Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.05 - Eksploatacja maszyn, urządzeń i instalacji elektrycznych
  • Data rozpoczęcia: 7 grudnia 2025 12:14
  • Data zakończenia: 7 grudnia 2025 12:32

Egzamin niezdany

Wynik: 17/40 punktów (42,5%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Z uwagi na ryzyko uszkodzenia izolacji uzwojeń, używanie bezpieczników w obwodzie przekładnika jest zabronione?

A. napięciowego po stronie pierwotnej
B. prądowego po stronie wtórnej
C. napięciowego po stronie wtórnej
D. prądowego po stronie pierwotnej
Odpowiedź "prądowego po stronie wtórnej" jest prawidłowa, ponieważ zastosowanie bezpieczników w obwodzie przekładnika prądowego po stronie wtórnej może prowadzić do uszkodzenia izolacji uzwojeń. Przekładniki prądowe są wykorzystywane do pomiarów prądu oraz ochrony obwodów elektrycznych, a ich konstrukcja jest zaprojektowana tak, aby zachować integralność i dokładność pomiarów. Jeśli zastosujemy bezpiecznik po stronie wtórnej, w przypadku zwarcia lub nadmiernego prądu, może dojść do przerwania obwodu, co skutkuje powstaniem wysokiego napięcia, które może uszkodzić izolację. W praktyce, aby zapewnić bezpieczeństwo i niezawodność działania systemów pomiarowych, zaleca się stosowanie odpowiednich zabezpieczeń, takich jak układy ograniczające prąd, a także monitorowanie obwodów za pomocą przyrządów pomiarowych, które mogą dostarczyć informacji o stanie przekładnika. Przykładem może być stosowanie odpowiednich przekładników do systemów zabezpieczeń, które są zgodne z normami IEC 60044, co podkreśla bezpieczeństwo i wydajność tych urządzeń w aplikacjach przemysłowych.

Pytanie 2

Podczas przeprowadzania okresowych pomiarów instalacji elektrycznej w układzie TN-S, w jednym z obwodów gniazd jednofazowych 230 V stwierdzono zbyt wysoką wartość impedancji pętli zwarcia. Jakie działania należy podjąć w pierwszej kolejności, aby zidentyfikować problem?

A. Zmierzyć ciągłość przewodów ochronnych PE
B. Zmierzyć rezystancję izolacji przewodów w tym obwodzie
C. Sprawdzić kondycję połączeń przewodów w puszkach oraz aparatach
D. Sprawdzić funkcję przycisku "TEST" na wyłączniku RCD
Sprawdzanie działania wyłącznika RCD przy pomocy przycisku 'TEST' nie rozwiązuje problemu z wysoką wartością impedancji pętli zwarcia, a jedynie testuje funkcjonalność samego urządzenia. Wyłączniki RCD mają na celu ochronę przed porażeniem prądem elektrycznym, ale ich sprawność nie wpływa bezpośrednio na impedancję pętli zwarcia. Wartość impedancji pętli zwarcia jest krytycznym parametrem, który powinien mieścić się w określonych granicach, aby zapewnić, że zabezpieczenia, takie jak bezpieczniki lub wyłączniki, zadziałają w odpowiednim czasie w przypadku zwarcia. Testy rezystancji izolacji przewodów, choć istotne, nie są bezpośrednio związane z problemem impedancji pętli zwarcia, ponieważ koncentrują się na integralności izolacji, a nie na połączeniach. Z kolei pomiar ciągłości przewodów ochronnych PE, choć ważny, nie identyfikuje potencjalnych problemów z połączeniami wewnętrznymi obwodu, które mogą być źródłem wysokiej impedancji. Niestety, często dochodzi do mylnego przekonania, że pojedyncze testy mogą kompleksowo rozwiązać problem, podczas gdy kluczowe jest zdiagnozowanie i nawiązanie do przyczyn wysokiej impedancji, które mogą wynikać z wielu czynników, w tym właśnie z nieprawidłowych połączeń elektrycznych.

Pytanie 3

Pomiar jakiego parametru umożliwia wykrycie przebicia izolacji uzwojeń silnika indukcyjnego trójfazowego w stosunku do obudowy?

A. prądu upływu
B. prądu stanu jałowego
C. rezystancji przewodu ochronnego
D. rezystancji uzwojeń stojana
Pomiary prądu stanu jałowego, rezystancji przewodu ochronnego oraz rezystancji uzwojeń stojana nie są odpowiednie do skutecznego wykrywania przebicia izolacji uzwojeń silnika indukcyjnego względem obudowy. Prąd stanu jałowego odnosi się do prądu, który silnik pobiera, gdy nie jest obciążony, co nie dostarcza informacji o stanie izolacji. Wysoka wartość tego prądu może być spowodowana innymi czynnikami, takimi jak straty w rdzeniu czy niewłaściwe parametry zasilania, co może prowadzić do błędnych wniosków na temat stanu izolacji. Z kolei pomiar rezystancji przewodu ochronnego służy głównie do zapewnienia bezpieczeństwa w systemach uziemienia, ale nie wskazuje bezpośrednio na stan izolacji uzwojeń. Rezystancja uzwojeń stojana z kolei jest istotna przy ocenie sprawności silnika, ale nie jest odpowiednia do wykrywania przebicia izolacji, ponieważ nie uwzględnia wydajności materiałów izolacyjnych. W praktyce, mylenie tych pojęć może prowadzić do fałszywego poczucia bezpieczeństwa, a nieprawidłowe interpretacje wyników pomiarów mogą skutkować poważnymi konsekwencjami w zakresie bezpieczeństwa i niezawodności pracy silników elektrycznych.

Pytanie 4

Jaką wartość prądu znamionowego powinien mieć wyłącznik nadprądowy o charakterystyce B, żeby zabezpieczyć grzejnik jednofazowy o parametrach UN = 230 V, PN = 2,4 kW?

A. 20A
B. 10A
C. 16A
D. 6A
Prawidłowa odpowiedź to 16A, co wynika z obliczeń związanych z mocą grzejnika oraz standardów dotyczących doboru wyłączników instalacyjnych nadprądowych. Grzejnik o mocy 2,4 kW zasilany jest napięciem 230 V, co pozwala obliczyć natężenie prądu za pomocą wzoru: I = P / U. Podstawiając dane, otrzymujemy I = 2400 W / 230 V, co daje około 10,43 A. Zgodnie z zasadami doboru wyłączników, powinno się wybierać wartość prądu znamionowego, która jest co najmniej 1,25-krotnie większa od obliczonej wartości prądu roboczego, aby uwzględnić różne zmiany obciążenia oraz zjawiska, takie jak prądy rozruchowe, które mogą występować w przypadku grzejników. Dlatego wartość 10,43 A powinna być pomnożona przez 1,25, co daje około 13 A. Najbliższą standardową wartością, która spełnia ten wymóg, jest 16A. Użycie wyłącznika o charakterystyce B, która jest zalecana dla urządzeń o charakterze rezystancyjnym, jest zgodne z dobrymi praktykami w instalacjach elektrycznych, zapewniając właściwą ochronę przed przeciążeniem i zwarciem. Warto zauważyć, że stosowanie wyłączników o zbyt małym prądzie znamionowym może prowadzić do ich częstego wyłączania, co będzie nie tylko uciążliwe, ale i niebezpieczne w kontekście bezpieczeństwa użytkowania urządzeń elektrycznych.

Pytanie 5

Jakie z wymienionych uszkodzeń można zidentyfikować podczas inspekcji instalacji elektrycznej?

A. Obniżenie rezystancji izolacji przewodów
B. Pogorszenie stanu mechanicznego połączeń przewodów
C. Przerwanie pionowego uziomu w ziemi
D. Zbyt długi czas reakcji wyłącznika różnicowoprądowego
W kontekście oględzin instalacji elektrycznej, zmniejszenie rezystancji izolacji przewodów, zbyt długi czas działania wyłącznika różnicowoprądowego oraz przerwanie uziomu pionowego w ziemi stanowią koncepcje, które mogą być mylące w kontekście ich lokalizacji podczas inspekcji. Zmniejszenie rezystancji izolacji przewodów jest krytycznym parametrem w ocenie stanu technicznego instalacji, jednak podczas wizualnej weryfikacji nie jest możliwe bezpośrednie zidentyfikowanie tego problemu. Wymaga to odpowiednich pomiarów przy użyciu specjalistycznych narzędzi, takich jak megger. Z kolei zbyt długi czas działania wyłącznika różnicowoprądowego może świadczyć o nieprawidłowościach w instalacji, ale również wymaga szczegółowych testów diagnostycznych, aby określić przyczynę opóźnienia. Ostatecznie przerwanie uziomu pionowego w ziemi, mimo że istotne dla bezpieczeństwa, również nie jest bezpośrednio zauważalne podczas podstawowej wizualizacji. Podczas inspekcji należy kierować się zasadą, że wiele ukrytych usterek wymaga użycia specjalistycznych narzędzi i technik, co wzmacnia potrzebę kompetentnych przeglądów i pomiarów, aby właściwie ocenić stan instalacji elektrycznej oraz zapewnić jej bezpieczeństwo i funkcjonalność.

