Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 10 lutego 2026 18:03
  • Data zakończenia: 10 lutego 2026 18:37

Egzamin zdany!

Wynik: 25/40 punktów (62,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Jaka jest maksymalna moc kuchni elektrycznej zamontowanej w lokalu zasilanym napięciem 400/230V, jeśli obwód zasilający jest chroniony przez wyłącznik nadprądowy typu S-303 CLS6-C10/3?

A. 2,9 kW
B. 9,6 kW
C. 6,9 kW
D. 3,9 kW
Poprawna odpowiedź wynosi 6,9 kW, co odpowiada maksymalnej mocy, jaką można uzyskać z wyłącznika nadprądowego typu S-303 CLS6-C10/3. Wyłączniki nadprądowe klasy C są przeznaczone do ochrony obwodów, w których występują prądy rozruchowe, co jest typowe dla urządzeń takich jak kuchenki elektryczne. Wyłącznik C10 oznacza, że jego maksymalny prąd znamionowy wynosi 10 A, co przy napięciu 230 V (typowym dla obwodów kuchennych w mieszkaniach) pozwala na obliczenie mocy: P = U x I, czyli 230 V x 10 A = 2300 W (2,3 kW). Jednak w przypadku kuchni elektrycznej zasilanej z trójfazowego zasilania 400 V, możemy zastosować również moc obliczoną z trzech faz: P = √3 x U x I = √3 x 400 V x 10 A = 6928 W, co daje nam 6,9 kW. Stosowanie wyłączników nadprądowych zgodnych z normami PN-EN 60898 jest kluczowe dla zapewnienia bezpieczeństwa i efektywności energetycznej instalacji. W praktyce, zainstalowanie kuchenki elektrycznej o mocy 6,9 kW umożliwia wygodne gotowanie oraz korzystanie z różnych funkcji, takich jak pieczenie i gotowanie na parze, bez ryzyka przeciążenia obwodu zasilającego.

Pytanie 2

Którego silnika dotyczy przedstawiony schemat?

Ilustracja do pytania
A. Obcowzbudnego.
B. Szeregowego.
C. Jednofazowego.
D. Indukcyjnego.
Analiza schematu powinna jasno wskazywać, że nieprawidłowe odpowiedzi są wynikiem mylnego rozumienia konstrukcji silników elektrycznych. Silniki indukcyjne, w przeciwieństwie do obcowzbudnych, nie mają oddzielnych uzwojeń wzbudzenia; ich działanie opiera się na zjawisku indukcji elektromagnetycznej, gdzie pole magnetyczne jest generowane przez prąd płynący w uzwojeniu twornika. W silnikach szeregowych uzwojenie wzbudzenia jest połączone szeregowo z uzwojeniem twornika, co wpływa na charakterystykę pracy, ale nie jest to zgodne z konstrukcją przedstawioną w schemacie. Co więcej, silniki jednofazowe, typowo używane w aplikacjach domowych, nie mają komutatora i działają w oparciu o inne zasady fizyczne, co odróżnia je od silników prądu stałego. Typowe błędy myślowe polegają na pomijaniu kluczowych elementów takich jak komutator oraz struktura uzwojeń, co prowadzi do nieprawidłowych wniosków. Zrozumienie różnic w budowie i zasadzie działania tych silników jest kluczowe dla ich prawidłowego zastosowania, co powinno być priorytetem w nauce o elektrotechnice.

Pytanie 3

Który schemat montażowy instalacji oświetleniowej przedstawionej na zamieszczonym planie jest prawidłowy?

Ilustracja do pytania
A. B.
B. A.
C. D.
D. C.
Schemat C. przedstawia prawidłowe podłączenie instalacji oświetleniowej, co jest kluczowe dla bezpieczeństwa i funkcjonalności systemu. W tym schemacie przewody fazowe (L) są właściwie podłączone do przełącznika bistabilnego, co umożliwia sterowanie oświetleniem z jednego miejsca. Przewody neutralne (N) są bezpośrednio podłączone do lamp, co jest zgodne z normami bezpieczeństwa. Taki układ zapewnia, że w momencie wyłączenia przełącznika, nie ma napięcia na lampach, co minimalizuje ryzyko porażenia prądem. Ponadto, stosowanie przełączników bistabilnych jest zgodne z dobrymi praktykami w projektowaniu instalacji oświetleniowych, co podnosi komfort użytkowania. Warto również zaznaczyć, że zgodnie z normami PN-IEC 60364, odpowiednie podłączenie przewodów jest fundamentalne dla prawidłowego funkcjonowania instalacji oraz jej bezpieczeństwa.

Pytanie 4

Na zdjęciu przedstawiono kabel

Ilustracja do pytania
A. elektroenergetyczny z żyłami miedzianymi o izolacji polwinitowej, na napięcie 0,6/1 kV.
B. sygnalizacyjny z żyłami wielodrutowymi o wiązkach parowych na napięcie 300/500 V.
C. sygnalizacyjny z żyłami jednodrutowymi na napięcie 0,6/1 kV w osłonie polwinitowej.
D. kontrolny z żyłami wielodrutowymi na napięcie 300/500 V w izolacji z tworzywa bezhalogenowego, ekranowany.
Analizując niepoprawne odpowiedzi, można zauważyć szereg istotnych nieporozumień związanych z klasyfikacją kabli i ich zastosowaniami. W pierwszej z nich sugerowany kabel sygnalizacyjny z żyłami jednodrutowymi na napięcie 0,6/1 kV nie pasuje do charakterystyki przedstawionego kabla. Kable sygnalizacyjne na ogół operują na niższych napięciach, a ich budowa z żyłami jednodrutowymi nie jest typowa dla aplikacji wymagających elastyczności i odporności na zakłócenia. Podobnie, drugi typ kabla, czyli kontrolny z żyłami wielodrutowymi na napięcie 300/500 V, z ekranowaniem, nie odpowiada wizualnym cechom przedstawionego kabla. Ekranowanie jest kluczowe w redukcji zakłóceń, jednak brak takiej ochrony w analizowanym przypadku wskazuje na inne przeznaczenie. Odpowiedź dotycząca kabla elektroenergetycznego również jest błędna, gdyż odnosi się do wyższych napięć, co nie zgadza się z widocznymi cechami izolacyjnymi i konstrukcją kabla. Typowe błędy myślowe prowadzące do tych niepoprawnych wniosków obejmują nadmierne generalizowanie właściwości kabli oraz ignorowanie specyfikacji technicznych. Niezrozumienie różnic między typami kabli oraz ich zastosowaniem w praktyce może prowadzić do niewłaściwych wyborów w projektowaniu instalacji elektrycznych i sygnalizacyjnych, co w konsekwencji może wpływać na niezawodność i bezpieczeństwo systemów.

Pytanie 5

Którego z elektronarzędzi należy użyć do wycinania bruzd pod przewody instalacji podtynkowej?

Ilustracja do pytania
A. A.
B. B.
C. D.
D. C.
Frezerka do bruzd, czyli narzędzie oznaczone jako D, jest najbardziej odpowiednim elektronarzędziem do wycinania bruzd pod przewody instalacji podtynkowej. Dzięki swojej konstrukcji umożliwia precyzyjne cięcie w twardych materiałach, takich jak beton czy cegła, co jest kluczowe dla prawidłowego montażu instalacji elektrycznych. Narzędzie to posiada regulację głębokości cięcia, co pozwala na dostosowanie do różnych grubości przewodów oraz zapewnia estetyczne i schludne wykonanie rowków. W praktyce, operatorzy frezerek do bruzd często wykorzystują je do tworzenia kanałów, w których umieszczane są przewody, co pozwala na estetyczne ukrycie instalacji. Zgodnie z najlepszymi praktykami branżowymi, stosowanie tego narzędzia zapewnia nie tylko efektywność pracy, ale także bezpieczeństwo, eliminując ryzyko uszkodzenia instalacji oraz minimalizując ilość pyłów i odpadów materiałowych.

Pytanie 6

Pomiar rezystancji uzwojenia silnika elektrycznego przy użyciu omomierza wykazał wartość ∞ Ω. Co oznacza ten wynik dla uzwojenia silnika?

