Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik automatyk
  • Kwalifikacja: ELM.01 - Montaż, uruchamianie i obsługiwanie układów automatyki przemysłowej
  • Data rozpoczęcia: 18 grudnia 2025 15:28
  • Data zakończenia: 18 grudnia 2025 15:33

Egzamin zdany!

Wynik: 40/40 punktów (100,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Która z przedstawionych tabliczek znamionowych opisuje silnik elektryczny przeznaczony do pracy ciągłej?

Ilustracja do pytania
A. Tabliczka 1.
B. Tabliczka 3.
C. Tabliczka 2.
D. Tabliczka 4.
Silnik opisany na tabliczce 1 jest przeznaczony do pracy ciągłej, co oznacza, że jest zaprojektowany do pracy przez długi czas bez przerw. Informację tę można znaleźć w oznaczeniu 'S1', które w standardach międzynarodowych, takich jak IEC 60034, wskazuje na ciągłą pracę. Tego typu silniki są często stosowane w aplikacjach, gdzie wymagana jest stabilność i niezawodność przez dłuższe okresy, na przykład w taśmociągach czy pompowaniu wody. Charakteryzują się dobrą sprawnością energetyczną oraz trwałością, co jest kluczowe w zastosowaniach przemysłowych. Standardy takie jak IEC 60034 definiują klasy ochrony IP, które w przypadku tego silnika wynoszą IP54, co oznacza ochronę przed pyłem oraz rozpryskami wody. To istotne w wielu środowiskach przemysłowych. Moim zdaniem, wybór silnika do pracy ciągłej powinien uwzględniać również czynniki takie jak koszty eksploatacji i konserwacji, co w dłuższej perspektywie przekłada się na oszczędności i wydajność operacyjną.

Pytanie 2

Który wynik pomiaru rezystancji żyły przewodu YLY 3x10 mm² o długości około 8 m wskazuje na jej ciągłość?

A. Wynik 1
Ilustracja do odpowiedzi A
B. Wynik 2
Ilustracja do odpowiedzi B
C. Wynik 3
Ilustracja do odpowiedzi C
D. Wynik 4
Ilustracja do odpowiedzi D
Poprawna odpowiedź to wynik 3. Dla przewodu YLY 3x10 mm² o długości około 8 metrów rezystancja pojedynczej żyły powinna być bardzo mała – w granicach kilku miliomów, maksymalnie kilkudziesięciu miliomów (czyli poniżej 0,1 Ω). Wartość 1,01 Ω, widoczna na zdjęciu nr 3, jest wystarczająco niska, by potwierdzić ciągłość przewodu, uwzględniając niedoskonały styk sond pomiarowych i opór przewodów pomiarowych miernika. W praktyce elektrycznej uznaje się, że wynik poniżej 1–2 Ω wskazuje na zachowaną ciągłość żyły, a wartości znacznie wyższe oznaczają przerwę lub uszkodzenie przewodu. Moim zdaniem ten pomiar wygląda wiarygodnie – w instalacjach zasilających przewody o przekroju 10 mm² mają bardzo niską rezystancję, a więc przepływ prądu nie jest ograniczany. W praktyce pomiary ciągłości wykonuje się często funkcją „brzęczyka” (test diody), ale przy większych przekrojach stosuje się pomiar rezystancji rzeczywistej, jak tu. Dobrą praktyką jest przed pomiarem zwarcie przewodów pomiarowych i zanotowanie oporu własnego, by odjąć go od wyniku. 1 Ω to zatem w tym kontekście wartość potwierdzająca, że przewód jest sprawny, a żyła ma ciągłość.

Pytanie 3

Elektronarzędzie, którym można wykonywać precyzyjną obróbkę mechaniczną polegającą na frezowaniu i szlifowaniu powierzchni, przedstawiono

A. Elektronarzędzie 4
Ilustracja do odpowiedzi A
B. Elektronarzędzie 1
Ilustracja do odpowiedzi B
C. Elektronarzędzie 3
Ilustracja do odpowiedzi C
D. Elektronarzędzie 2
Ilustracja do odpowiedzi D
Wybrałeś odpowiedź numer dwa, która przedstawia narzędzie znane jako miniszlifierka. To urządzenie jest idealne do precyzyjnej obróbki mechanicznej, takiej jak frezowanie, szlifowanie, grawerowanie czy polerowanie. Miniszlifierki są często używane w modelarstwie, jubilerstwie, a także w elektronice do prac wymagających dużej precyzji. Dzięki możliwości zamontowania różnych końcówek, takich jak frezy, tarcze szlifierskie, czy kamienie polerskie, narzędzie to jest bardzo wszechstronne. W praktyce, miniszlifierki pozwalają na osiągnięcie dokładności, która jest nieosiągalna dla większych narzędzi, co jest kluczowe w wielu branżach. Standardy branżowe zalecają stosowanie miniszlifierek w miejscach trudno dostępnych, gdzie wymagana jest precyzyjna obróbka materiału. Zapewnienie odpowiedniej prędkości obrotowej i dobór właściwych akcesoriów są kluczowe, aby osiągnąć zamierzony efekt i zachować bezpieczeństwo pracy. Miniszlifierki są również bardzo popularne wśród hobbystów, co dodatkowo świadczy o ich funkcjonalności i niezawodności.

Pytanie 4

Których diod należy użyć do montażu układu przedstawionego na schemacie?

Ilustracja do pytania
A. Pojemnościowych.
B. Zenera.
C. Prostowniczych.
D. Schottky'ego.
Schemat, który widzisz, przedstawia mostek prostowniczy, który jest używany do przekształcania prądu przemiennego (AC) na prąd stały (DC). Mostek prostowniczy składa się z czterech diod prostowniczych ułożonych w specyficzny sposób. Diody prostownicze są kluczowe w tym układzie, ponieważ przepuszczają prąd tylko w jednym kierunku, co pozwala na uzyskanie prądu stałego z prądu przemiennego. W praktyce, diody prostownicze są wykorzystywane w zasilaczach, ładowarkach oraz innych urządzeniach elektronicznych, gdzie konieczna jest konwersja prądu. Diody prostownicze są zaprojektowane tak, aby wytrzymywać duże wartości prądu i napięcia, co czyni je idealnymi do tego typu zastosowań. Standardy branżowe wskazują na użycie diod o odpowiedniej wytrzymałości napięciowej i prądowej, co zapewnia niezawodne działanie układu prostowniczego. To dlatego odpowiedź numer 3 jest poprawna - diody prostownicze są nieodzowne w poprawnym działaniu mostka prostowniczego.

Pytanie 5

Który z elementów należy zastosować do wykonania rozgałęzienia sygnału/przewodu pneumatycznego w celu podłączenia w układzie manometru?

A. Element 3.
Ilustracja do odpowiedzi A
B. Element 1.
Ilustracja do odpowiedzi B
C. Element 2.
Ilustracja do odpowiedzi C
D. Element 4.
Ilustracja do odpowiedzi D
Do wykonania rozgałęzienia przewodu pneumatycznego stosuje się element typu „trójnik”, czyli ten przedstawiony na zdjęciu numer 2. Trójnik umożliwia podłączenie trzech przewodów – jednego doprowadzającego sygnał i dwóch odprowadzających, co pozwala np. na równoczesne zasilenie siłownika i podłączenie manometru kontrolnego. W układach pneumatycznych takie złącze typu „T” jest podstawowym sposobem tworzenia odgałęzień sygnału ciśnienia lub przepływu powietrza. Moim zdaniem to jedno z najczęściej używanych złączy w praktyce – proste, szczelne i bardzo wygodne w montażu, szczególnie w systemach z przewodami poliuretanowymi. Wystarczy wsunąć przewód aż do oporu, a uszczelnienie zapewnia pierścień zaciskowy. Trójniki występują w wielu wersjach: proste, z gwintem, obrotowe, a nawet z zaworem odcinającym, ale zasada działania zawsze ta sama – jedno wejście, dwa wyjścia. Dzięki temu można łatwo podłączyć manometr do istniejącego przewodu bez przerywania pracy całego układu. W automatyce przemysłowej stosuje się je przy rozdziale powietrza do kilku zaworów lub przy pomiarze ciśnienia w różnych punktach instalacji.

