Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektronik
  • Kwalifikacja: ELM.02 - Montaż oraz instalowanie układów i urządzeń elektronicznych
  • Data rozpoczęcia: 2 lutego 2026 11:05
  • Data zakończenia: 2 lutego 2026 11:37

Egzamin niezdany

Wynik: 12/40 punktów (30,0%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

W jakim celu nosi się opaskę antyelektrostatyczną na ręku podczas wymiany podzespołów lub układów scalonych w nowoczesnych urządzeniach elektronicznych?

A. Aby zabezpieczyć montera przed szkodliwym działaniem ładunków elektrostatycznych nagromadzonych w urządzeniu
B. Aby chronić układy scalone TTL przed niekorzystnym wpływem ładunków elektrostatycznych nagromadzonych na ciele montera
C. Aby chronić montera przed porażeniem prądem elektrycznym z zasilenia urządzenia elektronicznego
D. Aby chronić układy scalone CMOS przed szkodliwym działaniem ładunków elektrostatycznych gromadzących się na ciele montera
Wybór odpowiedzi dotyczącej zabezpieczenia układów scalonych TTL przed wpływem ładunków elektrostatycznych, porażenie prądem elektrycznym lub ochrony montera przed ładunkami zgromadzonymi w urządzeniu, jest niewłaściwy z kilku powodów. Po pierwsze, układy scalone TTL, mimo że również są wrażliwe na ładunki elektrostatyczne, nie są tak delikatne jak CMOS. Z tego powodu, w kontekście opasek antyelektrostatycznych, istotniejsza jest ochrona komponentów CMOS, które wymagają specjalistycznego podejścia. Po drugie, opaska nie chroni montera przed porażeniem prądem elektrycznym zasilającym urządzenie. Porażenie prądem jest zagrożeniem niezwiązanym z ładunkami elektrostatycznymi, a jego zapobieganiu służą inne środki, takie jak izolowane narzędzia, odpowiednia odzież ochronna oraz przestrzeganie procedur bezpieczeństwa. Wreszcie, ochrona przed ładunkami elektrostatycznymi zgromadzonymi w urządzeniu nie jest rolą opaski, lecz raczej odpowiednich praktyk przechowywania i transportu komponentów. Podsumowując, w kontekście zastosowania opasek antyelektrostatycznych, istotne jest zrozumienie specyfiki wrażliwości różnych typów układów scalonych oraz różnicy pomiędzy ochroną przed ładunkami elektrostatycznymi a innymi formami zagrożeń elektrycznych.

Pytanie 2

Napięcie na wyjściu czujnika generacyjnego wynosi około 18 V, a rezystancja wyjściowa tego czujnika to około 200 kOhm. Aby uzyskać jak najbardziej precyzyjny pomiar napięcia na tym czujniku, powinno się zastosować woltomierz

A. analogowy na zakresie U=20 V i Rwe=100 kOhm
B. cyfrowy na zakresie U=200 V i Rwe=10 MOhm
C. analogowy na zakresie U=200 V i Rwe=10 kOhm
D. cyfrowy na zakresie U=20 V i Rwe=10 MOhm
Wybór cyfrowego woltomierza na zakresie U=20 V z rezystancją wewnętrzną Rwe=10 MOhm jest najlepszym rozwiązaniem w tej sytuacji z kilku powodów. Po pierwsze, napięcie wyjściowe czujnika wynosi około 18 V, co oznacza, że zakres 20 V jest optymalny, ponieważ umożliwia dokładny pomiar w pełnym zakresie napięcia bez ryzyka przesterowania. Po drugie, wysoka rezystancja wewnętrzna woltomierza (10 MOhm) minimalizuje wpływ samego instrumentu na obwód, co jest kluczowe, gdy mierzony czujnik ma dużą rezystancję wyjściową wynoszącą około 200 kOhm. W przypadku pomiarów w obwodach wysokorezystancyjnych, jak ten, zastosowanie woltomierza o wysokiej rezystancji wewnętrznej jest standardem, który pozwala na uzyskanie najbardziej wiarygodnych wyników. Na przykład, w aplikacjach, gdzie istotne jest zachowanie integralności sygnału, takich jak pomiary w naukach przyrodniczych czy elektronice, wybór odpowiedniego woltomierza jest kluczowy. Dzięki temu pomiar staje się dokładniejszy, a wyniki bardziej wiarygodne.

Pytanie 3

Ile wynosi częstotliwość sygnału przedstawionego na oscylogramie?

Ilustracja do pytania
A. 100 Hz
B. 10 Hz
C. 50 Hz
D. 25 Hz
Częstotliwość sygnału jest jednym z kluczowych parametrów, który powinien być analizowany poprawnie, zwłaszcza w kontekście oscylogramów. Wybór 25 Hz, 10 Hz czy 50 Hz jako odpowiedzi jest wynikiem typowych błędów w analizie wykresów czasowych. Na przykład, w przypadku 25 Hz, można sądzić, że obserwowany sygnał ma dłuższy okres, co prowadzi do błędnego wniosku. Warto jednak pamiętać, że rzeczywiste odczyty powinny opierać się na dokładnych pomiarach czasu trwania jednego pełnego okresu sygnału. Przy 10 Hz mogłoby to wynikać z niepoprawnego pomiaru działek na osi czasu, co jest częstym zjawiskiem w przypadku osób nieprzeszkolonych w analizie sygnałów. Natomiast wybór 50 Hz może wynikać z mylenia jednostek miary i błędnego przeliczenia skali czasowej. Takie podejście skutkuje nieporozumieniami i błędnymi założeniami dotyczącymi częstotliwości sygnałów, co jest nie do przyjęcia w profesjonalnym środowisku inżynieryjnym. Aby uniknąć takich pomyłek, kluczowe jest rozwijanie umiejętności analizy oscylogramów oraz wiedzy na temat podstaw teorii sygnałów. W tym celu warto korzystać z materiałów edukacyjnych oraz szkoleń, które pomogą w poprawnym interpretowaniu wyników pomiarów. Dodatkowo, znajomość podstawowych wzorów i koncepcji związanych z częstotliwością i okresem sygnału jest niezbędna w każdej dziedzinie zajmującej się analizą sygnałów.

Pytanie 4

Wskaż właściwą kolejność wykonywania czynności związanych ze sprawdzeniem przewodu instalacji sieci komputerowej.