A. występuje zwarcie między zwojami.
B. izolacja jest uszkodzona.
C. działa prawidłowo.
D. jest uszkodzone.
Stwierdzenia sugerujące, że uzwojenie silnika jest sprawne, posiada zwarcie międzyzwojowe lub ma uszkodzoną izolację, są błędne i mogą prowadzić do poważnych konsekwencji w diagnostyce i eksploatacji silników elektrycznych. Uzwojenie, które jest sprawne, charakteryzuje się rezystancją w normatywnym zakresie, co zazwyczaj oscyluje wokół wartości określonej przez producenta, a jego pomiar powinien wykazywać konkretne, mierzalne wartości. W przypadku zwarcia międzyzwojowego, pomiar rezystancji nie wykazywałby nieskończoności, lecz niższą wartość, co świadczyłoby o problemie w strukturze uzwojenia. Tego rodzaju uszkodzenia są często skutkiem przegrzania lub niewłaściwej eksploatacji, a ich objawami są zniekształcenia w pracy silnika, takie jak wzrost poboru prądu czy zmniejszenie momentu obrotowego. Uszkodzenie izolacji również nie prowadziłoby do nieskończonej rezystancji; zamiast tego mogłoby objawiać się jako spadek rezystancji, co skutkowałoby ryzykiem zwarcia do ziemi. Ponadto, ignoracja przerwanego uzwojenia może prowadzić do poważnych uszkodzeń silnika lub rozległych awarii systemu, co jest niezgodne z dobrymi praktykami w zakresie utrzymania ruchu, które zalecają bieżącą kontrolę i natychmiastowe reagowanie na wszelkie nieprawidłowości w działaniu urządzeń elektrycznych.

Pytanie 7

Na rysunku przedstawiono oprawę oświetlenia

Ilustracja do pytania
A. przeważnie pośredniego - klasy IV.
B. pośredniego - klasy V.
C. bezpośredniego - klasy I.
D. przeważnie bezpośredniego - klasy II.
Wybrane odpowiedzi, które nie wskazują na pośrednie emitowanie światła, mogą prowadzić do mylnych wniosków dotyczących realnych właściwości opraw oświetleniowych. Na przykład, odpowiedź sugerująca, że oprawa emituje światło przeważnie bezpośrednio, zakłada, że źródło światła jest skierowane bezpośrednio na oświetlaną powierzchnię, co jest sprzeczne z przedstawionym rysunkiem. Oprawy oświetleniowe klasy I najczęściej wiążą się z bezpośrednim oświetleniem, które może powodować intensywne cienie oraz oślepienie, co negatywnie wpływa na komfort użytkowników. Podobnie, klasy IV i V, które z reguły dotyczą więcej pośredniego lub rozproszonego światła, nie są odpowiednie dla opraw, które mają emitować światło w sposób przeważnie bezpośredni. Kluczowym błędem w analizie tego pytania jest niezrozumienie różnicy między tymi dwoma typami oświetlenia oraz ich wpływem na środowisko pracy. Na rysunku powinno być zauważone, że emisja światła poprzez mleczne szkło wskazuje na zamierzenie projektanta, aby zminimalizować oślepienie, co nie jest zgodne z oprawami klasy I. Zrozumienie zasad projektowania systemów oświetleniowych oraz ich klasyfikacji jest niezbędne dla prawidłowego doboru rozwiązań w dziedzinie architektury i ergonomii oświetleniowej.

Pytanie 8

Jakie może być najczęstsze uzasadnienie nadpalenia izolacji jednego z przewodów neutralnych w listwie N rozdzielnicy w mieszkaniu?

A. Zbyt duży przekrój uszkodzonego przewodu
B. Luźne połączenie w listwie neutralnej
C. Zbyt duża moc urządzenia
D. Błędnie dobrana wartość nominalna wyłącznika nadprądowego
Źle dobrana wartość znamionowa wyłącznika nadprądowego nie jest bezpośrednią przyczyną nadpalenia izolacji przewodu neutralnego. Wyłącznik nadprądowy ma na celu ochronę instalacji przed przeciążeniem i zwarciem, a jego dobór powinien być zgodny z wymaganiami obciążeniowymi instalacji, co określa norma PN-IEC 60947. W przypadku, gdy wyłącznik jest zbyt mały, może on zadziałać przy przeciążeniu, ale nie spowoduje bezpośrednio uszkodzenia izolacji przewodu. Zbyt duży przekrój przewodu także nie prowadzi do nadpalenia izolacji; w rzeczywistości, większy przekrój przewodu oznacza mniejsze opory i mniejsze nagrzewanie. Z kolei zbyt duża moc odbiornika może prowadzić do przeciążenia, ale kluczowe jest to, że nie ma to wpływu na przewód neutralny, jeśli instalacja jest poprawnie wykonana i zabezpieczona. W praktyce, nadpalenie izolacji wynika głównie z problemów z połączeniami, a nie z parametrów przewodów czy wyłączników. Należy zatem pamiętać, że każdy komponent w instalacji elektrycznej ma swoje funkcje, a właściwe połączenia są kluczowe dla bezpieczeństwa całej instalacji.

Pytanie 9

Na wyłączniku różnicowoprądowym są następujące oznaczenia:

CIF-6 30/4/003
IΔn= 0,03 A
In=30 A
~230/400 V
Prąd różnicowy i znamionowy tego wyłącznika wynoszą odpowiednio
A. 0,003 A i 30 A
B. 30 A i 0,03 A
C. 3 A i 0,03 A
D. 0,03 A i 30 A
Poprawna odpowiedź to 0,03 A i 30 A, co jest zgodne z oznaczeniami przedstawionymi na wyłączniku różnicowoprądowym. Prąd różnicowy, oznaczany jako IΔn, wynoszący 0,03 A, jest kluczowy dla ochrony przed porażeniem elektrycznym, gdyż wykrywa niewielkie różnice w prądzie między przewodami fazowymi a neutralnym. Taki wyłącznik jest stosowany w obwodach z urządzeniami narażonymi na kontakt z wodą, co zwiększa ryzyko porażenia. Z kolei prąd znamionowy In, wynoszący 30 A, definiuje maksymalne obciążenie, jakie wyłącznik może bezpiecznie obsłużyć. Dobre praktyki branżowe zalecają stosowanie wyłączników różnicowoprądowych o prądzie różnicowym 0,03 A w obwodach z urządzeniami wrażliwymi, takimi jak łazienki czy kuchnie, aby zapewnić odpowiednią ochronę. Ważne jest, aby przed instalacją wyłącznika sprawdzić, czy jego parametry są zgodne z wymaganiami określonymi w normach, takich jak PN-EN 61008-1, co gwarantuje wysoką jakość i bezpieczeństwo instalacji.

Pytanie 10

Którą wielkość fizyczną można zmierzyć przyrządem pokazanym na rysunku?

Ilustracja do pytania
A. Natężenie oświetlenia.
B. Temperaturę barwową światła.
C. Luminancję.
D. Światłość.
Poprawna odpowiedź to natężenie oświetlenia, które jest mierzonym parametrem przez luksomierz, przyrząd specjalistyczny zaprojektowany do oceny ilości światła padającego na określoną powierzchnię. Natężenie oświetlenia wyrażane jest w luksach (lx), co odnosi się do strumienia świetlnego padającego na powierzchnię jednego metra kwadratowego. W praktyce, luksomierze są używane w wielu dziedzinach, takich jak architektura, fotografia czy ergonomia, aby zapewnić odpowiednie warunki oświetleniowe, które wpływają na komfort oraz efektywność pracy. Na przykład, w biurach często normy dotyczące natężenia oświetlenia wynoszą od 300 do 500 luksów, co jest wystarczające do prowadzenia typowych prac biurowych. Użycie luksomierzy pozwala na optymalizację warunków oświetleniowych, co jest istotne dla zdrowia i wydajności pracowników. To narzędzie jest również kluczowe w budownictwie ekologicznym, gdzie odpowiednie oświetlenie wpływa na oszczędność energii.