Pytanie 6

Którym kodem oznaczony będzie przekaźnik programowalny dobrany do układu automatycznego sterowania, jeżeli zasilanie układu będzie wynosiło 24 V DC, a maksymalne wartości prądów obciążenia nie będą przekraczały 8 A przy napięciu nieprzekraczającym wartości 250 V AC?

Kod przekaźnikaNapięcie zasilaniaWyjściaZnamionowe obciążenie wyjścia
001230 V AC4 wyjścia przekaźnikowe10 A/ 250 V AC
00224 V DC4 wyjścia przekaźnikowe10 A/ 250 V AC
00324 V DC4 wyjścia tranzystorowe0,5 A/ 24 V DC
00412 V DC4 wyjścia przekaźnikowe10 A/ 250 V AC
005220 V DC4 wyjścia przekaźnikowe10 A/ 250 V AC
A. 003
B. 004
C. 005
D. 002
Wybór przekaźnika 002 to doskonała decyzja, ponieważ odpowiada on wymaganiom zadania. Zasilanie na poziomie 24 V DC to główna cecha tego przekaźnika, która idealnie pasuje do układu sterowania podanego w pytaniu. W przypadku automatyki, zgodność parametrów zasilania i obciążenia jest kluczowa. Przekaźnik 002 ma 4 wyjścia przekaźnikowe, które mogą dostarczyć obciążenie do 10 A przy napięciu do 250 V AC. To oznacza, że spełnia on wymagania, gdzie prądy obciążenia nie przekraczają 8 A. W praktyce, przekaźniki te są używane w wielu zastosowaniach automatyki przemysłowej, takich jak sterowanie silnikami czy systemami oświetleniowymi, gdzie wymagana jest wysoka niezawodność i precyzja. Dobór odpowiedniego przekaźnika jest istotny z punktu widzenia bezpieczeństwa i efektywności energetycznej, a przekaźnik 002, dzięki swoim parametrom, zapewnia obie te cechy. Wybierając taki przekaźnik, działamy zgodnie z najlepszymi praktykami w dziedzinie automatyki, gdzie kluczowe jest nie tylko odpowiednie napięcie zasilania, ale także dostosowanie obciążeń wyjściowych do realnych potrzeb systemu.

Pytanie 7

Który rozrusznik typu „softstart” należy zastosować do łagodnego rozruchu silnika 1-fazowego prądu przemiennego o mocy 0,3 kW, jeżeli będzie on zamontowany bez dodatkowej obudowy, bezpośrednio przy silniku pracującym w środowisku wysokiego zapylenia?

Ilustracja do pytania
A. Rozrusznik 1.
B. Rozrusznik 2.
C. Rozrusznik 4.
D. Rozrusznik 3.
Rozrusznik 3, ATS01N125, jest idealny do zastosowania w środowisku wysokiego zapylenia dzięki swojej obudowie o stopniu ochrony IP 67. To oznacza, że jest całkowicie odporny na kurz i może wytrzymać zanurzenie w wodzie do określonej głębokości i czasu. To kluczowy aspekt, gdy planujesz montaż urządzeń w trudnych warunkach środowiskowych, gdzie pył może wpływać na działanie sprzętu. Moim zdaniem, wybór odpowiedniego stopnia ochrony to absolutna podstawa w takich sytuacjach. Dodatkowo, ten model obsługuje napięcia 1x230 V, co jest zgodne z potrzebami dla silnika jednofazowego. Zastosowanie softstartu nie tylko wydłuża żywotność silnika, ale także zmniejsza zużycie energii podczas uruchamiania, co jest korzystne z punktu widzenia ekonomii i ochrony środowiska. Dzięki temu można uniknąć nagłych skoków prądu, które mogą uszkodzić inne komponenty systemu. Takie podejście jest zgodne z dobrymi praktykami inżynierskimi i standardami branżowymi, gdzie zawsze warto kierować się niezawodnością i bezpieczeństwem.

Pytanie 8

Urządzenie połączone ze sterownikiem PLC, oznaczone ADMC-1801 pełni w układzie przedstawionym na rysunku funkcję

Ilustracja do pytania
A. interfejsu komunikacyjnego.
B. modułu wejściowego.
C. modułu wyjściowego.
D. zasilacza sterownika PLC.
Moduł wejściowy, w tym przypadku oznaczony jako ADMC-1801, to kluczowy komponent w systemach sterowania opartych na PLC. Jego główną funkcją jest przetwarzanie sygnałów z różnych czujników i przekazywanie ich do sterownika PLC. Dzięki temu sterownik może podjąć decyzje na podstawie aktualnych danych z procesu, co jest fundamentalne w automatyce przemysłowej. Moduły wejściowe mogą obsługiwać różne typy sygnałów, w tym cyfrowe i analogowe, co pozwala na elastyczność w projektowaniu systemów. W naszym przypadku, czujnik PT100, który jest czujnikiem temperatury, podłączony jest do tego modułu. To typowy przykład zastosowania modułu wejściowego do monitorowania parametrów procesowych. Dzięki takim rozwiązaniom, systemy sterowania mogą być bardziej precyzyjne i niezawodne. Dobre praktyki branżowe zalecają regularne testowanie i kalibrację modułów wejściowych, aby zapewnić ich dokładność i niezawodność. Warto również pamiętać o zgodności z normami, takimi jak IEC 61131, które definiują wymagania dla systemów sterowania. Moim zdaniem, zrozumienie roli modułów wejściowych jest kluczowe dla każdego, kto zajmuje się automatyką przemysłową, ponieważ pozwala to na lepsze zaprojektowanie i optymalizację procesów.

Pytanie 9

Jakie napięcie wskazuje woltomierz, jeżeli nastawiono zakres Uₘₐₓ = 5 V?

Ilustracja do pytania
A. 1,50 V
B. 6,00 V
C. 15,00 V
D. 0,15 V
Wskazanie wynosi 1,5 V, bo skala woltomierza jest wyskalowana od 0 do 100, a pełny zakres pomiarowy wynosi 5 V. Wskazówka zatrzymała się na wartości 30, co oznacza 30% pełnego wychylenia. Wystarczy więc obliczyć 30/100 × 5 V = 1,5 V. To klasyczny przykład miernika analogowego z podziałką procentową, gdzie rzeczywiste napięcie odczytuje się po przeliczeniu proporcji. W praktyce takie rozwiązanie stosuje się po to, żeby jeden przyrząd mógł pracować w różnych zakresach – zmienia się jedynie wartość Umax, a skala procentowa pozostaje ta sama. To rozwiązanie często spotykane w szkolnych laboratoriach, a także w starszych multimetrów analogowych. Moim zdaniem dobrze to pokazuje, jak ważne jest zwracanie uwagi na opis przyrządu – bez informacji o zakresie (Umax) trudno byłoby poprawnie odczytać wartość napięcia.

Pytanie 10

Na którym rysunku przedstawiono symbol graficzny będący oznaczeniem napędu łącznika uruchamianego przez obrót?