Lista czynności:
1. Podpięcie przewodu do testera LAN.
2. Odpięcie przewodu od łączonych elementów sieci.
3. Podłączenie przewodu do urządzeń sieciowych.
4. Testowanie okablowania.
A. 2,4,3,1
B. 2,1,4, 3
C. 1,4,2,3
D. 4,2,1,3
Analizując odpowiedzi, można zauważyć, że wiele z nich wprowadza w błąd poprzez nieprawidłową interpretację kolejności czynności związanych z badaniem przewodu instalacji sieci komputerowej. Zaczynając od pierwszego etapu, kluczowe jest, aby najpierw zidentyfikować przewód, co pozwala na uniknięcie pomyłek, które mogą prowadzić do testowania niewłaściwych elementów. W przypadku pominięcia tej czynności, istnieje wysokie ryzyko, że wyniki testów będą nieadekwatne i mogą prowadzić do fałszywych wniosków o stanie instalacji. Kolejną pomyłką jest błędna ocena stanu technicznego przewodu, która często jest pomijana lub wykonywana na końcu procesu, co jest absolutnie niezgodne z metodologią diagnostyczną. Testy ciągłości powinny następować dopiero po upewnieniu się, że przewód jest poprawnie zidentyfikowany i oceniony. Takie nieprzemyślane podejście może prowadzić do poważnych problemów, takich jak ignorowanie rzeczywistych uszkodzeń przewodów, co skutkuje dalszymi awariami sieci. W praktyce, nieprzestrzeganie tej sekwencji może nie tylko wydłużyć czas naprawy, ale również zwiększyć koszty związane z utratą wydajności sieci, co jest niezgodne z najlepszymi praktykami zarządzania infrastrukturą IT. Dlatego tak istotne jest stosowanie się do ustalonych standardów i właściwej kolejności działań, aby zapewnić efektywność i niezawodność systemów sieciowych.

Pytanie 5

Na fotografii widoczny jest tylny panel kamery CCTV. Cyfrą 1 oznaczono gniazdo

Ilustracja do pytania
A. D.CINCH
B. JACK
C. BNC
D. USB
Wybór odpowiedzi innej niż BNC może wynikać z pomyłek dotyczących zrozumienia różnych typów złączy stosowanych w systemach CCTV. Złącze USB, choć popularne w wielu urządzeniach elektronicznych, nie jest przeznaczone do przesyłania sygnału wideo w systemach monitoringu. Użycie USB w kontekście kamer CCTV jest ograniczone do zasilania niektórych modeli lub do przesyłania danych w przypadku kamer IP, ale nie odnosi się do fizycznego połączenia sygnałowego w tradycyjnych systemach analitycznych. Złącze JACK, powszechnie stosowane w audio, również nie ma zastosowania w kontekście przesyłania sygnału wideo. Jego konstrukcja i zasady działania są całkowicie inne, co sprawia, że nie nadaje się do standardowych instalacji CCTV. Z kolei złącze D.CINCH, podobne do BNC, używane jest głównie w audio-wideo, ale różni się konstrukcją i zastosowaniem. D.CINCH nie zapewnia tak solidnego połączenia jak BNC, co czyni je mniej odpowiednim do przesyłania sygnałów wideo w systemach, gdzie stabilność sygnału jest kluczowa. Dlatego ważne jest, aby dobrze rozumieć różnice między tymi złączami oraz ich zastosowanie w praktyce, aby uniknąć błędów w instalacjach systemów monitoringu. Niezrozumienie tych różnic prowadzi do wyboru niewłaściwych rozwiązań, co może wpływać na jakość i niezawodność całego systemu. Zrozumienie i znajomość standardów branżowych w zakresie złączy jest kluczowe dla zapewnienia efektywności i niezawodności systemów CCTV.

Pytanie 6

Kąty odpowiedzialne za określenie kierunku ustawienia anteny satelitarnej to

A. azymutu, konwertera, transpondera
B. azymutu, elewacji, transpondera
C. elewacji, konwertera, azymutu
D. elewacji, konwertera, transpondera
Prawidłowe wyznaczenie kierunku ustawienia anteny satelitarnej wymaga znajomości trzech fundamentalnych kątów: elewacji, azymutu oraz kąta konwertera. Niektóre z odpowiedzi zawierają błędne pojęcia lub niewłaściwe zestawienia kątów, co prowadzi do nieporozumień. Na przykład, kąt elewacji jest niezbędny, ponieważ pozwala określić, pod jakim kątem antena ma być skierowana w górę, co jest kluczowe dla odbioru sygnału z satelitów. Kąt azymutu z kolei wskazuje kierunek poziomy, w którym antena powinna być ustawiona, aby móc odebrać sygnał. Zdarza się, że odpowiedzi sugerują użycie kąta transpondera, co jest niepoprawne, ponieważ transponder to element satelity, który przetwarza sygnał, a nie parametr ustawienia anteny. Często występującym błędem jest mylenie funkcji konwertera z innymi kątami, co prowadzi do niepoprawnych wniosków. Konwerter LNB jest kluczowym elementem, który określa, jak sygnał z satelity jest odbierany i przetwarzany, dlatego jego odpowiednie ustawienie jest niezwykle istotne. Właściwe zrozumienie tych kątów i ich zastosowania jest kluczowe dla uzyskania optymalnej jakości sygnału. Niezrozumienie tych aspektów może skutkować problemami z odbiorem, co w praktyce oznacza niedziałającą antenę lub niską jakość sygnału.

Pytanie 7

W instalacji naściennej w budynku mieszkalnym jednokondygnacyjnym przewody powinny być prowadzone

A. najkrótszą trasą
B. tylko w poziomie
C. wyłącznie w pionie
D. w pionie oraz poziomie
Instalacja natynkowa w jednokondygnacyjnym budynku mieszkalnym wymaga prowadzenia przewodów zarówno w pionie, jak i w poziomie, co jest zgodne z ogólnymi zasadami projektowania instalacji elektrycznych. W praktyce oznacza to, że instalatorzy muszą uwzględniać różnorodne czynniki, takie jak dostępność punktów zasilających, rozmieszczenie gniazdek i włączników oraz estetykę wykończenia wnętrza. Prowadzenie przewodów w pionie umożliwia wygodne podłączenie urządzeń na różnych poziomach, a poziome prowadzenie jest kluczowe dla łatwego dostępu do zasilania w obrębie pomieszczeń. Ponadto, zgodnie z normą PN-HD 60364, instalacje elektryczne powinny być wykonywane w sposób zapewniający bezpieczeństwo użytkowania oraz łatwość konserwacji. Przykładowo, w przypadku montażu instalacji w kuchni, odpowiednie prowadzenie przewodów w poziomie i pionie zapewnia optymalne połączenia z urządzeniami AGD, minimalizując jednocześnie ryzyko przeciążeń elektrycznych oraz uszkodzeń mechanicznych. Ostatecznie, elastyczność w projektowaniu instalacji pozwala na lepsze dostosowanie do indywidualnych potrzeb mieszkańców budynku.

Pytanie 8

Które urządzenie pozwoli szybko sprawdzić poprawność połączeń w kablu internetowym zakończonym wtykami RJ-45?