Pytanie 11

W jakich okolicznościach instalacja elektryczna nie wymaga konserwacji ani naprawy?

A. Kiedy prowadzone są prace konserwacyjne w obiekcie, na przykład malowanie ścian
B. Gdy stan techniczny instalacji jest niedostateczny lub wartości jej parametrów są poza zakresem określonym w instrukcji eksploatacji
C. Gdy użytkowanie instalacji stwarza zagrożenie dla bezpieczeństwa personelu lub otoczenia
D. Kiedy zostanie zauważone uszkodzenie instalacji elektrycznej
Odpowiedź wskazująca, że instalacja elektryczna nie musi być poddawana konserwacji w przypadku przeprowadzania prac konserwacyjnych, takich jak malowanie ścian, jest prawidłowa, ponieważ w tym kontekście nie zachodzi ryzyko uszkodzenia instalacji ani zagrożenie dla bezpieczeństwa. W rzeczywistości, prace konserwacyjne są często planowane i wykonywane w sposób, który minimalizuje ryzyko dla istniejącej instalacji. Przykładowo, przed rozpoczęciem malowania należy zabezpieczyć gniazdka elektryczne i kable, co pozwala na bezpieczne i zgodne z normami ISO i PN wykonywanie takich prac. Dobrą praktyką jest również przeprowadzenie przeglądu stanu instalacji przed rozpoczęciem jakichkolwiek działań konserwacyjnych, aby upewnić się, że nie ma ukrytych usterek, które mogłyby wpłynąć na bezpieczeństwo. Ostatecznie, przestrzeganie regularnych harmonogramów konserwacji i inspekcji jest kluczowe dla utrzymania bezpieczeństwa oraz wydajności instalacji elektrycznych.

Pytanie 12

W jaki sposób powinno się przeprowadzać zalecane przez producenta regularne testy działania wyłącznika różnicowoprądowego?

A. Naciskając przycisk TEST na załączonym wyłączniku
B. Obserwując reakcję załączonego wyłącznika na odłączenie przewodu ochronnego w rozdzielnicy
C. Naciskając przycisk TEST na wyłączonym wyłączniku
D. Obserwując reakcję wyłączonego wyłącznika na zwarcie przewodów czynnych w obwodzie wyjściowym
Aby prawidłowo sprawdzić działanie wyłącznika różnicowoprądowego (RCD), należy nacisnąć przycisk TEST na załączonym wyłączniku. W momencie naciśnięcia przycisku TEST, wyłącznik symuluje wyciek prądu, co powinno spowodować jego natychmiastowe wyłączenie. Działanie to jest zgodne z zaleceniami zawartymi w normach europejskich EN 61008 oraz EN 61009, które podkreślają znaczenie regularnych testów wyłączników RCD w celu zapewnienia bezpieczeństwa elektrycznego. Przykładem zastosowania tej procedury może być okresowe testowanie w instalacjach domowych lub przemysłowych, co powinno odbywać się co najmniej raz na miesiąc. Regularne testowanie RCD jest kluczowe, ponieważ pozwala upewnić się, że wyłącznik będzie działał prawidłowo w przypadku rzeczywistego wycieku prądu, co może zminimalizować ryzyko porażenia prądem lub pożaru. Należy pamiętać, że po teście wyłącznik powinien być ponownie włączony, aby przywrócić normalne funkcjonowanie instalacji elektrycznej.

Pytanie 13

Jaką maksymalną rezystancję uziemienia należy zastosować dla odbiornika w sieci TT, aby wyłącznik różnicowoprądowy o prądzie różnicowym 300 mA zapewniał skuteczną ochronę przed porażeniem w przypadku uszkodzenia izolacji, przy założeniu, że dopuszczalne napięcie dotykowe wynosi 50 V?

A. 766,7 Ω
B. 1,3 Ω
C. 166,7 Ω
D. 6,0 Ω
Odpowiedź 166,7 Ω jest prawidłowa, ponieważ określa maksymalną wartość rezystancji uziemienia, która zapewnia skuteczną ochronę przed porażeniem elektrycznym w systemie TT. W układzie tym, przy zastosowaniu wyłącznika różnicowoprądowego o znamionowym prądzie różnicowym 300 mA oraz długotrwale dopuszczalnym napięciu dotykowym wynoszącym 50 V, stosuje się wzór: Rmax = U / I, gdzie U to wartość napięcia dotykowego, a I to prąd różnicowy. Podstawiając wartości, otrzymujemy Rmax = 50 V / 0,3 A = 166,67 Ω, co zaokrąglamy do 166,7 Ω. W praktyce, przestrzeganie tego ograniczenia pozwala na zminimalizowanie ryzyka wystąpienia niebezpiecznych napięć dotykowych w przypadku uszkodzenia izolacji. Wiele norm, takich jak PN-EN 61008 i PN-EN 61140, wskazuje na konieczność przeprowadzania takich obliczeń, co potwierdza ich znaczenie w pracy projektantów instalacji elektrycznych. W związku z tym, odpowiednia wartość rezystancji uziemienia w systemie TT jest kluczowa dla zapewnienia bezpieczeństwa użytkowników i ochrony przed skutkami porażenia elektrycznego.

Pytanie 14

Jakim oznaczeniem charakteryzuje się przewód jednożyłowy z żyłą wykonaną z aluminium, w izolacji z PVC, o przekroju 2,5 mm2, przeznaczony na napięcie znamionowe izolacji 500 V?

A. YDY 500 V 2,5 mm2
B. ALY 500 V 2,5 mm2
C. ADY 500 V 2,5 mm2
D. YLY 500 V 2,5 mm2
Odpowiedź ADY 500 V 2,5 mm2 jest jak najbardziej trafna. To standardowy symbol przewodu jednożyłowego wykonanego z aluminium, który ma izolację z PVC, czyli polichlorku winylu. W tej nazwie 'A' oznacza, że materiał żyły to aluminium, 'D' informuje nas, że mamy do czynienia z PVC, a 'Y' pokazuje, że to przewód jednożyłowy. Wiedza o takich oznaczeniach jest naprawdę ważna w inżynierii, bo dzięki temu można dobrze dobierać przewody do różnych zastosowań. To jest kluczowe dla bezpieczeństwa instalacji elektrycznych. Przewody o średnicy 2,5 mm2 są szeroko stosowane w budynkach mieszkalnych i przemysłowych, gdzie potrzebna jest odpowiednia wydolność prądowa. Napięcie 500 V oznacza maksymalne napięcie, które można stosować, co jest zgodne z normą PN-EN 60228 dotyczącą przewodów elektrycznych.

Pytanie 15

Na którym rysunku przedstawiono szybkozłączkę do puszek instalacyjnych?

Ilustracja do pytania
A. A.
B. D.
C. B.
D. C.
Szybkozłączka do puszek instalacyjnych, jak pokazano w rysunku D, to kluczowy element w nowoczesnych instalacjach elektrycznych, umożliwiający szybkie i bezpieczne łączenie przewodów. Element ten charakteryzuje się przezroczystą obudową, co pozwala na wizualną kontrolę poprawności połączenia. Żółte dźwignie są przeznaczone do zaciskania przewodów, co eliminuje potrzebę użycia narzędzi i przyspiesza proces instalacji. Szybkozłączki tego typu znajdują zastosowanie w różnych aplikacjach, od domowych instalacji elektrycznych po bardziej skomplikowane systemy przemysłowe, gdzie czas montażu jest kluczowy. Warto zwrócić uwagę na normy IEC 60947-7-1, które regulują użycie takich połączeń w instalacjach, zapewniając bezpieczeństwo i niezawodność. Prawidłowe użycie szybkozłączek zmniejsza ryzyko błędów instalacyjnych oraz zapewnia łatwość konserwacji i rozbudowy instalacji.

Pytanie 16

Jakie oznaczenie, zgodnie z normą zharmonizowaną, odpowiada polskiemu oznaczeniu kabla DY 300/500 V?

