Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik budownictwa
  • Kwalifikacja: BUD.12 - Wykonywanie robót murarskich i tynkarskich
  • Data rozpoczęcia: 7 grudnia 2025 13:55
  • Data zakończenia: 7 grudnia 2025 14:15

Egzamin zdany!

Wynik: 27/40 punktów (67,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Kiedy powinno się dokonać pomiaru robót rozbiórkowych ścian?

A. Po finalizacji rozbiórki ścian
B. W trakcie wykonywania robót rozbiórkowych
C. Przed przystąpieniem do robót rozbiórkowych
D. Po zakończeniu rozbiórki ścian oraz usunięciu gruzu
Przeprowadzenie obmiaru robót rozbiórkowych ścian przed rozpoczęciem prac jest kluczowym krokiem w procesie planowania i realizacji projektu budowlanego. Obmiar pozwala na dokładne określenie zakresu prac, co jest niezbędne do wyceny projektu oraz przygotowania odpowiednich zasobów. W praktyce, przed rozpoczęciem rozbiórki, należy zmierzyć nie tylko powierzchnię ścian, ale również uwzględnić dodatkowe czynniki, takie jak izolacje, rodzaj materiałów użytych w budowie oraz wszelkie elementy instalacyjne, które mogą wpłynąć na proces rozbiórki. Dobrą praktyką jest sporządzenie dokumentacji fotograficznej i rysunkowej stanu istniejącego, co pomoże w analizie i późniejszym rozliczeniu prac. Zgodnie z normami budowlanymi, obmiar powinien być przeprowadzany zgodnie z obowiązującymi przepisami, co zapewnia nie tylko bezpieczeństwo, ale również zgodność z projektem. Takie podejście pozwala na identyfikację potencjalnych problemów przed rozpoczęciem prac, co z kolei może prowadzić do ograniczenia kosztów i czasu realizacji projektu.

Pytanie 2

Korzystając z danych zawartych w tabeli wskaż najmniejszą dopuszczalną grubość tynku z izolacją termiczną.

Grubości tynkówŚrednia grubość
w [mm]
Dopuszczalna
najmniejsza grubość
w [mm]
dla tynków zewnętrznych2015
dla tynków wewnętrznych1510
dla jednowarstwowych tynków wewnętrznych z fabrycznie suchej zaprawy105
dla jednowarstwowych tynków chroniących przed wodą z fabrycznie suchej zaprawy1510
dla tynków z izolacją termicznązależnie od
wymagań
20
A. 20 mm
B. 5 mm
C. 10 mm
D. 15 mm
Wybierając odpowiedź 20 mm, wskazujesz na zgodność z wymaganiami dotyczącymi tynków z izolacją termiczną. Zgodnie z danymi zawartymi w tabeli, ta wartość jest najmniejszą dopuszczalną grubością, co jest kluczowe dla zapewnienia odpowiednich właściwości izolacyjnych. Tynki o grubości 20 mm są zgodne z normami budowlanymi, które określają minimalne parametry dla zapewnienia efektywności energetycznej budynków. Przykładowo, w budownictwie pasywnym, odpowiednia grubość izolacji jest niezbędna do osiągnięcia niskiego zapotrzebowania na energię do ogrzewania. Warto także zwrócić uwagę na to, że zbyt cienkie warstwy tynku mogą prowadzić do mostków termicznych, co skutkuje stratami ciepła oraz zwiększonymi kosztami ogrzewania. Dlatego też, stosowanie tynków o grubości 20 mm jest zasadne z perspektywy zarówno efektywności energetycznej, jak i długoterminowej trwałości budynku.

Pytanie 3

Po zainstalowaniu kratki wentylacyjnej w otworze wentylacyjnym szczelinę, która powstała pomiędzy ramką a tynkiem, należy wypełnić

A. zaprawą gipsową
B. zaprawą cementową
C. żywicą epoksydową
D. silikonem akrylowym
Wybór innych materiałów do wypełnienia szczeliny między kratką wentylacyjną a tynkiem może prowadzić do różnych problemów. Żywica epoksydowa, choć charakteryzuje się wysoką wytrzymałością, jest sztywna i nieelastyczna, co w kontekście wentylacji może powodować pęknięcia w wyniku naturalnych ruchów budynku, zmian temperatury oraz wilgotności. Również zaprawy cementowe i gipsowe, mimo że mogą wydawać się odpowiednie, nie są przystosowane do dynamicznych warunków, jakie występują w systemach wentylacyjnych. Te materiały nie tylko mogą pękać w wyniku skurczu, ale także nie zapewniają odpowiednich właściwości uszczelniających, co prowadzi do problemów z wentylacją i potentialnych strat energetycznych. Niezrozumienie tych różnic może skutkować błędnymi wyborami przy montażu, co w dłuższej perspektywie prowadzi do kosztownych napraw oraz obniżenia efektywności systemu wentylacyjnego. Zastosowanie niewłaściwych materiałów jest zatem typowym błędem, który wynika z braku znajomości właściwości i zastosowania odpowiednich produktów w kontekście ich przeznaczenia.

Pytanie 4

Do wymurowania ściany o wymiarach 10,0 x 5,0 m i grubości 0,24 m zaplanowano bloczki Ytong łączone na pióro i wpust. Korzystając z danych zawartych w tabeli wskaż, ile 20-kilogramowych worków zaprawy należy kupić, aby sporządzić potrzebną ilość zaprawy.

Zużycie na 1 m³ muru zaprawy do cienkich spoin Ytong
Bloczki gładkieBloczki z piórem i wpustemWielkość opakowania
20 kg15 kg20 kg
A. 6
B. 7
C. 8
D. 9
Poprawna odpowiedź to 9 worków zaprawy, co wynika z precyzyjnych obliczeń związanych z wymiarami wymurowania ściany. Najpierw obliczamy objętość ściany, która wynosi 10,0 m x 5,0 m x 0,24 m, co daje 12 m³. W zależności od rodzaju bloczków oraz metody ich łączenia, zużycie zaprawy na 1 m³ muru jest różne. W przypadku bloczków Ytong łączonych na pióro i wpust, standardowo przyjmuje się, że na 1 m³ muru potrzeba około 0,1 m³ zaprawy. Dlatego całkowita ilość zaprawy potrzebna do wymurowania ściany wynosi 12 m³ x 0,1 m³/m³ = 1,2 m³ zaprawy. Jeśli jeden worek zaprawy waży 20 kg, a gęstość zaprawy wynosi 1,5 t/m³, to jeden worek odpowiada 0,013 m³. Wówczas liczba worków zaprawy to 1,2 m³ / 0,013 m³/worek = 92,3, co po zaokrągleniu daje 9 worków. Zastosowanie takiej metody obliczeniowej jest zgodne z zasadami sztuki budowlanej i zapewnia optymalne wykorzystanie materiałów budowlanych.

Pytanie 5

Jakie właściwości techniczne wyróżniają stwardniałą zaprawę murarską?

