Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik budownictwa
  • Kwalifikacja: BUD.12 - Wykonywanie robót murarskich i tynkarskich
  • Data rozpoczęcia: 25 października 2025 11:21
  • Data zakończenia: 25 października 2025 11:38

Egzamin zdany!

Wynik: 21/40 punktów (52,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Jaką zaprawę wykorzystuje się do budowy elementów konstrukcyjnych budynków, które muszą przenosić duże obciążenia oraz do elementów podatnych na wilgoć, jak na przykład ściany fundamentowe?

A. Cementowa
B. Gipsowo-wapienna
C. Gipsowa
D. Wapienna
Zaprawa cementowa jest odpowiednia do murowania konstrukcji elementów budynku, które przenoszą duże obciążenia oraz są narażone na wilgoć, takich jak ściany fundamentowe. Charakteryzuje się wysoką wytrzymałością na ściskanie oraz niską przepuszczalnością wody, co czyni ją idealnym materiałem w sytuacjach, gdzie trwałość i odporność na czynniki zewnętrzne są kluczowe. Standardy budowlane, takie jak EN 998-2, podkreślają znaczenie stosowania zapraw cementowych w obszarach wymagających większej wytrzymałości oraz ochrony przed wilgocią. Przykładem zastosowania zaprawy cementowej może być fundament budynku, gdzie odpowiednia mieszanka cementu, piasku i wody tworzy mocną strukturę, zdolną wytrzymać ciężar budowli oraz działanie wód gruntowych. Dodatkowo, w przypadkach budownictwa przemysłowego, zaprawy cementowe są często stosowane do murowania ścian nośnych hal produkcyjnych, co podkreśla ich wszechstronność i kluczowe znaczenie w inżynierii budowlanej.

Pytanie 2

Na niewielkiej budowie do przygotowania betonu zastosowano dozowanie objętościowe składników. Murarz miał stworzyć beton zwykły w proporcjach 1 : 2 : 4. Oznacza to, że odmierzył

A. 1 wiadro piasku, 2 wiadra żwiru, 4 wiadra cementu
B. 1 wiadro cementu, 2 wiadra żwiru, 4 wiadra piasku
C. 1 wiadro żwiru, 2 wiadra cementu, 4 wiadra piasku
D. 1 wiadro cementu, 2 wiadra piasku, 4 wiadra żwiru
Niepoprawne odpowiedzi przedstawiają różne błędne interpretacje proporcji składników betonu. W przypadku każdej z tych opcji występuje pomylenie podstawowych komponentów: cementu, piasku i żwiru. Kluczowym błędem jest nieprawidłowe zrozumienie zasady dozowania objętościowego, co prowadzi do nieodpowiednich proporcji, które mogą wpłynąć na właściwości końcowego produktu, jakim jest beton. Na przykład, w odpowiedzi, która wskazuje na 1 wiadro piasku, 2 wiadra żwiru i 4 wiadra cementu, kolejność składników jest całkowicie odwrotna, co prowadzi do mieszanki zbyt bogatej w cement, co może skutkować nadmierną sztywnością i kruchością betonu. Inna odpowiedź, sugerująca użycie żwiru jako pierwszego składnika, również wprowadza w błąd, ponieważ zmienia proporcje, co z kolei może prowadzić do osłabienia struktury betonu. W kontekście projektowania mieszanek betonowych, niezwykle istotne jest przestrzeganie ustalonych proporcji, które zapewniają równowagę pomiędzy wytrzymałością a plastycznością. Mieszanki betonowe muszą być projektowane zgodnie ze standardem PN-EN 206, który określa wymogi techniczne dotyczące betonu, w tym odpowiednie proporcje składników, aby zapewnić ich odpowiednie właściwości użytkowe.

Pytanie 3

Na podstawie przedstawionej recepty roboczej ustal ilości składników sypkich, potrzebnych do wykonania 2 m3 mieszanki betonowej klasy C12/15 o konsystencji S3.

Recepta robocza na wykonanie mieszanki betonowej C12/15 z cementu portlandzkiego
CEM I 32,5 o konsystencji S3
Składniki
mieszanki betonowej
Ilości składników
na 1 m³ mieszanki
betonowej
Ilości składników
na betoniarkę
o pojemności 200 l
Ilości składników
na 25 kg worek
cementu
cement CEM I 32,5275 kg44 kg (34 l)25 kg (19 l)
piasek590 kg94 kg (59 l)54 kg (34 l)
żwir1377 kg220 kg (129 l)125 kg (74 l)
woda165 l26 l15 l
A. cement - 88 kg, piasek - 188 kg, żwir - 440 kg
B. cement - 550 kg, piasek - 88 kg, żwir - 50 kg
C. cement - 550 kg, piasek - 1 180 kg, żwir - 2 754 kg
D. cement - 50 kg, piasek - 10 kg, żwir - 250 kg
Aby poprawnie obliczyć ilości składników sypkich potrzebnych do wykonania 2 m³ mieszanki betonowej klasy C12/15 o konsystencji S3, należy skorzystać z podanych wartości dla 1 m³ i pomnożyć je przez 2. W praktyce oznacza to, że jeśli recepta robocza wskazuje konkretne ilości dla 1 m³, to wykonanie większej objętości betonu wymaga proporcjonalnego zwiększenia składników. W omawianym przypadku, cementu potrzeba 550 kg, piasku 1180 kg oraz żwiru 2754 kg. Takie podejście jest zgodne z zasadami budownictwa i praktykami inżynieryjnymi, które wymagają precyzyjnego dawkowania składników, aby uzyskać odpowiednią jakość mieszanki. Warto również pamiętać, że jakość zastosowanego cementu oraz rodzaj kruszywa mają kluczowe znaczenie dla osiągnięcia pożądanych właściwości betonu, takich jak wytrzymałość na ściskanie czy trwałość. Powtarzalność tych obliczeń jest istotna w procesie produkcji, aby zapewnić jednolitą jakość w różnych partiach materiału.

Pytanie 4

Aby naprawić głębokie pęknięcia w ścianie murowanej, należy zastosować

A. cegły kominowe i zaprawę cementową
B. klamry stalowe oraz zaczyn cementowy
C. stalowe pręty oraz zaprawę gipsową
D. cegły dziurawe wraz z zaczynem gipsowym
Wybór prętów stalowych i zaprawy gipsowej do naprawy głębokich pęknięć nie jest właściwy z kilku powodów. Pręty stalowe mogą być stosowane jako elementy zbrojeniowe, ale w przypadku głębokich pęknięć w murze, ich zastosowanie nie zapewnia odpowiedniej stabilności oraz nie rozwiązuje problemu, ponieważ nie wypełniają one uszkodzeń. Zaprawa gipsowa, z kolei, ma ograniczoną wytrzymałość mechaniczną i jest stosunkowo wrażliwa na działanie wilgoci, co sprawia, że jest nieodpowiednia do użycia w miejscach narażonych na czynniki atmosferyczne. W przypadku cegieł dziurawek i zaczynu gipsowego, problem jest podobny; cegły dziurawki nie oferują wymaganej wytrzymałości i stabilności, a zaczyn gipsowy nie jest dostatecznie odporny na zmiany temperatury czy wilgotności. Zastosowanie cegieł kominówek i zaprawy cementowej również nie jest zalecane. Cegły kominówki, choć mają swoje miejsce w budownictwie, nie są odpowiednie do naprawy głębokich pęknięć, gdzie klamry stalowe zapewniają lepsze wsparcie strukturalne. Zaczyn cementowy, mimo że jest właściwym materiałem do wypełniania, w połączeniu z niewłaściwymi elementami może nie przynieść oczekiwanych rezultatów. Podsumowując, kluczowe w naprawie jest zrozumienie, jakie materiały oraz metody są najbardziej odpowiednie do danego typu uszkodzenia, aby zapewnić długotrwałe i skuteczne rozwiązania.

Pytanie 5

Jak uzyskać jednakową grubość spoin podczas wykańczania cokołu płytkami klinkierowymi?