Pytanie 6

Jaką maksymalną wartość impedancji pętli zwarcia można zastosować w trójfazowym układzie elektrycznym o napięciu nominalnym 230/400 V, aby zapewnić skuteczność ochrony przeciwporażeniowej w przypadku uszkodzenia izolacji, gdy wyłączenie tego obwodu ma być realizowane przez instalacyjny wyłącznik nadprądowy C10?

A. 4,6 Ω
B. 7,7 Ω
C. 8,0 Ω
D. 2,3 Ω
Maksymalna dopuszczalna wartość impedancji pętli zwarcia w trójfazowym obwodzie elektrycznym o napięciu znamionowym 230/400 V wynosząca 2,3 Ω jest zgodna z wymaganiami bezpieczeństwa, które zapewniają skuteczną ochronę przeciwporażeniową. W przypadku uszkodzenia izolacji, odpowiednia impedancja pętli zwarcia pozwala na szybkie wyłączenie zasilania przez wyłącznik nadprądowy, w tym przypadku typu C10. Zgodnie z normą PN-IEC 60364, szybkość wyłączenia zasilania jest kluczowa dla ochrony osób przed porażeniem prądem. Wyłącznik C10 ma charakterystykę, która zapewnia zadziałanie przy prądzie zwarciowym wynoszącym 10 A. W praktyce, im niższa impedancja pętli zwarcia, tym wyższy prąd zwarciowy, co przyspiesza zadziałanie wyłącznika. Przykładowo, przy impedancji 2,3 Ω, prąd zwarciowy wynosi około 174 A, co pozwala na zadziałanie wyłącznika w czasie nieprzekraczającym 0,4 sekundy. Takie wartości są zgodne z zasadami projektowania instalacji elektrycznych, które mają na celu minimalizację ryzyka porażenia prądem elektrycznym.

Pytanie 7

W celu sprawdzenia poprawności działania dwóch wyłączników różnicowoprądowych EFI-2 25/0,03 zmierzono ich różnicowe prądy zadziałania. Na podstawie wyników pomiarów zamieszczonych w tabeli określ poprawność działania tych wyłączników.

Wyłącznik różnicowoprądowyZmierzony prąd różnicowy IΔ
mA
135
225
A. 1 – sprawny, 2 – niesprawny.
B. 1 – niesprawny, 2 – sprawny.
C. Oba wyłączniki niesprawne.
D. Oba wyłączniki sprawne.
Wiele błędnych odpowiedzi wynika z nieporozumień dotyczących zasad działania wyłączników różnicowoprądowych. Często mylnie zakłada się, że jeśli wyłącznik zadziałał przy wartości prądu innej niż jego nominalna, to jest on sprawny, co jest absolutnie nieprawdziwe. Wyłącznik różnicowoprądowy powinien zadziałać przy maksymalnej wartości prądu różnicowego, która w tym przypadku wynosi 30 mA. Zadziałanie wyłącznika nr 1 przy wartości 35 mA oznacza, że nie spełnia on norm i stanowi zagrożenie dla użytkowników. Warto także zwrócić uwagę na powiązania między różnymi parametrami wyłączników a standardami bezpieczeństwa. Zastosowanie wyłączników, które działają przy wartościach prądów różnicowych wyższych niż wymagane, narusza zasady BHP i może prowadzić do tragicznych skutków. Ponadto, w odpowiedziach, które sugerują, że oba wyłączniki są niesprawne lub oba sprawne, brakuje właściwej analizy parametrów zadziałania. Każdy wyłącznik powinien być oceniany indywidualnie na podstawie przeprowadzonych testów, a nie na podstawie ogólnych założeń, co jest kluczowe dla zapewnienia bezpieczeństwa instalacji elektrycznych.

Pytanie 8

Podczas pracy młotowiertarki udarowej zaobserwowano intensywne iskrzenie na komutatorze. Co należy zrobić, aby uniknąć uszkodzenia narzędzia?

A. Wstrzymać pracę i wymienić szczotki
B. Należy zatrzymać pracę i dokręcić połączenia kabli wewnątrz obudowy
C. Trzeba wstrzymać pracę i wymienić łącznik zasilający
D. Po zakończeniu pracy należy skontrolować połączenie uzwojenia twornika z uzwojeniem wzbudzenia
Choć różne odpowiedzi mogą wydawać się sensowne, żadne z nich nie są skutecznymi rozwiązaniami problemu iskrzenia na komutatorze. Wymiana łącznika zasilającego w sytuacji, gdy przyczyna problemu leży w zużytych szczotkach, nie przyniesie oczekiwanych rezultatów. Łącznik zasilający odpowiada za stabilność połączenia elektrycznego, ale nie ma wpływu na stan szczotek ani na ich zdolność do przewodzenia prądu. Przerwanie pracy i dokręcenie połączeń przewodów wewnątrz obudowy również nie rozwiązuje problemu, ponieważ iskrzenie na komutatorze jest efektem niewłaściwego kontaktu elektrycznego, który pochodzi bezpośrednio ze szczotek. Dodatkowo, sprawdzenie połączenia uzwojenia twornika z uzwojeniem wzbudzenia po zakończeniu pracy wydaje się zbędne, gdyż te elementy nie są bezpośrednio związane z problemem iskrzenia. Zwykle takie działania są wprawdzie zalecane w ramach rutynowej konserwacji, ale nie zastąpią one kluczowej wymiany zużytych szczotek. Warto zauważyć, że błędne podejście do diagnostyki może prowadzić do dalszego uszkodzenia narzędzia, a także zwiększenia ryzyka wypadków. Kluczowe jest, aby użytkownik miał świadomość, że regularne sprawdzanie stanu szczotek oraz ich wymiana są nie tylko najlepszym rozwiązaniem, ale także standardem w branży, co pozwala utrzymać sprzęt w optymalnym stanie i zapewnić jego długotrwałą wydajność.

Pytanie 9

Jakie urządzenie gaśnicze powinno być użyte do gaszenia pożaru w rozdzielnicy elektrycznej, której nie można odłączyć od zasilania?

A. Gaśnicę proszkową.
B. Tłumicę.
C. Gaśnicę cieczy.
D. Hydronetkę.
Gaśnice proszkowe są skutecznym narzędziem do gaszenia pożarów klasy C, które obejmują gazy palne oraz pożary elektryczne. W przypadku pożaru rozdzielnicy elektrycznej, której nie można wyłączyć spod napięcia, stosowanie gaśnicy proszkowej jest zalecane ze względu na jej właściwości. Proszek gaśniczy, najczęściej bazujący na wodorofosforanie amonu, skutecznie tłumi płomienie, nie przewodząc prądu, co czyni go bezpiecznym w kontakcie z urządzeniami pod napięciem. Przykładowo, w sytuacji awaryjnej, gdy nie można zredukować napięcia elektrycznego, użycie gaśnicy proszkowej pozwala na szybkie i efektywne działanie, minimalizując ryzyko porażenia prądem. W praktyce, standardy bezpieczeństwa, takie jak normy NFPA i EN 3, jasno wskazują, że gaśnice proszkowe powinny być używane w takich sytuacjach, co czyni je najlepszym wyborem w kontekście ochrony przeciwpożarowej w obiektach z instalacjami elektrycznymi.

Pytanie 10

Jakie urządzenie powinno być wykorzystane do płynnej regulacji prędkości obrotowej silnika indukcyjnego zwartego?

A. Rozrusznik
B. Falownik
C. Softstart
D. Autotransformator
Używanie softstartów do regulacji obrotów silnika indukcyjnego zwartego opiera się na błędnym założeniu, że ten typ urządzenia może zmieniać prędkość silnika. Softstarty służą głównie do ograniczenia prądu rozruchowego silników oraz do wygodnego uruchamiania i zatrzymywania silników. Działają poprzez stopniowe zwiększanie napięcia zasilającego, co pozwala na łagodny start, ale nie umożliwiają regulacji prędkości obrotowej w sposób płynny i ciągły. Tego typu urządzenia są przydatne w aplikacjach, gdzie wymagana jest ochrona silnika przed przeciążeniem, ale nie można ich stosować tam, gdzie potrzebna jest precyzyjna kontrola obrotów. Autotransformator, z kolei, zmienia napięcie zasilające, co wpływa na moment obrotowy silnika, jednak nie jest w stanie zapewnić pełnej kontroli nad jego prędkością. Takie podejście prowadzi do nieefektywności energetycznej oraz może być przyczyną uszkodzeń silnika przy dużych zmianach obciążenia. Rozruszniki, zwłaszcza te ręczne, w ogóle nie oferują regulacji obrotów; ich głównym zadaniem jest uruchomienie silnika. W kontekście nowoczesnej automatyki przemysłowej, zastosowanie niewłaściwych urządzeń lub metod może prowadzić do utraty wydajności systemu oraz zwiększenia kosztów operacyjnych, co podkreśla znaczenie wyboru odpowiednich technologii dla specyficznych aplikacji.