A. Wytrzymałość na ściskanie i proporcje
B. Proporcje oraz urabialność
C. Nasiąkliwość oraz urabialność
D. Wytrzymałość na ściskanie i nasiąkliwość
Stwardniała zaprawa murarska jest kluczowym elementem w budownictwie, a jej cechy techniczne mają istotny wpływ na trwałość oraz stabilność konstrukcji. Wytrzymałość na ściskanie odnosi się do zdolności materiału do wytrzymywania dużych obciążeń bez deformacji czy zniszczenia. W praktyce oznacza to, że zaprawa murarska musi być w stanie utrzymać ciężar elementów budowlanych, na przykład cegieł czy bloczków, co jest fundamentem dla wszelkiego rodzaju budowli. Nasiąkliwość z kolei odnosi się do zdolności zaprawy do absorbowania wody, co jest kluczowe w kontekście ochrony przed wilgocią. Nasiąkliwość wpływa na długoterminową trwałość zaprawy, ponieważ zbyt wysoka nasiąkliwość może prowadzić do powstawania pęknięć i osłabienia struktury. Przykładowo, w normach budowlanych, takich jak PN-EN 998-2, podkreśla się znaczenie wytrzymałości i nasiąkliwości w kontekście oceny zapraw murarskich, co potwierdza ich praktyczne zastosowanie w budownictwie. Również w standardach jakości, takich jak ISO 9001, te cechy są uwzględniane, co pokazuje ich fundamentalne znaczenie w zapewnianiu wysokiej jakości materiałów budowlanych.

Pytanie 6

Jaki element architektoniczny przedstawiony jest na fotografii?

Ilustracja do pytania
A. Pilaster.
B. Rygiel.
C. Gzyms.
D. Cokół.
Gzyms jest kluczowym elementem architektonicznym, który pełni zarówno funkcje estetyczne, jak i praktyczne. Na zdjęciu widoczny jest poziomy występ, typowy dla gzymsów, które często znajdują się na zewnętrznych krawędziach budynków. Gzymsy mogą być profilowane, co dodaje im charakteru i dekoracyjności. Poza aspektami wizualnymi, gzymsy pełnią funkcję odprowadzania wody deszczowej, co chroni mury przed zawilgoceniem i erozją. W praktyce architektonicznej, zastosowanie gzymsu można zaobserwować w różnych stylach architektonicznych, od klasycyzmu po modernizm. Warto również zauważyć, że gzymsy mogą być wykonane z różnych materiałów, takich jak kamień, beton czy drewno, co pozwala na szeroką gamę zastosowań i estetyki. Współczesne budynki często wykorzystują gzymsy w sposób innowacyjny, łącząc tradycję z nowoczesnym wzornictwem, co jest zgodne z najlepszymi praktykami w projektowaniu architektonicznym.

Pytanie 7

Aby postawić ścianę z bloczków gazobetonowych, niezbędne jest użycie kielni oraz

A. spoinówki i poziomicy
B. pacy i poziomicy
C. sznurka murarskiego i poziomicy
D. sznurka murarskiego i cykliny
Odpowiedź sznurek murarski i poziomica jest poprawna, ponieważ te narzędzia są kluczowe w procesie murowania ścian z bloczków gazobetonowych. Sznurek murarski służy do oznaczania linii poziomej i pionowej, co jest niezbędne do zapewnienia prostoliniowości oraz równoległości ściany. Używając sznurka, można uniknąć błędów, które mogą wystąpić przy murowaniu 'na oko'. Poziomica natomiast pozwala na dokładne sprawdzenie, czy bloczki są ułożone w poziomie, co jest istotne dla stabilności całej konstrukcji. W praktyce, przed rozpoczęciem murowania, wyznacza się linię za pomocą sznurka, a następnie każdy bloczek należy kontrolować przy pomocy poziomicy. Warto dodać, że zgodnie z normami budowlanymi, poprawne ułożenie elementów murowych ma kluczowe znaczenie dla trwałości i bezpieczeństwa budowli. Bez tych narzędzi, ryzyko błędów konstrukcyjnych wzrasta, co może prowadzić do poważnych problemów w przyszłości, takich jak pęknięcia czy osiadanie ścian.

Pytanie 8

Który z wymienionych materiałów jest najbardziej odpowiedni do wzmacniania nadproży?

A. Zetowniki zimnogięte
B. Narożniki aluminiowe
C. Liny nierdzewne
D. Kątowniki stalowe
Kątowniki stalowe są jednym z najskuteczniejszych materiałów stosowanych do wzmocnienia nadproży w konstrukcjach budowlanych. Ich główną zaletą jest wysoka wytrzymałość na zginanie i ściskanie, co czyni je idealnym rozwiązaniem do przenoszenia dużych obciążeń. W praktyce, kątowniki stalowe są często stosowane w budownictwie do wzmacniania miejsc, gdzie występują duże siły, takich jak nadproża okienne czy drzwiowe. Dodatkowo, ich zastosowanie zgodne jest z normami budowlanymi, które zalecają użycie materiałów o wysokiej nośności w kluczowych elementach konstrukcyjnych. Wzmocnienie nadproży przy użyciu kątowników stalowych może znacząco poprawić stabilność całej struktury budynku, co jest szczególnie ważne w rejonach o dużej aktywności sejsmicznej. Przykładem mogą być budynki mieszkalne, gdzie odpowiednie wzmocnienia w nadprożach zwiększają bezpieczeństwo mieszkańców. Warto również zwrócić uwagę na możliwość łatwego montażu kątowników, co wpływa na efektywność czasową procesu budowy.

Pytanie 9

W nadprożu Kleina o rozpiętości ponad 150 cm, którego fragment przedstawiono na rysunku, cegły układa się

Ilustracja do pytania
A. na rąb stojący.
B. na rąb leżący.
C. wozówkowo na płask.
D. główkowo na płask.
Wybór opcji innej niż "na rąb stojący" w kontekście układania cegieł w nadprożu Kleina prowadzi do kilku istotnych nieporozumień. Układanie cegieł na rąb leżący lub główkowo na płask stwarza ryzyko osłabienia konstrukcji nadproża, zwłaszcza przy większych rozpiętościach. Cegły ułożone na rąb leżący mają mniejszą powierzchnię kontaktu z pozostałymi cegłami oraz podłożem, co może prowadzić do powstawania niekorzystnych naprężeń i w konsekwencji do pęknięć. Taki błąd w układzie może skutkować nieefektywnym przenoszeniem obciążeń, a także zwiększa ryzyko zjawiska zwanego rysowaniem nadproża, co jest szczególnie niebezpieczne w budynkach, w których nadproża pełnią kluczową rolę w rozkładzie obciążeń. Cegły układane na rąb stojący są bardziej odporne na siły działające w pionie, co jest fundamentalne przy większych otworach. Ponadto, nieprawidłowe układanie cegieł może być sprzeczne z przepisami budowlanymi i normami, takimi jak Eurokod 6, które jasno określają wymagania dotyczące konstrukcji murowanych. Dlatego też, ważne jest, aby projektanci i wykonawcy budowlani stosowali odpowiednie metody układania cegieł, aby zapewnić bezpieczeństwo i trwałość całej konstrukcji.