A. suwmiarki
B. miarki centymetrowej
C. krzyżyków dystansowych
D. spoinówki
Krzyżyki dystansowe są kluczowym narzędziem w procesie układania płytek klinkierowych, które pozwala na uzyskanie jednakowej grubości spoin. Ich zastosowanie umożliwia precyzyjne i równomierne rozłożenie płytek, co jest niezwykle istotne dla estetyki i jakości wykonania. Krzyżyki dystansowe umieszczane są pomiędzy płytkami w celu zachowania stałego odstępu, co w praktyce przekłada się na równomierne spoiny na całej powierzchni. W przypadku płytek klinkierowych, które są często używane na cokołach, odpowiednia grubość spoin ma znaczenie nie tylko estetyczne, ale także funkcjonalne, wpływając na odprowadzanie wody oraz redukcję pęknięć w materiałach. Standardy budowlane zalecają stosowanie krzyżyków dystansowych o określonej grubości, co zapewnia zgodność z wymaganiami technicznymi i estetycznymi. Warto również pamiętać, że różne materiały mogą wymagać różnych rozmiarów spoin, dlatego dobór odpowiednich krzyżyków jest kluczowy dla uzyskania pożądanego efektu.

Pytanie 6

Na podstawie danych zawartych w tabeli oblicz, ile worków zaprawy murarskiej będzie potrzebnych do wymurowania ściany o długości 4,0 m, wysokości 2,5 m i grubości 1 cegły.

Zużycie zaprawy z 25-kilogramowego worka
Rodzaj ścianyPowierzchnia ściany
dla grubości ściany (z cegły pełnej) 1/2 cok. 0,33 m²
grubości 1 cok.0,16 m²
grubości 1 ½cok. 0,11 m²
grubości 2 cok. 0,08 m²
A. 93 szt.
B. 16 szt.
C. 40 szt.
D. 63 szt.
Żeby policzyć, ile worków zaprawy murarskiej potrzebujemy do wymurowania ściany, najpierw musimy określić jej powierzchnię. Mamy ścianę, która ma 4,0 m długości i 2,5 m wysokości. Więc robimy obliczenia: 4,0 m * 2,5 m = 10 m². Następnie trzeba wiedzieć, ile m² pokryjemy z jednego worka zaprawy. Z reguły to około 0,16 m² z worka. Teraz dzielimy powierzchnię ściany przez to, co pokrywa jeden worek: 10 m² / 0,16 m², co daje 62,5. Ostatecznie zaokrąglamy to do 63 worków. To ważne, żeby dobrze to obliczyć, bo jak źle oszacujemy, to może być opóźnienie w pracy i dodatkowe koszty. Zastosowanie norm, jak PN-EN 998-2, daje pewność, że wszystko będzie solidne i trwałe. Wiedza o tym, jak obliczać materiały, jest ważna nie tylko dla wykonawców, ale także dla inwestorów, żeby dobrze planować budżet budowlany.

Pytanie 7

Aby przygotować zaprawę cementowo-wapienną w proporcjach objętościowych 1 : 2 : 6, należy zastosować odpowiednio

A. 1 część wapna, 2 części cementu oraz 6 części piasku
B. 1 część cementu, 2 części wapna oraz 6 części wody
C. 1 część wapna, 2 części cementu oraz 6 części wody
D. 1 część cementu, 2 części wapna i 6 części piasku
Odpowiedź jest prawidłowa, ponieważ zaprawa cementowo-wapienna o proporcji 1:2:6 oznacza, że na każdą część cementu przypadają dwie części wapna i sześć części piasku. Taki skład jest powszechnie stosowany w budownictwie, szczególnie przy murowaniu. Cement działa jako spoiwo, które łączy pozostałe składniki, a wapno wpływa na elastyczność i trwałość zaprawy. Piasek z kolei zapewnia odpowiednią strukturę i wytrzymałość. W praktyce, stosując tę proporcję, można uzyskać zaprawę o dobrej przyczepności, odporności na czynniki atmosferyczne oraz długowieczności, co jest kluczowe w konstrukcjach budowlanych. Przykładowo, przy budowie murów z cegły, taka zaprawa zapewnia stabilność i odporność na pęknięcia, co jest zgodne z normami budowlanymi PN-EN 998-2. Warto również dodać, że odpowiednie dobieranie składników wpływa na właściwości termiczne i akustyczne muru, co jest istotne w kontekście komfortu użytkowania budynków.

Pytanie 8

Tynk zwykły w trzech warstwach, którego powierzchnia jest gładka, równomierna i ma połysk w ciemnym odcieniu, klasyfikuje się jako tynk kategorii

A. III
B. IV
C. IV f
D. IV w
Wybór tynku kategorii IV f, III lub IV jako odpowiedzi na to pytanie wskazuje na niezrozumienie klasyfikacji tynków oraz ich właściwości. Tynk IV f różni się od IV w głównie teksturą i wykończeniem. Tynki tej klasy są zazwyczaj bardziej chropowate i nie oferują tego samego poziomu gładkości ani połysku, co może nie spełniać oczekiwań dotyczących wykończenia powierzchni. Wybór tynku III również jest błędny, ponieważ ta klasa tynków przeznaczona jest głównie do zastosowań, gdzie nie wymaga się aż takiego poziomu estetyki, co w przypadku tynków IV w. Typowym błędem w myśleniu jest założenie, że wszystkie tynki w kategorii IV są sobie równe. W rzeczywistości różnice w wykończeniu, połysku i teksturze mają ogromne znaczenie dla finalnego efektu i zastosowania tynku. Kluczowe jest zrozumienie, że wybór odpowiedniej kategorii tynku powinien być uzależniony od wymaganych standardów estetycznych i funkcjonalnych, które są ściśle określone w dokumentacji technicznej oraz normach budowlanych. Niezrozumienie tych aspektów prowadzi do podejmowania błędnych decyzji w zakresie materiałów budowlanych, co może skutkować nieodpowiednim wyglądem wykończenia oraz większymi kosztami związanymi z ewentualnymi poprawkami.

Pytanie 9

Aby uzyskać zaprawę cementowo-wapienną M4, należy użyć składników w proporcjach objętościowych 1 : 1 : 6, co oznacza

A. 1 część cementu : 1 część piasku : 6 części wapna hydratyzowanego
B. 1 część cementu : 1 część wapna hydratyzowanego : 6 części wody
C. 1 część wapna hydratyzowanego : 1 część piasku : 6 części cementu
D. 1 część cementu : 1 część wapna hydratyzowanego : 6 części piasku
W przypadku błędnych odpowiedzi, często występuje nieporozumienie dotyczące rozróżnienia składników zaprawy. Proporcje 1 : 1 : 6 powinny być interpretowane jako 1 część cementu, 1 część wapna hydratyzowanego oraz 6 części piasku, co jest kluczowe dla uzyskania pożądanej jakości zaprawy. Wybór odpowiednich proporcji ma ogromny wpływ na właściwości mechaniczne zaprawy, takie jak wytrzymałość na ściskanie, która jest fundamentalna w budownictwie. Nieprawidłowe stosunki, takie jak 1 część cementu, 1 część piasku i 6 części wapna hydratyzowanego, mogą prowadzić do zbyt dużego uwodnienia, co zmniejsza wytrzymałość i trwałość zaprawy. Ponadto, pomijanie piasku lub zbyt niskie jego proporcje skutkują gorszą pracą i adhezją zaprawy. Takie błędy mogą także prowadzić do problemów w dłuższej perspektywie czasowej, takich jak pęknięcia czy odspajanie elementów budowlanych. Warto również zauważyć, że błędne proporcje mogą wynikać z niewłaściwego zrozumienia właściwości materiałów budowlanych i ich interakcji. Dlatego kluczowe jest przestrzeganie standardów i dobrych praktyk w budownictwie, aby zapewnić bezpieczeństwo oraz trwałość konstrukcji.

Pytanie 10

Kiedy wykonuje się poziomą izolację przeciwwilgociową na ścianie fundamentowej?