Pytanie 11

Do jakiego celu wykorzystuje się przełącznik w układzie gwiazda-trójkąt w zasilaniu silnika trójfazowego?

A. Aby obniżyć prędkość obrotową
B. Aby zredukować prąd rozruchowy
C. Aby poprawić przeciążalność
D. Aby zwiększyć moment rozruchowy
Twierdzenie, że przełącznik gwiazda-trójkąt zwiększa moment rozruchowy jest błędne, ponieważ w rzeczywistości jego głównym celem jest zmniejszenie prądu rozruchowego, jak wcześniej wspomniano. W przypadku silników indukcyjnych, moment obrotowy podczas rozruchu jest proporcjonalny do kwadratu napięcia zasilającego. Dlatego przy uruchamianiu w układzie gwiazdy, gdzie napięcie jest niższe, moment obrotowy również będzie mniejszy. Zmniejszenie prędkości obrotowej nie jest również celem tego przełącznika; prędkość obrotowa silnika jest determinowana przez częstotliwość zasilania i liczbę par biegunów, a układ gwiazda-trójkąt nie wpływa na te parametry. Ponadto, zwiększenie przeciążalności w kontekście przełącznika gwiazda-trójkąt jest pojęciem mylnym. Przeciążalność to zdolność silnika do pracy przy wyższych niż nominalne obciążeniach przez krótki czas, co nie jest celem działania tego układu. Kluczowe jest zrozumienie, że przełącznik gwiazda-trójkąt stanowi tylko tymczasowe połączenie, które ma na celu zminimalizowanie prądu podczas rozruchu, a nie zwiększenie momentu czy prędkości. Zatem, podstawowym błędem myślowym jest mylenie funkcji przełącznika z innymi właściwościami silnika oraz jego pracy w różnych warunkach obciążeniowych.

Pytanie 12

Na podstawie wyników pomiarów zamieszczonych w przedstawionej tabeli określ uszkodzenie występujące w instalacji.

Pomiar napięcia między przewodem PE i drugim punktem instalacji
Drugi punkt pomiaru:Przewód fazowy LPrzewód neutralny NMetalowa rura COMetalowa rura gazowaMetalowa wanna łazienkowa
232 V0 V51 V49 V0 V
Wynik:232 V0 V51 V49 V0 V
A. Przebicie izolacji przewodu fazowego do metalowych rur.
B. Zwarcie między przewodem neutralnym i fazowym.
C. Uszkodzona izolacja przewodu neutralnego w pobliżu wanny.
D. Uszkodzone połączenia wyrównawcze miejscowe.
Poprawna odpowiedź wskazuje na uszkodzone połączenia wyrównawcze miejscowe, co jest zgodne z wynikami pomiarów. W przypadku, gdy napięcie na metalowych elementach instalacji, takich jak rury, wynosi 51 V i 49 V w stosunku do przewodu ochronnego PE, sugeruje to, że połączenia wyrównawcze nie funkcjonują prawidłowo. W dobrze zaprojektowanej instalacji elektrycznej, wszystkie metalowe elementy powinny być podłączone do systemu uziemiającego, co pozwala na równomierne rozłożenie potencjału elektrycznego. Uszkodzenie połączeń wyrównawczych może prowadzić do niebezpiecznych sytuacji, takich jak porażenie prądem elektrycznym, a także stanowi naruszenie norm bezpieczeństwa określonych w Polskich Normach (PN) oraz Dyrektywie Niskonapięciowej. W praktyce, regularne kontrole i pomiary instalacji elektrycznych są kluczowe, aby zapewnić bezpieczeństwo użytkowników oraz zgodność z obowiązującymi normami. Wykonana analiza wskazuje na konieczność przeprowadzania napraw w celu przywrócenia prawidłowego działania systemu ochrony przeciwporażeniowej.

Pytanie 13

W instalacji domowej 230/400 V obwód zasilający elektryczną kuchnię o grzaniu rezystancyjnym jest chroniony przez wyłącznik nadprądowy typu S 194 B20. Jaką największą moc może mieć kuchnia podłączona do tego obwodu?

A. 6,6 kW
B. 24,0 kW
C. 13,8 kW
D. 8,0 kW
Odpowiedź 13,8 kW jest poprawna, ponieważ wyłącznik nadprądowy typu S 194 B20 ma wartość znamionową 20 A. W instalacji 230/400 V maksymalna moc obwodu można obliczyć za pomocą wzoru P = U * I, gdzie P to moc, U to napięcie, a I to prąd. W przypadku zasilania jednofazowego, przy napięciu 230 V, moc oblicza się jako: P = 230 V * 20 A = 4600 W, co odpowiada 4,6 kW. Jednak w przypadku kuchni elektrycznej z nagrzewaniem rezystancyjnym możliwe jest także wykorzystanie zasilania trójfazowego. Przy wykorzystaniu napięcia 400 V i prądu 20 A, całkowita moc wynosi: P = 400 V * 20 A * √3 = 13,8 kW. Taki przydział mocy jest zgodny z normami i dobrymi praktykami w zakresie instalacji elektrycznych, co pozwala na bezpieczne użytkowanie kuchni elektrycznej, zapewniając jednocześnie odpowiednią funkcjonalność urządzeń. W praktyce, warto dbać o to, aby całkowite obciążenie obwodu nie przekraczało jego maksymalnych dopuszczalnych wartości, co zapobiega awariom i gwarantuje bezpieczne korzystanie z urządzeń elektrycznych.

Pytanie 14

W silniku odkurzacza po wyjęciu z obudowy i załączeniu pełnego napięcia w serwisie zauważono zmniejszone obroty i iskrzenie na komutatorze. Na podstawie zamieszczonej tabeli wskaż, prawidłową kolejność czynności przy wykrywaniu i naprawie uszkodzenia w silniku odkurzacza.

Czynność
1demontaż elementów silnika
2próbne uruchomienie silnika przy zmniejszonym napięciu i doszlifowanie szczotek
3sprawdzenie długości szczotek i ich prawidłowego docisku do komutatora
4wykonanie badania na obecność zwarć w wirniku
5wymiana uszkodzonych podzespołów
6montaż podzespołów silnika
A. 3, 1, 4, 5, 6, 2
B. 3, 4, 2, 1, 5, 6
C. 4, 1, 5, 3, 6, 2
D. 1, 4, 3, 5, 2, 6
W przypadku niepoprawnych odpowiedzi pojawiają się typowe błędy myślowe związane z kolejnością działań diagnostycznych. Zaczynanie od demontażu elementów silnika bez wcześniejszej weryfikacji stanu szczotek prowadzi do nieefektywnej pracy oraz zwiększonego ryzyka uszkodzenia innych podzespołów. Diagnostyka powinna zawsze zaczynać się od najprostszych do najtrudniejszych problemów; w tym przypadku sprawdzenie szczotek jest kluczowe. Idąc dalej, pominiecie etapu badania wirnika na obecność zwarć może skutkować dalszymi uszkodzeniami, które nie będą widoczne gołym okiem. Wymiana uszkodzonych elementów przed dokładnym zrozumieniem przyczyny awarii prowadzi do marnotrawstwa czasu i zasobów. Ostatecznie, przeprowadzanie próbnego uruchomienia silnika przed całkowitym złożeniem i wykonaniem wszystkich niezbędnych napraw jest także niewłaściwą praktyką, która może prowadzić do dalszych awarii. W kontekście standardów branżowych, zawsze należy przestrzegać metodologii diagnostycznej, która zakłada systematyczne podejście i eliminację potencjalnych źródeł problemów, zaczynając od najprostszych rozwiązań. Dobre praktyki wskazują na znaczenie odpowiedniego przygotowania przed przystąpieniem do skomplikowanych operacji serwisowych, co pozwala na minimalizowanie ryzyka i zwiększenie efektywności napraw.

Pytanie 15

W jakim przypadku w instalacji elektrycznej niskiego napięcia powinno się wykonać pomiary kontrolne (sprawdzenie ciągłości przewodów, pomiary rezystancji izolacji, weryfikacja samoczynnego wyłączania napięcia)?