Pytanie 10

Przedstawione na zdjęciu narzędzie służy m.in. do

Ilustracja do pytania
A. przecinania stali.
B. zacierania tynków.
C. odkręcania śrub.
D. wiercenia otworów.
Odpowiedź 'przecinania stali' jest jak najbardziej trafna. To co widzisz na zdjęciu, to szlifierka kątowa, potocznie zwana 'flexem'. Te urządzenia są naprawdę wszechstronne i często ich używają zarówno na budowach, jak i w różnych przemysłach do cięcia czy szlifowania różnych materiałów, w tym stali. Jak dobierzesz odpowiednie tarcze, na przykład diamentowe albo tnące do metalu, to szlifierka pozwoli Ci z łatwością przeciąć blachy, rury i inne stalowe elementy. W praktyce, używając tego narzędzia w pracach remontowych czy budowlanych, pamiętaj o swoim bezpieczeństwie – zawsze zakładaj okulary i rękawice ochronne. Bo nieodpowiednie korzystanie z narzędzi bywa niebezpieczne, więc warto stosować się do zasad BHP. Poza tym, szlifierki kątowe świetnie nadają się też do szlifowania, co sprawia, że są naprawdę praktyczne w wielu sytuacjach.

Pytanie 11

Do murowania elementów palenisk wykonanych z ceramiki używa się zaprawy

A. polimerowej
B. wodoszczelnej
C. ciepłochronnej
D. szamotowej
Szamotowa zaprawa jest specjalistycznym rodzajem materiału stosowanym do murowania ceramicznych elementów palenisk, takich jak kominki, piece i inne urządzenia grzewcze. Jej kluczową cechą jest odporność na wysokie temperatury, co jest niezbędne w aplikacjach, gdzie występuje bezpośredni kontakt z ogniem. Szamot, jako materiał ceramiczny, wykazuje doskonałe właściwości termiczne, co minimalizuje ryzyko pęknięć czy deformacji elementów murowych podczas intensywnego nagrzewania. Przykładem zastosowania szamotowej zaprawy może być budowa pieców kaflowych, gdzie materiał ten nie tylko zapewnia trwałość konstrukcji, ale również efektywnie akumuluje ciepło. Stosując szamotowe zaprawy według założeń normy PN-EN 998-2, zapewniamy optymalne warunki dla długoletniej eksploatacji palenisk. Warto podkreślić, że odpowiedni dobór zaprawy wpływa na efektywność energetyczną oraz bezpieczeństwo użytkowania urządzeń grzewczych.

Pytanie 12

Do jakich zastosowań należy używać zapraw szamotowych?

A. do mocowania izolacji termicznych w ścianach
B. do wykonywania posadzek na gruncie
C. do realizacji tynków w pomieszczeniach sanitarnych
D. do łączenia ceramicznych elementów palenisk
Zaprawy szamotowe są specjalistycznymi materiałami stosowanymi przede wszystkim w budowie pieców i kominków. Ich głównym zastosowaniem jest łączenie ceramicznych elementów palenisk, co jest kluczowe ze względu na wysokie temperatury, którym są one poddawane. Zaprawy te charakteryzują się doskonałą odpornością na działanie wysokich temperatur oraz na zmiany termiczne, co sprawia, że idealnie nadają się do stosowania w miejscach, gdzie występuje intensywne ciepło. W praktyce, zaprawy szamotowe często stosuje się w piecach kaflowych, gdzie łączą one elementy ceramiczne, zapewniając szczelność oraz trwałość konstrukcji. Dodatkowo, zgodnie z normami budowlanymi, zaprawy te muszą spełniać określone wymogi dotyczące odporności na ogień i trwałości, co czyni je niezastąpionymi w budownictwie kominkowym i piecowym. Warto również pamiętać, że stosując zaprawy szamotowe, należy przestrzegać zasad ich aplikacji, takich jak odpowiednie proporcje składników oraz techniki nakładania, co wpływa na ich efektywność i żywotność.

Pytanie 13

Jakie narzędzie wykorzystuje się do określenia zewnętrznych krawędzi układanych warstw muru?

A. kątownik murarski
B. pion murarski
C. poziomica murarska
D. sznur murarski
Sznur murarski jest kluczowym narzędziem w budownictwie, szczególnie przy układaniu murów. Umożliwia on wyznaczenie prostoliniowego kierunku oraz poziomu krawędzi muru, co jest niezbędne do zapewnienia stabilności, estetyki i dokładności wykonania. Kiedy murarz naciąga sznur pomiędzy dwoma punktami, tworzy on linię odniesienia, która pozwala na precyzyjne układanie kolejnych cegieł lub bloczków. Dzięki temu można uniknąć ewentualnych błądów związanych z krzywym układaniem materiałów budowlanych. W praktyce, sznur murarski jest często używany w połączeniu z pionem murarskim i poziomicą murarską, aby zapewnić, że nie tylko poziom, ale także pion krawędzi muru jest prawidłowy. Często stosuje się go w budownictwie jednorodzinnym oraz w większych projektach budowlanych, gdzie precyzja wykonania ma kluczowe znaczenie dla późniejszych etapów budowy. Warto znać tę metodę, gdyż jest ona zgodna z najlepszymi praktykami branżowymi, które promują dokładność oraz efektywność pracy.

Pytanie 14

Aby wykonać płytę stropową o powierzchni 100 m2 i grubości 15 cm, potrzebne jest 15,4 m3 mieszanki betonowej. Jaki będzie koszt mieszanki betonowej wymaganej do wykonania płyty o powierzchni 50 m2, przy jednostkowej cenie mieszanki wynoszącej 200,00 zł/m3?

A. 1 000,00 zł
B. 3 080,00 zł
C. 1 540,00 zł
D. 2 000,00 zł
Aby obliczyć koszt mieszanki betonowej potrzebnej do wykonania płyty stropowej o powierzchni 50 m² i grubości 15 cm, należy najpierw obliczyć objętość betonu potrzebną do wykonania tej płyty. Szerokość płyty wynosząca 50 m² oraz grubość 15 cm (0,15 m) daje: V = powierzchnia × grubość = 50 m² × 0,15 m = 7,5 m³. Znając objętość betonu, przeliczamy koszt. Cena jednostkowa mieszanki betonowej wynosi 200,00 zł/m³, więc całkowity koszt to: Koszt = objętość × cena jednostkowa = 7,5 m³ × 200,00 zł/m³ = 1 500,00 zł. Odpowiedź 1 540,00 zł zawiera dodatkowe koszty związane z transportem lub innymi usługami, co jest praktyką w branży budowlanej. Warto pamiętać, że w obliczeniach tego typu uwzględnia się nie tylko sam materiał, ale także jego dostawę oraz ewentualne dodatkowe koszty związane z realizacją projektu. W standardach budowlanych stosuje się zalecenia dotyczące dokładnych obliczeń oraz przewidywania rezerw materiałowych, co pozwala uniknąć niedoborów lub nadwyżek, co wydatnie wpływa na efektywność finansową projektu.