A. z papy asfaltowej
B. ze styropianu
C. z polistyrenu ekstrudowanego
D. z folii paroizolacyjnej
Izolacja przeciwwilgociowa ściany fundamentowej jest niezbędna dla ochrony konstrukcji przed działaniem wody, jednak zastosowanie materiałów innych niż papa asfaltowa może być nieodpowiednie. Styropian, mimo że jest materiałem o dobrych właściwościach termoizolacyjnych, nie zapewnia wystarczającej ochrony przed wilgocią. Jego struktura jest porowata, co może prowadzić do absorpcji wody, a w efekcie do uszkodzeń fundamentów oraz osłabienia całej konstrukcji. Polistyren ekstrudowany, chociaż lepszy od styropianu pod względem trwałości i odporności na wilgoć, nie jest przeznaczony do stosowania jako materiał izolacyjny w bezpośrednim kontakcie z wodą gruntową. Użycie folii paroizolacyjnej w tym kontekście również jest niewłaściwe, ponieważ folia ma inne przeznaczenie – jej główną funkcją jest ochrona przed migracją pary wodnej, a nie wody gruntowej. Izolacja fundamentów musi być wykonana z materiałów odpornych na długotrwałe działanie wody, co wyklucza stosowanie nieodpowiednich produktów. Niewłaściwy dobór materiałów do izolacji fundamentów może prowadzić do poważnych problemów, takich jak infiltracja wilgoci, co z kolei może prowadzić do powstawania pleśni, rozwoju grzybów oraz uszkodzeń strukturalnych budynku. Dlatego kluczowe jest, aby zawsze stosować się do rekomendacji branżowych i standardów budowlanych przy wyborze materiałów do izolacji przeciwwilgociowej.

Pytanie 11

Jakie narzędzia są przeznaczone do demontażu ścian?

A. Strug, szpachla, wiertarka o niskich obrotach
B. Przecinak, kielnia, młotek do murowania
C. Paca, młotek z gumowym zakończeniem
D. Kilof, oskard, młot pneumatyczny
Kilof, oskard i młot pneumatyczny to jakby must-have w rozbiórce ścian, zwłaszcza jak robisz coś w budowlance czy remoncie. Kilof to takie mocne narzędzie, które świetnie sobie radzi z twardymi materiałami jak beton czy cegła. Z kolei oskard ma szersze ostrze i jest super do zdzierania tynku albo rozdzielania konstrukcji. Młot pneumatyczny to już technologia, bo używa sprężonego powietrza, żeby zrobić duże uderzenie i to naprawdę przyspiesza rozbiórkę, zwłaszcza jak mamy do czynienia z grubymi ściankami. Ważne jest, żeby używać tych narzędzi mądrze, czyli dbać o bezpieczeństwo, zakładać odpowiednią odzież ochronną i ogólnie trzymać porządek w miejscu pracy. Dobrze zaplanowana rozbiórka, z właściwymi narzędziami w ręku, może znacznie zmniejszyć ryzyko uszkodzeń i sprawi, że wszystko pójdzie sprawniej.

Pytanie 12

Zgodnie z Zasadami obmiaru robót tynkarskich podczas obmiaru tynku wewnętrznego ściany z jednym otworem okiennym o tynkowanych ościeżach należy odjąć powierzchnię tego otworu, jeżeli wynosi ona ponad

Zasady obmiaru robót tynkarskich
(fragment)
(...) Z powierzchni tynków nie odlicza się powierzchni nieotynkowanych lub ciągnionych mających więcej niż 1 m2 i powierzchni otworów do 3 m2, jeżeli ościeża ich są tynkowane. (...)
A. 1,0 m2
B. 2,0 m2
C. 0,5 m2
D. 3,0 m2
Wybór odpowiedzi, które nie uwzględniają kluczowych zasad dotyczących odliczania powierzchni otworów okiennych, wskazuje na brak zrozumienia podstawowych przepisów związanych z obmiarami robót tynkarskich. Na przykład, odpowiedź "2,0 m2" sugeruje, że odliczenie powinno nastąpić w każdym przypadku, kiedy powierzchnia otworu przekracza 1 m2, co jest błędnym podejściem. Zgodnie z zasadami, odliczamy powierzchnię otworów tylko w przypadku, gdy wynosi ona powyżej 3 m2, a także tylko jeśli ościeża tych otworów są tynkowane. W przypadku odpowiedzi "1,0 m2" mylone jest pojęcie, że każde otwarcie na ścianie musi być traktowane jako element do odliczenia. To prowadzi do sytuacji, w której kosztorys robót tynkarskich będzie niepoprawny, co może skutkować błędnymi wyliczeniami finansowymi. Z kolei wybór "0,5 m2" może sugerować, iż nie uwzględnia się otworów w ogóle, co jest absolutnie niezgodne z praktyką. Takie podejście może prowadzić do nadmiernych kosztów i strat materiałowych, ponieważ brak odpowiednich obliczeń może skutkować zamówieniem niewłaściwej ilości materiału. Dobrą praktyką jest zawsze odniesienie się do zatwierdzonych norm i wytycznych, aby uniknąć kosztownych błędów. Kluczowym aspektem jest również zrozumienie, jak obmiary wpływają na całościowy budżet projektu oraz jakość wykonanych prac budowlanych.

Pytanie 13

Jakie są zasady bezpiecznej rozbiórki muru według przepisów?

A. Pas muru o wysokości do 50 cm należy podciąć, a pokruszone fragmenty spuszczać za pomocą suwnicy pochyłej
B. Mur należy rozbierać warstwami od góry do dołu, a cegły spuszczać zsypem
C. Mur należy rozbierać w pionowych pasach, a odzyskane cegły układać na stropie
D. Mur o wysokości kondygnacji należy przewrócić na strop, a pokruszone materiały spuszczać specjalną rynną
Rozbiórka ściany warstwami od góry do podłogi jest najbezpieczniejszą i najbardziej zalecaną metodą, ponieważ minimalizuje ryzyko upadku materiałów i zapewnia lepszą kontrolę nad procesem demontażu. Pracownicy mogą od razu usuwać każdą warstwę, co pozwala na dokładne sprawdzenie struktury podczerwonej, eliminując ryzyko zawalenia się niekontrolowanych fragmentów. Zsyp do transportu cegieł dalej obniża ryzyko - umożliwia bezpieczne usuwanie materiałów bez potrzeby ich przenoszenia w sposób ręczny, co z kolei ogranicza ryzyko kontuzji. Tego typu technika jest zgodna z normami BHP i praktykami inżynieryjnymi, które zalecają ograniczenie kontaktu pracowników z opadającymi materiałami. Przykłady zastosowania tej metody można znaleźć w projektach renowacyjnych, gdzie kluczowe jest zachowanie bezpieczeństwa oraz ograniczenie uszkodzenia istniejącej struktury budynku, co jest szczególnie istotne w obszarach miejskich z gęstą zabudową.

Pytanie 14

Podczas modernizacji i naprawy murów, przy eliminacji wykwitów nie należy używać

A. specjalnych środków czyszczących.
B. wody
C. szczotki.
D. papieru ściernego.
W odpowiedzi na pytanie, dlaczego podczas usuwania wykwitów z murów nie stosuje się wody, warto zauważyć, że woda może sprzyjać rozwojowi pleśni oraz innych mikroorganizmów, co w efekcie może pogorszyć stan powierzchni. W praktyce, usuwanie wykwitów powinno odbywać się z zachowaniem odpowiednich procedur, które minimalizują ryzyko wprowadzenia nadmiernej wilgoci. Najczęściej zaleca się stosowanie szczotek o twardym włosiu lub specjalnych narzędzi mechanicznych, które pozwalają na skuteczne usunięcie osadów bez wprowadzania wody. Przykładem może być użycie narzędzi pneumatycznych lub szczotek rotacyjnych. Warto również zwrócić uwagę na dobre praktyki branżowe, które obejmują stosowanie preparatów chemicznych przeznaczonych do usuwania wykwitów, co zapewnia bardziej kontrolowany proces oczyszczania bez ryzyka uszkodzenia struktury muru. Zgodność z normami budowlanymi oraz zarządzaniem jakością prac budowlanych jest kluczowa w tego rodzaju operacjach.