A. H05V-K
B. H03VH-H
C. H03W-F
D. H05V-U
Oznaczenie H05V-U odnosi się do przewodów elektrycznych, które są zgodne z europejską normą harmonizowaną. Oznaczenie to oznacza przewody o napięciu roboczym 300/500 V, przeznaczone do instalacji w budynkach, które charakteryzują się dużą elastycznością oraz odpornością na działanie olejów i wysokiej temperatury. Przewody te są powszechnie stosowane w różnorodnych aplikacjach, takich jak instalacje oświetleniowe, sprzęt AGD oraz urządzenia przenośne. Dzięki zastosowaniu odpowiednich materiałów izolacyjnych, przewody H05V-U wykazują doskonałe właściwości dielektryczne, co zapewnia ich wysoką niezawodność i bezpieczeństwo użytkowania. Dodatkowo, norma ta podkreśla znaczenie stosowania przewodów, które spełniają rygorystyczne wymogi dotyczące ochrony przed zwarciami i przeciążeniami, co jest kluczowe w zapewnieniu bezpieczeństwa instalacji elektrycznych. W praktyce, wybór przewodów zgodnych z oznaczeniem H05V-U gwarantuje wysoką jakość wykonania i długowieczność instalacji elektrycznych oraz minimalizuje ryzyko wystąpienia awarii.

Pytanie 17

Przed dokonaniem pomiaru rezystancji izolacji w instalacji elektrycznej najpierw należy odciąć napięcie zasilające, a potem

A. usunąć z opraw źródła światła, włączyć odbiorniki jednofazowe do gniazd wtyczkowych, odłączyć silniki trójfazowe
B. usunąć z opraw źródła światła, wyłączyć odbiorniki jednofazowe z gniazd wtyczkowych, odłączyć silniki trójfazowe
C. zamontować do opraw źródła światła, włączyć odbiorniki jednofazowe do gniazd wtyczkowych, włączyć silniki trójfazowe
D. zamontować do opraw źródła światła, wyłączyć odbiorniki jednofazowe z gniazd wtyczkowych, włączyć silniki trójfazowe
Dobra robota z odpowiedzią! To, co napisałeś, dobrze pokazuje, jakie kroki warto podjąć przed pomiarem rezystancji izolacji w instalacji elektrycznej. Najpierw trzeba wymontować źródła światła z opraw – to naprawdę ważne, żeby nie ryzykować porażeniem prądem w trakcie pomiarów. Poza tym, wyłączenie jednofazowych odbiorników i silników trójfazowych jest konieczne, żeby nie zakłócały one wyników i nie zostały uszkodzone przez niewłaściwe napięcie. Te zasady są zgodne z przepisami, jak PN-EN 50110-1, które mówią, że trzeba wyłączyć zasilanie przed przeprowadzeniem testów izolacji. To, że stosujesz te procedury, nie tylko zwiększa bezpieczeństwo, ale też sprawia, że pomiary są dokładniejsze. A to jest bardzo istotne, żeby dobrze ocenić stan izolacji i upewnić się, że instalacja jest w dobrym stanie.

Pytanie 18

Który element rozdzielnicy przedstawiono na ilustracji?

Ilustracja do pytania
A. Lampkę sygnalizacyjną trójfazową.
B. Przekaźnik czasowy.
C. Regulator temperatury.
D. Czujnik zaniku fazy.
Lampka sygnalizacyjna trójfazowa, przedstawiona na ilustracji, jest kluczowym elementem w każdej rozdzielnicy elektrycznej. Jej główną funkcją jest wizualna sygnalizacja obecności napięcia w trzech fazach instalacji. Dzięki zastosowaniu kilku diod LED lub żarówek, użytkownik może szybko zidentyfikować, czy wszystkie fazy są pod napięciem. To istotne w kontekście zapewnienia stabilności i bezpieczeństwa działania urządzeń trójfazowych, takich jak silniki elektryczne czy maszyny przemysłowe. W przypadku braku napięcia w którejkolwiek z faz, zdradza to problem, który może prowadzić do uszkodzeń sprzętu lub przestojów w produkcji. Dobre praktyki w zakresie instalacji elektrycznych zalecają umieszczanie lamp sygnalizacyjnych w widocznych miejscach, co umożliwia szybkie reagowanie na ewentualne awarie. Ważne jest także, aby lampki były zgodne z normami bezpieczeństwa i odporne na warunki panujące w danym środowisku pracy.

Pytanie 19

Jakie środki ochrony przed porażeniem zastosowano w systemie, gdzie zasilanie urządzeń pochodzi z transformatora bezpieczeństwa?

A. Podwójną lub wzmocnioną izolację
B. Izolację miejsca pracy
C. Ochronne obniżenie napięcia
D. Separację urządzeń
W kontekście ochrony przed porażeniem prądem elektrycznym, podwójna lub wzmocniona izolacja jest jedną z metod ochrony, jednak jej zastosowanie nie jest odpowiednie w każdym przypadku. Metoda ta polega na zastosowaniu dodatkowej izolacji poza standardową, co rzeczywiście może zwiększyć bezpieczeństwo urządzenia. Nie jest to jednak wystarczające rozwiązanie dla systemów zasilanych z transformatorów bezpieczeństwa, gdzie kluczowym czynnikiem jest niskie napięcie. Separacja odbiorników również nie jest najlepszym podejściem, mimo że ma swoje miejsce w projektowaniu systemów elektrycznych. Oznacza to oddzielenie obwodów elektrycznych w celu zwiększenia bezpieczeństwa, jednak nie eliminuje ryzyka porażenia, zwłaszcza w zastosowaniach niskonapięciowych. Izolacja stanowiska, czyli zabezpieczanie użytkowników przed dostępem do elementów czynnych, jest strategią bardziej stosowaną w kontekście obszarów roboczych, lecz nie adresuje podstawowego problemu związane z niskim napięciem, które jest kluczowe w przypadkach zasilania z transformatorów bezpieczeństwa. Ostatecznie, ochronne obniżenie napięcia jest najskuteczniejszym i rekomendowanym środkiem w takich sytuacjach, ponieważ obniża ryzyko porażenia do minimum poprzez stosowanie bezpiecznych wartości napięcia.", ""]

Pytanie 20

Do realizacji układu przedstawionego na schemacie należy zastosować stycznik Q17 z następującą liczbą i rodzajem zestyków:

Ilustracja do pytania
A. 3NC + 2NO + 1NC
B. 3NC + 1NO + 2NC
C. 3NO + 2NO + 1NC
D. 3NO + 1NO + 2NC
Odpowiedź 3NO + 2NO + 1NC jest poprawna, ponieważ na podstawie analizy schematu, stycznik Q17 rzeczywiście wymaga trzech zestyków normalnie otwartych (3NO), dwóch dodatkowych zestyków normalnie otwartych (2NO) oraz jednego zestyków normalnie zamkniętego (1NC). W praktycznych aplikacjach automatyki stosuje się styczniki do sterowania obwodami, gdzie zestyk NO (normalnie otwarty) umożliwia przepływ prądu po załączeniu stycznika, a zestyk NC (normalnie zamknięty) blokuje przepływ prądu. Taki dobór zestyków pozwala na realizację skomplikowanych układów automatyki, zapewniając równocześnie bezpieczeństwo i efektywność. Uwzględnienie odpowiedniej liczby zestyków jest zgodne z normami branżowymi, co jest kluczowe dla prawidłowego działania układów elektrycznych oraz spełnienia wymogów dotyczących zabezpieczeń. Wiedza o tym, jak dobierać elementy takie jak styczniki, jest niezbędna dla każdego inżyniera czy technika zajmującego się automatyką, co przekłada się na praktyczne zastosowanie w różnych aplikacjach przemysłowych.

Pytanie 21

Jakie napięcie powinno być zastosowane w mierniku podczas pomiaru rezystancji izolacyjnej urządzenia elektrycznego o nominalnym napięciu 230/400 V?