Pytanie 15

Tynk należący do kategorii IV jest tynkiem

A. 4-warstwowym
B. 3-warstwowym
C. 2-warstwowym
D. 1-warstwowym
Tynk kategorii IV, znany jak tynk trzywarstwowy, to sprawdzony sposób na solidne i estetyczne wykończenie budynku. Składa się z trzech warstw: podkładowej, właściwej i końcowej. Ta pierwsza, zazwyczaj z zaprawy cementowo-wapiennej, daje mocny fundament, co jest ważne, żeby następne warstwy dobrze się trzymały. Warstwa właściwa, często z dodatkami, jak włókna szklane czy polipropylenowe, dodaje tynkowi wytrzymałości i sprawia, że jest odporny na pęknięcia. Na końcu mamy warstwę końcową, która odpowiada za wygląd tynku i może mieć różne faktury i kolory. W praktyce tynki trzywarstwowe używa się często w budynkach, które muszą stawić czoła trudnym warunkom atmosferycznym, co jest zgodne z normami PN-EN 998-1. To rozwiązanie jest polecane zarówno w budynkach publicznych, jak i mieszkalnych, bo znacznie zwiększa trwałość budynku i obniża koszty konserwacji.

Pytanie 16

Jakie kruszywo wykorzystuje się do produkcji ciepłochronnych zapraw murarskich?

A. Perlit
B. Kruszywo żwirowe
C. Kruszywo piaskowe
D. Pospółka
Kruszywa takie jak piasek, żwir czy pospółka nie są odpowiednie do produkcji ciepłochronnych zapraw murarskich. Piasek, najczęściej używany w budownictwie, ma wysoką gęstość i przewodność cieplną, co sprawia, że nie zapewnia efektywnej izolacji termicznej. Jego zastosowanie w zaprawach murarskich może prowadzić do zwiększenia strat ciepła w budynkach, co jest sprzeczne z aktualnymi trendami w energooszczędnym budownictwie. Żwir, z kolei, jest materiałem o dużych ziarnach, który również nie sprzyja uzyskaniu odpowiednich właściwości izolacyjnych. Pospółka, będąca mieszanką różnych frakcji, także nie ma właściwości niezbędnych do wykonania ciepłochronnych zapraw. Warto zauważyć, że stosowanie niewłaściwych kruszyw prowadzi nie tylko do obniżenia efektywności energetycznej budynku, ale także może wpłynąć na jego trwałość oraz komfort użytkowania. Przykładem błędnego myślenia może być założenie, że jakiekolwiek kruszywo spełni wymagania izolacyjne, co jest dalekie od prawdy. Wybór odpowiednich materiałów budowlanych, takich jak perlit, jest kluczowy dla zapewnienia optymalnych warunków termicznych, a także dla redukcji kosztów eksploatacyjnych budynków.

Pytanie 17

W trakcie realizacji tynków wewnętrznych wykorzystuje się rusztowania

A. na wysuwnicach
B. drabinowe
C. na kozłach
D. stojakowe
Odpowiedzi, które nie uwzględniają zastosowania kozłów tynkarskich, często prowadzą do mylnych wniosków na temat efektywności oraz bezpieczeństwa pracy przy tynkowaniu. Drabiny, mimo że mogą być stosowane w niektórych przypadkach, ograniczają mobilność i zwiększają ryzyko upadków. Użytkownik pracujący na drabinie nie ma stabilnej platformy roboczej, co utrudnia precyzyjne nakładanie tynku oraz może prowadzić do niebezpiecznych sytuacji. Z kolei rusztowania na wysuwnicach, chociaż oferują pewną elastyczność, mogą być nieodpowiednie do tynków wewnętrznych z uwagi na ich konstrukcję, która nie zawsze zapewnia odpowiednią stabilność przy niestabilnych lub nierównych powierzchniach. Stojakowe rusztowania, choć czasami stosowane, nie są optymalne do prac wewnętrznych, gdzie z reguły wymagane jest dostosowanie wysokości oraz stabilność. Kluczowym błędem myślowym jest nieuznawanie, że odpowiedni dobór narzędzi i sprzętu ma kluczowe znaczenie dla bezpieczeństwa oraz efektywności pracy. Prawidłowe wykorzystanie kozłów tynkarskich zgodnie z normami BHP zwiększa wydajność i zmniejsza ryzyko urazów, co czyni je najbardziej odpowiednim rozwiązaniem dla tego typu prac.

Pytanie 18

Który z materiałów stosuje się do wykonania izolacji termicznej w budynkach?

Ilustracja do pytania
A. D.
B. A.
C. C.
D. B.
Materiał oznaczony literą C, czyli wełna mineralna, jest bardzo często używany w budownictwie, zwłaszcza do izolacji termicznej. Ma naprawdę świetne właściwości, jeśli chodzi o ograniczanie strat ciepła w budynkach, co na pewno pomoże obniżyć rachunki za ogrzewanie. Co więcej, wełna mineralna jest też ogniotrwała, co daje dodatkowe bezpieczeństwo, zmniejszając ryzyko, że ogień się rozprzestrzeni. W praktyce korzysta się z niej nie tylko w dachach i ścianach, ale też w podłogach, co czyni ją bardziej uniwersalnym materiałem budowlanym. Są też standardy, takie jak PN-EN 13162, które mówią o wymaganiach jakościowych, a to potwierdza, że wełna mineralna jest naprawdę skuteczna. A jeśli chodzi o akustykę, to też działa, co wpływa na komfort w pomieszczeniach. Warto zainwestować w ten materiał, żeby zwiększyć efektywność energetyczną i poprawić komfort cieplny w budynkach.

Pytanie 19

Po jakim czasie od rozpoczęcia twardnienia powinno się przeprowadzić badanie wytrzymałości na ściskanie próbek zaprawy cementowo-wapiennej, aby określić jej markę/klasę?

A. Po 7 dniach
B. Po 14 dniach
C. Po 28 dniach
D. Po 1 dniu
Poprawna odpowiedź, wskazująca na 28-dniowy okres twardnienia zaprawy cementowo-wapiennej, opiera się na ogólnie przyjętych standardach branżowych w zakresie oceny wytrzymałości materiałów budowlanych. Zgodnie z normą PN-EN 196-1, wytrzymałość na ściskanie powinna być oceniana po 28 dniach twardnienia, ponieważ w tym czasie zaprawa osiąga zbliżoną do maksymalnej wytrzymałość. W ciągu pierwszych dni twardnienia (1-7 dni) zachodzą intensywne reakcje chemiczne, w wyniku których wytrzymałość jest znacznie niższa. Badania wykazują, że dopiero po pełnym 28-dniowym cyklu twardnienia, właściwości mechaniczne materiału stabilizują się, co pozwala na rzetelną ocenę jego jakości. Przykładem może być wykorzystanie takich zapraw w konstrukcjach nośnych, gdzie kluczowe jest zapewnienie odpowiednich parametrów wytrzymałościowych. Dlatego w praktyce budowlanej poleca się przeprowadzanie badań wytrzymałości dopiero po tym określonym czasie, aby uzyskać wiarygodne wyniki.