A. Rysunek 2
Ilustracja do odpowiedzi A
B. Rysunek 3
Ilustracja do odpowiedzi B
C. Rysunek 1
Ilustracja do odpowiedzi C
D. Rysunek 4
Ilustracja do odpowiedzi D
Symbol przedstawiony na rysunku 3 jest oznaczeniem napędu łącznika uruchamianego przez obrót. Jest to standard w projektowaniu schematów elektrycznych, gdzie symbole graficzne wizualizują funkcjonalność danego elementu. Taki sposób oznaczania jest bardzo przydatny w praktyce, zwłaszcza gdy mamy do czynienia z szafami sterowniczymi czy tablicami rozdzielczymi. Napęd obrotowy jest często stosowany w mechanizmach, które wymagają precyzyjnego i niezawodnego przełączania, jak np. przełączniki krzywkowe czy styczniki. Z mojego doświadczenia, dobrze jest znać różne symbole, bo to ułatwia pracę i komunikację w zespole projektowym. Pamiętaj też, że zgodność ze standardami, takimi jak normy IEC, zapewnia spójność i uniwersalność schematów elektrycznych. W praktyce, stosowanie poprawnych symboli pomaga w unikaniu błędów podczas montażu i konserwacji urządzeń, co przekłada się na bezpieczeństwo i efektywność pracy.

Pytanie 11

Czujnik przedstawiony na schemacie ma wyjście sygnałowe typu

Ilustracja do pytania
A. PNP NC
B. NPN NC
C. NPN NO
D. PNP NO
Odpowiedź NPN NC jest prawidłowa, ponieważ czujnik na schemacie wskazuje na tranzystor NPN z wyjściem normalnie zamkniętym (NC). W przypadku wyjść typu NPN, prąd płynie od kolektora do emitera, co oznacza, że wyjście czujnika jest połączone z masą, gdy czujnik jest aktywowany. Wyjście NC oznacza, że w stanie nieaktywnym obwód jest zamknięty, a po aktywacji czujnika obwód się otwiera. To konsekwentnie stosowane rozwiązanie, zwłaszcza w aplikacjach, gdzie konieczne jest zapewnienie bezpieczeństwa. W praktycznych zastosowaniach, takie czujniki są często używane w systemach automatyki przemysłowej. Pomagają w monitorowaniu i kontrolowaniu pozycji elementów maszyn, dostarczając istotnych informacji o stanie systemu. Standardy przemysłowe często zalecają stosowanie wyjść typu NPN NC ze względu na ich niezawodność i bezpieczeństwo, szczególnie w sytuacjach, gdzie błąd w detekcji mógłby prowadzić do uszkodzenia sprzętu lub obrażeń.

Pytanie 12

Zgodnie z charakterystyką przetwarzania, dla temperatury 80ºC na wyjściu przetwornika pojawi się prąd o natężeniu

Ilustracja do pytania
A. 10 mA
B. 13 mA
C. 18 mA
D. 16 mA
Doskonale! Odpowiedź 16 mA jest prawidłowa, ponieważ związana jest z liniowym charakterem przetwornika prądu w odniesieniu do temperatury. Patrząc na wykres, można zauważyć, że przy 0°C prąd wynosi 0 mA, a przy 100°C wynosi 20 mA. To wskazuje, że przetwornik ma charakterystykę liniową z przelicznikiem 0,2 mA na każdy stopień Celsjusza. Przy 80°C, przeliczenie daje dokładnie 16 mA, co jest zgodne z wykresem. Takie przetworniki są powszechnie używane w przemysłowych systemach automatyki, gdzie precyzyjne odwzorowanie zmiennych fizycznych na sygnał elektryczny jest kluczowe. Dzięki temu, kontrola temperatur w procesach chemicznych czy energetycznych jest bardziej efektywna. Standardy przemysłowe, takie jak 4-20 mA, są często wykorzystywane ze względu na ich odporność na zakłócenia i łatwość integracji z systemami sterowania. Ułatwia to też diagnostykę, bo sygnały poniżej 4 mA mogą wskazywać na awarię czujnika.

Pytanie 13

Przed montażem sprawdzono parametry elektryczne przewodu. Z jednej strony został on podłączony jak na przedstawionym rysunku, a z drugiej żyły pozostały niepodłączone. Wykonywany w ten sposób pomiar dotyczy

Ilustracja do pytania
A. sumy rezystancji izolacji żył L1 i L2, L3
B. rezystancji żył L1, L2, L3, PEN
C. sumy rezystancji żył L1, L2, L3, PEN
D. rezystancji izolacji między żyłami L1, L2, L3 a żyłą PEN
Pomiar rezystancji izolacji między żyłami L1, L2, L3 a żyłą PEN jest kluczowy dla oceny bezpieczeństwa instalacji elektrycznej. W praktyce, taki pomiar pozwala stwierdzić, czy izolacja przewodów jest wystarczająco dobra, aby zapobiec niekontrolowanemu przepływowi prądu, co może prowadzić do zwarć lub porażeń prądem. Izolacja powinna mieć odpowiednią rezystancję, zazwyczaj mierzoną w megaomach, co jest zgodne z normą PN-EN 61557. Sprawdzenie rezystancji izolacji jest standardem przy odbiorze instalacji i jej regularnej konserwacji. Dzięki temu można zapobiec wielu awariom i wypadkom. W praktyce, pomiary te są wykonywane za pomocą specjalnych mierników izolacji, które generują wysokie napięcie testowe. Dlatego, z mojego doświadczenia, zawsze warto inwestować czas w regularne sprawdzanie rezystancji izolacji - to nie tylko dobra praktyka, ale i obowiązek wynikający z przepisów BHP. Warto też pamiętać, że prawidłowo wykonana izolacja to podstawa każdej bezpiecznej instalacji elektrycznej.

Pytanie 14

Na rysunku przedstawiono symbol graficzny

Ilustracja do pytania
A. separatora.
B. wzmacniacza operacyjnego.
C. przepływomierza.
D. przetwornika pomiarowego.
Przetwornik pomiarowy to urządzenie niezbędne w systemach automatyki i pomiarów, które przekształca jedną formę sygnału w inną. Może to być np. zamiana sygnału analogowego na cyfrowy lub przetwarzanie wielkości fizycznej, jak temperatura, na sygnał elektryczny. Moim zdaniem, to kluczowy element, który pozwala na integrację i automatyzację procesów przemysłowych. Przetworniki są powszechnie stosowane w systemach monitoringu i kontroli, gdzie precyzyjne dane są nieodzowne dla optymalizacji procesów. W praktyce, przy wyborze przetwornika, warto zwrócić uwagę na jego dokładność, zakres pomiarowy oraz kompatybilność z innymi elementami systemu. Przykładowo, w przemyśle chemicznym, przetwornik może mierzyć stężenie substancji i przekazywać te dane do systemu zarządzania produkcją. Standardy takie jak IEC i ANSI definiują wytyczne dotyczące konstrukcji i działania przetworników, co zapewnia ich niezawodność i bezpieczeństwo w różnych aplikacjach. Z tego powodu, prawidłowe zrozumienie funkcji i specyfikacji przetworników jest kluczowe dla specjalistów zajmujących się projektowaniem systemów pomiarowych.