Ilustracja do pytania
A. C.
B. D.
C. B.
D. A.
Wybór jednego z pozostałych urządzeń jako narzędzia do sprawdzania poprawności połączeń w kablu zakończonym wtykami RJ-45 może prowadzić do nieporozumień związanych z ich rzeczywistymi funkcjami. Lokalizator kabli, na przykład, służy głównie do lokalizacji kabli w instalacjach, co oznacza, że jego głównym celem jest identyfikacja konkretnego przewodu wśród wielu. Z tego powodu nie jest on przystosowany do testowania jakości połączeń, co może prowadzić do zafałszowanych wyników i nieefektywnego diagnozowania problemów w sieci. Multimetr, choć jest niezwykle użytecznym narzędziem w elektronice, nie jest w stanie przeprowadzić kompleksowych testów kabli sieciowych. Pomiar oporu czy napięcia jest niewystarczający do oceny, czy wszystkie żyły w kablu RJ-45 są poprawnie połączone, ponieważ nie uwzględnia on specyfiki transmisji danych w sieciach komputerowych. Zestaw do zaciskania wtyków również ma zgoła inny cel; jego główną funkcją jest montaż kabli, a nie ich diagnostyka, co sprawia, że nie nadaje się do weryfikacji poprawności połączeń już istniejących. Te mylne wybory mogą prowadzić do frustracji i niewłaściwych wniosków, dlatego tak ważne jest, aby przed podjęciem decyzji o narzędziu diagnostycznym, dobrze zrozumieć ich funkcjonalność i zastosowanie w praktyce.

Pytanie 9

Obwód sabotażowy bez zastosowania rezystorów w systemie alarmowym powinien być skonfigurowany w trybie

A. NO
B. 2EOL
C. EOL
D. NC
Konfiguracja EOL (End of Line) polega na zastosowaniu rezystorów na końcu linii czujników, co jest przydatne w bardziej skomplikowanych systemach, gdzie chcemy monitorować stan obwodu na całej jego długości. Jednak w przypadku obwodu sabotażowego bez rezystorów, zastosowanie tej konfiguracji nie jest możliwe, ponieważ wymaga ona dodatkowych komponentów, których w tym przypadku nie ma. Ustawienia NO (Normally Open) również nie są właściwe, ponieważ w tej konfiguracji obwód jest domyślnie otwarty, co w sytuacji sabotażu może nie wywołać alarmu, co jest sprzeczne z zamiarem zabezpieczenia. W przypadku sabotażu, gdy obwód jest otwarty, nie zostanie wysłany żaden sygnał, co prowadzi do poważnego ryzyka. Typowe błędy myślowe, które mogą prowadzić do wyboru niepoprawnych odpowiedzi, obejmują niepełne zrozumienie zasad działania obwodów lub mylenie ich z innymi zastosowaniami. Wybór opcji 2EOL jest także niewłaściwy w kontekście danej kwestii, ponieważ ta metoda również zakłada użycie rezystorów na końcu linii, co nie jest zgodne z wymaganiami pytania. Ostatecznie, zrozumienie różnicy między tymi konfiguracjami oraz ich zastosowaniem w systemach alarmowych jest kluczowe dla skutecznego projektowania i wdrażania zabezpieczeń.

Pytanie 10

W tabeli wymieniono dane techniczne

Przetwornik2 Mpx high-performance CMOS
Rozdzielczość1920 × 1080 (2 Mpx)
Czułość0 lux z IR
Obiektyw2,8 mm
Kąt widzenia103°
FunkcjeAGC, BLC, DWDR
Zasilanie12 V DC
ZastosowanieZewnętrzne, IP66
A. kamery CCTV.
B. odbiornika telewizyjnego.
C. dekodera DVB-T.
D. czujki PIR.
Czujki PIR, odbiorniki telewizyjne i dekodery DVB-T to urządzenia, które mają różne funkcje i zastosowania, które nie są związane z rejestrowaniem obrazu, jak to ma miejsce w przypadku kamer CCTV. Czujki PIR służą do wykrywania ruchu na podstawie zmian temperatury, co czyni je przydatnymi w systemach alarmowych, jednak nie rejestrują obrazu ani nie monitorują w sposób wizualny. Odbiorniki telewizyjne i dekodery DVB-T są urządzeniami, które koncentrują się na odbiorze sygnału telewizyjnego, a ich parametry techniczne dotyczą głównie formatów obrazu i dźwięku, a nie aspektów związanych z rejestracją wideo. Dlatego też, wybór tych urządzeń jako odpowiedzi na pytanie jest nietrafiony. Typowym błędem myślowym jest utożsamianie różnych rodzajów technologii zabezpieczeń z monitorowaniem wizualnym. Ważne jest, aby w procesie nauki zwracać uwagę na specyfikę i właściwe zastosowanie poszczególnych urządzeń, aby zrozumieć ich rolę w systemie zabezpieczeń oraz ich różnice funkcjonalne. Każde z tych urządzeń pełni swoją unikalną rolę, ale ich zastosowanie w kontekście monitoringu wizyjnego jest nieadekwatne.

Pytanie 11

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 12

Która z topologii sieci komputerowych gwarantuje największą niezawodność?

A. Gwiazdy.
B. Pierścienia.
C. Siatki.
D. Drzewa.
Topologia siatki zapewnia najwyższy poziom niezawodności w sieciach komputerowych, ponieważ każda stacja w sieci jest połączona z wieloma innymi stacjami. W przypadku awarii jednego z połączeń, dane mogą być kierowane inną ścieżką, co minimalizuje ryzyko utraty komunikacji. Taki model jest często wykorzystywany w krytycznych aplikacjach, takich jak systemy finansowe czy infrastruktura transportowa, gdzie utrata połączenia może prowadzić do poważnych konsekwencji. Zastosowanie topologii siatki jest zgodne z najlepszymi praktykami w dziedzinie projektowania sieci, gdzie kluczowe jest zapewnienie dużej redundancji i elastyczności. Przykładem może być sieć miejskiego systemu monitoringu, w której wiele kamer jest połączonych w topologii siatki, co zapewnia ciągłość działania nawet w przypadku uszkodzenia kilku połączeń. Dodatkowo, siatki są zgodne z normami takimi jak IEEE 802.11s, które definiują standardy dla mesh networking, co umożliwia ich szerokie zastosowanie w różnych branżach.