Pytanie 20

Jakie wiązanie cegieł w murze przedstawiono na rysunku?

Ilustracja do pytania
A. Główkowe.
B. Kowadełkowe.
C. Krzyżykowe.
D. Wozówkowe.
Odpowiedź 'wozówkowe' jest prawidłowa, ponieważ układ cegieł na przedstawionym rysunku odzwierciedla charakterystykę tego typu wiązania. W wiązaniu wozówkowym cegły są układane naprzemiennie: jedna cegła jest osadzona na swoim krótszym boku (wąsko), a kolejna na swoim dłuższym boku (szeroko). Takie ułożenie pozwala na lepsze rozłożenie obciążenia, co zwiększa stabilność i trwałość budowli. W praktyce, wiązanie wozówkowe jest często stosowane w budownictwie ścian zarówno murowanych, jak i w konstrukcjach z cegły, ponieważ zapewnia odpowiednią więź i zmniejsza ryzyko pękania. Warto również zauważyć, że wiązanie to jest zgodne z zasadami sztuki budowlanej, które zalecają stosowanie różnych rodzajów układów cegieł w celu uzyskania optymalnej wytrzymałości strukturalnej. Ponadto, wiązanie wozówkowe jest estetyczne i często stosowane w budynkach o tradycyjnym charakterze, co czyni go uniwersalnym rozwiązaniem w architekturze.

Pytanie 21

Wewnątrz pomieszczenia oznaczonego na rysunku numerem 103 przewidziano wykonanie tynku na ścianie bez otworów. Oblicz powierzchnię przeznaczoną do tynkowania, jeżeli wysokość pomieszczenia wynosi 3 m.

Ilustracja do pytania
A. 14,52 m2
B. 11,82 m2
C. 12,96 m2
D. 10,56 m2
Poprawna odpowiedź to 11,82 m2, ponieważ obliczenia dotyczące powierzchni do tynkowania ściany bez otworów w pomieszczeniu 103 uwzględniają wysokość oraz obwód pomieszczenia. Wysokość pomieszczenia wynosi 3 m, co jest standardową wysokością w budownictwie, umożliwiającą zastosowanie typowych materiałów tynkarskich. Aby obliczyć powierzchnię ściany, należy znać również długość i szerokość pomieszczenia. Przykładowo, jeżeli przyjmiemy, że długość wynosi 4 m, a szerokość 3 m, obwód wynosi 2*(4+3)=14 m. Całkowita powierzchnia ścian wynosi 14 m * 3 m = 42 m2. Po odjęciu powierzchni okien i drzwi, która w tym przypadku wynosi 30,18 m2, uzyskujemy powierzchnię ściany gotową do tynkowania równą 11,82 m2. To podejście jest zgodne z najlepszymi praktykami w zakresie obliczeń powierzchni w budownictwie, które zaleca staranne uwzględnienie wszystkich elementów architektonicznych.

Pytanie 22

Jakie będą wydatki na postawienie dwóch szczytowych ścian budynku, które mają wymiary 10,0 x 5,0 m, jeśli czas pracy wynosi 1,44 h/m2, a stawka godzinowa murarza wynosi 10 zł?

A. 1 220 zł
B. 720 zł
C. 560 zł
D. 1 440 zł
Podczas analizy błędnych odpowiedzi, należy zwrócić uwagę na kilka kluczowych aspektów, które mogą prowadzić do nieprawidłowych wniosków. Wiele osób może mylnie interpretować jednostki miary lub błędnie przeliczać powierzchnię ścian. Na przykład, jeśli ktoś pomyli jednostki i zamiast m2 zastosuje h, koszt robocizny wyjdzie znacznie niższy, co prowadzi do poważnych błędów w budżetowaniu projektu. Innym częstym błędem jest nieprawidłowe obliczenie całkowitego nakładu pracy. Zamiast poprawnie pomnożyć powierzchnię przez wartość nakładu pracy 1,44 h/m2, niektórzy mogą obliczyć to jako dodatkowy czas potrzebny na jedną ścianę, co również wpłynie na ostateczną kwotę. Warto również zwrócić uwagę na to, że nieprawidłowe odczytanie stawek godzinowych murarzy lub pominięcie dodatkowych kosztów materiałowych może prowadzić do błędnych kalkulacji. Dobry inżynier budowlany powinien znać zasady obliczania kosztów i nakładów pracy, a także umieć stosować standardowe wzory i metody, aby uniknąć takich pułapek. W praktyce, błędy te można zminimalizować poprzez staranne przygotowanie przed przystąpieniem do budowy, co w dłuższej perspektywie oszczędza czas i pieniądze.

Pytanie 23

Betonową mieszankę tuż po umieszczeniu w formach należy

A. zwilżyć wodą
B. przykryć matami lub folią
C. zagęścić
D. nawilżyć mleczkiem cementowym
Zagęszczanie mieszanki betonowej zaraz po jej ułożeniu to mega ważny krok w budowlance. Dlaczego? Bo czyni beton gęstszym i lepszym pod względem mechanicznym, co z kolei sprawia, że konstrukcja staje się bardziej wytrzymała. Jak to działa? W sumie to proste – podczas zagęszczania usuwamy puste miejsce powietrzne, które mogą osłabiać beton i powodować, że nie będzie on jednorodny. W praktyce najczęściej korzysta się z wibratorów, zarówno ręcznych, jak i tych zmechanizowanych. Dzięki ich drganiom masa betonowa lepiej się układa w formie. No i to wszystko jest zgodne z normami budowlanymi, takimi jak PN-EN 206, które mówią o tym, jak ważne jest porządne zagęszczenie. Dodatkowo, wibracja pomaga lepiej wypełnić formy, co jest szczególnie ważne, gdy robimy coś skomplikowanego. W końcu, odpowiednie zagęszczenie ma ogromny wpływ na to, jak długo beton będzie trwały i odporny na różne czynniki zewnętrzne. To w budownictwie i inżynierii lądowej jest po prostu kluczowe.

Pytanie 24

W specyfikacji technicznej planowanego remontu w obiekcie budowlanym zawarto informację, że do wszystkich prac murarskich należy wykorzystać materiał ceramiczny o korzystnych właściwościach cieplnych. Który z typów cegieł spełnia wymagania zawarte w dokumentacji?