Pytanie 15

Do trasowania na płaszczyźnie stosuje się

A. średnicówkę mikrometryczną.
B. pryzmę.
C. wałeczki pomiarowe.
D. rysik.
Do trasowania na płaszczyźnie najczęściej stosuje się rysik, co wynika z jego specyficznych właściwości i przeznaczenia. Rysik to narzędzie, które pozwala na precyzyjne nanoszenie linii na materiałach takich jak metal, drewno czy plastik. Jego ostro zakończona końcówka sprawia, że można nim kreślić bardzo dokładne linie, które są niezbędne w procesach produkcyjnych oraz podczas przygotowywania elementów do obróbki. W praktyce rysik używa się często w połączeniu z innymi narzędziami pomiarowymi, takimi jak suwmiarki czy kątowniki, aby zapewnić maksymalną dokładność i precyzję. Używanie rysika jest powszechną praktyką w branży mechanicznej, gdzie dokładność i precyzja są kluczowe. Dzięki temu narzędziu, inżynierowie i technicy mogą tworzyć projekty zgodne z wymogami technicznymi, co jest niezbędne do produkcji części mechanicznych czy konstrukcji stalowych. Warto też dodać, że rysikiem nie tylko trasuje się linie, ale również zaznacza miejsca wiercenia, co jest nieocenione przy przygotowywaniu elementów do dalszej obróbki. Moim zdaniem, dobrze znać właściwości i zastosowanie rysika, bo to kluczowe narzędzie w warsztacie.

Pytanie 16

Aby zapewnić stałą wartość ciśnienia doprowadzanego do układu pneumatycznego, należy zastosować zawór

A. bezpieczeństwa.
B. dławiący.
C. redukcyjny.
D. zwrotny.
Zawór redukcyjny to kluczowy element w układach pneumatycznych, którego głównym zadaniem jest utrzymanie stałej wartości ciśnienia na wyjściu, niezależnie od zmian ciśnienia na wejściu. Działa to na zasadzie mechanizmu równoważenia siły sprężyny z siłą gazu, co pozwala na precyzyjne dostosowanie ciśnienia do wymagań układu. W praktyce takie zawory są niezbędne w systemach, gdzie stabilność i precyzyjne ciśnienie robocze mają krytyczne znaczenie, na przykład w urządzeniach medycznych, gdzie zbyt wysokie ciśnienie mogłoby zaszkodzić pacjentowi, lub w liniach produkcyjnych, gdzie zmiany ciśnienia mogą wpływać na jakość produktu. Z mojego doświadczenia wynika, że prawidłowe dobranie zaworu redukcyjnego jest kluczowe dla efektywności i bezpieczeństwa całego układu. Dobre praktyki branżowe sugerują, aby regularnie kontrolować stan zaworów i kalibrować je, by uniknąć niepotrzebnych awarii. Warto też pamiętać, że zawory te mogą być stosowane w różnorodnych środowiskach pracy, od przemysłowych po laboratoryjne, co pokazuje ich uniwersalność i znaczenie w różnych aplikacjach technicznych.

Pytanie 17

Przedstawione na rysunku narzędzie służy do

Ilustracja do pytania
A. zaciskania tulejek.
B. oznaczania przewodów.
C. cięcia przewodów pneumatycznych.
D. ściągania izolacji.
Narzędzie, które widzisz, jest specjalistycznym przyrządem do cięcia przewodów pneumatycznych. Tego typu narzędzia są zaprojektowane tak, aby zapewnić czyste i precyzyjne cięcie, co jest kluczowe w systemach pneumatycznych. Niedokładnie przycięty wąż może prowadzić do nieszczelności lub trudności z montażem w złączkach. W praktyce, zastosowanie narzędzia do cięcia przewodów pneumatycznych jest nie tylko wygodne, ale również zapewnia, że cięcie nie uszkadza struktury przewodu. Moim zdaniem, to narzędzie jest niezastąpione w warsztatach, gdzie często pracuje się z instalacjami pneumatycznymi. Warto również zwrócić uwagę, że tego typu narzędzia są zgodne z branżowymi standardami, które zalecają używanie narzędzi dostosowanych do specyficznego typu przewodów. Standardowe nożyce mogą nie zapewniać takiej samej precyzji, a co za tym idzie, mogą prowadzić do problemów eksploatacyjnych. Dobre praktyki mówią, że użycie właściwego narzędzia zwiększa bezpieczeństwo i wydajność pracy.

Pytanie 18

Które ze stwierdzeń dotyczących prowadzenia przewodów sygnałowych w układach sterowania napędami nie jest poprawne?

A. Wszystkie krzyżowania przewodów sygnałowych z innymi rodzajami przewodów należy wykonać pod kątem prostym.
B. Końcówki nieużywanych żył przewodów sygnałowych w szafie należy połączyć ze sobą i uziemić.
C. Przewody sygnałowe należy prowadzić w korytach lub rurach z PVC w celu poprawy skuteczności ekranowania.
D. Przewody sygnałowe należy prowadzić w odległości minimum 20 cm od przewodów zasilających.
Wybór odpowiedzi mówiącej, że przewody sygnałowe powinny być prowadzone w korytach lub rurach z PVC w celu poprawy skuteczności ekranowania, jest błędny. Koryta i rury PVC nie oferują właściwości ekranujących, które są kluczowe dla przewodów sygnałowych. Głównym celem prowadzenia przewodów sygnałowych w ekranie jest ochrona sygnałów przed zakłóceniami elektromagnetycznymi, które mogą powodować błędy w transmisji danych. W praktyce, zamiast PVC, stosuje się specjalne koryta metalowe lub przewody ekranowane, których zadaniem jest odizolowanie sygnałów od zewnętrznych pól elektromagnetycznych. Dobrym przykładem są przewody z ekranem z oplotu miedzianego lub aluminiowego, które są skuteczne w tłumieniu zakłóceń. Norma PN-EN 60204-1 podkreśla znaczenie stosowania odpowiednich materiałów w instalacjach elektrycznych, aby zapewnić właściwe działanie systemów sterowania. Przy projektowaniu systemów sterowania warto pamiętać, że właściwe ekranowanie jest kluczowe dla niezawodności całego układu. Warto również mieć na uwadze, że złe praktyki w tym zakresie mogą prowadzić do przestojów produkcyjnych związanych z błędami sterowania.

Pytanie 19

Którego przyrządu należy użyć do sprawdzenia równoległości dwóch powierzchni?

A. Czujnika zegarowego.
B. Transametru.
C. Mikrometru.
D. Suwmiarki uniwersalnej.
Czujnik zegarowy to bardzo precyzyjne narzędzie pomiarowe, które jest powszechnie stosowane do kontroli równoległości powierzchni. Dzięki swojej konstrukcji pozwala na dokładne mierzenie odchyłek powierzchni w stosunku do referencyjnej linii prostej lub płaszczyzny. Czujnik zegarowy posiada wskazówkę, która precyzyjnie wskazuje różnice w wysokości na powierzchni, umożliwiając tym samym dokładną ocenę równoległości. W praktyce, gdy chcemy ocenić, czy dwie powierzchnie są równoległe, mocujemy czujnik na podstawie magnetycznej i przeprowadzamy pomiar wzdłuż jednej powierzchni, obserwując odczyty na skali. Przy braku odchyłek, wskazówka czujnika nie powinna się znacząco poruszać. Jest to zgodne z zasadą stosowania czujników do kontroli równoległości, co jest standardem w branży obróbki metalu, gdzie precyzja jest kluczowa. Moim zdaniem, czujnik zegarowy to jeden z najbardziej uniwersalnych przyrządów pomiarowych, który każdy technik powinien umieć obsługiwać. Pozwala na uzyskanie dokładnych pomiarów, co jest szczególnie istotne w procesach, gdzie liczy się każdy mikrometr.

Pytanie 20

Jakie powinny być nastawy przełącznika przemiennika częstotliwości, aby można było sterować jego pracą za pomocą sygnału 0÷20 mA?