Pytanie 13

Aby zakończyć instalację telewizyjną wykonaną przy użyciu kabla koncentrycznego, konieczne jest zastosowanie rezystora o oporności

A. 75 Ω
B. 300 Ω
C. 50 Ω
D. 500 Ω
Nieprawidłowe odpowiedzi, takie jak 50 Ω, 300 Ω czy 500 Ω, wynikają z nieporozumienia dotyczącego standardów impedancji używanych w systemach telewizyjnych. Impedancja 50 Ω jest typowa dla zastosowań związanych z komunikacją radiową i niektórymi systemami RF, ale nie jest odpowiednia do telewizji. Użycie 50 Ω w kontekście telewizyjnym mogłoby prowadzić do znaczących strat sygnału oraz odbić, co jest nieakceptowalne w standardowych instalacjach telewizyjnych. Z kolei 300 Ω to typowa impedancja dla kabli symetrycznych, takich jak kabel dipolowy, który może być używany w niektórych systemach antenowych, ale nie jest właściwy dla kabla koncentrycznego, który zazwyczaj pracuje z 75 Ω. Wartość 500 Ω jest całkowicie nietypowa i nie znajduje zastosowania w standardowych instalacjach telewizyjnych, co pokazuje, że zrozumienie kontekstu zastosowania danych wartości rezystorów jest kluczowe. Takie pomyłki mogą wynikać z braku znajomości specyfikacji sprzętu oraz nieprawidłowego przyporządkowywania wartości impedancji do konkretnego zastosowania. Dla osiągnięcia najlepszej jakości sygnału telewizyjnego bardzo istotne jest korzystanie z komponentów o odpowiednich parametrach, co w praktyce oznacza stosowanie rezystorów o wartości 75 Ω.

Pytanie 14

Podczas wykonywania prac istnieje ryzyko niedotlenienia organizmu z powodu spadku zawartości tlenu w atmosferze. Jakie środki ochrony dróg oddechowych należy zastosować?

A. aparat oddechowy zasilany powietrzem
B. maskę pełną
C. półmaskę
D. filtr krótkoczasowy
Aparaty oddechowe zasilane powietrzem to najskuteczniejszy sposób ochrony dróg oddechowych w sytuacjach, gdy dostępność tlenu w otoczeniu jest ograniczona. Tego rodzaju urządzenia zasysają powietrze z zewnątrz, filtrując je, aby zapewnić użytkownikowi odpowiednią jakość powietrza do oddychania. W przeciwieństwie do innych urządzeń, takich jak maski pełne czy półmaski, które mogą nie zapewnić wystarczającej ilości tlenu w przypadku znacznego obniżenia jego stężenia w powietrzu, aparaty te są przystosowane do pracy w trudnych warunkach, np. w zamkniętych przestrzeniach lub w pobliżu substancji chemicznych, gdzie ryzyko wystąpienia niskiego poziomu tlenu jest wyższe. Użycie aparatu oddechowego zasilanego powietrzem jest zgodne z obowiązującymi normami BHP oraz standardami ochrony zdrowia, takimi jak normy EN 137 i EN 12942. Przykładem zastosowania tego typu urządzeń jest praca w przemyśle, gdzie narażenie na gazy toksyczne i niedotlenienie może być realnym zagrożeniem. Regularne szkolenia z ich obsługi oraz przeszkolenie użytkowników w zakresie postępowania w sytuacjach awaryjnych są kluczowe dla zapewnienia bezpieczeństwa.

Pytanie 15

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 16

Którego elementu należy użyć podczas montażu mechanicznego potencjometru przedstawionego na rysunku?

Ilustracja do pytania
A. Wkrętu.
B. Nitów.
C. Śruby.
D. Nakrętki.
Wybór odpowiedzi innych niż nakrętki pokazuje pewne nieporozumienie dotyczące zasad montażu potencjometrów. Śruby, wkręty i nity nie są odpowiednie do tego zastosowania, ponieważ nie zapewniają one odpowiedniego połączenia z gwintowanym trzpieniem potencjometru. Śruby mogą wymagać dodatkowego otworu, co nie jest przewidziane w konstrukcji potencjometru, co czyni je nieefektywnymi. Z kolei wkręty, choć mogą być używane do wielu zastosowań, nie pasują do konstrukcji potencjometru, który nie jest zaprojektowany do ich użycia. Użycie nitów również jest nietypowe, ponieważ nity są stosowane do stałego mocowania elementów, co nie pozwala na ewentualną wymianę lub regulację potencjometru w przyszłości. W przypadku komponentów elektronicznych, kluczowe jest, aby montaż był nie tylko mocny, ale również umożliwiał łatwą wymianę oraz serwisowanie. Użycie niewłaściwych elementów montażowych może prowadzić do awarii, co jest nieakceptowalne w praktyce inżynieryjnej, gdzie normy i standardy, takie jak IPC-A-610 dotyczące jakości elektroniki, wymagają przestrzegania wysokich standardów w zakresie mocowania komponentów.

Pytanie 17

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 18

Który z niżej wymienionych elementów nie wpływa na jakość odbioru sygnału telewizji cyfrowej?

A. Stan kabla antenowego
B. Temperatura otoczenia
C. Zjawisko burzy
D. Odległość od stacji nadawczej
Temperatura zewnętrzna rzeczywiście nie ma wpływu na odbiór sygnału telewizji naziemnej, ponieważ sygnał telewizyjny jest transmitowany na określonych częstotliwościach radiowych, które są stosunkowo odporne na zmiany temperatury. W praktyce, czynniki takie jak odległość od nadajnika oraz stan przewodu antenowego mają kluczowe znaczenie dla jakości odbioru. Na przykład, im większa odległość od nadajnika, tym sygnał staje się słabszy z powodu rozpraszania i tłumienia w atmosferze. Z tego powodu, odpowiednia lokalizacja anteny oraz jej ustawienie są kluczowe dla uzyskania optymalnej jakości odbioru. Warto również pamiętać, że podczas instalacji systemów antenowych, stosuje się różne techniki i technologie, takie jak wzmacniacze sygnału, aby zminimalizować problemy związane z odległością. Dodatkowo, dobre praktyki branżowe zalecają regularne sprawdzanie stanu przewodów i złączy, aby zredukować potencjalne straty sygnału. W związku z tym, zrozumienie, że temperatura zewnętrzna nie wpływa na odbiór, pozwala skupić się na istotnych aspektach zapewniających właściwą jakość sygnału.