A. Po przeciążeniu urządzenia
B. Po zadziałaniu zabezpieczeń
C. Po naprawie zabezpieczeń
D. Po modernizacji instalacji
Prawidłowa odpowiedź "Po modernizacji instalacji" jest zgodna z przyjętymi standardami i dobrymi praktykami w zakresie bezpieczeństwa instalacji elektrycznych. Modernizacja instalacji, w tym zmiany w układzie, dodanie nowych obwodów lub urządzeń oraz wymiana komponentów, może wprowadzić nowe ryzyko. Dlatego po każdej modernizacji konieczne jest przeprowadzenie pomiarów kontrolnych, aby upewnić się, że instalacja spełnia wymogi norm i jest bezpieczna w użytkowaniu. Pomiary te obejmują sprawdzenie ciągłości przewodów, co jest niezbędne do zapewnienia, że nie ma przerw w obwodach, oraz pomiary rezystancji izolacji, które pomagają ocenić stan izolacji przewodów. Dodatkowo, sprawdzenie samoczynnego wyłączania napięcia jest kluczowe dla ochrony przed porażeniem elektrycznym. Przykładem zastosowania tej wiedzy jest sytuacja, w której po zainstalowaniu nowych gniazdek lub oświetlenia, technik elektryk przeprowadza te kontrole, aby zagwarantować, że wszelkie zmiany nie wpłynęły negatywnie na bezpieczeństwo instalacji.

Pytanie 16

Jaki przyrząd jest przeznaczony do bezpośredniego pomiaru współczynnika mocy w silniku indukcyjnym?

A. Fazomierz
B. Waromierz
C. Częstościomierz
D. Watomierz
Wybór pozostałych mierników, takich jak watomierz, częstościomierz i waromierz, może prowadzić do nieporozumień dotyczących ich funkcji i zastosowań w kontekście pomiaru współczynnika mocy. Watomierz, mimo że mierzy zużycie energii, nie dostarcza informacji na temat relacji między mocą czynną a mocą pozorną. Jego pomiar koncentruje się na ilości energii przekazywanej w jednostce czasu, a więc nie bierze pod uwagę charakterystyki obciążenia indukcyjnego, co jest kluczowe przy ocenie współczynnika mocy. Częstościomierz z kolei mierzy częstotliwość sygnałów, co nie ma bezpośredniego związku z mocą, a więc nie może być użyty do analizy efektywności energetycznej silnika. Waromierz, używany do pomiaru wartości energii, również nie jest narzędziem adekwatnym do oceny współczynnika mocy, ponieważ jego zastosowanie ogranicza się głównie do analizy energii w kontekście statycznym, a nie dynamicznym. Typowym błędem myślowym jest założenie, że pomiar mocy elektrycznej i ocena współczynnika mocy są tożsame, co może prowadzić do wybierania niewłaściwych narzędzi pomiarowych i błędnej analizy wyników. Aby efektywnie zarządzać energią w instalacjach przemysłowych, kluczowe jest posługiwanie się odpowiednimi przyrządami, takimi jak fazomierz, które są zgodne z normami branżowymi i najlepszymi praktykami w dziedzinie inżynierii elektrycznej.

Pytanie 17

Jakie czynności związane z eksploatacją instalacji elektrycznych powinny być realizowane jedynie na podstawie pisemnego zlecenia?

A. Związane z ratowaniem życia i zdrowia ludzi
B. Eksploatacyjne, które mogą prowadzić do szczególnego zagrożenia dla życia i zdrowia ludzi
C. Eksploatacyjne, wskazane w instrukcjach stanowiskowych i realizowane przez uprawnione osoby
D. Dotyczące zabezpieczania instalacji przed uszkodzeniem
Wybór odpowiedzi o zabezpieczeniu instalacji przed zniszczeniem czy ratowaniem zdrowia nie jest zbyt trafny, jeśli chodzi o wymóg pisemnego polecenia. Jasne, że dbanie o instalacje jest istotne, ale nie zawsze wymaga formalnego dokumentu. Zwykle te sprawy są załatwiane w ramach rutynowych działań konserwacyjnych, które wykonuje się według ustalonych zasad. Ratowanie zdrowia też jest super ważne, ale często wymaga szybkiego działania, a procedury są już ustalone i znane ekipie. Odpowiedzi dotyczące eksploatacji w instrukcjach stanowiskowych nie do końca odpowiadają pytaniu, bo te czynności mogą być zrobione w standardowy sposób, bez dodatkowego polecenia. Warto zrozumieć, że nie wszystkie prace przy instalacjach elektrycznych są obarczone wysokim ryzykiem i czasem nie potrzebują formalnej dokumentacji. To może prowadzić do błędnych wniosków, co jest istotne w kontekście bezpieczeństwa. Złe podejście do ryzyka może mieć poważne konsekwencje, więc każdy w branży elektrycznej powinien na to zwracać uwagę.

Pytanie 18

Jakiego typu obudowę ma urządzenie elektryczne oznaczone na tabliczce znamionowej symbolem IP001?

A. Głębinową
B. Wodoszczelną
C. Zamkniętą
D. Otwartą
Obudowa oznaczona symbolem IP001 wskazuje, że urządzenie ma otwartą konstrukcję, co oznacza, że nie jest przystosowane do ochrony przed wnikaniem wody ani ciał stałych. W standardzie IP (Ingress Protection) pierwsza cyfra, w tym przypadku '0', oznacza brak ochrony przed ciałami stałymi, zaś druga cyfra, '1', oznacza ograniczoną ochronę przed wodą. W praktyce oznacza to, że urządzenie jest przeznaczone do zastosowania w suchych pomieszczeniach, gdzie nie ma ryzyka kontaktu z wodą. Tego typu obudowy są często stosowane w urządzeniach elektronicznych, które nie wymagają specjalnej ochrony, takich jak niektóre modele komputerów, sprzętu biurowego lub urządzeń domowych. Zrozumienie klasyfikacji IP jest kluczowe dla odpowiedniego doboru urządzeń do zastosowań w różnych warunkach otoczenia oraz dla zapewnienia ich długotrwałego i bezpiecznego działania.

Pytanie 19

Korzystając z tabeli podaj jakimi przewodami, według sposobu A1, należy wykonać instalację podtynkową gniazd jednofazowych zabezpieczonych wyłącznikiem nadprądowym B16A w sieci typu TN-S?

Przekrój przewodów, mm²Obciążalność długotrwała przewodów, A
AYDYp 2×1,514,5
BYDYp 2×2,519,5
CYDYp 3×1,513,5
DYDYp 3×2,518
A. C.
B. D.
C. B.
D. A.
Odpowiedź D jest prawidłowa, ponieważ wybór przewodów YDYp 3×2,5 mm² do instalacji podtynkowej gniazd jednofazowych zabezpieczonych wyłącznikiem nadprądowym B16A w sieci typu TN-S spełnia wszystkie wymogi bezpieczeństwa i normy obciążalności. Zgodnie z normą PN-IEC 60364, przewody muszą być dobrane w taki sposób, aby ich obciążalność długotrwała była wyższa od prądu znamionowego zabezpieczenia, w tym przypadku 16A. Przewody YDYp 3×2,5 mm² charakteryzują się obciążalnością długotrwałą wynoszącą 18A, co sprawia, że są odpowiednie do tego zastosowania. Takie podejście zapewnia nie tylko zgodność z przepisami, ale również minimalizuje ryzyko przegrzania oraz uszkodzenia instalacji. W praktyce, dobra jakość przewodów oraz ich odpowiedni dobór mają kluczowe znaczenie dla bezpieczeństwa użytkowników oraz niezawodności instalacji. Przewody podtynkowe powinny być również odpowiednio zabezpieczone przed uszkodzeniami mechanicznymi oraz działaniem wilgoci, co potwierdza znaczenie staranności w realizacji projektów elektrycznych.

Pytanie 20

Prąd ustawczy przekaźnika termobimetalowego, chroniącego silnik pompy wody, o prądzie znamionowym In = 10 A nie może być większy niż

A. 10,10 A
B. 10,50 A
C. 11,00 A
D. 9,50 A
Odpowiedź 11,00 A jest prawidłowa, ponieważ zgodnie z zasadami działania przekaźników termobimetalowych, ich prąd nastawczy powinien być dostosowany do wartości znamionowej urządzenia, które ma zabezpieczać. W tym przypadku, dla przekaźnika zabezpieczającego silnik pompy o prądzie znamionowym I<sub>n</sub> = 10 A, wartość prądu nastawczego powinna być ustawiona na wartość nieprzekraczającą 11,00 A. Umożliwia to zapewnienie odpowiedniego zabezpieczenia w przypadku przeciążenia silnika, ponieważ pozwala na zachowanie marginesu bezpieczeństwa. W praktyce, taka regulacja jest kluczowa, aby uniknąć uszkodzenia silnika oraz samego przekaźnika. Warto również zaznaczyć, że branżowe standardy, takie jak IEC 60947, podkreślają znaczenie odpowiedniego ustawienia wartości prądowych dla zapewnienia bezpiecznego i niezawodnego działania urządzeń. Przykładowo, w przypadku, gdy prąd nastawczy byłby zbyt niski, mogłoby dojść do fałszywego wyzwolenia przekaźnika, co prowadziłoby do niepotrzebnych przestojów maszyny. Z drugiej strony, ustawienie zbyt wysokiego prądu mogłoby nie zabezpieczyć silnika przed realnym przeciążeniem. Dlatego też, 11,00 A jest wartością optymalną, gwarantującą nie tylko bezpieczeństwo, ale również efektywność operacyjną systemu.