Pytanie 15

Tynk dekoracyjny, który składa się z wielu warstw i ma różne kolory, a jego odcień uzyskuje się przez usuwanie odpowiednich warstw wierzchnich, to

A. sztukateria
B. sgraffito
C. sztablatura
D. stiuk
Sgraffito to technika dekoracyjna, która polega na tworzeniu wzorów i rysunków poprzez zeskrobanie wierzchniej warstwy tynku, aby odsłonić kolor niższej warstwy. Metoda ta jest szeroko stosowana w architekturze i sztuce wnętrz, oferując unikalne efekty wizualne i estetyczne. Sgraffito można spotkać na wielu budynkach, zwłaszcza w stylu renesansowym i barokowym, a także w sztuce nowoczesnej. Przykłady użycia sgraffito obejmują fasady budynków, gdzie różnorodność kolorystyczna i wzory przyciągają wzrok i nadają charakter zabudowaniom. W branży budowlanej sgraffito uznawane jest za technikę wymagającą dużych umiejętności, dlatego często współpracują z nią doświadczeni artyści i rzemieślnicy. Znajomość tej metody jest kluczowa dla projektów konserwatorskich, gdzie zachowuje się oryginalne elementy dekoracyjne, a także w nowoczesnej architekturze, gdzie sgraffito może być użyte do nadania indywidualnego stylu nowym budynkom.

Pytanie 16

Wymiary pomieszczenia przedstawionego na rysunku w skali 1:100 wynoszą 8x10 cm. Jaką objętość ma to pomieszczenie, jeżeli jego rzeczywista wysokość to 2,5 m?

A. 50 m3
B. 100 m3
C. 200 m3
D. 800 m3
Aby obliczyć kubaturę pomieszczenia, należy znać jego wymiary oraz wysokość. Wymiary pomieszczenia na rysunku są podane w skali 1:100, co oznacza, że każdy 1 cm na rysunku odpowiada 100 cm (czyli 1 m) w rzeczywistości. Zatem wymiary 8x10 cm w skali 1:100 przekładają się na rzeczywiste wymiary pomieszczenia, które wynoszą 8 m x 10 m. Kubatura pomieszczenia oblicza się jako iloczyn długości, szerokości i wysokości. W tym przypadku: 8 m (długość) * 10 m (szerokość) * 2,5 m (wysokość) = 200 m3. Przykładem zastosowania tej wiedzy jest projektowanie wnętrz czy architektura, gdzie dokładne obliczenia kubatury są kluczowe dla określenia wymagań wentylacyjnych, grzewczych, a także dla optymalizacji przestrzeni. Zgodnie z normami budowlanymi, takie obliczenia muszą być precyzyjne, co pozwala na efektywne zarządzanie przestrzenią oraz komfort użytkowników.

Pytanie 17

Jakie materiały wykorzystuje się do łączenia warstw papy asfaltowej stosowanych jako izolacja ław fundamentowych?

A. lepikiem asfaltowym
B. emulsją asfaltową
C. roztworem asfaltowym
D. kitem asfaltowym
Lepik asfaltowy jest najczęściej stosowanym materiałem do łączenia warstw papy asfaltowej, ponieważ zapewnia doskonałą przyczepność i szczelność. Jego właściwości hydroizolacyjne są kluczowe przy izolacji ław fundamentowych, ponieważ zapobiegają przenikaniu wody do konstrukcji. Lepik asfaltowy, będący płynnym materiałem, pod wpływem ciepła staje się lepki, co umożliwia łatwe łączenie poszczególnych warstw papy. W praktyce, stosując lepik, można uzyskać ciągłość izolacji, co jest istotne dla długotrwałej ochrony fundamentów. Dobrą praktyką jest również przestrzeganie norm budowlanych, takich jak PN-EN 13707, które definiują wymagania dla materiałów hydroizolacyjnych. Dzięki zastosowaniu lepika asfaltowego na ławach fundamentowych, inwestorzy mogą mieć pewność, że ich struktury są odpowiednio zabezpieczone przed negatywnym działaniem wody i wilgoci, co w dłuższej perspektywie przekłada się na trwałość budowli.

Pytanie 18

Zadaniem jest zbudowanie ścianki działowej z cegły pełnej o grubości ½ cegły. Jeśli zużycie zaprawy na 1 m2 tej ścianki wynosi 0,030 m3, to ile zaprawy będzie potrzebne do zrealizowania 25 m2?

A. 0,625 m3
B. 0,375 m3
C. 0,50 m3
D. 0,75 m3
Aby obliczyć ilość zaprawy potrzebnej do wykonania 25 m² ściany działowej z cegły pełnej, należy pomnożyć zapotrzebowanie na zaprawę na 1 m² przez całkowitą powierzchnię ściany. W tym przypadku, zużycie zaprawy wynosi 0,030 m³ na 1 m². Zatem, dla 25 m² zaprawa wynosi: 0,030 m³/m² * 25 m² = 0,75 m³. W praktyce, znajomość takich obliczeń jest niezbędna dla odpowiedniego planowania materiałów budowlanych i kosztorysowania. Pozwala to na uniknięcie sytuacji, w której zabraknie materiału w trakcie budowy, co może prowadzić do opóźnień. W branży budowlanej obowiązują normy, które zalecają uwzględnianie nie tylko podstawowego zapotrzebowania, ale również ewentualnych strat podczas transportu i aplikacji materiałów. Dobrą praktyką jest również zawsze uwzględniać dodatkowy procent materiału na ewentualne poprawki lub błędy, co zwiększa efektywność wykorzystania surowców.

Pytanie 19

Z przedstawionego fragmentu rozporządzenia wynika, że budynek biurowy, który ma 9 kondygnacji nadziemnych o wysokości 3,00 m każda, a jego parter usytuowany jest 0,80 m nad poziomem terenu, należy do budynków.

Rozporządzenie ministra infrastruktury w sprawie warunków technicznych, jakim powinny odpowiadać budynki i ich usytuowanie (fragment)
W celu określenia wymagań technicznych i użytkowych wprowadza się następujący podział budynków na grupy wysokości:
1. niskie (N) — do 12 m włącznie nad poziomem terenu lub mieszkalne o wysokości do 4 kondygnacji nadziemnych włącznie,
2. średniowysokie (SW) — ponad 12 m do 25 m włącznie nad poziomem terenu lub mieszkalne o wysokości ponad 4 do 9 kondygnacji nadziemnych włącznie,
3. wysokie (W) — ponad 25 m do 55 m włącznie nad poziomem terenu lub mieszkalne o wysokości ponad 9 do 18 kondygnacji nadziemnych włącznie,
4. wysokościowe (WW) — powyżej 55 m nad poziomem terenu.
A. niskich.
B. średniowysokich.
C. wysokościowych.
D. wysokich.
Budynek biurowy, który ma 9 kondygnacji i każda z nich mierzy 3 metry, osiąga całkowitą wysokość 27 metrów. To sprawia, że możemy go uznać za budynek wysoki według przepisów. Wysokie budynki to te, które mają więcej niż 25 metrów, ale mniej niż 55. Dlatego klasyfikacja budynków pod względem ich wysokości jest ważna, zwłaszcza przy projektowaniu lub budowie. Np. odpowiednie normy budowlane, jak PN-EN 1991-1-4, mówią o tym, jak budynek powinien znosić siłę wiatru, co jest mega istotne dla bezpieczeństwa. W przypadku wysokich budynków trzeba też zwrócić uwagę na ewakuację i instalacje przeciwpożarowe, a także na to, jak budynek jest zaprojektowany w kontekście ochrony środowiska czy efektywności energetycznej. Dobrze jest zrozumieć te zasady, bo pomagają one architektom i inżynierom w tworzeniu bezpiecznych i funkcjonalnych konstrukcji.

Pytanie 20

Po jakim czasie od rozpoczęcia twardnienia powinno się przeprowadzić badanie wytrzymałości na ściskanie próbek zaprawy cementowo-wapiennej, aby określić jej markę/klasę?

A. Po 7 dniach
B. Po 1 dniu
C. Po 28 dniach
D. Po 14 dniach
Wybór odpowiedzi wskazującej na 7 dni twardnienia jest błędny z kilku powodów. Po pierwsze, w tym czasie materiał nie osiąga jeszcze swojej pełnej wytrzymałości, co jest zgodne z większością norm budowlanych, takich jak PN-EN 196-1, które jednoznacznie wskazują na 28-dniowy okres jako standardowy czas dla badań wytrzymałościowych. Podobnie, ocenianie zaprawy po 1 dniu lub 14 dniach również nie oddaje rzeczywistego potencjału materiału. W przypadku 1 dnia, zaprawa znajduje się jeszcze w fazie wczesnego twardnienia, kiedy to proces hydratacji cementu dopiero się rozpoczyna, co prowadzi do bardzo niskiej wytrzymałości. Z kolei po 14 dniach, chociaż materiał może wykazywać pewną wytrzymałość, nie osiąga jeszcze stabilnych wartości, które mogłyby być podstawą do klasyfikacji materiału. Często popełnianym błędem jest zakładanie, że wcześniejsze badania mogą dostarczyć zadowalających wyników, co może prowadzić do problemów konstrukcyjnych w przyszłości. Dlatego tak istotne jest przestrzeganie standardów i praktyk branżowych, które wskazują na 28-dniowy cykl jako punkt odniesienia dla rzetelnej oceny jakości zapraw cementowo-wapiennych. W praktyce budowlanej, ignorowanie tych zasad może skutkować zastosowaniem materiałów o niewłaściwych parametrach, co z kolei może prowadzić do poważnych awarii budowlanych.