A. 250 V
B. 1 000 V
C. 750 V
D. 500 V
Odpowiedź 500 V jest prawidłowa, ponieważ zgodnie z normami i zaleceniami dotyczącymi pomiarów rezystancji izolacji, napięcie testowe powinno być na poziomie 500 V dla maszyn elektrycznych o napięciu znamionowym 230/400 V. Pomiar taki ma na celu wykrycie ewentualnych uszkodzeń izolacji, które mogą prowadzić do niebezpiecznych sytuacji. W praktyce, napięcie testowe 500 V jest standardem branżowym, szczególnie w przypadku sprzętu niskonapięciowego, gdyż zapewnia wystarczającą moc do przetestowania izolacji bez ryzyka uszkodzenia elementów wrażliwych. Dodatkowo, w wielu krajach stosowane są normy IEC 60364 oraz IEC 61557, które precyzują wymagania dotyczące pomiarów izolacji, a ich przestrzeganie jest kluczowe dla zapewnienia bezpieczeństwa użytkowania maszyn. Przykładowo, w przypadku stacji transformatorowych, regularne pomiary izolacji przy użyciu napięcia 500 V pozwalają na wczesne wykrywanie problemów i zapobieganie awariom, co przekłada się na dłuższą żywotność urządzeń oraz zwiększone bezpieczeństwo operacyjne.

Pytanie 22

Błędne podłączenie przewodu PE zamiast N na wejściu i wyjściu wyłącznika różnicowoprądowego spowoduje

A. niemożność załączenia wyłącznika pod obciążeniem
B. prawidłowe działanie wyłącznika
C. brak możliwości zadziałania załączonego wyłącznika
D. działanie wyłącznika przy znacznie mniejszych prądach upływu niż znamionowy
Pomyłkowe podłączenie przewodu PE (ochronnego) zamiast N (neutralnego) na wejściu i wyjściu wyłącznika różnicowoprądowego rzeczywiście skutkuje niemożnością załączenia urządzenia pod obciążeniem. Wyłączniki różnicowoprądowe są zaprojektowane tak, aby wykrywać różnice prądów między przewodem fazowym a neutralnym. Jeśli przewód PE zostanie użyty zamiast N, to nie będzie możliwe prawidłowe pomiarowanie tych różnic, co uniemożliwi zadziałanie mechanizmu wyłączającego. Z punktu widzenia praktycznego, w takich przypadkach, użytkownik nie będzie mógł korzystać z instalacji, co podkreśla krytyczną rolę poprawnego podłączenia przewodów w systemach elektrycznych. W ramach dobrych praktyk, zawsze należy stosować oznaczenia przewodów zgodne z normami, aby zminimalizować ryzyko takich pomyłek. W Polsce stosuje się normy PN-IEC 60446 dotyczące oznaczania przewodów, które pomagają w poprawnym podłączeniu instalacji elektrycznej.

Pytanie 23

Wskaż symbol graficzny przycisku zwiernego.

Ilustracja do pytania
A. Symbol 4.
B. Symbol 2.
C. Symbol 3.
D. Symbol 1.
Wybór symbolu innego niż Symbol 1 wiąże się z nieporozumieniem w zakresie graficznych przedstawień przycisków zwiernych. Wiele osób może mylnie utożsamiać inne symbole z funkcjami przycisków, nie zwracając uwagi na szczegóły ich graficznej reprezentacji. Na przykład, niektóre symbole mogą przedstawiać przyciski rozwierne, które działają na przeciwnych zasadach – otwierają obwód w momencie naciśnięcia. Zrozumienie różnic między tymi symbolami jest kluczowe dla zapewnienia poprawności wizualizacji systemów elektrycznych i automatyzacyjnych. Często błędy te wynikają z braku znajomości standardów, takich jak IEC 60417, które dokładnie definiują sposób, w jaki różne typy przycisków powinny być przedstawiane graficznie. Niezrozumienie tej kwestii może prowadzić do poważnych problemów w projektowaniu systemów, które opierają się na prawidłowym użyciu przycisków. Dlatego istotne jest, aby każdy projektant lub inżynier miał solidne podstawy dotyczące symboli graficznych oraz ich zastosowania. Używanie nieodpowiednich symboli może wprowadzać w błąd zarówno użytkowników, jak i techników serwisowych, co w efekcie prowadzi do nieprawidłowej obsługi urządzeń i potencjalnych zagrożeń w pracy systemów elektrycznych.

Pytanie 24

Jakiego wyłącznika nadprądowego powinno się zastosować do ochrony obwodu jednofazowego instalacji elektrycznej z napięciem 230 V, który zasila grzejnik oporowy o mocy 1600 W?

A. B16
B. C16
C. B10
D. C10
Odpowiedź B10 jest prawidłowa, ponieważ wyłącznik nadprądowy B10 jest odpowiedni dla obwodów z obciążeniem wytrzymującym do 10 A. W przypadku grzejnika oporowego o mocy 1600 W przy napięciu 230 V, prąd wynosi około 6,96 A (P = U × I, więc I = P/U = 1600 W / 230 V). Użycie wyłącznika B10 zapewnia odpowiednie zabezpieczenie przed przeciążeniem, ponieważ jego prąd znamionowy jest dostosowany do obwodów o mniejszych obciążeniach. Dodatkowo, wyłączniki typu B są stosowane w instalacjach domowych z urządzeniami o niewielkich prądach rozruchowych. Przy wyborze odpowiedniego wyłącznika warto kierować się także normami IEC 60898 oraz dobrymi praktykami związanymi z projektowaniem instalacji elektrycznych, które sugerują, że dla grzejników elektrycznych z oporem, wyłącznik powinien chronić przed przeciążeniem i zwarciem, zachowując margines bezpieczeństwa. Przykładem odpowiedniego zastosowania B10 mogą być obwody zasilające niewielkie odbiorniki energii, co pozwala na ich bezpieczne użytkowanie.

Pytanie 25

Którą rolę pełni w styczniku element wskazany na ilustracji czarną strzałką?

Ilustracja do pytania
A. Likwiduje drgania zwory.
B. Zmniejsza siłę docisku zwory.
C. Likwiduje magnetyzm szczątkowy.
D. Zmniejsza napięcie podtrzymania cewki.
Element wskazany na ilustracji czarną strzałką w styczniku rzeczywiście pełni rolę tłumika drgań. Jego głównym zadaniem jest eliminowanie drgań zwory, które mogą wystąpić podczas cykli załączania i wyłączania stycznika. Drgania zwory, jeśli nie są skutecznie kontrolowane, mogą prowadzić do problemów z kontaktami, takich jak drgające styki, co w konsekwencji może doprowadzić do uszkodzenia urządzenia lub zakłóceń w jego pracy. W praktyce, zastosowanie tłumika drgań ma kluczowe znaczenie w systemach automatyki, gdzie stabilność i niezawodność działania elementów wykonawczych są niezwykle istotne. Zgodnie z dobrymi praktykami branżowymi, stosowanie tłumików drgań jest standardem w projektowaniu nowoczesnych styczników. Tłumiki te mogą być również wykorzystywane w innych aplikacjach, takich jak siłowniki pneumatyczne czy hydrauliczne, gdzie drgania mogą negatywnie wpływać na wydajność sprzętu. Rekomenduje się regularne sprawdzanie stanu tłumików drgań w celu zapewnienia ich efektywności oraz poprawy ogólnej niezawodności systemu.

Pytanie 26

Rysunek przedstawia symbol graficzny przewodu

Ilustracja do pytania
A. PEN
B. PE
C. FE
D. FB
Symbol przedstawiony na rysunku rzeczywiście oznacza przewód ochronny, który w zgodzie z normą PN-EN 60617 jest identyfikowany skrótem "PE" (Protective Earth). Przewód ten jest kluczowy w systemach elektrycznych, ponieważ zapewnia bezpieczeństwo poprzez odprowadzanie potencjalnych prądów upływowych do ziemi, co minimalizuje ryzyko porażenia prądem. W praktyce, przewód PE jest często stosowany w instalacjach elektrycznych w budynkach, gdzie pełni rolę ochronną dla urządzeń oraz użytkowników. Warto również zauważyć, że w systemach zasilania trójfazowego, przewód ochronny jest wymagany, aby spełnić normy bezpieczeństwa, takie jak norma IEC 60364. Przewód PE powinien być zawsze jasno oznakowany zielono-żółtym kolorem, aby umożliwić łatwą identyfikację w instalacjach elektrycznych. Zastosowanie tego przewodu jest nie tylko praktyczne, ale i zgodne z zasadami ochrony przeciwwybuchowej w środowiskach, gdzie mogą występować niebezpieczne substancje.