Pytanie 21

W jaki sposób zmieni się spadek napięcia na przewodzie zasilającym przenośny odbiornik, jeśli zamienimy przewód OWY 5×4 mm2 o długości 5 m na przewód OWY 5×6 mm2 o długości 15 m?

A. Zwiększy się dwukrotnie
B. Zmniejszy się trzykrotnie
C. Zmniejszy się dwukrotnie
D. Zwiększy się trzykrotnie
Wybór odpowiedzi sugerujących, że spadek napięcia zwiększy się trzykrotnie lub zmniejszy się trzykrotnie, opiera się na błędnym rozumieniu zasad obliczania spadku napięcia i wpływu długości oraz przekroju przewodu na ten parametr. Niektórzy mogą myśleć, że zwiększenie długości przewodu automatycznie prowadzi do proporcjonalnego wzrostu spadku napięcia, jednak to nie jest jedyny czynnik. Oporność przewodu zależy od jego długości oraz przekroju. Chociaż długość przewodu wzrasta, co sprzyja wzrostowi oporności, również zmienia się pole przekroju, które wpływa na opór. W przypadku zamiany przewodu o mniejszym przekroju na większy przy jednoczesnym wydłużeniu, wynikowy efekt na spadek napięcia nie jest prostą proporcją, ale wymaga złożonych obliczeń. Odpowiedzi sugerujące, że spadek napięcia zmniejszy się, pomijają aspekt, że większa długość przewodu, mimo lepszego przekroju, może generować większą oporność, co prowadzi do wyższego spadku napięcia. W praktyce, montując długie przewody, należy zawsze brać pod uwagę zarówno długość, jak i rozmiar przekroju, aby uzyskać optymalne parametry elektryczne. Użycie algorytmów obliczeniowych oraz norm branżowych, jak PN-IEC 60364, powinno zawsze towarzyszyć tym decyzjom. Błędne podejście do oceny wpływu długości i przekroju na spadek napięcia może prowadzić do poważnych problemów z jakością zasilania i naruszeniem zasad bezpieczeństwa.

Pytanie 22

Gdy chodzi o odbiornik o dużej mocy, taki jak kuchenka elektryczna, jak należy go zasilać?

A. z wydzielonego obwodu z własnym zabezpieczeniem
B. z wspólnego obwodu gniazd wtyczkowych
C. z wspólnego obwodu oświetleniowego
D. z wydzielonego obwodu bez własnych zabezpieczeń
Zasilanie kuchenki elektrycznej ze wspólnego obwodu oświetleniowego czy gniazd wtyczkowych jest nieodpowiednie i może prowadzić do wielu problemów. Obwody oświetleniowe są zaprojektowane do obsługi urządzeń o niskim poborze mocy, takich jak lampy, co oznacza, że nie są przystosowane do zasilania urządzeń o dużym poborze energii, jak kuchenki elektryczne. Podłączenie kuchenki do takiego obwodu może prowadzić do przeciążenia instalacji, co w konsekwencji może skutkować wyłączeniem bezpieczników lub, w skrajnych przypadkach, pożarem. Z kolei wspólny obwód gniazd wtyczkowych, który może być obciążony przez wiele urządzeń jednocześnie, również nie jest odpowiednim rozwiązaniem. W przypadku podłączenia kuchenki, inne urządzenia mogą przekroczyć dopuszczalny prąd, co prowadzi do potencjalnych zagrożeń. Ponadto, brak wydzielonego obwodu i zabezpieczenia oznacza, że w przypadku awarii kuchenki nie będzie możliwości szybkiego odłączenia zasilania, co zwiększa ryzyko uszkodzenia sprzętu oraz stwarza niebezpieczeństwo dla użytkowników. Kluczowe jest, aby pamiętać, że instalacja elektryczna powinna być projektowana zgodnie z normami, takimi jak PN-IEC 60364, które jasno definiują wymagania dotyczące zasilania urządzeń o wysokim poborze mocy.

Pytanie 23

Jakie z wymienionych elementów można wymieniać w instalacjach elektrycznych o napięciu 230 V bez konieczności wyłączania zasilania?

A. Wkładek bezpiecznikowych.
B. Opraw oświetleniowych.
C. Elementów łącznikowych.
D. Wyłączników różnicowoprądowych.
Wymiana łączników instalacyjnych, wyłączników różnicowoprądowych czy opraw oświetleniowych bez wyłączania zasilania jest niebezpieczna i niezgodna z praktykami branżowymi. Łączniki instalacyjne pełnią kluczową rolę w kontrolowaniu przepływu energii w obwodach elektrycznych. Ich wymiana w warunkach zasilania może prowadzić do zwarcia, co stwarza ryzyko pożaru oraz uszkodzenia sprzętu. Wyłączniki różnicowoprądowe (RCD) są zaprojektowane do ochrony ludzi przed porażeniem prądem, a ich wymiana w aktywnym obwodzie może skutkować niebezpiecznymi sytuacjami, takimi jak porażenie prądem elektrycznym. W przypadku opraw oświetleniowych, ich wymiana bez wyłączenia zasilania może prowadzić do uszkodzenia lamp oraz obwodów elektrycznych, a także stwarzać zagrożenie dla użytkowników. Dlatego kluczowe jest przestrzeganie zasad bezpieczeństwa, które nakazują wyłączanie zasilania przed dokonaniem wszelkich zmian w instalacji elektrycznej. Normy takie jak PN-EN 50110-1 wyraźnie podkreślają znaczenie bezpieczeństwa podczas pracy z instalacjami elektrycznymi, wskazując na konieczność zabezpieczenia obwodów przed ich modyfikacją.

Pytanie 24

Jakim skrótem określa się w obowiązujących normach odnoszących się do instalacji elektrycznych systemy ochrony od piorunów?

A. LPS
B. LPL
C. SPD
D. SPZ
Wybór innego skrótu, takiego jak SPD (Surge Protective Device), LPL (Lightning Protection Level) czy SPZ (System Piorunochronny), jest nieprawidłowy, ponieważ te terminy odnoszą się do innych aspektów ochrony przed wyładowaniami elektrycznymi. SPD to urządzenie służące do ochrony przed przepięciami, które może być częścią systemu LPS, ale nie jest tożsamy z pełnym systemem ochrony odgromowej. Z kolei LPL definiuje poziomy ochrony, jakie powinny być osiągnięte przez system LPS, zamiast samych urządzeń ochronnych. SPZ to nieformalny skrót, który nie jest powszechnie uznawany w dokumentach normatywnych i nie ma standaryzowanego znaczenia. Z tego powodu, wybór tych terminów może prowadzić do nieporozumień i błędnej interpretacji zasad dotyczących ochrony odgromowej. Kluczowym błędem myślowym, prowadzącym do wyboru nieprawidłowych odpowiedzi, jest mylenie różnych elementów systemu ochrony, co może skutkować brakiem skutecznej ochrony przed wyładowaniami atmosferycznymi. Zrozumienie ról poszczególnych komponentów jest niezbędne do właściwego projektowania i wdrażania systemów ochrony, co podkreśla znaczenie przestrzegania norm i najlepszych praktyk w branży.

Pytanie 25

Który z poniższych środków zabezpieczających przed porażeniem prądem elektrycznym nie jest właściwy do użycia w pomieszczeniach z zamontowaną wanną lub prysznicem?

A. Izolowanie stanowiska
B. Separacja elektryczna
C. Obwody PELV
D. Obwody SELV
Izolowanie stanowiska, mimo że jest jednym z zagadnień dotyczących bezpieczeństwa elektrycznego, nie jest właściwym środkiem ochrony w kontekście pomieszczeń mokrych, takich jak łazienki. W takich miejscach, gdzie obecność wody stwarza dodatkowe ryzyko porażenia prądem, należy stosować bardziej zaawansowane metody ochrony, takie jak obwody SELV czy PELV, które są zaprojektowane z myślą o niskim napięciu i ograniczeniu ryzyka. Izolowanie stanowiska często opiera się na założeniach dotyczących pracy w suchych środowiskach, gdzie można zmniejszyć ryzyko kontaktu z przewodzącymi elementami. Jednak w pomieszczeniach z wanną lub prysznicem, ryzyko to jest znacznie wyższe, a woda jest doskonałym przewodnikiem prądu. Ponadto, separacja elektryczna, którą proponuje się w innych odpowiedziach, również nie zawsze jest wystarczająca, jeśli nie jest odpowiednio wspierana przez inne środki bezpieczeństwa. Warto zwrócić uwagę na to, że zgodnie z normami bezpieczeństwa elektrycznego, w pomieszczeniach mokrych oraz w miejscach, gdzie występuje możliwość kontaktu z wodą, rekomendowane jest stosowanie systemów, które zapewniają optymalne warunki bezpieczeństwa, takie jak odpowiednie uziemienie czy obwody z niskim napięciem. Ignorowanie tych zasad prowadzi do niebezpieczeństw, które mogą mieć poważne konsekwencje zdrowotne.