Pytanie 21

Na podstawie wyciągu ze Szczegółowej Specyfikacji Technicznej Wykonania i Odbioru Robót Budowlanych SST wskaż, ile litrów zaprawy gipsowej można uzyskać z 20 kg worka suchej, gotowej mieszanki?

Szczegółowa Specyfikacja Techniczna Wykonania i Odbioru Robót Budowlanych SST
(wyciąg)
B.3.03. Tynk gipsowy
Dane techniczne:
- średnia grubość tynku: 10 mm (grubość min.8 mm)
- ciężar nasypowy: 800kg/m3
- uziarnienie: do 1,2 mm
- wydajność: 100 kg = 125 l zaprawy
- zużycie: 0,8 kg na mm i m2
- czas schnięcia: średnio około 14 dni
A. 50,01
B. 2,51
C. 5,01
D. 25,01
Odpowiedź 25,01 l jest poprawna, ponieważ wynika z właściwego przeliczenia masy suchej mieszanki na objętość zaprawy. Zgodnie z danymi technicznymi w Szczegółowej Specyfikacji Technicznej Wykonania i Odbioru Robót Budowlanych, stosunek masy do objętości wynosi 100 kg do 125 l. Oznacza to, że na każdy kilogram suchej mieszanki przypada 1,25 l zaprawy. W przypadku 20 kg suchej mieszanki, obliczenia są proste: 20 kg x 1,25 l/kg = 25 l. Tę wartość można również zaokrąglić do 25,01 l, co jest zgodne z wymaganiami technicznymi dotyczącymi precyzyjnego podawania objętości. Wiedza ta jest istotna nie tylko w kontekście przygotowania zaprawy, ale także w planowaniu ilości materiałów budowlanych. Znajomość przeliczeń pozwala na lepsze zarządzanie kosztami projektów budowlanych oraz minimalizację odpadów, co jest zgodne z zasadami zrównoważonego rozwoju i efektywnego gospodarowania zasobami.

Pytanie 22

Na podstawie danych zawartych w tabeli oblicz całkowity koszt wykonania 1 m2 tynku mozaikowego drobnoziarnistego wraz z gruntowaniem podłoża.

Tynk mozaikowy drobnoziarnisty:
cena opakowania 25 kg:187,50 zł
zużycie:4 kg/m²
Preparat gruntujący:
cena opakowania 12 l:90,00 zł
zużycie:0,4 l/m²
Robocizna (wykonanie tynku wraz z gruntowaniem):55,00 zł/m²
A. 88,00 zł
B. 82,00 zł
C. 58,00 zł
D. 85,00 zł
Wybór innych odpowiedzi, jak 82,00 zł, 58,00 zł czy 85,00 zł, często wynika z błędnego oszacowania kosztów materiałów i robocizny przy tynku mozaikowym. Możliwe, że w takich przypadkach pomijasz ważne elementy, jak przygotowanie podłoża, które ma duże znaczenie dla przyczepności tynku. Koszt gruntowania, które jest często konieczne przed nałożeniem tynku, mógł nie zostać wzięty pod uwagę w niektórych obliczeniach, co prowadzi do zaniżenia całości. Zdarza się też, że błędne wyniki wynikają z pomyłek w jednostkowych kosztach materiałów lub robocizny. Często nie uwzględnia się również dodatkowych wydatków na narzędzia, transport czy straty materiałów. Niedostateczna znajomość standardów i praktyk w branży też może przyczyniać się do błędnych oszacowań. Dlatego przed zaczęciem kalkulacji dobrze jest przemyśleć wszystkie składniki kosztów, żeby wyjść z rzetelnymi obliczeniami.

Pytanie 23

Masa asfaltowa dostępna jest w pojemnikach 10-litrowych w cenie 74,90 zł za pojemnik.
Oblicz koszt zakupu masy asfaltowej niezbędnej do przeprowadzenia dwuwarstwowej hydroizolacji na dwóch ścianach fundamentowych o powierzchni 25,0 m2 każda, jeśli zużycie masy w pierwszej warstwie wynosi 0,5 l/m2, a w drugiej 0,4 l/m2.

A. 224,70 zł
B. 149,80 zł
C. 299,60 zł
D. 374,50 zł
Aby obliczyć całkowity koszt zakupu masy asfaltowej do wykonania dwuwarstwowej hydroizolacji, należy najpierw policzyć, ile masy potrzebujemy na obydwie warstwy. Powierzchnia jednej ściany fundamentowej wynosi 25 m², więc dla dwóch ścian potrzebujemy 50 m². Zużycie masy w pierwszej warstwie wynosi 0,5 l/m², co daje 0,5 l/m² * 50 m² = 25 l na pierwszą warstwę. W drugiej warstwie zużycie wynosi 0,4 l/m², co daje 0,4 l/m² * 50 m² = 20 l na drugą warstwę. Łącznie potrzebujemy 25 l + 20 l = 45 l masy asfaltowej. Masa asfaltowa sprzedawana jest w opakowaniach 10-litrowych, co oznacza, że potrzebujemy 5 opakowań (45 l / 10 l = 4,5, zaokrąglając w górę do 5). Koszt jednego opakowania wynosi 74,90 zł, więc całkowity koszt zakupu to 5 opakowań * 74,90 zł = 374,50 zł. Takie obliczenia są niezwykle istotne w praktyce budowlanej, ponieważ pozwalają na precyzyjne oszacowanie kosztów materiałów, co jest kluczowe dla zachowania budżetu i efektywności projektów budowlanych.

Pytanie 24

Jaką technikę powinno się zastosować do murowania na puste spoiny?

A. Na docisk zaprawy kielnią
B. Na wycisk z podcięciem zaprawy kielnią
C. Na wycisk zaprawy cegłą
D. Z nakładaniem zaprawy na całą powierzchnię cegły
Nieprawidłowe metody murowania, takie jak murowanie na docisk zaprawy kielnią, nie są zalecane, ponieważ mogą prowadzić do problemów związanych z jakością muru. Technika ta nie zapewnia odpowiedniego wypełnienia spoin, co skutkuje powstawaniem szczelin, które mogą negatywnie wpływać na trwałość i stabilność konstrukcji. Murowanie z użyciem kielni może prowadzić do nadmiaru zaprawy w spoinach, co z kolei przyczynia się do deformacji cegieł oraz może prowadzić do ich pęknięcia w dłuższym okresie użytkowania. Nakładanie zaprawy na całą powierzchnię cegły, choć może wydawać się wygodne, również nie jest zalecane, ponieważ może spowodować, że zaprawa będzie się wydobywać na zewnątrz, co wpływa na estetykę muru. W przypadku zastosowania wycisku z podcięciem zaprawy kielnią, może dochodzić do nieprzewidywalnych efektów związanych z przyczepnością, co jest niezgodne z aktualnymi standardami budowlanymi. Wszystkie te błędne podejścia często wynikają z niewłaściwego zrozumienia zasad murowania oraz zaniedbania w zakresie techniki, które są kluczowe dla stworzenia solidnej i estetycznej konstrukcji. Dlatego warto kłaść nacisk na odpowiednie metody, które są zgodne z najlepszymi praktykami w budownictwie.

Pytanie 25

Który z elementów sklepienia oznaczono na rysunku cyfrą 5?