Pytanie 27

W którym z punktów spośród wskazanych strzałkami na charakterystyce prądowo-napięciowej diody prostowniczej przedstawionej na wykresie odczytywane jest napięcie przebicia?

Ilustracja do pytania
A. W punkcie A
B. W punkcie D
C. W punkcie C
D. W punkcie B
Dobra decyzja z wyborem punktu A! W tym miejscu charakterystyka prądowo-napięciowa diody rzeczywiście pokazuje, że prąd rośnie bardzo szybko przy małym wzroście napięcia. To jest kluczowe, bo napięcie przebicia wyznacza moment, kiedy dioda zaczyna przewodzić w kierunku zaporowym, a to związane jest z przebiciem lawinowym. Z mojego doświadczenia, zrozumienie tego punktu jest mega ważne, zwłaszcza przy projektowaniu układów elektronicznych, gdzie diody prostownicze pomagają stabilizować napięcie i chronić obwody przed przepięciami. Na przykład, jak się robi zasilacze impulsowe, to trzeba mieć na uwadze napięcie przebicia, bo inaczej można łatwo uszkodzić komponenty. Fajnie też jest testować diody w różnych warunkach, żeby lepiej poznać ich charakterystyki, w tym napięcie przebicia. To wszystko pozwala na bardziej niezawodne projektowanie układów elektronicznych.

Pytanie 28

Który element elektroniczny oznacza się przedstawionym symbolem graficznym?

Ilustracja do pytania
A. Termistor.
B. Tranzystor bipolarny.
C. Tyrystor.
D. Tranzystor polowy.
Na przedstawionym symbolu graficznym widać element trójkońcówkowy, w którym pionowa linia symbolizuje bazę, a dwie skośne elektrody to kolektor i emiter, przy czym jedna z nich ma wyraźnie zaznaczoną strzałkę. To jest kluczowa cecha tranzystora bipolarnego. Wiele osób myli ten symbol z tyrystorem, bo tyrystor też jest elementem sterowanym i często kojarzy się z „trzema wyprowadzeniami”. Jednak tyrystor w symbolice wygląda raczej jak dioda z dodatkową elektrodą bramki dorysowaną z boku, nie ma układu przypominającego literę „Y” i nie ma takiej strzałki na jednej z gałęzi jak tranzystor bipolarny. Różnica nie jest tylko kosmetyczna: tyrystor pracuje w trybie załącz/wyłącz i po zadziałaniu przewodzi aż do zaniku prądu, natomiast tranzystor bipolarny może liniowo wzmacniać sygnał i pracować w różnych punktach pracy. Częstym błędem jest także branie tego symbolu za tranzystor polowy. Tranzystor polowy (MOSFET lub JFET) ma bramkę oddzieloną od kanału przerwą, a kanał jest rysowany jako pozioma linia, do której dołączone są dren i źródło. Strzałka występuje czasem przy źródle, ale geometria całego symbolu jest inna – bardziej pozioma, z wyraźnie oddzieloną bramką. Tu mamy pionową bazę i dwa skośne odgałęzienia, czyli typowe BJT. Zdarza się też skojarzenie z termistorem, bo ktoś widzi „jakieś strzałki” i zakłada, że to element zależny od temperatury. Termistor w normowych oznaczeniach jest odmianą rezystora: zygzak lub prostokąt z dopiskiem NTC/PTC lub z dodatkową przekreśloną linią, bez żadnych strzałek przy wyprowadzeniach. Podstawowy błąd myślowy przy takich pytaniach polega na zwracaniu uwagi na pojedynczy detal (np. samą strzałkę), zamiast na całą geometrię symbolu i liczbę elektrod oraz ich układ. Dobre praktyki przy czytaniu schematów to właśnie patrzenie na ogólny kształt, porównywanie z normowymi symbolami i kojarzenie: trzy wyprowadzenia, pionowa baza, ukośne kolektor i emiter, strzałka na emiterze – to tranzystor bipolarny.

Pytanie 29

Określ przyczynę nadmiernego wzrostu napięcia na zaciskach odbiornika Z1 przy założeniu, że impedancje Z1, Z2 i Z3 znacznie się różnią.

Ilustracja do pytania
A. Zwarcie pomiędzy dwoma przewodami fazowymi.
B. Przerwa na zaciskach odbiornika Z2 lub Z3.
C. Uszkodzenie przewodu neutralnego.
D. Zwarcie na zaciskach odbiornika Z2 lub Z3.
Patrząc na inne odpowiedzi, to można zauważyć, że zwarcie między dwoma przewodami fazowymi raczej by nie zadziałało tak, jak opisano. Przy zwarciu w fazie napięcie w obwodzie z reguły spada, a zasilanie się wyłącza, więc nie podnosi napięcia na odbiornikach. Jeśli chodzi o zwarcie na zaciskach odbiorników Z2 lub Z3, to wprowadzałoby dodatkowe obciążenie, co też mogłoby obniżyć napięcie, a nie podnieść. No i przerwa na zaciskach Z2 albo Z3 nie tłumaczy wyższego napięcia na Z1, bo w takim przypadku napięcie powinno raczej zniknąć niż wzrosnąć. Błędem jest mylenie skutków zwarć czy przerw z problemami neutralnym. Zrozumienie, jak różne elementy w obwodzie wpływają na napięcia, jest kluczowe, gdy próbujemy zdiagnozować problemy w instalacjach elektrycznych. Dlatego ważne, żeby dokładnie badać przyczyny problemów z napięciem i nie opierać się na nieprawidłowych założeniach o zwarciach czy przerwach.

Pytanie 30

Jakie urządzenia elektryczne są częścią instalacji przyłączeniowej obiektu budowlanego?

A. Zabezpieczenia przedlicznikowe oraz licznik energii elektrycznej
B. Transformator słupowy z rozłącznikiem
C. Wyłącznik różnicowoprądowy oraz ograniczniki przepięć
D. Zabezpieczenia nadprądowe poszczególnych obwodów
Jak wybierzesz złe odpowiedzi na to pytanie, to może być ciut mylące, bo pomyślisz, że wszystkie wymienione urządzenia są częścią przyłącza budowlanego, a tak nie jest. Wyłącznik różnicowoprądowy czy ograniczniki przepięć są ważne w instalacjach elektrycznych, ale nie są częścią samego przyłącza budynku. Ich rola to ochrona użytkowników i sprzętu w środku, a nie w punkcie, gdzie łączymy się z siecią. Wyłączniki różnicowoprądowe działają tak, że wykrywają prądy, które mogą być niebezpieczne, i wtedy odcinają zasilanie, co jest super ważne, ale nie dotyczy samego przyłącza. Z kolei transformator słupowy z rozłącznikiem to element sieci energetycznej, a nie konkretnego budynku. Może być częścią systemu dystrybucji energii, ale nie jest bezpośrednio związany z przyłączem budowlanym, które powinno być skupione na zabezpieczeniach i licznikach. Zabezpieczenia nadprądowe w obwodach są też istotne, ale ich miejsce jest wewnątrz budynku. Powszechnym błędem jest mylenie różnych poziomów instalacji elektrycznej i ich funkcji, co może prowadzić do błędów w projektowaniu i realnych zagrożeń dla bezpieczeństwa użytkowników.