Pytanie 26

W jaki sposób zmieni się prędkość obrotowa silnika synchronicznego, gdy liczba par biegunów w jego tworniku zostanie zmieniona z 2 na 1?

A. Czterokrotnie wzrośnie
B. Dwukrotnie wzrośnie
C. Czterokrotnie zmniejszy się
D. Dwukrotnie zmniejszy się
W kontekście prędkości obrotowej silnika synchronicznego, niektóre odpowiedzi mogą prowadzić do mylnych wniosków. Na przykład, stwierdzenie, że prędkość obrotowa zmaleje czterokrotnie, jest niezgodne z podstawowymi zasadami działania tych silników. Zmniejszenie liczby par biegunów z 2 na 1 nie prowadzi do zmniejszenia prędkości, lecz do jej wzrostu, co jest kluczowym aspektem zapamiętywania zasady działania silników synchronicznych. Z kolei stwierdzenie, że prędkość zmaleje dwukrotnie, także jest błędne, gdyż sugeruje, że zmiana liczby par biegunów działa w odwrotny sposób, co jest sprzeczne z równaniem n = (120 * f) / p. Powinno być jasne, że zmniejszenie liczby par biegunów zwiększa prędkość obrotową, a nie zmniejsza. Ponadto, błędne koncepcje związane z odpowiedziami mówiącymi o czterokrotnym wzroście prędkości również wskazują na nieporozumienia dotyczące proporcjonalności między liczbą par biegunów a prędkością obrotową. W rzeczywistości, prędkość obrotowa jest odwrotnie proporcjonalna do liczby par biegunów, co potwierdza, że w przypadku zmiany liczby z 2 na 1 prędkość obrotowa wzrośnie dokładnie dwukrotnie. Czynniki te są kluczowe dla zrozumienia działania silników elektrycznych, a ich zrozumienie jest niezbędne dla inżynierów i techników, którzy zajmują się projektowaniem oraz eksploatacją systemów napędowych.

Pytanie 27

W instalacji trójfazowej prąd obciążenia w przewodach fazowych IB = 25 A, a maksymalna obciążalność długotrwała tych przewodów Idd = 30 A. Który z poniższych wyłączników nadprądowych powinien być użyty do ochrony tej instalacji przed działaniem nadmiernego prądu?

A. B32
B. B16
C. B20
D. B25
Wyłącznik nadprądowy B25 jest odpowiedni do zabezpieczenia instalacji trójfazowej, w której prąd obciążenia wynosi 25 A, a obciążalność długotrwała przewodów to 30 A. Wyłączniki nadprądowe oznaczone literą 'B' charakteryzują się określoną charakterystyką działania, która zazwyczaj jest stosowana w instalacjach domowych i małych przedsiębiorstwach. W przypadku prądu znamionowego B25, wyłącznik ten będzie działał przy prądzie obciążenia do 25 A, co oznacza, że nie zadziała w warunkach normalnej pracy. Jednakże, dla prądów przekraczających ten poziom, wyłącznik zareaguje, zapewniając odpowiednią ochronę. W praktyce oznacza to, że B25 oferuje wystarczający margines bezpieczeństwa, aby chronić przewody przed przeciążeniem, które mogłoby prowadzić do uszkodzenia izolacji, przegrzania lub nawet pożaru. Stosując B25, przestrzegamy zasad dotyczących doboru zabezpieczeń, zgodnych z normami PN-IEC 60898, które rekomendują, aby prąd znamionowy wyłącznika był bliski wartości prądu obciążenia, ale nie mniejszy, aby uniknąć niepotrzebnych wyłączeń. Przykładowo, w instalacjach o dużych obciążeniach, takich jak warsztaty czy zakłady produkcyjne, dobór odpowiednich wyłączników nadprądowych jest kluczowy dla zapewnienia bezpieczeństwa i efektywności operacyjnej.

Pytanie 28

Silnik, o parametrach znamionowych zamieszczonych w ramce, wbudowany jest na stałe do nawijarki. Jak często należy przeprowadzać przegląd techniczny tego silnika?

PSBg 100L-6
Un = 400 VPn = 1,8 kWIn = 4,5 A
nn = 925 obr/minS1cosφ = 0,80
A. Nie rzadziej niż raz na trzy lata.
B. W terminach planowanych postojów technologicznych nawijalni.
C. W terminach przewidzianych dla przeglądu nawijarki.
D. Nie rzadziej niż raz na rok.
Odpowiedź "W terminach przewidzianych dla przeglądu nawijarki." jest poprawna, ponieważ przegląd techniczny silnika wbudowanego w nawijarkę powinien być synchronizowany z harmonogramem przeglądów całej maszyny. Zgodnie z przepisami prawa oraz normami branżowymi, wszystkie elementy maszyny, w tym silniki, muszą być regularnie sprawdzane w celu zapewnienia ich niezawodności i bezpieczeństwa. Przykładowo, w przemyśle produkcyjnym, przeprowadzanie przeglądów w zgodzie z harmonogramem dla całej maszyny pomaga nie tylko w identyfikacji potencjalnych usterek, ale także w planowaniu przestojów, co wpływa na efektywność procesów produkcyjnych. Dobre praktyki w zakresie utrzymania ruchu sugerują, że wszelkie działania konserwacyjne powinny być skoordynowane z przeglądami nawijarki, aby zminimalizować czas przestoju i koszty eksploatacji. W rezultacie, regularne przeglądy techniczne zwiększają trwałość maszyny oraz bezpieczeństwo jej użytkowania.

Pytanie 29

Zatrzymanie pracy grzejnika skutkuje natychmiastowym działaniem zabezpieczenia nadprądowego. Co to sugeruje?

A. zwarcie przewodu fazowego oraz neutralnego
B. zwarcie przewodu ochronnego z obudową
C. uszkodzenie w przewodzie fazowym
D. uszkodzenie w grzałce
W przypadku innych odpowiedzi, które mogłyby być uznane za poprawne, jak przerwa w przewodzie fazowym, zwarcie przewodu ochronnego do obudowy czy zwarcie przewodu fazowego i neutralnego, warto wskazać na ich merytoryczne błędy. Przerwa w przewodzie fazowym nie mogłaby skutkować natychmiastowym działaniem zabezpieczenia nadprądowego, ponieważ w takim przypadku prąd nie popłynąłby w ogóle, co nie aktywuje zabezpieczeń. Zwarcie przewodu ochronnego do obudowy z kolei powinno wywołać reakcję wyłącznika różnicowoprądowego, a nie nadprądowego, jako że jest to zupełnie inny mechanizm zabezpieczający, który odpowiada za ochronę przed porażeniem prądem. Natomiast zwarcie przewodu fazowego i neutralnego zazwyczaj prowadzi do sytuacji nadmiernego przepływu prądu, co również spowodowałoby zadziałanie zabezpieczenia nadprądowego, ale w inny sposób i z innymi konsekwencjami. Niekiedy błędne wnioski płyną z niepełnego zrozumienia zasad działania zabezpieczeń oraz ich różnic, co prowadzi do pomyłek. Wiedza na temat tego, jak i dlaczego zabezpieczenia działają w dany sposób, jest kluczowa dla bezpieczeństwa instalacji elektrycznych i ich użytkowników. Dlatego zawsze należy dokładnie analizować przyczyny działania zabezpieczeń w kontekście konkretnego problemu.

Pytanie 30

Która z poniższych tachoprądnic, poza pomiarem prędkości obrotowej wirującego wału, pozwala również na określenie kierunku jego obrotu?

A. Synchroniczna
B. Dwufazowa z wirnikiem kubkowym
C. Prądu stałego
D. Dwufazowa z wirnikiem klatkowym
Tachoprądnice prądu stałego to takie fajne urządzenia, które nie tylko mierzą, jak szybko kręci się wał, ale też potrafią rozpoznać, w którą stronę ten wał się obraca. Działają na zasadzie indukcji elektromagnetycznej, co oznacza, że jak zmienia się pole magnetyczne, to tworzy się prąd w uzwojeniach. Jeśli wirnik zmienia kierunek, to też zmienia się polaryzacja sygnału, co jest mega ważne, gdy chcemy wiedzieć, w którą stronę coś się kręci. To przydaje się szczególnie w automatyce przemysłowej, gdzie kontrola kierunku obrotów silnika jest kluczowa. W praktyce spotkasz je w systemach regulacji prędkości silników, na przykład w robotach czy pojazdach elektrycznych, gdzie precyzyjne sterowanie ruchem ma ogromne znaczenie. Fajnie też wiedzieć, że branżowe standardy, jak IEC 60034, regulują wymagania dotyczące tych urządzeń, co pokazuje, jak ważne są w przemyśle.