Ilustracja do pytania
A. 1-OFF, 2-OFF, 3-OFF, 4-OFF
B. 1-ON, 2-ON, 3-ON, 4-ON
C. 1-OFF, 2-ON, 3-OFF, 4-OFF
D. 1-ON, 2-OFF, 3-OFF, 4-OFF
Nastawy przełącznika przemiennika częstotliwości są kluczowe dla prawidłowego sterowania urządzeniem, zwłaszcza gdy korzystamy z sygnału sterującego 0÷20 mA. Dlaczego właśnie takie ustawienie? Przełącznik w położeniu 1-ON, 2-OFF, 3-OFF, 4-OFF odpowiada sygnałowi 0÷20 mA, co jest jednym z najbardziej popularnych standardów sygnałów analogowych używanych w automatyce przemysłowej. Ten zakres sygnałów jest szczególnie preferowany ze względu na jego odporność na zakłócenia elektryczne, co jest nieocenionym atutem w środowisku przemysłowym. Dodatkowo, sygnały 0÷20 mA umożliwiają precyzyjne sterowanie, co jest kluczowe w wielu aplikacjach, takich jak sterowanie prędkością silników czy regulacja przepływu w zaworach. Ważne jest również, że ustawienie 1-ON, 2-OFF, 3-OFF, 4-OFF jest zgodne z najlepszymi praktykami i standardami branżowymi. W przypadku przemienników częstotliwości, takie nastawy zapewniają nie tylko właściwą interpretację sygnału, ale także optymalną pracę urządzenia w szerokim zakresie zastosowań. Z mojego doświadczenia, wiele błędów w konfiguracji przemienników wynika właśnie z nieprawidłowego ustawienia przełączników, dlatego warto zwrócić na to szczególną uwagę.

Pytanie 21

Na rysunku przedstawiono

Ilustracja do pytania
A. zawór odcinający.
B. elektrozawór.
C. zespół przygotowania powietrza.
D. blok rozdzielający.
To, co widzisz na rysunku, to typowy zespół przygotowania powietrza. Składa się z kilku kluczowych elementów: filtr, regulator ciśnienia oraz smarownica. Filtr ma za zadanie usuwać zanieczyszczenia z powietrza, takie jak kurz czy wilgoć, co jest niezwykle ważne w zapewnieniu prawidłowego działania narzędzi pneumatycznych. Regulator ciśnienia pozwala na utrzymanie stałego ciśnienia w systemie, co jest kluczowe dla stabilnej pracy urządzeń. Natomiast smarownica dodaje mgiełkę oleju do przepływającego powietrza, co zmniejsza tarcie i zużycie ruchomych części narzędzi pneumatycznych, wydłużając ich żywotność. Takie zespoły są powszechnie stosowane w warsztatach samochodowych, w przemyśle czy na liniach produkcyjnych. Znajomość ich działania jest kluczowa dla każdego technika zajmującego się systemami pneumatycznymi, ponieważ zapewnia to nie tylko niezawodność, ale także bezpieczeństwo pracy. Praktyka pokazuje, że regularne przeglądy i konserwacja tego typu urządzeń znacząco wpływają na wydajność całego systemu pneumatycznego.

Pytanie 22

Na schemacie układu sterowania elementy PT1 i PT2 to

Ilustracja do pytania
A. przemienniki częstotliwości.
B. prostowniki niesterowane.
C. prostowniki sterowane.
D. falowniki.
Na schemacie widoczne są dwa elementy oznaczone jako PT1 i PT2, które pełnią funkcję prostowników sterowanych. Charakterystycznym symbolem jest tu dioda z ukośną linią przy bramce – oznacza to tyrystor (SCR), który pozwala regulować moment przewodzenia prądu w każdej połówce sinusoidy napięcia przemiennego. Dzięki temu można sterować napięciem wyjściowym i w efekcie prędkością lub momentem silnika prądu stałego (oznaczonego jako M na rysunku). W praktyce takie rozwiązania stosuje się w układach napędowych, gdzie wymagana jest płynna regulacja obrotów. Sterowanie kątem załączenia tyrystora pozwala zmieniać średnią wartość napięcia zasilającego silnik. Moim zdaniem to bardzo elegancki i klasyczny przykład regulacji mocy w systemach DC, jeszcze zanim falowniki stały się powszechne. W przemyśle taki układ był (i nadal bywa) używany np. w dźwignicach, suwnicach czy walcarkach, gdzie liczy się precyzja i niezawodność. W odróżnieniu od prostowników niesterowanych, tutaj sterowanie odbywa się poprzez impuls bramkowy, co daje znacznie większą kontrolę nad procesem.

Pytanie 23

Która z wymienionych funkcji programowych sterownika PLC służy do realizacji działania odejmowania?

A. DIV
B. MUL
C. ADD
D. SUB
Wybór funkcji SUB jako tej odpowiedzialnej za odejmowanie w sterowniku PLC jest trafny. SUB to skrót od 'subtract', co w języku angielskim oznacza odejmowanie. W kontekście programowania PLC, funkcja ta jest używana do odejmowania jednej wartości od drugiej. Może to być przydatne w wielu zastosowaniach przemysłowych, np. gdy trzeba obliczyć różnicę między dwoma pomiarami czujników czy też śledzić zużycie materiałów. Odejmowanie jest jednym z podstawowych działań arytmetycznych, które często są wykorzystywane w automatyce i sterowaniu procesami przemysłowymi. W standardzie IEC 61131-3, który jest często przywoływany w kontekście programowania PLC, funkcje arytmetyczne takie jak ADD, SUB, MUL, DIV są podstawą przy pisaniu algorytmów. W praktyce, dobrze zaprojektowane programy PLC korzystają z tych funkcji, aby realizować precyzyjne operacje matematyczne, co umożliwia osiąganie większej efektywności i dokładności w procesach produkcyjnych. Z mojego doświadczenia, zrozumienie i umiejętność stosowania takich podstawowych operacji jak odejmowanie jest kluczowe dla każdego, kto chce efektywnie pracować z PLC.

Pytanie 24

W układzie zastosowano przekaźnik uniwersalny realizujący funkcję opóźnionego załączania. Aby uzyskać wymagane działanie przekaźnika, pokrętło nastawy funkcji należy ustawić

Ilustracja do pytania
A. w pozycji 1.
B. w pozycji 4.
C. w pozycji 2.
D. w pozycji 3.
Wybrałeś pozycję 2, co jest zgodne z funkcją opóźnionego załączania przekaźnika. W tej pozycji przekaźnik zaczyna działać po określonym czasie t od momentu załączenia zasilania. To ustawienie jest kluczowe w wielu układach automatyki przemysłowej, gdzie konieczne jest sekwencyjne uruchamianie urządzeń. Na przykład, w systemach wentylacyjnych opóźnione załączenie może być używane do zapewnienia, że silniki startują w określonej kolejności, zmniejszając ryzyko przeciążenia sieci. W praktyce stosuje się to również w urządzeniach, które muszą osiągnąć określone warunki pracy, zanim zasilanie zostanie w pełni załączone. Jest to zgodne z normami IEC dotyczących automatyki i sterowania, które zalecają takie podejście dla zwiększenia niezawodności systemów. Zachowanie przekaźnika w tej pozycji pozwala na precyzyjne sterowanie i minimalizację ryzyka uszkodzenia sprzętu.