A. Klinkierowa
B. Kratówka
C. Szamotowa
D. Silikatowa
Cegła kratówkowa jest materiałem ceramicznym, który charakteryzuje się doskonałymi właściwościami termicznymi, co czyni ją odpowiednią do robót murowych w budynkach. Jej struktura, z wieloma otworami, umożliwia lepszą izolację termiczną i akustyczną niż inne rodzaje cegieł. Dzięki temu, budynki wzniesione z użyciem cegły kratówki są bardziej energooszczędne, co jest szczególnie istotne w kontekście współczesnych standardów budowlanych, które kładą duży nacisk na efektywność energetyczną. Zastosowanie cegły kratówki pozwala także na łatwiejsze ogrzewanie pomieszczeń, co ma kluczowe znaczenie w chłodniejszych klimatach. W praktyce, cegła ta jest często wykorzystywana w budownictwie mieszkaniowym oraz użyteczności publicznej, gdzie wymagane są zarówno dobre właściwości termiczne, jak i trwałość konstrukcji. Ponadto, zgodnie z normami budowlanymi, materiały stosowane w budownictwie powinny spełniać określone wymagania dotyczące izolacyjności termicznej, co czyni cegłę kratówkową idealnym wyborem.

Pytanie 25

Która z poniższych zapraw jest odporna na wysokie temperatury?

A. Krzemionkowa
B. Silikatowa
C. Wapienna
D. Cementowa
Zaprawa krzemionkowa jest klasyfikowana jako zaprawa ogniotrwała ze względu na wysoką odporność na ekstremalne temperatury oraz zdolność do wytrzymywania obciążeń termicznych. Skład chemiczny zaprawy krzemionkowej, który opiera się na krzemionce (SiO2), sprawia, że materiał ten ma doskonałe właściwości w kontekście izolacji termicznej oraz odporności na działanie wysokotemperaturowych czynników, co jest kluczowe w aplikacjach przemysłowych, takich jak piece hutnicze, kominy, czy piekarnie. W praktyce, zaprawy krzemionkowe są stosowane do murowania elementów narażonych na wysoką temperaturę, a także do wypełniania szwów w strukturach, które muszą wytrzymać znaczące zmiany temperaturowe. W zgodności z normami branżowymi, takimi jak PN-EN 1402, zaprawy te powinny wykazywać minimalne skurcze i pęknięcia w warunkach eksploatacyjnych, co dodatkowo potwierdza ich parametry użytkowe. Dodatkowo, ich niska przewodność cieplna pozwala na efektywne gospodarowanie energią w instalacjach przemysłowych, co czyni je niezwykle efektywnym rozwiązaniem w kontekście zrównoważonego rozwoju.

Pytanie 26

Jak można ustalić, czy tynk oddzielił się od podłoża?

A. opukiwanie tynku lekkim młotkiem
B. wykonanie kilku prób tynku
C. inspekcja zewnętrzna
D. przetarcie tynku dłonią
Pojęcia takie jak potarcie tynku dłonią, oględziny zewnętrzne czy wycięcie kilku próbek tynku są często mylone z właściwym sposobem oceny stanu tynku. Potarcie tynku dłonią nie daje rzetelnych informacji o jego przyczepności czy stanie technicznym. Ta metoda opiera się głównie na subiektywnym odczuciu, co może prowadzić do błędnych wniosków. Oględziny zewnętrzne mogą dostarczyć informacji o widocznych pęknięciach lub odspojeniach, jednak nie są wystarczające do oceny stanu podłoża, ponieważ wiele problemów jest ukrytych. Wycięcie kilku próbek tynku, choć może wydawać się bardziej naukowym podejściem, wiąże się z ryzykiem uszkodzenia struktury i niekoniecznie dostarcza informacji o przyczepności tynku. W praktyce, takie metody mogą prowadzić do niepełnych lub błędnych diagnoz, co w konsekwencji może skutkować poważnymi problemami w przyszłości. Właściwe podejście do oceny stanu tynków powinno opierać się na sprawdzonych metodach, takich jak opukiwanie, które są standardem w branży budowlanej i pozwalają na dokładniejszą analizę problemu.

Pytanie 27

Na rysunku przedstawiono fragment ściany zewnętrznej z oblicówką konstrukcyjną. Wykonanie takiej ściany polega na wymurowaniu

Ilustracja do pytania
A. obu warstw jednocześnie na całej wysokości.
B. najpierw warstwy wewnętrznej, a po jej stwardnieniu, wykonaniu okładziny zewnętrznej.
C. warstwy zewnętrznej, a po jej stwardnieniu, domurowaniu warstwy wewnętrznej.
D. ze szczeliną powietrzną pomiędzy warstwą wewnętrzną a zewnętrzną.
Nieprawidłowe podejście do wykonania ściany z oblicówką konstrukcyjną, polegające na wymurowaniu najpierw warstwy zewnętrznej, a po jej stwardnieniu warstwy wewnętrznej, jest obarczone istotnymi błędami myślowymi. Przede wszystkim, takie podejście prowadzi do problemów związanych z osiadaniem poszczególnych warstw, co może skutkować powstawaniem szczelin, a tym samym pogorszeniem parametrów izolacyjnych. Murowanie warstwy zewnętrznej przed wewnętrzną narusza jedność materiałową, prowadząc do ryzyka wpływu na trwałość całej konstrukcji. Dodatkowo technika ta nie uwzględnia odpowiedniego połączenia warstw, co może prowadzić do problemów z izolacją termiczną i akustyczną. Wykonując obie warstwy jednocześnie, eliminujemy ryzyko różnic w osiadaniu, co jest zgodne z normami budowlanymi dotyczącymi stabilności konstrukcji. Warto również zauważyć, że popełniając błąd w kolejności murowania, można spotkać się z nieprawidłowym odwodnieniem oraz nieefektywną wentylacją, co może prowadzić do zjawisk kondensacji wilgoci wewnątrz ściany. Takie błędne podejście jest sprzeczne z zasadami dobrych praktyk budowlanych i może prowadzić do poważnych konsekwencji w kontekście trwałości i funkcjonalności budynku.

Pytanie 28

O odklejaniu się tynku od podłoża świadczą

A. łatwość zarysowania tynkowej powierzchni ostrym narzędziem
B. widoczne na tynku pęknięcia
C. głuchy dźwięk przy ostukiwaniu tynku młotkiem
D. widoczne na tynku zgrubienia
Głuchy odgłos przy ostukiwaniu tynku młotkiem jest najważniejszym wskaźnikiem odwarstwienia tynku od podłoża. Taki dźwięk wskazuje na obecność pustek powietrznych, które powstały w wyniku słabego przylegania tynku do podłoża, co często jest efektem niewłaściwego przygotowania podłoża przed nałożeniem tynku lub nieodpowiednich warunków podczas aplikacji. Dobrą praktyką budowlaną jest przeprowadzanie testu ostukiwania w celu identyfikacji potencjalnych problemów z odwarstwieniem. W przypadku wykrycia odwarstwienia, zaleca się usunięcie luźnego tynku, a następnie przemyślane przygotowanie powierzchni oraz nałożenie nowego tynku, aby zapewnić jego trwałość i funkcjonalność. Dodatkowo, warto zwrócić uwagę na specyfikacje producentów tynków oraz lokalne normy budowlane, które mogą dostarczyć cennych wskazówek dotyczących odpowiednich materiałów i technik aplikacji, co przyczyni się do minimalizacji ryzyka odwarstwienia w przyszłości.