Pytanie 31

Skuteczność ochrony przeciwporażeniowej w sieci typu TN o napięciu 230/400 V jest zapewniona, gdy w czasie zwarcia L-PE (lub L-PEN) w odpowiednich warunkach środowiskowych dojdzie do

A. reakcji zabezpieczeń przednapięciowych
B. reakcji zabezpieczeń przeciwprzepięciowych
C. automatycznego wyłączenia zasilania
D. odłączenia obwodu przez przekaźnik termiczny
W przypadku sieci typu TN o napięciu 230/400 V, skuteczna ochrona przeciwporażeniowa w sytuacji zwarcia L-PE (lub L-PEN) polega na samoczynnym wyłączeniu zasilania. To działanie jest kluczowe dla minimalizacji ryzyka porażenia prądem elektrycznym, ponieważ szybkie odłączenie zasilania ogranicza czas narażenia ludzi na niebezpieczeństwo. W praktyce oznacza to, że w momencie wykrycia zwarcia, urządzenia zabezpieczające, takie jak wyłączniki różnicowoprądowe lub wyłączniki automatyczne, powinny natychmiast zareagować i przerwać dopływ prądu do obwodu. Zgodnie z normą PN-EN 60364, czas wyłączenia zasilania powinien być dostosowany do specyfiki instalacji oraz warunków środowiskowych. W wielu przypadkach czas reakcji zabezpieczeń powinien wynosić nie więcej niż 0,4 sekundy dla systemów zasilających o napięciu do 400 V. W praktyce, aby zapewnić bezpieczeństwo użytkowników, niezwykle istotne jest regularne sprawdzanie i konserwacja urządzeń zabezpieczających, co zapobiega ich niesprawności w sytuacjach awaryjnych. Samoczynne wyłączenie zasilania to więc fundamentalny element ochrony przeciwporażeniowej, który powinien być brany pod uwagę na etapie projektowania oraz eksploatacji instalacji elektrycznych.

Pytanie 32

Jakie jest minimalne zabezpieczenie, jakie powinien posiadać osprzęt instalacyjny przeznaczony do montażu instalacji elektrycznej w pomieszczeniach charakteryzujących się częstym występowaniem podwyższonej wilgotności oraz pylenia?

A. IP 44
B. IP 66
C. IP 00
D. IP 22
Odpowiedź IP 44 to dobry wybór. Oznacza, że osprzęt jest odporny na ciało stałe, które jest większe niż 1 mm, i nie przepuszcza wody. To sprawia, że nadaje się do miejsc, gdzie jest więcej wilgoci, jak w łazienkach czy kuchniach. W praktyce oznacza to, że możesz używać tego osprzętu tam, gdzie jest para wodna, kurz lub inne zanieczyszczenia. W pomieszczeniach przemysłowych, gdzie produkuje się dużo pyłu, IP 44 też się sprawdzi. Nasze normy, czyli IEC 60529, mówią, że IP 44 to dobry poziom ochrony, co jest istotne, żeby było bezpiecznie i trwało to dłużej. Ale jeśli potrzebujesz czegoś lepszego, to niektóre sytuacje mogą wymagać wyższych stopni ochrony, jak IP 54 czy IP 66. Jednak zazwyczaj IP 44 da radę w standardowych warunkach.

Pytanie 33

Do zadań realizowanych w trakcie inspekcji podczas pracy silnika elektrycznego prądu stałego nie wchodzi kontrolowanie

A. intensywności drgań
B. konfiguracji zabezpieczeń
C. stanu szczotek
D. odczytów aparatury kontrolno-pomiarowej
Odpowiedź "stanu szczotek" jest w porządku. Wiesz, że podczas przeglądania silnika elektrycznego prądu stałego nie sprawdza się bezpośrednio stanu szczotek. Sprawdzanie ich to część konserwacji, a to z kolei oznacza, że trzeba je wymieniać co jakiś czas i kontrolować. Zmiana szczotek powinna być robiona według tego, co mówi producent oraz z zachowaniem odpowiednich zasad bezpieczeństwa. Oczywiście, kontrola stanu szczotek jest ważna, ale nie robi się tego na co dzień, gdy silnik pracuje. W trakcie oględzin silnika trzeba zwrócić uwagę na parametry robocze, takie jak to, co pokazuje aparatura kontrolno-pomiarowa, poziom drgań i ustawienia zabezpieczeń. Te rzeczy mają ogromny wpływ na bezpieczeństwo i wydajność silnika. Na przykład, regularne sprawdzanie parametrów przez system monitoringu i ich analiza mogą pomóc uniknąć większych awarii i poprawić efektywność działania.

Pytanie 34

Silnik szeregowy prądu stałego pracuje w trybie dorywczym. Co może być najczęstszą przyczyną braku reakcji silnika po włączeniu napięcia zasilającego?

A. Przerwa w obwodzie twornika
B. Wystająca izolacja między działkami komutatora
C. Zabrudzony komutator
D. Nieodpowiednio dobrane szczotki
Zabrudzony komutator, choć może wpływać na działanie silnika, nie jest główną przyczyną braku reakcji silnika na załączenie napięcia. Zabrudzenie komutatora prowadzi do problemów z przewodnictwem prądu i może powodować niestabilne działanie lub przerywanie pracy silnika, jednak nie powoduje całkowitego braku reakcji na napięcie. Nieprawidłowo dobrane szczotki również mogą przyczyniać się do słabego kontaktu z komutatorem, co wpływa na wydajność, ale nie wyklucza możliwości działania silnika w przypadku przyłożenia napięcia. Wystająca izolacja między działkami komutatora może prowadzić do lokalnych zwarć, ale z reguły nie blokuje całkowicie funkcji silnika. W praktyce, aby uniknąć mylnych wniosków, należy dokładnie analizować objawy i zrozumieć, jak każdy element układu wpływa na jego funkcjonowanie. Kluczowe jest, by podczas diagnostyki silników prądu stałego podejść do problemu z perspektywy systemowej, rozpatrując wszystkie potencjalne przyczyny, a nie tylko te, które wydają się oczywiste. Właściwe techniki diagnostyczne oraz regularne przeglądy mogą pomóc w identyfikacji problemów zanim staną się poważnymi usterkami, co jest zgodne z najlepszymi praktykami w dziedzinie inżynierii elektrycznej.

Pytanie 35

Jakie z wymienionych urządzeń, przy zastosowaniu przekaźnika termicznego oraz stycznika, umożliwia zapewnienie pełnej ochrony przed zwarciem i przeciążeniem silnika trójfazowego o parametrach: Pn = 5,5 kW, Un = 400/690 V?

A. Bezpiecznik typu aR
B. Wyłącznik nadprądowy typu B
C. Bezpiecznik typu aM
D. Wyłącznik nadprądowy typu Z
Zastosowanie wyłącznika nadprądowego typu Z, bezpiecznika typu aR czy wyłącznika nadprądowego typu B nie jest odpowiednie do zabezpieczenia silnika trójfazowego o podanych parametrach. Wyłącznik nadprądowy typu Z, mimo że jest skuteczny w ochronie przed przeciążeniem, nie oferuje optymalnej ochrony dla silników, ponieważ jego charakterystyka czasowo-prądowa jest dostosowana głównie do obwodów oświetleniowych i urządzeń elektronicznych. W przypadku silników, istotna jest możliwość tolerowania krótkotrwałych prądów startowych, a wyłącznik typu Z może wyzwolić zbyt szybko. Bezpiecznik typu aR również nie nadaje się do tego celu, gdyż jest przeznaczony do ochrony obwodów oporowych, a nie silników. Jego reakcja na przeciążenie jest zbyt szybka, co może prowadzić do niepotrzebnych wyłączeń podczas normalnej pracy silnika. Z kolei wyłącznik nadprądowy typu B, podobnie jak wyżej wymienione rozwiązania, ma ograniczoną zdolność do radzenia sobie z prądami rozruchowymi, co sprawia, że nie jest najlepszym rozwiązaniem w przypadku silników z dużymi prądami rozruchowymi. W praktyce, wybór niewłaściwego zabezpieczenia może prowadzić do uszkodzenia silnika, a także zwiększenia kosztów eksploatacji i przestojów. Dlatego ważne jest, aby przy wyborze zabezpieczeń kierować się standardami branżowymi i analizować specyfikę aplikacji, aby zapewnić odpowiednią ochronę urządzeń elektrycznych.