Pytanie 19

Parametry takie jak wzmocnienie mocy, moc wyjściowa, pasmo przenoszenia oraz współczynnik efektywności energetycznej odnoszą się do

A. filtra
B. zasilacza
C. generatora
D. wzmacniacza
Podane odpowiedzi wskazują na nieporozumienie dotyczące podstawowych funkcji i parametrów urządzeń elektronicznych. Zasilacz, mimo że jest kluczowym elementem systemu, nie ma na celu wzmocnienia sygnału, lecz dostarczenie odpowiedniego napięcia i prądu do innych komponentów. Zasilacz koncentruje się na stabilizacji napięcia oraz wydajności energetycznej, ale nie mierzy parametrów takich jak wzmocnienie mocy czy pasmo przenoszenia, które są specyficzne dla wzmacniaczy. Filtry, z drugiej strony, są zaprojektowane do selekcji określonych zakresów częstotliwości, co oznacza, że ich parametry nie obejmują współczynnika sprawności energetycznej w kontekście wzmacniania sygnałów; ich rolą jest eliminacja niepożądanych częstotliwości, a nie ich wzmocnienie. Generator natomiast służy do tworzenia sygnałów o określonej częstotliwości, a nie do ich wzmocnienia. Wzmacniacze są jedynymi urządzeniami w tej grupie, które bezpośrednio odnoszą się do podanych parametrów, co sprawia, że odpowiedzi związane z zasilaczem, filtrem i generatorem są nieprawidłowe. Nieporozumienia te mogą wynikać z mylenia ról poszczególnych elementów w systemie elektronicznym oraz braku zrozumienia ich funkcji i zastosowań w praktyce. Warto zwrócić uwagę na to, jak każdy z tych komponentów współpracuje w złożonych systemach elektronicznych, co jest istotne dla prawidłowego działania całego układu.

Pytanie 20

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 21

Aby zbadać ciągłość żył w przewodzie teletechnicznym, należy zastosować

A. omomierz
B. częstościomierz
C. galwanometr
D. woltomierz
Używanie woltomierza, częstościomierza czy galwanometru do sprawdzania ciągłości przewodów teletechnicznych to nie najlepszy pomysł. Woltomierz mierzy napięcie w obiegu elektrycznym, ale to nie mówi nic o tym, czy obwód jest ciągły. Możesz mieć napięcie na końcach przewodu, ale to nie znaczy, że przewód działa. Częstościomierz z kolei jest od mierzenia częstotliwości sygnałów, co w ogóle nie ma związku z ciągłością przewodów. To może dawać fałszywe poczucie bezpieczeństwa, bo obwód może być przerwany, nawet jeśli coś tam się mierzy. Galwanometr, mimo że można nim zmierzyć prąd, też nie jest dobrym wyborem do sprawdzania ciągłości. Skupianie się tylko na pomiarze prądu bez zerknięcia na opór może sprawić, że przeoczysz problemy z przerwami w obwodzie. Często ludzie mylą funkcje tych urządzeń, myśląc, że obecność napięcia czy prądu zawsze wskazuje na ciągłość, a to w ogóle nie jest tak prosto.

Pytanie 22

Czym jest watchdog?

A. system bezpośredniego dostępu do pamięci mikroprocesora
B. typ licznika rejestrującego impulsy zewnętrzne
C. system bezpośredniego dostępu do portów I/O mikroprocesora
D. rodzaj timera kontrolującego działanie mikroprocesora
W odpowiedziach, które nie są poprawne, występują różne koncepcje techniczne, które nie są zgodne z definicją i funkcją watchdogów. Na przykład, układ bezpośredniego dostępu do portów I/O mikroprocesora oznacza sprzętowy komponent, który umożliwia komunikację z urządzeniami zewnętrznymi, ale nie ma bezpośredniego związku z monitorowaniem pracy mikroprocesora. Tego rodzaju układy służą do współpracy z otoczeniem, a nie do nadzorowania i kontrolowania stanu mikroprocesora. Podobnie, rodzaj licznika zliczającego impulsy zewnętrzne również nie odnosi się do funkcji watchdogów. Liczniki te mają zastosowanie w pomiarach czasowych i zliczaniu zdarzeń, co nie jest ich funkcją. Również układ bezpośredniego dostępu do pamięci mikroprocesora, który umożliwia szybki transfer danych, nie pełni roli nadzoru nad jego pracą. Te błędne odpowiedzi mogą wynikać z nieporozumienia dotyczącego funkcji i zastosowania różnych komponentów systemu mikroprocesorowego. Kluczowe jest zrozumienie, że watchdog jest specjalizowanym narzędziem, które pełni unikalną rolę w zapewnieniu stabilności i niezawodności systemów, a nie jest jedynie wewnętrznym komponentem, który zajmuje się pamięcią czy portami I/O.

Pytanie 23

Czego nie uwzględnia się w dokumentacji dotyczącej montażu elektronicznego?

A. dokumentacji techniczno-ruchowej (DTR)
B. pełnej listy materiałowej (BOM)
C. zestawu rysunków montażowych (odnoszących się do wszystkich faz produkcji)
D. współrzędnych podzespołów (pick&place)
Dokumentacja techniczno-ruchowa (DTR) nie jest częścią dokumentacji montażu elektronicznego, ponieważ skupia się na eksploatacji i konserwacji urządzeń, a nie na ich produkcji czy montażu. DTR zawiera informacje dotyczące charakterystyki technicznej, działania oraz instrukcje serwisowe, co jest kluczowe w późniejszych fazach użytkowania sprzętu. W kontekście montażu elektronicznego, dokumentacja ta nie jest używana do procesów wytwarzania, co sprawia, że nie zalicza się do podstawowych materiałów niezbędnych na etapie produkcji. Przykład zastosowania to wprowadzenie procedur serwisowych dla urządzenia po jego zmontowaniu; DTR może być wykorzystywana przez techników serwisowych, którzy muszą znać specyfikacje oraz procedury konserwacji, ale nie jest bezpośrednio używana podczas samego montażu. Zgodnie z praktykami branżowymi, dokumentacja montażowa powinna zawierać rysunki montażowe, współrzędne elementów oraz listy materiałów, co jest zgodne z normami IPC (Institute for Printed Circuits) i innymi standardami branżowymi.

Pytanie 24

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 25

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 26

Jakie czynności należy podjąć w pierwszej kolejności, udzielając pomocy osobie porażonej prądem elektrycznym?

A. odciąć porażonego od źródła prądu
B. wykonać masaż serca
C. zadzwonić po pomoc medyczną
D. przeprowadzić sztuczne oddychanie
Decyzja o wezwaniu pomocy medycznej jako pierwszego kroku w przypadku porażenia prądem elektrycznym jest nieodpowiednia, ponieważ w sytuacji zagrożenia życia, jakim jest porażenie prądem, natychmiastowe uwolnienie poszkodowanego ze źródła napięcia ma priorytet. Jeśli osoba zostanie pozostawiona w kontakcie z prądem, zachowanie sprawności oddechowej i krążeniowej może być zagrożone. Ponadto, opóźnienie w uwolnieniu osoby z zagrożenia może prowadzić do poważnych uszkodzeń zdrowotnych, takich jak oparzenia czy uszkodzenia serca. Kolejną nieadekwatną odpowiedzią jest zastosowanie sztucznego oddychania lub masażu serca przed uwolnieniem osoby z napięcia. Te działania mogą być konieczne, ale tylko w przypadku, gdy poszkodowany jest już bezpieczny. Zastosowanie sztucznego oddychania i masażu serca bez wcześniejszego uwolnienia od napięcia elektrycznego może zwiększyć ryzyko dla ratownika oraz dla samego poszkodowanego. Prawidłowym postępowaniem jest najpierw ocenić sytuację i zapewnić bezpieczeństwo, a następnie przystąpić do działań ratunkowych. Warto również pamiętać, że każdy przypadek porażenia prądem jest inny, a niektóre z nich mogą wymagać dodatkowych działań, takich jak ocena stanu poszkodowanego i ewentualne wezwanie służb ratunkowych, gdy sytuacja tego wymaga.