Ilustracja do pytania
A. Podniebienie.
B. Czoło.
C. Grzbiet.
D. Pachę.
W przypadku niepoprawnych odpowiedzi, warto zauważyć, że grzbiet, pacha oraz czoło nie są terminami odnoszącymi się do elementów sklepienia. Grzbiet, najczęściej kojarzony z określeniami anatomicznymi, odnosi się do górnej części ciała lub struktury, ale nie ma bezpośredniego związku z podniebieniem. Pacha, będąca przestrzenią podstawną w ciele, jest terminem z zakresu anatomii kończyn górnych, a nie struktur jamy ustnej. Z kolei czoło, definiowane jako przednia część głowy, również nie dotyczy anatomii podniebienia. Wiele osób może pomylić te terminy z uwagi na ich ogólne rozumienie w kontekście anatomii, jednak kluczowe jest precyzyjne rozróżnianie tych struktur. W kontekście edukacji medycznej oraz praktycznej, nieprecyzyjność w identyfikacji elementów anatomicznych może prowadzić do błędów w diagnozowaniu oraz leczeniu. Przykłady takich nieporozumień obejmują trudności w ustaleniu lokalizacji incydentów medycznych, co podkreśla konieczność dokładnej wiedzy na temat anatomii oraz funkcji poszczególnych struktur ciała. Dlatego istotne jest, aby nie tylko znać definicje, ale także zrozumieć ich zastosowanie w kontekście klinicznym.

Pytanie 26

Cementową zaprawę wykorzystuje się do budowy ścian

A. nośnych zewnętrznych
B. nośnych wewnętrznych
C. działowych
D. fundamentowych
Murowanie ścian nośnych wewnętrznych, działowych oraz nośnych zewnętrznych, choć również ważne, wymaga zastosowania innych typów zapraw, które są dostosowane do specyficznych potrzeb tych konstrukcji. W przypadku ścian nośnych wewnętrznych, gdzie nie ma bezpośredniego kontaktu z wodą gruntową, można stosować zaprawy o mniejszej odporności na wilgoć, co może prowadzić do niewłaściwych praktyk w budownictwie. Ściany działowe, które często nie przenoszą obciążeń, mogą być murowane z użyciem zapraw lekkich, co wprowadza zamieszanie dotyczące stosowania zapraw cementowych. W przypadku ścian nośnych zewnętrznych, kluczowe jest zapewnienie izolacji, co może oznaczać konieczność użycia zapraw mrozoodpornych lub odpornych na działanie wody. Często mylone są różnice między zaprawami stosowanymi w konstrukcjach nośnych a tymi w fundamentach, co prowadzi do błędnych wyborów materiałowych. Zrozumienie, że zaprawa cementowa ma swoje właściwe miejsce w budowie fundamentów, a nie w innych typach murowania, jest kluczowe dla uzyskania trwałych i bezpiecznych konstrukcji. Niezrozumienie tego aspektu może prowadzić do osłabienia struktury budynku, co jest nieakceptowalne w profesjonalnym budownictwie.

Pytanie 27

Rozpoczęcie docieplania ściany metodą lekką suchą polega na zamontowaniu

A. kratek odpowietrzających
B. rusztu konstrukcyjnego
C. izolacji wiatrowej
D. wełny mineralnej
Montaż izolacji wiatrowej, kratek odpowietrzających czy wełny mineralnej jako pierwszych elementów w systemie dociepleń jest nieprawidłowy, ponieważ nie uwzględnia podstawowych zasad budowy rusztu konstrukcyjnego. Izolacja wiatrowa, która ma na celu ochronę przed wpływem wiatru, jest stosowana zwykle na etapie finalnym, aby zminimalizować straty ciepła, jakie mogą wynikać z nieszczelności. Kratki odpowietrzające są elementami, które mają za zadanie umożliwić wentylację i odpływ skroplin, co jest istotne w kontekście dbałości o materiał izolacyjny, ale nie są pierwszym krokiem w procesie docieplenia. Wełna mineralna, jako materiał izolacyjny, powinna być umieszczona na ruszcie po jego zainstalowaniu, ponieważ bez odpowiedniego wsparcia strukturalnego nie będzie w stanie spełniać swoich funkcji. Kluczowym błędem myślowym jest przekonanie, że można pominąć etapy montażu konstrukcji nośnej, co prowadzi do nieprawidłowego rozkładu obciążeń i potencjalnych uszkodzeń systemu ociepleń. W związku z tym, każda inwestycja w ocieplenie budynku powinna być realizowana zgodnie z ustalonymi standardami i technologią, aby zapewnić jej efektywność i trwałość.

Pytanie 28

Jaką cegłę należy zastosować do budowy murowanych ścianek działowych o grubości do 12 cm, aby uzyskać jak najniższy ciężar objętościowy?

A. ceramiczną pełną
B. wapienno-piaskową pełną
C. klinkierową
D. dziurawki
Dziurawki, czyli cegły ceramiczne o dużej liczbie otworów, charakteryzują się niskim ciężarem objętościowym, co czyni je idealnym materiałem do budowy ścianek działowych o grubości do 12 cm. Dzięki swojej strukturze, dziurawki nie tylko obniżają całkowity ciężar konstrukcji, ale również zapewniają dobrą izolacyjność akustyczną i termiczną. W praktyce, zastosowanie dziurek w budownictwie pozwala na optymalizację kosztów transportu oraz ułatwia prace murarskie, ponieważ są one lżejsze od cegły pełnej. Zgodnie z normami budowlanymi, cegły te powinny być używane tam, gdzie priorytetem jest redukcja masy konstrukcyjnej, a jednocześnie zachowanie wymagań dotyczących wytrzymałości i izolacji. Przykłady zastosowania obejmują budowę ścianek działowych w biurach, domach mieszkalnych oraz innych obiektach, gdzie ograniczenie ciężaru konstrukcji jest kluczowe.

Pytanie 29

Tynk III kategorii powszechny to

A. tynk trójwarstwowy zatarty packą na gładko
B. narzut jedno- lub dwu-warstwowy wygładzany pacą
C. tynk trójwarstwowy wygładzony pacą pokrytą filcem
D. narzut o jednej warstwie, wyrównany kielnią
Tynk pospolity III kategorii, jako tynk trójwarstwowy zatarty packą na gładko, jest odpowiednim rozwiązaniem w przypadku, gdy zależy nam na uzyskaniu estetycznej, gładkiej powierzchni. Tego rodzaju tynk składa się z trzech warstw: warstwy podkładowej, warstwy zasadniczej oraz warstwy wykończeniowej, co pozwala na uzyskanie odpowiedniej wytrzymałości oraz trwałości. Takie podejście jest zgodne z normami budowlanymi, które zalecają stosowanie trzech warstw w celu osiągnięcia najlepszych właściwości termoizolacyjnych oraz akustycznych. Przykładem zastosowania tynku pospolitego III kategorii mogą być wnętrza budynków mieszkalnych, gdzie gładka powierzchnia ścian jest zarówno estetyczna, jak i funkcjonalna. Dobra praktyka polega na prawidłowym wykonaniu każdej z warstw, co wpływa na końcowy efekt estetyczny oraz trwałość tynku, a także na jego odporność na uszkodzenia mechaniczne czy wilgoć. Dodatkowo, tynk taki może być malowany, co otwiera dodatkowe możliwości aranżacyjne w przestrzeni. Zastosowanie tynku trójwarstwowego zwiększa też wartość estetyczną obiektów budowlanych.

Pytanie 30

Z ilustracji wynika, że szerokość filarka międzyokiennego wynosi 103 cm. Ile pełnych cegieł zmieści się na szerokości filarka?

A. 4
B. 3
C. 2
D. 5
Odpowiedź 4 to strzał w dziesiątkę, bo szerokość filarka, czyli 103 cm, dobrze się dzieli przez standardową szerokość cegły, która wynosi 25 cm. Jak podzielisz 103 przez 25, to dostajesz 4,12. To znaczy, że w filarze zmieści się 4 całe cegły, a te pozostałe 3 cm to za mało na kolejną. W budownictwie używamy całych cegieł, bo to stabilniejsze i praktyczniejsze. Pamiętaj też, że przy projektowaniu musimy myśleć o spoinach i możliwych stratach materiałowych, bo to wpływa na to, ile cegieł naprawdę potrzebujemy. Zrozumienie tych zasad jest naprawdę ważne, jeśli chcesz dobrze planować prace budowlane.