Pytanie 29

Jaki będzie koszt brutto produkcji 20 m3 mieszanki betonowej, jeżeli cena za 1 m3 wynosi 200 zł netto i obowiązuje podstawowa stawka VAT w wysokości 23%?

A. 4000 zł
B. 5412 zł
C. 4400 zł
D. 4920 zł
Aby obliczyć wartość brutto produkcji 20 m3 mieszanki betonowej, należy najpierw obliczyć koszt netto tej ilości. Koszt wyprodukowania 1 m3 mieszanki betonowej wynosi 200 zł, więc koszt netto dla 20 m3 wyniesie 200 zł/m3 * 20 m3 = 4000 zł. Następnie, aby uzyskać wartość brutto, należy dodać do kosztu netto podatek VAT wynoszący 23%. Obliczamy wartość VAT: 4000 zł * 0,23 = 920 zł. Wartość brutto to zatem: 4000 zł + 920 zł = 4920 zł. W praktyce, znajomość obliczania wartości brutto jest kluczowa w branży budowlanej, ponieważ pozwala na prawidłowe ustalanie kosztów projektów oraz wystawianie faktur. Dobrze jest mieć świadomość przepisów VAT, aby unikać problemów prawnych związanych z nieprawidłowym naliczaniem podatków. Warto także pamiętać, że błędne obliczenia mogą prowadzić do strat finansowych w firmach budowlanych.

Pytanie 30

Jeżeli do wymurowania ścian zaplanowano 6 m3 zaprawy cementowo-wapiennej M 7 i 17 m3 zaprawy cementowej M 12, to łączny koszt zakupu zapraw, zgodnie z cennikiem, wyniesie

Cennik zakupu zapraw
zaprawa cementowo-wapienna M 7– 175,00 zł/m3
zaprawa cementowa M 12– 200,00 zł/m3
A. 2 975,00 zł
B. 3 400,00 zł
C. 4 600,00 zł
D. 4 450,00 zł
Aby obliczyć łączny koszt zakupu zapraw, niezbędne jest przemnożenie ilości zaprawy przez ich cenę jednostkową, co stanowi standardową praktykę w zarządzaniu kosztami budowy. W opisywanym przypadku mamy 6 m3 zaprawy cementowo-wapiennej M 7 i 17 m3 zaprawy cementowej M 12. Każdy z tych typów zapraw ma różne ceny, które powinny być znane z cennika. Pomnożenie objętości zaprawy przez jednostkową cenę daje koszt dla każdej z zapraw. Następnie, poprzez zsumowanie tych dwóch wartości, uzyskujemy łączny koszt zakupu. Przykładowo, jeżeli cena jednostkowa zaprawy M 7 wynosi 300 zł/m3, a zaprawy M 12 550 zł/m3, to koszt wynosi odpowiednio 1800 zł dla M 7 oraz 9350 zł dla M 12, co daje łączny koszt 11150 zł. Poprawne podejście do obliczeń kosztów materiałowych jest kluczowe w procesie budowlanym, ponieważ wpływa na ostateczny budżet projektu oraz jego rentowność. Dobrą praktyką jest również uwzględnienie ewentualnych zniżek lub kosztów dodatkowych, co może pomóc w dokładniejszym szacowaniu.

Pytanie 31

Warstwę izolacji oznaczoną na rysunku cyfrą 5 należy wykonać z

Ilustracja do pytania
A. jastrychu anhydrytowego.
B. dwóch warstw papy asfaltowej na lepiku.
C. wełny mineralnej granulowanej.
D. twardych płyt styropianowych.
Wybór innych materiałów na warstwę izolacyjną, takich jak jastrych anhydrytowy, wełna mineralna granulowana czy papa asfaltowa na lepiku, oparty jest na błędnym zrozumieniu funkcji, jakie pełni izolacja termiczna. Jastrych anhydrytowy to materiał stosowany głównie jako podkład podłogowy, który nie ma odpowiednich właściwości izolacyjnych. Jego głównym zadaniem jest zapewnienie stabilnej powierzchni do dalszej obróbki, a nie izolacji termicznej, co prowadzi do nieefektywnego zatrzymywania ciepła. Z kolei wełna mineralna granulowana, mimo że ma pewne właściwości izolacyjne, jest najczęściej stosowana w przegrodach pionowych, a nie w podłogach, gdzie wymagana jest solidność i jednolitość warstwy izolacyjnej. Ponadto, jej zastosowanie w podłogach może prowadzić do osiadania materiału, co negatywnie wpływa na jego właściwości izolacyjne. Zastosowanie papy asfaltowej na lepiku jest także nieodpowiednie, gdyż materiał ten jest przeznaczony głównie do hydroizolacji, a nie izolacji termicznej. Nieadekwatne podejście do wyboru materiałów izolacyjnych może prowadzić do znacznych strat ciepła w budynku, co z kolei podnosi koszty ogrzewania oraz wpływa negatywnie na komfort mieszkańców. Zrozumienie specyfiki materiałów oraz ich zastosowań w kontekście izolacji termicznej jest kluczowe dla efektywności energetycznej budynków.

Pytanie 32

Na niewielkiej budowie do przygotowania betonu zastosowano dozowanie objętościowe składników. Murarz miał stworzyć beton zwykły w proporcjach 1 : 2 : 4. Oznacza to, że odmierzył

A. 1 wiadro żwiru, 2 wiadra cementu, 4 wiadra piasku
B. 1 wiadro piasku, 2 wiadra żwiru, 4 wiadra cementu
C. 1 wiadro cementu, 2 wiadra żwiru, 4 wiadra piasku
D. 1 wiadro cementu, 2 wiadra piasku, 4 wiadra żwiru
Poprawna odpowiedź dotyczy proporcji składników betonu, które zostały opisane w formacie 1 : 2 : 4. Oznacza to, że dla każdej jednostki cementu używamy dwóch jednostek piasku i czterech jednostek żwiru. W praktyce, jeśli murarz użył jednego wiadra cementu, powinien zastosować dwa wiadra piasku i cztery wiadra żwiru, co jest zgodne z zasadami dozowania objętościowego. Użycie tych proporcji zapewnia odpowiednią wytrzymałość, trwałość i jednolitość betonu, co jest szczególnie istotne na małych budowach. Dobre praktyki w budownictwie zalecają stosowanie sprawdzonych proporcji, aby uzyskać beton o pożądanych właściwościach mechanicznych. Na przykład, beton w proporcjach 1 : 2 : 4 jest często stosowany w konstrukcjach takich jak chodniki, mury oporowe czy małe fundamenty, gdzie nie jest wymagana wyjątkowa wytrzymałość, ale stabilność i odporność na warunki atmosferyczne są kluczowe. Znajomość i zastosowanie odpowiednich proporcji w mieszankach betonowych jest kluczowe dla realizacji projektów budowlanych zgodnie z obowiązującymi normami oraz praktykami inżynieryjnymi.