Pytanie 36

Które z wymienionych wskazówek nie dotyczy projektanta oraz realizatora nowej instalacji elektrycznej w lokalu mieszkalnym?

A. Zasilanie gniazd wtykowych w kuchni z oddzielnego obwodu
B. Rozdzielenie obwodów oświetleniowych od obwodów gniazd wtykowych
C. Zasilanie gniazd wtykowych w każdym pomieszczeniu z oddzielnego obwodu
D. Zasilanie odbiorników o dużej mocy, zainstalowanych na stałe, z wydzielonych obwodów
Podejście polegające na zasilaniu gniazd wtykowych w każdym pomieszczeniu z osobnego obwodu może budzić wątpliwości, ale ważne jest zrozumienie, dlaczego inne odpowiedzi są uznawane za zasady dobrej praktyki w instalacjach elektrycznych. Separacja obwodów oświetleniowych od gniazd wtykowych jest kluczowa dla zachowania bezpieczeństwa. W przypadku awarii w instalacji oświetleniowej, gniazda pozostaną funkcjonalne, co jest istotne w sytuacjach awaryjnych, kiedy światło może być potrzebne do bezpiecznego poruszania się w pomieszczeniu. Odbiorniki dużej mocy, takie jak klimatyzatory czy piekarniki, powinny być zasilane z wydzielonych obwodów, aby uniknąć przeciążeń, które mogą prowadzić do wyzwolenia zabezpieczeń. W kuchni, z uwagi na dużą liczbę urządzeń elektrycznych, zasilanie gniazd wtykowych z osobnego obwodu jest niezbędne dla zachowania bezpieczeństwa użytkowników oraz stabilności zasilania. Ignorowanie tych zasad może prowadzić do sytuacji, w których przeciążone obwody będą powodować nie tylko problemy techniczne, ale także poważne zagrożenie pożarowe. Dlatego kluczowe jest zrozumienie, że nie wszystkie pomieszczenia wymagają zasilania z odrębnych obwodów, a przemyślane projektowanie instalacji elektrycznych zgodne z obowiązującymi normami zapewnia bezpieczeństwo i efektywność użytkowania.

Pytanie 37

Do nawinięcia stojana w trójfazowym silniku indukcyjnym o mocy 7,5 kW nie stosuje się

A. izolacji żłobkowej
B. drutu nawojowego
C. lakieru izolacyjnego
D. pierścienia zwierającego
Nieprawidłowe koncepcje dotyczące odpowiedzi związane z drutem nawojowym, izolacją żłobkową i lakierem izolacyjnym mogą wynikać z nieporozumienia dotyczącego funkcji tych elementów w budowie silnika indukcyjnego. Drut nawojowy jest kluczowym elementem, ponieważ to właśnie z niego składają się uzwojenia stojana. Jego jakość oraz odpowiedni dobór materiału mają bezpośrednie przełożenie na wydajność i sprawność silnika. Izolacja żłobkowa zapewnia, że uzwojenia nie zwarcia się nawzajem, co jest niezbędne do prawidłowego funkcjonowania silnika. Lakier izolacyjny dodatkowo chroni uzwojenia przed wilgocią i zanieczyszczeniami, co może prowadzić do uszkodzeń. Ignorowanie roli tych elementów może prowadzić do błędnych wniosków na temat konstrukcji silników. Często problemy dotyczące ich zastosowania mogą wynikać z braku znajomości norm branżowych, które zalecają konkretne materiały i metody izolacji, co jest kluczowe dla bezpieczeństwa oraz wydajności pracy silników. Wszelkie niedopatrzenia w tych kwestiach mogą prowadzić do awarii silnika, a także zwiększenia kosztów eksploatacji z powodu nieefektywności energetycznej. W związku z tym, ważne jest zrozumienie, że każdy z wymienionych elementów pełni istotną rolę w prawidłowym działaniu silnika indukcyjnego.

Pytanie 38

Jakie oznaczenie ma elektryczny silnik, który jest przeznaczony do pracy cyklicznej w trybie: 4 minuty – działanie, 6 minut – przerwa?

A. S2 60
B. S2 40
C. S3 60%
D. S3 40%
Odpowiedzi wskazujące na S2, zarówno w wersji z 60%, jak i 40%, są mylące, gdyż odnoszą się do zupełnie innego trybu pracy silnika elektrycznego. Oznaczenie S2 dotyczy silników, które są przystosowane do pracy przez określony czas, lecz nie przewidują przerwy w cyklu roboczym. W przypadku S2 silnik może pracować przez krótki czas, a jego zdolność do pracy nie jest dostosowana do częstych cykli przerywanych, co może prowadzić do przegrzania i uszkodzenia urządzenia. Typowe cykle pracy S2 są krótsze i nie przewidują długich okresów przerwy. Oznaczenie S3 natomiast jest dedykowane do pracy przerywanej, co czyni je bardziej odpowiednim w kontekście podanego pytania. Warto również zauważyć, że wybierając niewłaściwe oznaczenia, można wprowadzić w błąd nie tylko w kontekście efektywności energetycznej, ale także w kwestiach bezpieczeństwa operacyjnego. Silniki muszą być odpowiednio dostosowane do zakładanych warunków pracy, aby uniknąć nadmiernego zużycia czy nawet awarii. Typowe błędy myślowe obejmują nieprawidłowe interpretowanie cykli pracy oraz mylenie ich z obciążeniem, co może prowadzić do wyboru niewłaściwego silnika dla danej aplikacji.

Pytanie 39

Kontrole okresowe instalacji elektrycznych niskiego napięcia powinny być realizowane co najmniej raz na

A. 1 rok
B. 3 lata
C. 5 lat
D. 4 lata
Zgodnie z obowiązującymi normami oraz przepisami prawa, badania okresowe instalacji elektrycznej niskiego napięcia powinny być przeprowadzane nie rzadziej niż co 5 lat. Takie podejście ma na celu zapewnienie bezpieczeństwa użytkowników oraz prawidłowego funkcjonowania instalacji. W Polsce regulacje te są zawarte w normie PN-IEC 60364-6 oraz w Rozporządzeniu Ministra Infrastruktury w sprawie warunków technicznych, jakim powinny odpowiadać budynki i ich usytuowanie. Przeprowadzanie badań co 5 lat pozwala na wczesne wykrywanie potencjalnych usterek, które mogą prowadzić do poważnych awarii lub zagrożeń pożarowych. W praktyce, jeśli instalacja jest intensywnie eksploatowana, zaleca się częstsze kontrole, na przykład co 3 lata, ale minimum to właśnie 5 lat. Regularne audyty instalacji mogą obejmować testy wytrzymałości izolacji, pomiary rezystancji uziemienia czy sprawdzanie zabezpieczeń, co jest kluczowe dla ochrony ludzi i mienia.

Pytanie 40

Dodatkowy przewód ochronny w instalacji wykonanej przewodem LYd 750 4x2,5 zamocowanej na uchwytach na ścianie piwnicy powinien być oznaczony symbolem

A. YDY 450/750 1x2,5
B. ADY 750 1x2,5
C. Dyd 750 1x4
D. LYc 300/500 1x6
Wybór innych oznaczeń przewodów, takich jak YDY 450/750 1x2,5, ADY 750 1x2,5 czy LYc 300/500 1x6, wskazuje na nieporozumienie w zakresie doboru przewodów ochronnych w instalacjach elektrycznych. Przewód YDY 450/750 1x2,5 charakteryzuje się niższą klasą napięciową, co sprawia, że nie jest odpowiedni do zastosowań, gdzie występują napięcia do 750V. Podobnie przewód ADY 750 1x2,5, mimo że oznaczenie sugeruje, iż jest przystosowany do napięcia 750V, nie spełnia wymogów dotyczących ochrony, które są kluczowe w instalacjach z przewodami LYd. Z kolei przewód LYc 300/500 1x6 ma oznaczenie wskazujące na jeszcze niższe napięcie i nieodpowiednią średnicę, co czyni go nieodpowiednim do warunków wymagających solidnej ochrony. Typowym błędem myślowym, prowadzącym do wyboru tych przewodów, jest skupienie się wyłącznie na oznaczeniu napięcia, bez uwzględnienia ich rzeczywistej charakterystyki oraz przeznaczenia. Kluczowe jest, aby przy doborze przewodów nie tylko kierować się wartościami napięcia, ale również odpowiednimi normami bezpieczeństwa, jak PN-IEC 60364, które określają wymagania dla instalacji elektrycznych. W praktyce, stosowanie niewłaściwych przewodów może prowadzić do poważnych skutków, takich jak uszkodzenia sprzętu, a co gorsza, zagrożenia dla życia użytkowników.