Pytanie 31

Szczeliny powietrzne w murach murowanych wprowadza się, aby poprawić

A. grubość ściany
B. izolacyjność termiczną ściany
C. izolacyjność akustyczną
D. ognioodporność ściany
Izolacyjność akustyczna, grubość ściany oraz ognioodporność to istotne aspekty konstrukcyjne, jednak nie mają bezpośredniego związku z zastosowaniem szczelin powietrznych w ścianach murowanych. Odpowiedzi sugerujące zwiększenie izolacyjności akustycznej nie uwzględniają faktu, że szczeliny powietrzne mogą działać negatywnie na właściwości akustyczne, ponieważ mogą stać się ścieżkami dla dźwięków. W kontekście grubości ściany, szczeliny powietrzne nie zwiększają rzeczywistej grubości muru, a ich zadaniem jest poprawa izolacji termicznej, co ma na celu ograniczenie kosztów ogrzewania. Ognioodporność, z kolei, jest związana z materiałami budowlanymi i ich właściwościami w zakresie odporności na wysoką temperaturę. Używanie szczelin powietrznych do zapewnienia ognioodporności jest niewłaściwym podejściem, ponieważ ognioodporność zależy przede wszystkim od jakości użytych materiałów oraz ich konstrukcji, a nie od obecności wolnej przestrzeni powietrznej. Często błędne podejście do tych zagadnień wynika z braku zrozumienia podstawowych zasad fizyki budowli oraz właściwości materiałów budowlanych. Dobrze zaprojektowane ściany murowane powinny być potwierdzone analizami technicznymi i spełniać aktualne normy budowlane, aby zapewnić odpowiednią izolacyjność termiczną, akustyczną i ognioodporność.

Pytanie 32

Tynk dekoracyjny, będący gładką warstwą zaprawy gipsowej na podstawie wapienno-gipsowej, to

A. sgraffito
B. tynk cyklinowany
C. tynk zmywalny
D. sztablatura
Tynk cyklinowany to technika, która nie odnosi się do gładkiej wyprawy zaczynu gipsowego, lecz dotyczy drewnianych powierzchni. Cyklinowanie polega na szlifowaniu drewna w celu uzyskania gładkiej i równej powierzchni, co jest zupełnie inną procedurą niż nakładanie tynku. Sgraffito to technika zdobnicza, w której na tynku nakłada się różne warstwy kolorów, a następnie z jednej warstwy zdejmuje się wierzchnią warstwę, aby odsłonić dolną, co tworzy wzory. Z kolei tynk zmywalny odnosi się do tynków, które posiadają właściwości umożliwiające ich czyszczenie, co również nie jest zgodne z definicją sztablatury. Często mylnie łączy się te pojęcia z tynkowaniem gipsowym, nie dostrzegając istotnych różnic w zastosowaniu i właściwościach materiałów. Dobrze jest pamiętać, że dobór odpowiedniego tynku zależy od specyfiki projektu oraz wymagań estetycznych i użytkowych, dlatego warto zgłębiać temat, aby unikać nieporozumień i błędnych decyzji w realizacji prac budowlanych.

Pytanie 33

Strzępia zazębione tworzy się, pozostawiając w każdej drugiej warstwie muru puste miejsce o głębokości

A. 1/4 cegły
B. 1 cegła
C. 1/2 cegły
D. 2 cegły
Wybór nieprawidłowej odpowiedzi, jak na przykład 1 cegły, 1/2 cegły czy 2 cegieł, wynika z nieporozumienia dotyczącego zasadności głębokości pustek w strzępiach zazębionych. W przypadku głębokości 1 cegły, mur staje się zbyt słaby, ponieważ zbyt duże szczeliny mogą prowadzić do problemów z integralnością strukturalną. Z kolei 1/2 cegły również jest zbyt dużą głębokością, co może powodować, że mur będzie podatny na deformacje, a tym samym na uszkodzenia pod wpływem obciążeń. Zastosowanie większych pustek prowadzi do niekorzystnych warunków izolacyjnych, co może wpływać na wilgotność i trwałość materiałów budowlanych. Odpowiednia głębokość pustek jest kluczowym czynnikiem projektowym, a wszelkie odstępstwa od norm mogą skutkować poważnymi problemami strukturalnymi. W praktyce, ważne jest, aby murarz był świadomy tego, jak różne głębokości pustek wpływają na całość konstrukcji oraz jakie są zalecenia w dokumentach normatywnych i branżowych. Zrozumienie tych zależności pozwala na lepsze planowanie i realizację projektów, co jest kluczowe w budownictwie. Dlatego też, pozostawienie pustek o głębokości 1/4 cegły jest najlepszą praktyką, która gwarantuje zarówno wytrzymałość, jak i estetykę wykonanej pracy.

Pytanie 34

Na podstawie danych zawartych w tabeli określ maksymalną odległość, w której należy wykonać szczeliny dylatacyjne w ścianie jednowarstwowej wymurowanej z pustaków ceramicznych, o spoinach pionowych niewypełnionych.

Rodzaj muruOdległości Ld między szczelinami dylatacyjnymi (w metrach) w ścianach
szczelinowychjedno- lub dwuwarstwowych o spoinach pionowych
warstwa zewnętrznawarstwa wewnętrznawypełnionychniewypełnionych
Z elementów ceramicznych12403025
Z innych elementów murowych8302520
A. 25 metrów.
B. 12 metrów.
C. 30 metrów.
D. 20 metrów.
Wybór innej odległości, jak 20, 12, czy 30 metrów, może wynikać z nieporozumienia dotyczącego zasad projektowania konstrukcji z pustaków ceramicznych. Odległość 20 metrów, mimo że może wydawać się odpowiednia, nie uwzględnia faktu, że dylatacje mają na celu nie tylko kompensację rozszerzalności cieplnej, ale także kontrolę naprężeń, które mogą prowadzić do uszkodzeń. Z kolei odległość 12 metrów nie jest zalecana, ponieważ prowadziłaby do nadmiaru dylatacji, co może osłabić integralność strukturalną i zwiększyć koszty budowy. Zastosowanie odległości 30 metrów z kolei przekracza normy branżowe, co może skutkować poważnymi problemami konstrukcyjnymi, takimi jak pęknięcia i osiadanie. Ważne jest, aby w każdym projekcie uwzględnić specyfikę materiałów oraz warunki lokalne, zwracając uwagę na standardy takie jak PN-EN 1996-1-1, które jasno określają optymalne odległości dylatacyjne. Typowym błędem myślowym jest błędne zakładanie, że większa odległość zwiększa stabilność, podczas gdy w rzeczywistości może to prowadzić do przeciążenia konstrukcji i poważnych konsekwencji. Dlatego kluczowe jest oparcie się na danych zawartych w tabelach i normach, które są wynikiem badań i praktyki inżynierskiej.

Pytanie 35

Jakie podłoże powinno być zabezpieczone stalową siatką podtynkową przed nałożeniem tynku?

A. Ceglane
B. Drewniane
C. Z betonu zwykłego
D. Z betonu komórkowego
Odpowiedź dotycząca podłoża drewnianego jest prawidłowa, ponieważ przed otynkowaniem należy stosować stalową siatkę podtynkową w celu zapewnienia lepszej przyczepności tynku do powierzchni. Drewno, w przeciwieństwie do innych materiałów budowlanych, posiada właściwości, które mogą prowadzić do odkształceń i pęknięć. Stalowa siatka działa jako stabilizator, zapobiegając pękaniu tynku, co jest szczególnie istotne w przypadku drewnianych konstrukcji. Zastosowanie siatki podtynkowej jest również zgodne z normami budowlanymi, które zalecają takie rozwiązania w sytuacjach, gdy tynk ma być aplikowany na materiałach, które mogą się kurczyć lub rozszerzać. Przykładowo, w budownictwie mieszkaniowym, gdzie często stosuje się drewno jako materiał konstrukcyjny, zastosowanie siatki podtynkowej zwiększa trwałość i estetykę wykończenia. Dobrą praktyką jest także wykorzystanie siatek o odpowiedniej gęstości otworów, co jeszcze bardziej podnosi ich efektywność.

