnym kształtem nacięcia, które składa się z trzech skrzydeł. To rozwiązanie pozwala na pewniejsze dopasowanie wkrętaka do wkręta, co znacząco.reduce ryzyko uszkodzenia zarówno narzędzia, jak i elementu, który jest montowany. Wkręty Tri-Wing są szeroko stosowane w przemyśle lotniczym oraz elektronicznym, gdzie wymagana jest wysoka precyzja oraz odporność na nieautoryzowane manipulacje. Dzięki technice montażu z użyciem wkrętów Tri-Wing, możliwe jest uzyskanie solidnego połączenia, które wytrzymuje duże obciążenia i wibracje. W praktyce, użycie wkrętaka odpowiedniego do nacięcia wkręta jest kluczowe dla zapewnienia długowieczności montażu oraz bezpieczeństwa operacji. Zgodnie z najlepszymi praktykami w inżynierii, wykorzystanie dedykowanych narzędzi do konkretnych typów wkrętów jest zalecane, aby uniknąć problemów związanych z niewłaściwym dopasowaniem. W związku z tym, wybór wkrętaka Tri-Wing w tym przypadku jest absolutnie uzasadniony.

Pytanie 39

Element elektroniczny przedstawiony na rysunku to

Ilustracja do pytania
A. kondensator.
B. rezystor.
C. tranzystor.
D. dioda.
Tranzystor, który został przedstawiony na zdjęciu, jest kluczowym elementem w nowoczesnej elektronice, szczególnie w układach analogowych i cyfrowych. Posiada on trzy wyprowadzenia: bramkę (G), dren (D) oraz źródło (S), które są charakterystyczne dla tranzystora polowego typu MOSFET. Tranzystory są powszechnie używane do wzmacniania sygnałów oraz jako przełączniki w obwodach elektronicznych. Na przykład, w zastosowaniach audio, tranzystory mogą wzmacniać sygnały, pozwalając na wytwarzanie dźwięku o wyższej mocy. W systemach cyfrowych, tranzystory stanowią podstawę działania układów logicznych, umożliwiając realizację operacji arytmetycznych i logicznych. Dodatkowo, tranzystory są niezbędne w projektach fotowoltaicznych, gdzie kontrolują przepływ prądu z paneli słonecznych do akumulatorów. Warto również podkreślić, że znajomość działania tranzystorów jest niezbędna dla każdego inżyniera elektronika, ponieważ są one fundamentem wielu nowoczesnych technologii.

Pytanie 40

Które oprogramowanie należy zainstalować do tworzenia wizualizacji procesu przedstawionego na rysunku?

Ilustracja do pytania
A. SCADA
B. CAQ
C. CAD
D. CAM
Odpowiedź SCADA jest poprawna, ponieważ oprogramowanie to jest kluczowym narzędziem w obszarze automatyki przemysłowej, stosowanym do nadzorowania oraz kontrolowania procesów technologicznych. SCADA (Supervisory Control and Data Acquisition) umożliwia zbieranie danych z różnych źródeł, takich jak czujniki i urządzenia pomiarowe, co pozwala na bieżąco monitorować stany procesów, w tym poziomy cieczy i przepływy, jak przedstawiono na załączonym rysunku. Przykładem zastosowania SCADA może być przemysł chemiczny, gdzie systemy te są wykorzystywane do monitorowania zbiorników z substancjami chemicznymi oraz kontrolowania ich przepływów, co zapewnia bezpieczeństwo oraz optymalizację procesów. Standardy takie jak ISA-95 i ISA-88 określają najlepsze praktyki dotyczące integracji systemów SCADA z innymi systemami automatyki i rozwoju wizualizacji procesów. SCADA nie tylko wspiera efektywność operacyjną, ale także pozwala na szybkie podejmowanie decyzji dzięki dostępowi do aktualnych danych.