Pytanie 27

Aby przymocować przewód PE typu LY 1×2,5 mm2 do zacisku śrubowego, jakie rozwiązanie należy wybrać?

A. spoiwo do metali
B. koszulka termokurczliwa
C. narzędzie lutownicze
D. zacisk oczkowy
Lutownica, choć jest narzędziem używanym do łączenia przewodów, nie jest odpowiednia do przytwierdzania przewodów PE do zacisków śrubowych. Lutowanie polega na topnieniu materiału lutowniczego i łączeniu elementów poprzez schładzanie, co jest nieodpowiednie w przypadku elementów, które muszą być trwale i mechanicznie połączone. Lutowanie może prowadzić do osłabienia przewodów i zwiększenia oporu, co jest niepożądane w instalacjach elektrycznych, gdzie przewody ochronne muszą zapewniać dobrą przewodność. Z kolei klej do metalu, mimo iż może zapewnić trwałe połączenie w niektórych kontekstach, nie jest w stanie zapewnić odpowiednich parametrów elektrycznych i mechanicznych wymaganych przez normy. Kleje nie przewodzą prądu i mogą wprowadzać dodatkowe opory w obwodzie, co jest nieakceptowalne w przypadku przewodów PE. Koszulka termokurczliwa również nie jest odpowiednim rozwiązaniem, gdyż jej głównym celem jest izolowanie połączeń, a nie ich przytwierdzanie. Oprócz tego, koszulki nie zapewniają mechanicznego połączenia, co jest kluczowe przy montażu przewodów do zacisków. Dlatego też, wybór odpowiednich komponentów do przytwierdzania przewodów PE jest kluczowy dla zapewnienia bezpieczeństwa elektrycznego oraz zgodności z obowiązującymi normami.

Pytanie 28

Wysokie napięcia w punktach przejściowych, w gniazdach abonenckich, na stacji głównej telewizji kablowej oraz na wejściu urządzenia abonenckiego mogą się pojawić w wyniku

A. zmiany częstotliwości sygnału
B. zjawiska indukcji
C. tłumienia impulsów napięcia
D. wyrównywania potencjałów połączeń
Wysokie napięcia w punktach przejściowych, gniazdach abonenckich oraz w stacji głównej telewizji kablowej mogą być mylnie interpretowane przez pryzmat kilku zjawisk elektrycznych. Wyrównywanie potencjałów połączeń, chociaż istotne w kontekście bezpieczeństwa, nie jest bezpośrednią przyczyną powstawania wysokich napięć. Proces ten ma na celu zminimalizowanie różnic potencjałów, a nie wytwarzanie ich. Tłumienie impulsów napięcia odnosi się głównie do ochrony przed nagłymi wzrostami napięcia, a nie do generowania wysokich napięć. W praktyce, gdy napięcie jest tłumione, jego amplituda maleje, co jest zjawiskiem pożądanym w kontekście ochrony urządzeń. Zmiana częstotliwości sygnału dotyczy transmisji danych i nie wpływa bezpośrednio na pojawianie się wysokich napięć; częstotliwość sygnału jest istotna dla odpowiedniego przesyłania informacji, ale nie generuje ona wyższych napięć w punktach przejściowych. W związku z tym, posługiwanie się tymi pojęciami w kontekście wysokich napięć może prowadzić do błędnych wniosków. Kluczowe jest zrozumienie, że zjawisko indukcji, będące podstawą wielu technologii, jest głównym źródłem powstawania niepożądanych napięć i powinno być uwzględniane w projektowaniu systemów elektrycznych oraz telekomunikacyjnych, zgodnie z obowiązującymi normami i zasadami bezpieczeństwa.

Pytanie 29

Symbole umieszczone na obudowie przedstawionego na ilustracji akumulatora oznaczają, że akumulator

Ilustracja do pytania
A. nie zawiera ołowiu i nie podlega recyklingowi.
B. zawiera ołów i podlega recyklingowi.
C. zawiera ołów i nie podlega recyklingowi.
D. nie zawiera ołowiu i podlega recyklingowi.
Wybór odpowiedzi, że akumulator nie zawiera ołowiu i podlega recyklingowi, jest mylny, ponieważ opiera się na błędnych założeniach dotyczących budowy akumulatorów. Akumulatory kwasowo-ołowiowe, które są powszechnie stosowane w pojazdach oraz w różnych urządzeniach, zawsze zawierają ołów, który jest kluczowym elementem ich działania. Ołów pełni rolę przewodnika elektrycznego oraz chemicznego w procesie ładowania i rozładowania akumulatora. Nieprawidłowe jest również twierdzenie, że akumulator nie podlega recyklingowi. W rzeczywistości akumulatory ołowiowe są jednymi z najbardziej recyklingowanych produktów na świecie; ponad 95% ich zawartości jest ponownie wykorzystywane. Zignorowanie symbolu 'Pb' na obudowie oraz informacji o recyklingu przyczynia się do powstania nieporozumień, co do zasad właściwego zarządzania odpadami. Użytkownicy często mylą akumulatory ołowiowe z innymi rodzajami akumulatorów, które mogą nie zawierać ołowiu, jednak takie wyobrażenia prowadzą do błędnych decyzji dotyczących ich utylizacji. W kontekście standardów ekologicznych, każda niepoprawna interpretacja prowadzi do zaniechania odpowiedzialności za środowisko oraz może skutkować szkodliwymi konsekwencjami dla natury.

Pytanie 30

Co oznacza funkcja ARW w radiowych odbiornikach?