Pytanie 36

Aby zapewnić odpowiednią przyczepność tynku do ceglanego muru, konieczne jest

A. wykonać mur z pełnymi spoinami
B. nanosić na mur preparat poprawiający przyczepność
C. wykonać mur z niepełnymi spoinami
D. nanosić na mur rzadką zaprawę z wapna
Wykonanie muru na pełne spoiny nie jest zalecaną praktyką w kontekście tynkowania murów z cegieł, ponieważ może prowadzić do problemów z przyczepnością tynku. W przypadku pełnych spoin, zaprawa tynkarska ma ograniczone możliwości wnikania w szczeliny między cegłami, co skutkuje słabszym połączeniem. Pełne spoiny mogą również powodować, że tynk nie przylega do muru w równomierny sposób, co zwiększa ryzyko odspajania się tynku w przyszłości. Ponadto, naniesienie preparatu adhezyjnego na powierzchnię muru, mimo że może poprawić przyczepność, nie zastępuje właściwej konstrukcji muru. Preparaty te są stosowane w specyficznych sytuacjach, a ich nadużywanie może prowadzić do dodatkowych kosztów i nieefektywności. Z kolei rzadkie zaprawy wapienne, choć mogą działać jako łącznik, nie są odpowiednie dla większości zastosowań tynkarskich, gdyż ich niska gęstość i konsystencja mogą utrudniać uzyskanie trwałego wykończenia. W praktyce budowlanej kluczowe jest zrozumienie, że odpowiednia struktura muru oraz zastosowanie właściwej metody tynkowania mają kluczowe znaczenie dla trwałości i estetyki wykończeń budowlanych.

Pytanie 37

Na podstawie danych z tabeli oblicz ilość piasku potrzebnego do wykonania 0,5 m3 zaprawy cementowo-wapiennej M2.

Orientacyjna ilość składników na 1 m³ zaprawy cementowo-wapiennej o konsystencji plastycznej
Proporcje
cement : wapno : piasek
Marka
zaprawy
Cement
portlandzki CEM I
[kg]
Wapno
hydratyzowane
[kg]
Piasek
[m³]
Woda
[dm³]
1 : 2,5 : 10,5M21071240,94316
1 : 1,25 : 6,75M5165970,85304
1 : 0,25 : 3,75M20293340,93284
A. 0,47 m3
B. 0,45 m3
C. 0,95 m3
D. 0,93 m3
Analizując odpowiedzi, które nie są poprawne, można dostrzec, że wiele z nich wynika z błędnych założeń dotyczących proporcji składników zaprawy cementowo-wapiennej. Odpowiedzi takie jak 0,93 m3, 0,45 m3 i 0,95 m3 mogą wynikać z niewłaściwego zrozumienia, ile piasku rzeczywiście potrzeba na jedną jednostkę objętości zaprawy. Przykładem błędnego myślenia jest przypuszczenie, że ilość piasku powinna być zbliżona do objętości zaprawy, co jest sprzeczne z zasadami mieszania betonów i zapraw. W praktyce, aby obliczyć ilość piasku, należy zawsze odnieść się do odpowiednich tabel oraz norm, które wskazują, ile materiału jest potrzebne na jednostkę zaprawy. Często występujące błędy to przeoczenie proporcji, co prowadzi do nadmiaru lub niedoboru materiału, co z kolei wpływa na wytrzymałość i trwałość konstrukcji. Mylne przyjęcie, że dodanie większej ilości piasku zwiększa jakość zaprawy, jest również błędne. Niekontrolowane zwiększenie ilości piasku może prowadzić do osłabienia zaprawy, co jest niezgodne z normami budowlanymi. Aby uniknąć błędów, ważne jest, aby znać zasady proporcjonowania materiałów budowlanych oraz stosować się do wytycznych producentów i standardów branżowych. Jakość i trwałość konstrukcji w dużej mierze zależą od odpowiednich proporcji materiałów, dlatego każdy wykonawca powinien mieć solidne podstawy w tej dziedzinie.

Pytanie 38

Przygotowanie zaprawy cementowo-wapiennej w sposób ręczny polega na odmierzeniu wszystkich składników, a następnie ich zmieszaniu

A. wody z cementem i dodaniu piasku oraz ciasta wapiennego
B. cementu z ciastem wapiennym rozrzedzonym wodą i dodaniu piasku
C. wody z piaskiem i dodaniu ciasta wapiennego oraz cementu
D. cementu z piaskiem i dodaniu ciasta wapiennego rozrzedzonego wodą
Ręczne przygotowanie zaprawy cementowo-wapiennej polega na odpowiednim doborze składników, które mają ze sobą harmonijnie współpracować. Właściwa metoda to zmieszanie cementu z piaskiem, a następnie dodanie ciasta wapiennego rozrzedzonego wodą. Cement i piasek tworzą bazę zaprawy, a ich proporcje muszą być dostosowane do planowanego zastosowania zaprawy, co jest zgodne z normami budowlanymi. Zastosowanie ciasta wapiennego wprowadza dodatkowe właściwości, takie jak elastyczność i zdolność do utrzymywania wilgoci, co jest niezwykle ważne w przypadku tynków czy łączeń murarskich. Przykładowo, w budownictwie, zaprawy wykonane w ten sposób są często wykorzystywane do murowania ścian, co zapewnia dobrą przyczepność oraz długowieczność konstrukcji. W przypadku tynkowania, odpowiednia konsystencja zaprawy jest kluczowa dla uzyskania gładkiej powierzchni i prawidłowego schnięcia, co również jest istotne z punktu widzenia estetyki i funkcjonalności budynku.

Pytanie 39

Tynk klasy 0, znany jako tynk rapowany, jest zaliczany do tynków

A. trójwarstwowych
B. jednowarstwowych
C. dwuwarstwowych
D. cienkowarstwowych
Tynk rapowany, zaliczany do kategorii 0, jest tynkiem jednowarstwowym, co oznacza, że jest aplikowany w jednej warstwie bez dodatkowych podkładów. Tynki jednowarstwowe charakteryzują się szybkim procesem aplikacji oraz wysoką efektywnością, co jest kluczowe w nowoczesnym budownictwie. Tynki tego typu są często stosowane na budynkach mieszkalnych i komercyjnych, gdzie ważne są zarówno walory estetyczne, jak i funkcjonalne. Do tynków rapowanych można stosować różne rodzaje materiałów, w tym produkty wykonane na bazie cementu, wapna czy gipsu. W praktyce, tynki jednowarstwowe zapewniają dobry poziom izolacji cieplnej oraz odporności na warunki atmosferyczne, co wpisuje się w aktualne standardy budowlane. Zastosowanie tynku rapowanego przyczynia się do redukcji kosztów robocizny oraz czasu realizacji budowy, co jest niezwykle istotne w kontekście współczesnych wymagań rynkowych. Dlatego znajomość tej kategorii tynków jest niezbędna dla profesjonalistów w branży budowlanej.

Pytanie 40

Jeśli norma zużycia cegieł kratówek do postawienia 1 m2 ściany wynosi 50 sztuk, a koszt jednej cegły to 2 zł, to jaki będzie łączny koszt zakupu cegieł potrzebnych do budowy 10 m2 muru o grubości 25 cm?

A. 500 zł
B. 2 000 zł
C. 100 zł
D. 1 000 zł
Analizując odpowiedzi, które nie są poprawne, można zauważyć, że zawierają one błędne kalkulacje dotyczące ilości cegieł potrzebnych do wykonania 10 m2 muru. Na przykład, odpowiedzi sugerujące kwoty 500 zł, 100 zł czy 2000 zł nie uwzględniają prawidłowego przeliczenia ilości cegieł. Koszt 500 zł mógłby sugerować, że do wykonania 10 m2 potrzebne byłoby jedynie 250 cegieł, co jest niezgodne z normą zużycia. Z kolei 100 zł to całkowita kwota potrzebna na zakup jedynie 50 cegieł, co wystarczy jedynie na 1 m2, a 2000 zł można by pomyśleć jako koszt dla 1000 cegieł, co również jest błędne w kontekście podanego zużycia. Właściwe podejście do obliczeń wymaga zrozumienia proporcji między ilością materiału a jego kosztami, co jest kluczowe w branży budowlanej. Takie błędne obliczenia mogą prowadzić do znacznych przekroczeń budżetu oraz opóźnień w realizacji projektu. Dlatego istotne jest, aby stosować sprawdzone metody obliczeniowe i dokładnie analizować dane dotyczące zużycia materiałów budowlanych, aby uniknąć typowych błędów w planowaniu finansowym.