Pytanie 31

Zakres oględzin urządzeń napędowych w czasie postoju nie obejmuje sprawdzenia

A. stanu pierścieni ślizgowych oraz komutatorów
B. poziomu drgań i skuteczności układu chłodzenia
C. stanu przewodów ochronnych oraz ich połączeń
D. ustawienia zabezpieczeń i stanu osłon części wirujących
W kontekście oględzin urządzeń napędowych w czasie postoju, istotne jest zrozumienie zakresu przeglądów i ich celów. Sprawdzanie stanu przewodów ochronnych i ich podłączenia to kluczowy aspekt zapewnienia bezpieczeństwa. Przewody te pełnią istotną rolę w ochronie operatorów przed porażeniem prądem elektrycznym oraz awariami urządzeń. Oprócz tego, poziom drgań jest ważnym wskaźnikiem stanu mechanicznego urządzeń; nadmierne drgania mogą wskazywać na niewłaściwe wyważenie, zużycie łożysk lub inne problemy, które mogą prowadzić do krytycznych awarii. Układ chłodzenia także zasługuje na szczególną uwagę, ponieważ jego nieprawidłowe działanie może prowadzić do przegrzewania się maszyn i ich uszkodzeń, co wymagałoby kosztownych napraw. Z kolei kontrola ustawienia zabezpieczeń oraz stanu osłon części wirujących jest kluczowa dla ochrony personelu i zapobiegania wypadkom. Często pomija się te aspekty, co prowadzi do niebezpiecznych sytuacji. Prawidłowe podejście do oględzin urządzeń napędowych wymaga zatem kompleksowej analizy wszystkich wymienionych elementów, aby zapewnić nieprzerwaną operacyjność i bezpieczeństwo. Zatem zrozumienie, które elementy wymagają regularnych kontroli, a które są mniej krytyczne, jest niezbędne dla efektywnego zarządzania bezpieczeństwem i wydajnością urządzeń.

Pytanie 32

Którą funkcję w wyłączniku nadprądowym pełni element wskazany na ilustracji czerwoną strzałką?

Ilustracja do pytania
A. Reaguje na przeciążenia.
B. Łączy styki.
C. Gasi łuk elektryczny.
D. Reaguje na zwarcia.
Element wskazany na ilustracji czerwoną strzałką to bimetaliczny wyzwalacz termiczny, którego główną funkcją jest reagowanie na zwarcia w obwodzie. W momencie wystąpienia zwarcia, natężenie prądu gwałtownie wzrasta, co może prowadzić do poważnych uszkodzeń instalacji elektrycznej oraz zwiększa ryzyko pożaru. Bimetaliczny wyzwalacz termiczny działa na zasadzie odkształcania się dwóch różnych metali w odpowiedzi na wzrost temperatury, co powoduje zamknięcie obwodu i odłączenie zasilania. Zgodnie z normami IEC 60947-2 oraz EN 60898-1, wyłączniki nadprądowe są obowiązkowym elementem w nowoczesnych instalacjach elektrycznych, co podkreśla ich kluczowe znaczenie w zapewnieniu bezpieczeństwa. Przykładem zastosowania może być ochrona obwodów w budynkach mieszkalnych, gdzie wyłączniki te są projektowane tak, aby reagowały na wszelkie anomalie w działaniu urządzeń elektrycznych, co chroni zarówno użytkowników, jak i infrastrukturę. Dlatego znajomość funkcji bimetalicznych wyzwalaczy termicznych jest istotna dla każdego specjalisty z branży elektrycznej.

Pytanie 33

Oprawy oświetleniowe opatrzone symbolem przedstawionym na ilustracji

Ilustracja do pytania
A. muszą być zasilane wyłącznie przez transformator separacyjny.
B. mają wzmocnioną izolację.
C. muszą być zasilane wyłącznie z sieci PELV.
D. wymagają uziemienia obudowy.
Oprawy oświetleniowe oznaczone symbolem podwójnej izolacji, który widnieje na ilustracji, posiadają wzmocnioną izolację, co jest kluczowe dla ich bezpiecznego użytkowania. Tego typu oprawy są projektowane w taki sposób, aby zminimalizować ryzyko porażenia prądem elektrycznym, korzystając z dwóch niezależnych warstw izolacyjnych zamiast tradycyjnego uziemienia. W praktyce oznacza to, że mogą być stosowane w miejscach, gdzie uziemienie jest trudne do zrealizowania, na przykład w pomieszczeniach wilgotnych. Zastosowanie podwójnej izolacji jest zgodne z normą IEC 61140, która określa wymagania dotyczące ochrony osób przed porażeniem elektrycznym. Wzmocniona izolacja sprawia, że są one odpowiednie do użytku w domach, biurach oraz innych obiektach, gdzie bezpieczeństwo użytkowników jest priorytetem. Warto również zauważyć, że wiele nowoczesnych opraw LED posiada ten symbol, co podkreśla ich innowacyjność oraz zgodność z aktualnymi standardami bezpieczeństwa.

Pytanie 34

Wybierz zestaw narzędzi koniecznych do zamocowania listew instalacyjnych w natynkowej instalacji elektrycznej z użyciem kołków szybkiego montażu?

A. Osadzak gazowy, młotek, obcinaczki
B. Wiertarka z zestawem wierteł, szczypce płaskie, piła
C. Osadzak gazowy, wkrętak, obcinaczki
D. Wiertarka z zestawem wierteł, młotek, piła
Analizując błędne odpowiedzi, można zauważyć, że nie wszystkie narzędzia wymienione w odpowiedziach są odpowiednie do zamocowania listew instalacyjnych natynkowej instalacji elektrycznej. Na przykład, osadzak gazowy jest narzędziem przeznaczonym do wykonywania otworów w materiałach budowlanych, jednak jego użycie w kontekście kołków szybkiego montażu może być zbędne, a w niektórych przypadkach nawet niebezpieczne, zwłaszcza gdy jest stosowany przez osoby niedoświadczone. Wkrętaki i obcinaczki, choć przydatne w wielu sytuacjach, nie są kluczowymi narzędziami do montażu listew, a ich obecność w zestawie może wprowadzać w błąd co do właściwego doboru narzędzi. Ponadto, piła jako narzędzie tnące, choć może być użyteczna w przypadku przycinania listew, nie jest kluczowym narzędziem dla montażu kołków, co sugeruje, że odpowiedzi te nie uwzględniają wszystkich aspektów procesu instalacyjnego. Typowym błędem myślowym jest zakładanie, że każde narzędzie może być użyte do wielu zadań, co nie zawsze jest prawdą i może prowadzić do nieefektywności oraz zwiększonego ryzyka uszkodzeń. Zrozumienie specyfiki narzędzi i ich zastosowań jest kluczowe w pracy instalatora, a wybór odpowiednich narzędzi powinien opierać się na praktycznym doświadczeniu oraz znajomości standardów branżowych.

Pytanie 35

Które z podanych wskazówek nie odnosi się do realizacji nowych instalacji elektrycznych w lokalach mieszkalnych?

A. Gniazda wtykowe w każdym pomieszczeniu powinny pochodzić z wydzielonego obwodu
B. Obwody oświetleniowe należy oddzielić od gniazd wtykowych
C. Odbiorniki o dużej mocy powinny być zasilane z osobnych obwodów
D. Gniazda wtykowe w kuchni powinny być podłączane do oddzielnego obwodu
Wymienione zależności, które sugerują różne podejścia do instalacji elektrycznych w pomieszczeniach mieszkalnych, mogą wydawać się rozsądne, jednak w rzeczywistości opierają się na błędnych założeniach. Na przykład, zasilanie gniazd wtykowych w kuchni z osobnego obwodu jest praktyką zalecaną ze względu na konieczność obsługi urządzeń o dużym poborze mocy, takich jak kuchenki czy zmywarki. Odbiorniki dużej mocy powinny być zasilane z wydzielonych obwodów, aby zapobiec przeciążeniom i zwiększyć bezpieczeństwo użytkowania. Oddzielenie obwodów oświetleniowych od gniazd wtykowych również ma swoje uzasadnienie, ponieważ pozwala na niezależne zarządzanie oświetleniem i zasilaniem urządzeń, co w praktyce ułatwia diagnostykę i naprawy awarii. Z perspektywy normatywnej, wszystkie te podejścia są zgodne z europejskimi standardami bezpieczeństwa instalacji elektrycznych, które mają na celu minimalizację ryzyka związanego z użytkowaniem energii elektrycznej. Błędne wnioski wynikają często z niepełnego zrozumienia zasad projektowania instalacji elektrycznych i mogą prowadzić do sytuacji niebezpiecznych, takich jak przeciążenia, które w skrajnych przypadkach mogą skutkować pożarami. Dlatego tak ważne jest, aby przestrzegać sprawdzonych zasad i standardów, aby zapewnić zarówno komfort, jak i bezpieczeństwo użytkowników instalacji elektrycznych.