Pytanie 25

Odpowiedź skokowa regulatora ciągłego przedstawiona na rysunku wskazuje, że w układzie regulacji zastosowano regulator typu

Ilustracja do pytania
A. P
B. PI
C. PID
D. PD
Regulator PI, czyli proporcjonalno-całkujący, jest często stosowany w układach regulacji, ponieważ łączy zdolność szybkiej reakcji na zmiany z precyzyjnym osiąganiem wartości zadanej. Na prezentowanym wykresie widzimy, że odpowiedź skokowa regulatora ma początkowy skok, który odpowiada części proporcjonalnej (P), a następnie liniowe narastanie, co jest charakterystyczne dla części całkującej (I). Dzięki temu regulator PI jest w stanie nie tylko szybko zareagować na zmiany, ale również wyeliminować uchyb ustalony, co jest jego kluczową zaletą w stosunku do regulatorów P. W praktyce oznacza to, że PI jest często używany w systemach, gdzie dokładność jest kluczowa, na przykład w regulacji temperatury czy prędkości obrotowej. W wielu aplikacjach przemysłowych stosuje się algorytmy PI ze względu na ich prostotę i efektywność, a także łatwość implementacji w układach cyfrowych. Warto też zaznaczyć, że dobór parametrów regulatora PI, takich jak wzmocnienie proporcjonalne i czas całkowania, jest kluczowy dla osiągnięcia optymalnej wydajności systemu. Optymalizacja tych parametrów często bazuje na metodach takich jak Ziegler-Nichols, które pozwalają na szybkie i skuteczne dostrojenie regulatora do specyfiki danego układu.

Pytanie 26

W dokumentacji powykonawczej nie należy umieszczać

A. dowodów zakupu z cenami.
B. warunków gwarancji.
C. protokołów pomiarowych.
D. certyfikatów użytych materiałów.
Dokumentacja powykonawcza to kluczowy element w każdej budowie czy projekcie technicznym. Jest jak skarb dla każdego inżyniera czy technika, ponieważ zawiera wszystkie istotne informacje o zakończonym projekcie. Dlatego właśnie nie umieszczamy w niej dowodów zakupu z cenami. Dlaczego? Ponieważ dokumentacja powykonawcza ma być przede wszystkim dokumentem technicznym, a nie finansowym. Skupiamy się w niej na aspektach technicznych, takich jak warunki gwarancji, protokoły pomiarowe czy certyfikaty użytych materiałów. Wszystko to jest niezbędne do utrzymania i ewentualnych napraw, ale ceny zakupu nie mają tu większego znaczenia. Ceny mogą się zmieniać, inflacja robi swoje, ale dokumentacja techniczna powinna być zawsze aktualna i zgodna z faktycznym stanem technicznym obiektu. W praktyce, ceny zakupu są ważne na etapie budżetowania i rozliczeń, ale nie w kontekście późniejszej eksploatacji budynku. Moim zdaniem, skupienie się na jakości i technologiach użytych w projekcie ma większe znaczenie i dlatego dowody zakupu z cenami są pomijane.

Pytanie 27

Elektronarzędzie, którym można wykonywać precyzyjną obróbkę mechaniczną polegającą na frezowaniu i szlifowaniu powierzchni, przedstawiono na ilustracji

A.
Ilustracja do odpowiedzi A
B.
Ilustracja do odpowiedzi B
C.
Ilustracja do odpowiedzi C
D.
Ilustracja do odpowiedzi D
To elektronarzędzie w odpowiedzi numer 2 to miniaturowa szlifierka, znana jako multi-tool lub dremel. Jest idealna do precyzyjnej obróbki, takiej jak frezowanie, szlifowanie, polerowanie czy nawet cięcie drobnych elementów. Dzięki swojej wszechstronności znajduje zastosowanie w modelarstwie, rzemiosłach artystycznych oraz w drobnych pracach naprawczych. To narzędzie ma możliwość wymiany końcówek, co pozwala na dostosowanie go do konkretnej pracy. Dremel jest bardzo popularny w warsztatach domowych, ale również w profesjonalnych. Umożliwia pracę z różnymi materiałami, od drewna, przez metal, po tworzywa sztuczne. Warto pamiętać, że korzystanie z niego wymaga pewnej wprawy i ostrożności, ponieważ jego prędkość obrotowa jest wysoka. Stosowanie odpowiednich końcówek i właściwych prędkości obrotowych jest kluczowe, aby uniknąć przegrzewania materiału i zapewnić idealne wykończenie. Z mojego doświadczenia, użycie takiego narzędzia znacząco przyspiesza drobne prace i pozwala na osiągnięcie wysokiej precyzji w obróbce.

Pytanie 28

Na przedstawionym rysunku siłownik jest połączony ze słupkiem za pomocą

Ilustracja do pytania
A. łapy.
B. ucha.
C. jarzma.
D. kołnierza przedniego.
Siłownik połączony ze słupkiem za pomocą ucha to jedno z najczęściej stosowanych rozwiązań w mechanice. Ucho, jako element maszyny, pozwala na łatwe i pewne przymocowanie siłownika, co jest kluczowe dla jego poprawnego działania. W praktyce, takie połączenie umożliwia obrót siłownika wokół osi ucha, co jest niezbędne w wielu aplikacjach, takich jak automatyka bram czy napędy maszynowe. Dzięki użyciu ucha można osiągnąć większą elastyczność konstrukcyjną oraz zapewnić odpowiednią wytrzymałość połączenia. W standardach projektowych, jak normy DIN czy ISO, uwzględnia się ten sposób montażu ze względu na jego skuteczność oraz łatwość implementacji. Dobrze zamocowane ucho minimalizuje ryzyko uszkodzeń i zwiększa trwałość całego systemu, co jest niezwykle ważne w długoterminowej eksploatacji. Przy projektowaniu takich połączeń inżynierowie zwracają uwagę na odpowiednie materiały oraz wytrzymałość na obciążenia dynamiczne.

Pytanie 29

Przetwornik przedstawiony na rysunkach to

Ilustracja do pytania
A. analogowo-cyfrowy konwerter USB.
B. przetwornik PWM.
C. przetwornica napięcia.
D. zadajnik cyfrowo-analogowy.
Odpowiedź jest prawidłowa, ponieważ pokazany na rysunku układ to faktycznie analogowo-cyfrowy konwerter USB. To urządzenie działa jako pomost między sygnałami analogowymi a cyfrowymi, co jest kluczowe w wielu zastosowaniach przemysłowych i naukowych. W praktyce, takie konwertery są używane do przetwarzania sygnałów z czujników analogowych, takich jak termometry czy czujniki ciśnienia, na dane cyfrowe, które mogą być analizowane przez komputer. Standard USB zapewnia łatwość integracji z systemami komputerowymi oraz szeroką kompatybilność. Moim zdaniem, to niezbędne narzędzie w laboratoriach i przemyśle, gdzie precyzyjne pomiary są kluczowe. Dodatkowo, izolacja galwaniczna widoczna na schemacie chroni sprzęt przed różnicami potencjałów, co jest zgodne z dobrymi praktykami inżynierskimi. Dzięki temu, urządzenie można bezpiecznie używać w trudnych warunkach przemysłowych, gdzie mogą wystąpić zakłócenia elektromagnetyczne. Warto też wspomnieć, że taki konwerter umożliwia jednoczesne monitorowanie wielu kanałów pomiarowych, co znacząco zwiększa jego funkcjonalność.

Pytanie 30

W jaki sposób należy ustawić separator dla toru pomiarowego czujnika 0 ÷ 100°C/0 ÷ 20 mA dla wejścia sterownika PLC 0 ÷ 20 mA?

Ilustracja do pytania
A. INPUT - 10001100, OUTPUT - 0000
B. INPUT - 01001001, OUTPUT - 0000
C. INPUT - 01011010, OUTPUT - 1001
D. INPUT - 01011010, OUTPUT - 0110
Wybór ustawienia INPUT - 01001001, OUTPUT - 0000 jest właściwy, ponieważ odpowiada on konfiguracji dla sygnału wejściowego 0 ÷ 20 mA, co jest idealne dla czujnika o zakresie 0 ÷ 100°C/0 ÷ 20 mA, oraz dla wyjścia sterownika PLC również ustawionego na 0 ÷ 20 mA. To ustawienie zapewnia poprawne skalowanie sygnałów, unikając nieprawidłowości w odczytach. Dzięki temu możemy być pewni, że dane z czujnika są przekazywane bez zniekształceń do PLC. W praktyce takie rozwiązanie jest powszechnie stosowane w systemach automatyki przemysłowej, gdzie dokładność pomiarów jest kluczowa. Ważne jest, aby zawsze dobierać odpowiednie ustawienia DIP switcha do charakterystyki sygnału, co znacznie zwiększa niezawodność całego systemu. Moim zdaniem, znajomość takich konfiguracji to podstawowa wiedza dla każdego inżyniera automatyka, która pomaga uniknąć błędów w konfiguracji systemów sterowania. Stosowanie standardów jest nie tylko zgodne z dobrymi praktykami, ale także z normami branżowymi, co jest niezwykle istotne w kontekście jakości i bezpieczeństwa pracy urządzeń.