A. wybieranie oraz wyszukiwanie rodzaju programu
B. odbiór komunikatów drogowych
C. odbiór tekstowych komunikatów
D. automatyczną regulację wzmocnienia
Funkcja automatycznej regulacji wzmocnienia (ARW) w odbiornikach radiowych jest kluczowym elementem zapewniającym stabilność sygnału audio. ARW automatycznie dostosowuje poziom wzmocnienia sygnału, co jest szczególnie przydatne w sytuacjach, gdy sygnał odbierany jest niestabilny lub zmienia się w czasie, na przykład podczas przejazdu przez obszary o różnej jakości sygnału. Dzięki ARW, użytkownicy mogą cieszyć się lepszą jakością dźwięku, ponieważ funkcja ta minimalizuje szumy i przerywania w audio. W praktyce, ARW znajduje zastosowanie w odbiornikach radiowych, systemach audio w samochodach oraz w urządzeniach przenośnych, gdzie utrzymanie stabilności sygnału ma kluczowe znaczenie. Zgodnie z dobrą praktyką branżową, implementacja ARW w urządzeniach radiowych jest standardem, co przyczynia się do poprawy doświadczeń użytkowników i zwiększa ich zadowolenie z korzystania z technologii radiowej. Przykładem zastosowania ARW może być radioodbiornik, który automatycznie dostosowuje wzmocnienie sygnału w trakcie zmiany położenia użytkownika, utrzymując jednocześnie jakość dźwięku na stałym poziomie.

Pytanie 31

Rysunek przedstawia symbol graficzny

Ilustracja do pytania
A. generatora w.cz
B. filtru górnoprzepustowego.
C. filtru dolnoprzepustowego.
D. generatoram.cz.
Symbol graficzny przedstawiony na rysunku rzeczywiście reprezentuje filtr dolnoprzepustowy. Filtr ten jest kluczowym komponentem w wielu systemach elektronicznych, gdzie jego główną funkcją jest eliminowanie sygnałów o częstotliwościach wyższych niż określona częstotliwość odcięcia. Takie filtry są powszechnie stosowane w aplikacjach audio, telekomunikacyjnych i w systemach przetwarzania sygnałów. Przykładem zastosowania filtru dolnoprzepustowego może być jego użycie w systemach audio, gdzie ma za zadanie usunięcie niepożądanych szumów oraz wyższych harmonicznych, co umożliwia czystsze brzmienie dźwięku. W praktyce, filtry dolnoprzepustowe mogą być realizowane zarówno w postaci analogowej, na przykład za pomocą kondensatorów i rezystorów, jak i cyfrowej, gdzie są implementowane w oprogramowaniu przetwarzającym sygnał. Zgodnie z dobrą praktyką inżynieryjną, projektując układ z filtrem dolnoprzepustowym, należy uwzględnić parametry takie jak częstotliwość odcięcia oraz charakterystyka tłumienia, aby zapewnić optymalne działanie w danej aplikacji.

Pytanie 32

Fotografia przedstawia tylną ścianę obudowy

Ilustracja do pytania
A. konwertera telewizji satelitarnej.
B. kamery przemysłowej.
C. rejestratora sygnału wideo.
D. wzmacniacza antenowego.
Odpowiedzi konwertera telewizji satelitarnej, wzmacniacza antenowego oraz rejestratora sygnału wideo nie są adekwatne z uwagi na istotne różnice w konstrukcji i funkcjonalności tych urządzeń w porównaniu do kamer przemysłowych. Konwerter telewizji satelitarnej jest urządzeniem służącym do odbioru sygnału satelitarnego i nie posiada wyjścia wideo ani zasilania DC, a jego budowa skupia się głównie na przetwarzaniu sygnału. Wzmacniacz antenowy, z kolei, ma na celu poprawę jakości odbioru sygnałów radiowych lub telewizyjnych, co sprawia, że jego rozwiązania techniczne różnią się od tych stosowanych w kamerach, takich jak zasilanie czy regulacja obrazu. Z kolei rejestrator sygnału wideo jest zaprojektowany do przechwytywania i zapisywania sygnału wideo, a jego tylna ściana byłaby zupełnie inna pod względem złączy i funkcji, skupiając się na portach komunikacyjnych i wyjściowych, a nie na zasilaniu i regulacji. Typowe błędy myślowe prowadzące do takich niepoprawnych wniosków obejmują mylenie funkcji i zastosowań różnych urządzeń oraz niedostateczne zrozumienie ich specyfikacji technicznych. Zrozumienie, jakie konkretne wyjścia i złącza są charakterystyczne dla kamer przemysłowych, jest kluczowe dla rozróżnienia ich od innych urządzeń elektronicznych i skutecznej analizy przedstawianych obrazów.

Pytanie 33

Jakiego rodzaju diodą jest dioda o oznaczeniu BZV49-C7V5?

A. Zenera
B. Tunelowa
C. Pojemnościowa
D. Prostownicza
Wybór diody prostowniczej jako odpowiedzi na pytanie o diodę BZV49-C7V5 jest błędny, ponieważ diody prostownicze mają zupełnie inną funkcję w obwodach. Ich głównym zadaniem jest konwersja prądu zmiennego na prąd stały, co jest kluczowe w zasilaczach. Dioda prostownicza pozwala na przepływ prądu tylko w jednym kierunku, co jest istotne w aplikacjach, gdzie potrzebne jest odfiltrowanie składowej zmiennej. Z kolei diody tunelowe są używane w specyficznych zastosowaniach, takich jak oscylatory i układy o wysokiej częstotliwości, ze względu na swoje unikalne właściwości związane z tunelowaniem elektronów, co czyni je zupełnie nieprzydatnymi w kontekście regulacji napięcia. W przypadku diod pojemnościowych, ich zastosowanie skupia się na przechowywaniu energii w polu elektrycznym, a nie na stabilizacji napięcia jak w przypadku diod Zenera. Ponadto, powszechne błędy w myśleniu prowadzące do takich nieprawidłowych odpowiedzi to mylenie funkcji diody z jej oznaczeniem. Wiele osób może nie być świadomych, że oznaczenia diod często wskazują na ich specyfikacje i właściwości, co w tym przypadku jasno wskazuje diodę Zenera. Ważne jest, aby w procesie uczenia się zwracać uwagę na różnice w zastosowaniu i charakterystykach poszczególnych typów diod, co jest kluczowe dla zrozumienia ich roli w elektronice.

Pytanie 34

Który z poniższych elementów elektronicznych jest najbardziej podatny na uszkodzenia w trakcie wymiany, jeśli osoba wymieniająca nie użyje opaski uziemiającej?

A. Dioda prostownicza
B. Tranzystor z izolowaną bramką
C. Tranzystor bipolarny
D. Rezystor mocy
Tranzystor z izolowaną bramką (IGBT) jest szczególnie wrażliwy na uszkodzenia statyczne, gdyż ma wewnętrzne struktury, które mogą być uszkodzone przez wyładowania elektrostatyczne (ESD). W przypadku braku uziemienia, ładunki elektryczne mogą gromadzić się na ciele wymieniającego, co prowadzi do niekontrolowanego przepływu prądu. Dla bezpiecznej wymiany komponentów elektronicznych, szczególnie tych o wysokiej czułości, zaleca się korzystanie z opasek uziemiających oraz mat antystatycznych, aby minimalizować ryzyko ESD. IGBT są szeroko stosowane w aplikacjach, takich jak zasilacze impulsowe i napędy silników, gdzie ich niezawodność jest kluczowa. W przypadku uszkodzenia IGBT, konieczna jest wymiana komponentu, co wiąże się z dodatkowymi kosztami i czasem przestoju. Zrozumienie tej kwestii jest kluczowe dla osób zajmujących się elektroniką i pozwala na bezpieczniejszą oraz bardziej efektywną pracę.