Pytanie 36

Który łącznik przedstawiono na rysunku?

Ilustracja do pytania
A. Dwubiegunowy.
B. Podwójny schodowy.
C. Świecznikowy.
D. Podwójny krzyżowy.
Wybór odpowiedzi, która nie jest prawidłowa, często wynika z nieporozumienia dotyczącego funkcji różnorodnych rodzajów łączników elektrycznych. Na przykład, łącznik dwubiegunowy jest zaprojektowany do włączania i wyłączania jednego obwodu elektrycznego, co nie odpowiada funkcjonalności łącznika podwójnego schodowego, który umożliwia kontrolę dwóch niezależnych obwodów. Inna niepoprawna odpowiedź, łącznik świecznikowy, jest stosowany w instalacjach oświetleniowych, ale jego zastosowanie jest ograniczone do sterowania jednym źródłem światła w różnych punktach z jednego miejsca. Z kolei łącznik podwójny krzyżowy służy do bardziej zaawansowanej konfiguracji, gdzie możliwe jest sterowanie jednym źródłem światła z trzech lub więcej miejsc, jednak nie jest odpowiedni dla prostych instalacji schodowych. Użytkownicy, wybierając te błędne odpowiedzi, mogą mylić funkcje różnych łączników lub nie mieć pełnej wiedzy na temat ich zastosowania. Kluczowe jest zrozumienie, że w przypadku schodów, gdzie bezpieczeństwo i wygoda są priorytetami, zastosowanie łącznika podwójnego schodowego jest najbardziej odpowiednie. Właściwa instalacja zgodna z przepisami i standardami bezpieczeństwa zapewnia efektywne i bezpieczne oświetlenie, co może być pomijane w przypadku niewłaściwego doboru łączników.

Pytanie 37

Na której ilustracji przedstawiono pomiar rezystancji izolacji między przewodami czynnymi w układzie TN-C?

Ilustracja do pytania
A. Na ilustracji 3.
B. Na ilustracji 1.
C. Na ilustracji 4.
D. Na ilustracji 2.
Ilustracja 1 przedstawia prawidłowy sposób pomiaru rezystancji izolacji między przewodami czynnymi w układzie TN-C, co jest kluczowe dla zapewnienia bezpieczeństwa instalacji elektrycznych. W przypadku tego układu przewód PEN pełni funkcję zarówno przewodu ochronnego, jak i neutralnego. Miernik został podłączony między przewody L1, L2, L3 a przewód PEN, co jest zgodne z normami, które zalecają sprawdzanie izolacji w taki sposób, aby uniknąć potencjalnych zagrożeń związanych z porażeniem prądem elektrycznym. W praktyce, pomiar rezystancji izolacji powinien być przeprowadzany regularnie, szczególnie w instalacjach starszego typu, aby wykryć ewentualne uszkodzenia izolacji, które mogą prowadzić do niebezpiecznych sytuacji. Standardy takie jak PN-IEC 60364-6 oraz PN-EN 61557-2 wyraźnie definiują metody przeprowadzania takich pomiarów, a ich przestrzeganie jest niezbędne dla zapewnienia bezpieczeństwa użytkowników oraz sprawności systemu. Wykonywanie pomiarów izolacji na etapie odbioru oraz w trakcie eksploatacji jest najlepszą praktyką, która pozwala na wczesne wykrycie problemów i ich usunięcie, co z kolei przekłada się na dłuższą żywotność instalacji.

Pytanie 38

Jaka jest wielkość prądu znamionowego, przy której działają wyzwalacze zwarciowe w wyłącznikach instalacyjnych nadprądowych typu Z?

A. 2 do 3
B. 10 do 20
C. 5 do 10
D. 3 do 5
Złudzenia związane z innymi wartościami krotności prądu znamionowego wynikają często z niepełnego zrozumienia działania wyłączników nadprądowych oraz ich zastosowania w ochronie instalacji elektrycznych. Odpowiedzi sugerujące krotności od 3 do 5, 5 do 10, czy 10 do 20 są błędne, ponieważ wyzwalacze w wyłącznikach typu Z są zaprojektowane do zadziałania w niższym zakresie krotności, co pozwala na skuteczną ochronę delikatniejszych układów przed zbyt dużym prądem. Wyzwalacze w kategoriach 5 do 10 i 10 do 20 zazwyczaj znajdziemy w wyłącznikach typu C lub D, które są przeznaczone do obwodów o wyższej tolerancji na prądy rozruchowe, takich jak obwody z silnikami dużej mocy. Nieprawidłowe podejście do wyboru odpowiednich wyłączników może prowadzić do poważnych problemów, takich jak uszkodzenia sprzętu, które mogłyby być uniknięte dzięki zastosowaniu wyłączników typu Z w odpowiednich aplikacjach. Kluczowym błędem myślowym jest zakładanie, że wyższa krotność zawsze oznacza lepszą ochronę, co jest mylące. Odpowiedni wybór wyłącznika powinien być oparty na charakterystyce obciążenia oraz wymaganiach instalacji, co jest zgodne z normami i dobrymi praktykami w projektowaniu systemów elektroenergetycznych.

Pytanie 39

Którego narzędzia nie należy stosować przy wykonywaniu montażu lub demontażu elementów instalacji elektrycznych?

Ilustracja do pytania
A. D.
B. B.
C. C.
D. A.
Wybór odpowiedzi D jest prawidłowy, ponieważ scyzoryk wielofunkcyjny nie powinien być stosowany przy montażu lub demontażu elementów instalacji elektrycznych. Narzędzia tego typu, mimo że są wszechstronne, nie zapewniają odpowiedniego poziomu bezpieczeństwa wymagającego pracy z elektrycznością. Główne ryzyko związane z używaniem scyzoryka polega na możliwości uszkodzenia izolacji przewodów, co może prowadzić do poważnych zwarć, a nawet pożarów. W praktyce, do pracy z instalacjami elektrycznymi zaleca się korzystać z narzędzi izolowanych, takich jak szczypce izolowane czy kombinerki, które są zaprojektowane z myślą o ochronie przed porażeniem prądem. Dodatkowo, w wielu krajach obowiązują normy branżowe, takie jak IEC 60900, które określają wymagania dotyczące narzędzi używanych w pracach z instalacjami elektrycznymi, promując tym samym najwyższe standardy bezpieczeństwa. Używanie właściwych narzędzi to nie tylko kwestia efektywności pracy, ale przede wszystkim bezpieczeństwa operatora i osób znajdujących się w pobliżu.

Pytanie 40

Na rysunku przedstawiono wnętrze jednej z rozdzielnic mieszkaniowych zasilonych z rozdzielnicy głównej trzypiętrowego budynku. Które urządzenie, stanowiące część rozdzielnicy mieszkaniowej, oznaczono strzałką?

Ilustracja do pytania
A. Stycznik.
B. Wyłącznik nadmiarowoprądowy.
C. Rozłącznik instalacyjny.
D. Ogranicznik przepięć.
Odpowiedź "Ogranicznik przepięć" jest poprawna, ponieważ to urządzenie jest kluczowym elementem ochrony instalacji elektrycznej przed przepięciami, które mogą wystąpić w wyniku wyładowań atmosferycznych lub nagłych zmian w sieci zasilającej. Ograniczniki przepięć mają za zadanie zredukować napięcie do poziomu, który nie zagraża sprzętowi elektrycznemu. W praktyce stosuje się je w mieszkaniach, biurach oraz w obiektach przemysłowych, aby zabezpieczyć wrażliwe urządzenia, takie jak komputery czy systemy automatyki. Zgodnie z normami, takimi jak PN-EN 61643-11, ograniczniki te powinny być instalowane w bliskim sąsiedztwie chronionych urządzeń, co zapewnia ich skuteczność. Warto również wspomnieć, że ograniczniki przepięć są dostępne w różnych klasach, co pozwala na ich dobór zgodnie z charakterystyką instalacji oraz potrzebami użytkownika, co jest zgodne z dobrymi praktykami branżowymi.