Pytanie 31

Zintegrowany interfejs komunikacyjny w sterowniku PLC przedstawionym na rysunku to

Ilustracja do pytania
A. 8P8C
B. OBD II
C. USB
D. RS-232
Dokładnie, interfejs 8P8C jest właściwym wyborem dla tego sterownika PLC. Znany także jako RJ-45, to standardowy port stosowany najczęściej w sieciach komputerowych do łączenia urządzeń za pomocą kabli Ethernet. W kontekście PLC, używa się go do komunikacji z innymi urządzeniami w sieci lokalnej, co umożliwia integrację z systemami SCADA czy HMI. Dzięki temu, można monitorować i sterować procesami przemysłowymi z dowolnego miejsca w sieci. Jest to zgodne z dobrą praktyką stosowania znormalizowanych interfejsów komunikacyjnych, które zapewniają niezawodność i kompatybilność. Wartość tego rozwiązania polega na prostocie konfiguracji oraz szerokim wsparciu w oprogramowaniu przemysłowym. Systemy oparte na interfejsie 8P8C zyskują na elastyczności i łatwości integracji, co jest kluczowe w nowoczesnych fabrykach zorientowanych na Przemysł 4.0.

Pytanie 32

Który przyrząd należy zastosować, aby zmierzyć z dokładnością 0,1 mm otwory o średnicy φ10 wykonane pod montaż czujników indukcyjnych?

A. Mikrometr zewnętrzny.
B. Czujnik zegarowy.
C. Przymiar kreskowy.
D. Suwmiarkę uniwersalną.
Suwmiarka uniwersalna to wszechstronne narzędzie pomiarowe, które odgrywa kluczową rolę w przemysłowej kontroli jakości oraz w warsztatowych pomiarach. Dzięki niej możemy z dużą precyzją, bo aż do 0,1 mm, mierzyć różne wielkości, takie jak średnice zewnętrzne, wewnętrzne, a także głębokości. W przypadku otworów o średnicy φ10, suwmiarka jest idealnym wyborem, ponieważ jej szczęki pomiarowe są zaprojektowane tak, aby dokładnie wpasować się w otwory, co pozwala na precyzyjne odczyty bez ryzyka błędu wynikającego z niedopasowania przyrządu. Przykładowo, w branży produkcji czujników indukcyjnych, gdzie precyzja montażu jest kluczowa, stosowanie suwmiarki uniwersalnej zapewnia, że czujniki będą prawidłowo umieszczone. Ponadto stosowanie suwmiarki jest zgodne z dobrymi praktykami metrologicznymi i zaleceniami norm ISO dotyczących pomiarów warsztatowych. Z mojego doświadczenia wynika, że choć nowoczesne technologie oferują bardziej zaawansowane narzędzia, to suwmiarka pozostaje niezastąpiona w codziennych zadaniach, łącząc prostotę z dokładnością, co czyni ją nieodzownym narzędziem w rękach każdego technika.

Pytanie 33

Na podstawie fragmentu instrukcji przekaźnika czasowego wskaż, które położenie przełączników realizuje funkcję załączenia z opóźnieniem.

Ilustracja do pytania
A. Położenie IV
B. Położenie III
C. Położenie I
D. Położenie II
Położenie I jest właściwą odpowiedzią, bo realizuje funkcję załączenia z opóźnieniem. W tym ustawieniu po podaniu napięcia sterowniczego, przekaźnik nie zadziała od razu. Jest opóźnienie, które pozwala na pewne operacje zanim urządzenie zostanie załączone. To jest przydatne w sytuacjach, gdzie nie chcemy, by sprzęt działał natychmiast po włączeniu, na przykład w systemach wentylacyjnych, gdzie potrzebujemy chwili na stabilizację innych komponentów przed uruchomieniem głównego wentylatora. Standardy branżowe wskazują, że opóźnienie załączenia poprawia niezawodność systemu poprzez redukcję skoków napięcia i przeciążeń. Z mojego doświadczenia, ustawienie takie pomaga również w zarządzaniu systemami automatyzacji budynkowej, gdzie sekwencyjne włączanie urządzeń jest kluczowe dla optymalnej pracy. Warto pamiętać, że zgodnie z normami IEC, takie przekaźniki czasowe są często używane w układach sterowania maszyn, by zapewnić bezpieczne i efektywne działanie.

Pytanie 34

Do mocowania elementów przy wykorzystaniu wkrętów o wyglądzie przedstawionym na ilustracji trzeba użyć

Ilustracja do pytania
A. wkrętaków krzyżowych.
B. kluczy imbusowych.
C. wkrętaków płaskich.
D. kluczy oczkowych.
Wybór wkrętaka krzyżowego do tego rodzaju wkrętów jest absolutnie właściwy. Wkręty z łbem krzyżowym, często oznaczane jako Phillips, są zaprojektowane tak, by zapewniać pewne mocowanie bez ryzyka wyślizgnięcia się narzędzia. Konstrukcja krzyża w łbie wkrętu umożliwia lepszą dystrybucję siły, co przekłada się na bardziej efektywne wkręcanie. Dzięki temu nie tylko łatwiej jest uzyskać odpowiedni moment dokręcania, ale także zmniejsza się ryzyko uszkodzenia samego wkrętu. W codziennej praktyce, takie wkręty są używane w wielu dziedzinach, od montażu mebli po skomplikowane konstrukcje elektroniczne. Korzystanie z wkrętaka krzyżowego jest zgodne z dobrymi praktykami branżowymi, które podkreślają znaczenie właściwego dopasowania narzędzia do elementu złącznego. Jest to kluczowe nie tylko dla trwałości samego połączenia, ale także dla bezpieczeństwa użytkowania danego produktu. Obecnie, na rynku dostępne są wkrętaki krzyżowe o różnych rozmiarach, co pozwala na precyzyjne dopasowanie narzędzia do konkretnego wkrętu, co jest nieocenione w profesjonalnych zastosowaniach.

Pytanie 35

Na podstawie danych umieszczonych w tabeli, dobierz średnicę wiertła do wykonania otworu pod gwint M8 o skoku 1 mm.

Średnica
znamionowa
gwintu
Skok
gwintu
mm
Średnica
nominalna
wiertła
mm
M81.256.80
17.00
0.757.25
M91.257.80
18.00
0.758.25
A. 7,25 mm
B. 7,00 mm
C. 7,80 mm
D. 6,80 mm
Odpowiedź 7,00 mm jest prawidłowa, ponieważ zgodnie z tabelą, dla gwintu M8 z skokiem 1 mm, należy użyć wiertła o średnicy 7,00 mm. To ważne, aby zrozumieć, dlaczego dobór właściwej średnicy wiertła jest kluczowy. Gwinty są używane do tworzenia połączeń śrubowych, które muszą być trwałe i wytrzymałe. Jeśli otwór jest za ciasny, może dojść do uszkodzenia narzędzi lub nawet materiału, z którym pracujesz. Z kolei zbyt duży otwór wpłynie na siłę połączenia, a nawet spowoduje jego luzowanie się. Praktyka mówi, że otwór powinien być na tyle duży, by śruba mogła bez problemu wejść, ale jednocześnie na tyle mały, by gwint miał odpowiednią przyczepność. Dobrze jest zapamiętać, że dla gwintów metrycznych, średnicę wiertła często oblicza się jako różnicę średnicy gwintu i skoku gwintu. Dlatego w przypadku M8 (8 mm) i skoku 1 mm, 8 mm - 1 mm = 7 mm. To nie tylko teoria, ale także zasada stosowana w praktyce przez profesjonalistów w branży.