Pytanie 35

Podczas serwisowania urządzeń elektronicznych w stanie pod napięciem, stosowane narzędzia muszą mieć

A. utwardzone końcówki
B. odpowiednią izolację napięciową
C. wysoką wytrzymałość mechaniczną
D. metalowe uchwyty
Stosowanie narzędzi z metalowymi rękojeściami w czasie prac serwisowych przy urządzeniach pod napięciem jest skrajnie niebezpieczne. Metal, jako doskonały przewodnik elektryczności, nie może być stosowany tam, gdzie ryzyko porażenia prądem jest realne. Narzędzia z metalowymi częściami mogą prowadzić do sytuacji, w której pracownik przypadkowo dotknie części urządzenia pod napięciem, co skutkuje natychmiastowym porażeniem. Kolejnym błędem jest wiara, że hartowane końcówki narzędzi mogą stanowić wystarczającą ochronę. Choć hartowanie zwiększa wytrzymałość mechaniczną, nie zapewnia ochrony przed prądem elektrycznym. Użycie narzędzi z takimi końcówkami bez izolacji to ignorowanie podstawowych zasad bezpieczeństwa. Duża wytrzymałość mechaniczna narzędzi jest również ważna, ale nie ma znaczenia w kontekście ich użycia przy urządzeniach pod napięciem, jeśli nie są one odpowiednio izolowane. W praktyce, wielu techników popełnia błąd, zakładając, że wystarczająca jest tylko wytrzymałość narzędzi, nie biorąc pod uwagę ich izolacji. Takie myślenie może prowadzić do tragicznych w skutkach wypadków, dlatego tak istotne jest przestrzeganie norm i zasad bezpieczeństwa dotyczących pracy z urządzeniami elektrycznymi.

Pytanie 36

Do montażu kabla systemu alarmowego na ścianie betonowej należy wykorzystać

Ilustracja do pytania
A. D.
B. A.
C. C.
D. B.
Odpowiedź B jest prawidłowa, ponieważ kołki rozporowe stanowią idealne rozwiązanie do montażu kabli na ścianach betonowych. Te elementy mocujące są zaprojektowane tak, aby rozprzestrzeniać obciążenie na większej powierzchni materiału budowlanego, co jest kluczowe w przypadku twardych i kruchych materiałów jak beton. Kołki rozporowe dostępne są w różnych rozmiarach i typach, co pozwala na dobranie odpowiedniego rozwiązania do konkretnego zastosowania. Na przykład, w przypadku montażu systemu alarmowego, użycie kołków rozporowych z tworzywa sztucznego lub metalu zapewnia nie tylko stabilność, ale także długotrwałość montażu, co jest istotne dla bezpieczeństwa i niezawodności systemu. Używanie kołków rozporowych zgodnych z normami budowlanymi, takimi jak PN-EN 14592, gwarantuje właściwe parametry wytrzymałościowe. Dodatkowo, stosując się do dobrych praktyk, warto także zadbać o odpowiednią średnicę i długość kołków, aby zapewnić ich skuteczność w danym podłożu, co przyczyni się do prawidłowego funkcjonowania systemu alarmowego przez długi czas.

Pytanie 37

Aby zweryfikować ciągłość instalacji, należy użyć

A. watmierz
B. omomierza
C. amperomierza
D. woltomierza
Omomierz to urządzenie pomiarowe, które jest kluczowe w procesie sprawdzania ciągłości instalacji elektrycznej. Jego głównym zadaniem jest pomiar rezystancji elektrycznej, co pozwala na ocenę, czy dany przewód lub obwód są poprawnie połączone i czy nie mają przerw. W praktyce, omomierz jest używany do weryfikacji ciągłości połączeń uziemiających, a także do testowania przewodów w instalacjach elektrycznych przed ich uruchomieniem. Zgodnie z normą PN-EN 61557, pomiar rezystancji izolacji oraz ciągłości przewodów jest niezbędnym krokiem w procesie odbioru instalacji elektrycznych. Użycie omomierza pozwala na wykrycie potencjalnych problemów, które mogłyby prowadzić do awarii systemów elektrycznych lub stanowić zagrożenie dla bezpieczeństwa. Dobrą praktyką jest przeprowadzanie takich pomiarów regularnie, szczególnie w instalacjach narażonych na czynniki atmosferyczne lub mechaniczne uszkodzenia. Rezultaty pomiarów powinny być dokumentowane w celu zapewnienia zgodności z obowiązującymi normami i przepisami.

Pytanie 38

Który z wymienionych komponentów obwodów elektronicznych wytwarza sygnał napięciowy pod działaniem pola magnetycznego i znajduje zastosowanie w miernikach pola magnetycznego?

A. Hallotron
B. Kontaktron
C. Piezorezystor
D. Warystor
Kontaktron to element, który działa na zasadzie zjawiska magnetycznego, ale jego zastosowanie jest ograniczone w porównaniu do hallotronu. Kontaktrony są używane głównie jako przełączniki w obwodach, które wykorzystują mechaniczne zamknięcie obwodu w odpowiedzi na obecność pola magnetycznego. W przeciwieństwie do hallotronów, które generują sygnał analogowy, kontaktrony oferują jedynie sygnał cyfrowy, co ogranicza ich funkcjonalność w aplikacjach wymagających precyzyjnego pomiaru. Warystor, natomiast, jest elementem pasywnym, który zabezpiecza obwody przed przepięciami, a nie generuje sygnałów na podstawie pola magnetycznego. Działa na zasadzie zmiany oporu przy określonym napięciu, co również eliminuje jego zastosowanie w kontekście pomiarów pola magnetycznego. Piezorezystor to kolejny ciekawy element, który zmienia opór elektryczny pod wpływem sił mechanicznych, jednak nie ma on związku z polem magnetycznym. Typowym błędem myślowym, który prowadzi do wyboru nieprawidłowych odpowiedzi, jest mylenie funkcji i zasad działania różnych elementów elektronicznych. Zrozumienie, że nie każdy element, który reaguje na zjawiska fizyczne, ma zdolność do generowania sygnału napięciowego pod wpływem pola magnetycznego, jest kluczowe dla poprawnego rozwiązywania zadań z zakresu elektroniki. Dlatego ważne jest, aby przy wyborze odpowiedzi kierować się nie tylko funkcjonalnością, ale także specyfiką zastosowań danego elementu.

Pytanie 39

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 40

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.