Pytanie 36

Do demontażu przekaźnika z szyny TH35 należy zastosować

Ilustracja do pytania
A. klucz oczkowy.
B. klucz nasadowy.
C. wkrętak krzyżowy.
D. wkrętak płaski.
Przekaźniki montowane na szynie TH35, znane jako szyny DIN, są standardem w instalacjach elektrycznych. Te szyny umożliwiają szybki montaż i demontaż urządzeń takich jak przekaźniki, styczniki czy automatyka przemysłowa. Użycie wkrętaka płaskiego do demontażu takiego przekaźnika to nie tylko wygodne, ale przede wszystkim bezpieczne rozwiązanie. Wynika to z konstrukcji urządzeń montowanych na tych szynach, które często posiadają specjalne zaczepy lub zatrzaski. Wkrętak płaski idealnie nadaje się do delikatnego podważenia tych zaczepów, umożliwiając szybkie i bezproblemowe zdjęcie przekaźnika bez ryzyka uszkodzenia samego urządzenia lub szyny. Moim zdaniem, znajomość tych drobnych, ale istotnych szczegółów montażowych jest kluczowa w pracy każdego elektryka. Właściwe narzędzia to podstawa efektywności i bezpieczeństwa pracy. W praktyce, często zdarza się, że narzędzia takie jak wkrętak płaski są niezastąpione, zwłaszcza gdy pracujemy w ograniczonej przestrzeni rozdzielnicy elektrycznej. Dobre praktyki mówią o stosowaniu narzędzi zgodnie z ich przeznaczeniem, co znacząco zmniejsza ryzyko uszkodzeń i zwiększa trwałość komponentów.

Pytanie 37

W celu wykonania połączeń wysokonapięciowych przewodem z jednodrutowymi żyłami miedzianymi w izolacji z polwinitu należy wybrać przewód oznaczony jako

Ilustracja do pytania
A. DY-w
B. DG-w
C. DS-w
D. LY-w
Wybór przewodu oznaczonego jako DY-w jest trafny, ponieważ wskazuje on na przewód z jednodrutowymi żyłami miedzianymi w izolacji z polwinitu, przeznaczony do połączeń wysokonapięciowych. Litera 'D' oznacza, że mamy do czynienia z żyłą jednodrutową, co jest typowe dla przewodów, które muszą wytrzymać wysokie napięcia. Miedź jako materiał przewodzący jest idealnym wyborem ze względu na doskonałą przewodność elektryczną i mechaniczną wytrzymałość. Izolacja z polwinitu ('Y') jest powszechnie stosowana w sytuacjach wymagających trwałości i odporności na różne czynniki środowiskowe, takie jak wilgoć czy chemikalia. Dodatek 'w' w oznaczeniu informuje nas, że przewód jest przeznaczony na wysokie napięcie, co czyni go odpowiednim do zastosowań w energetyce i przemysłowych instalacjach elektrycznych. Polwinit jako izolacja nie tylko chroni przed uszkodzeniami, ale również posiada właściwości samogasnące, co jest kluczowe w przypadku ewentualnego zwarcia. Standardy branżowe zalecają stosowanie takich przewodów w instalacjach, gdzie niezawodność i bezpieczeństwo są priorytetem.

Pytanie 38

Przetwornik przedstawiony na rysunkach to

Ilustracja do pytania
A. przetwornica napięcia.
B. przetwornik PWM.
C. zadajnik cyfrowo-analogowy.
D. analogowo-cyfrowy konwerter USB.
Zgadza się, przedstawiony przetwornik to analogowo-cyfrowy konwerter USB. Dlaczego? Konwertery tego rodzaju służą do przekształcania sygnałów analogowych na cyfrowe, co jest kluczowe w wielu aplikacjach, gdzie potrzebujemy monitorować i analizować sygnały analogowe za pomocą komputerów. Proces ten odbywa się dzięki przetwornikowi analogowo-cyfrowemu (A/D), który zamienia sygnał analogowy na cyfrowy, a następnie poprzez interfejs USB przekazuje go do komputera. USB zapewnia także zasilanie i komunikację, co czyni te urządzenia bardzo praktycznymi i wszechstronnymi. W praktyce takie konwertery są często używane w laboratoriach, przemyśle oraz w projektach inżynieryjnych, gdzie dokładne pomiary i analiza danych są niezbędne. Z mojego doświadczenia, są one również bardzo wygodne w zastosowaniach edukacyjnych, ponieważ pozwalają na szybkie i bezproblemowe podłączenie urządzeń pomiarowych do PC.

Pytanie 39

Które narzędzie należy zastosować do nacięcia gwintu w otworze?

A. Narzędzie 1.
Ilustracja do odpowiedzi A
B. Narzędzie 3.
Ilustracja do odpowiedzi B
C. Narzędzie 4.
Ilustracja do odpowiedzi C
D. Narzędzie 2.
Ilustracja do odpowiedzi D
Poprawna odpowiedź to narzędzie 1 – czyli gwintownik. Służy ono do nacinania gwintów wewnętrznych w otworach, dzięki czemu można wkręcać w nie śruby lub wkręty o odpowiednim profilu gwintu. Gwintownik ma charakterystyczne rowki wzdłużne, które odprowadzają wióry powstające podczas skrawania metalu. W praktyce stosuje się zwykle zestaw trzech gwintowników: zdzierak, pośredni i wykańczak – każdy pogłębia gwint coraz bardziej, aż do uzyskania pełnego profilu. Podczas pracy należy używać odpowiedniego środka smarującego, np. oleju do gwintowania, który poprawia jakość powierzchni i wydłuża żywotność narzędzia. Z mojego doświadczenia wynika, że kluczowe jest utrzymanie osi gwintownika idealnie w jednej linii z otworem – nawet niewielkie odchylenie powoduje, że śruba nie wchodzi płynnie lub zrywa gwint. W przemyśle mechaniczno-montażowym gwintowniki są podstawowym narzędziem w produkcji elementów z otworami gwintowanymi.

Pytanie 40

Na rysunku przedstawiono symbol graficzny czujnika

Ilustracja do pytania
A. indukcyjnego.
B. magnetycznego.
C. pojemnościowego.
D. optycznego.
Przedstawiony symbol to czujnik optyczny. Na rysunku widać charakterystyczny symbol diody emitującej światło (LED) oraz odbiornika, najczęściej fototranzystora lub fotodiody. To właśnie ten zestaw elementów odpowiada za działanie czujników optycznych, które wykrywają obiekty poprzez analizę promienia światła – odbitego lub przerwanego. W praktyce czujniki optyczne dzielą się na refleksyjne, bariery i odbiciowe. W automatyce przemysłowej wykorzystuje się je np. do zliczania elementów na taśmie, wykrywania obecności detali, kontroli etykiet lub pomiaru prędkości obrotowej. Ich ogromną zaletą jest bezkontaktowa praca i bardzo szybka reakcja, co pozwala uniknąć zużycia mechanicznego. Moim zdaniem warto zwrócić uwagę na strzałki przy symbolu – pokazują kierunek emisji światła, co pomaga odróżnić czujniki optyczne od innych typów w dokumentacji technicznej.