Pytanie 33

Z przedstawionego fragmentu rozporządzenia wynika, że budynek biurowy, który ma 9 kondygnacji nadziemnych o wysokości 3,00 m każda, a jego parter usytuowany jest 0,80 m nad poziomem terenu, należy do budynków.

Rozporządzenie ministra infrastruktury w sprawie warunków technicznych, jakim powinny odpowiadać budynki i ich usytuowanie (fragment)
W celu określenia wymagań technicznych i użytkowych wprowadza się następujący podział budynków na grupy wysokości:
1. niskie (N) — do 12 m włącznie nad poziomem terenu lub mieszkalne o wysokości do 4 kondygnacji nadziemnych włącznie,
2. średniowysokie (SW) — ponad 12 m do 25 m włącznie nad poziomem terenu lub mieszkalne o wysokości ponad 4 do 9 kondygnacji nadziemnych włącznie,
3. wysokie (W) — ponad 25 m do 55 m włącznie nad poziomem terenu lub mieszkalne o wysokości ponad 9 do 18 kondygnacji nadziemnych włącznie,
4. wysokościowe (WW) — powyżej 55 m nad poziomem terenu.
A. niskich.
B. wysokich.
C. średniowysokich.
D. wysokościowych.
Zrozumienie, jak się klasyfikuje budynki według wysokości, to bardzo ważna sprawa, bo mogą się pojawić jakieś niejasności. Można spotkać się z odpowiedziami, które mówią, że budynek biurowy z 9 piętrami to coś średniowysokiego, niskiego albo wyskokowego, ale to mija się z prawdą. W przepisach nie ma dokładnej definicji 'średniowysoki', co może prowadzić do zamieszania. Budynek o 27 metrach zdecydowanie nie może być uznany za niski, bo te zazwyczaj mieszczą się poniżej 12 metrów. Jeśli się to pomija, to można wyciągnąć złe wnioski co do projektowania i budowy. Kiedy uznajemy, że budynek jest wysoki, projektanci muszą wziąć pod uwagę różne normy, co wpływa na systemy zabezpieczeń, takie jak windy przeciwpożarowe czy inne instalacje. Jeśli ktoś nie rozumie tego, to może to prowadzić do złego projektowania i niebezpiecznych sytuacji. Dlatego architekci i inżynierowie powinni znać definicje, ale też praktyczne skutki związane z klasyfikacją budynków.

Pytanie 34

Na rysunku przedstawiono lico kamiennego muru

Ilustracja do pytania
A. cyklopowego.
B. dzikiego.
C. warstwowego.
D. rzędowego.
Mur dziki to taki typ, który wyróżnia się tym, że do budowy używa się kamieni o różnych kształtach i rozmiarach. Układa się je w zupełnie przypadkowy sposób, bez żadnych wyraźnych warstw, co daje mu naturalny wygląd. Wiesz, często takie mury spotykamy w budowach oporowych czy przy fundamentach, bo dobrze stabilizują teren. Dzięki kamieniom o różnych wymiarach, lepiej pasują do otoczenia geologicznego, co sprawia, że cała konstrukcja jest stabilniejsza i bardziej trwała. Osobiście uważam, że mur dziki ma też swoje plusy estetyczne, bo ładnie wygląda w różnych krajobrazach. Poza tym, jest odporny na działanie wody, bo te nieregularne kształty sprawiają, że woda nie spływa w jedną stronę, co zmniejsza ryzyko osuwisk. Znajomość takich murów przydaje się architektom i inżynierom, bo mogą lepiej projektować swoje budowle, które są zarówno ładne, jak i funkcjonalne.

Pytanie 35

Do wyrównywania powierzchni tynku służy narzędzie przedstawione na rysunku

Ilustracja do pytania
A. A.
B. B.
C. C.
D. D.
Odpowiedź B jest strzałem w dziesiątkę, bo narzędzie na zdjęciu to właśnie szpachla tynkarska. Bez niej ciężko wyobrazić sobie wyrównywanie tynku. Dzięki szpachli da się naprawdę fajnie nałożyć i wygładzić tynk, co jest mega ważne, jeśli chce się, żeby ściany wyglądały ładnie. Używając szpachli, można uzyskać gładką powierzchnię, co później ma duże znaczenie przy malowaniu albo tapetowaniu. W ekipach budowlanych często korzysta się z szpachek o różnych szerokościach, bo to zależy od tego, co trzeba wyrównać. I jeszcze jedno – obsługa szpachli wymaga trochę wprawy i znajomości technik tynkarskich, co jest super ważne w budowlance. Szpachla jest też przydatna do drobnych napraw, więc naprawdę jest to narzędzie, które warto mieć zawsze pod ręką.

Pytanie 36

Ze względu na swoje właściwości, zaprawa cementowa powinna być używana do realizacji

A. tynków o właściwościach ciepłochronnych
B. silnie obciążonych murów konstrukcyjnych
C. tynków w pomieszczeniach mieszkalnych
D. murów o charakterze tymczasowym
Zaprawa cementowa to naprawdę solidny materiał, który ma świetne właściwości, jeśli chodzi o wytrzymałość na ściskanie i odporność na warunki pogodowe. Dlatego używamy jej głównie w miejscach, gdzie ściany muszą dźwigać spore obciążenie, jak na przykład w wielopiętrowych budynkach. W takich przypadkach ważne jest, żeby zaprawa miała odpowiednią klasę wytrzymałości oraz dobrze przylegała do różnych powierzchni. Mury nośne w takich budynkach muszą być dobrze przygotowane, bo to klucz do bezpieczeństwa i trwałości całej konstrukcji. Jak mówi norma PN-EN 998-1, dobór zaprawy murarskiej powinien być zależny od specyficznych potrzeb projektu, więc dobrze wybrana zaprawa cementowa to naprawdę podstawa, żeby budowla przetrwała jak najdłużej i była funkcjonalna.

Pytanie 37

Na podstawie fragmentu instrukcji producenta oblicz, ile palet pustaków potrzeba do wymurowania dwóch ścian wysokości 4 m, długości 8,5 m i grubości 19 cm każda.

Fragment instrukcji producenta
Wymiary pustaka250×188×220 mm
Masa pustakaok. 8,5 kg
Zużyciegrubość ściany - 25 cm22 szt/m²
grubość ściany - 19 cm17 szt./m²
Liczba pustaków na palecie120 szt.
A. 9 palet
B. 12 palet
C. 13 palet
D. 10 palet
Analizując inne odpowiedzi, można zauważyć typowe błędy związane z obliczaniem potrzebnej ilości pustaków. Często błędne podejście polega na nieuwzględnieniu pełnej powierzchni ścian lub niepoprawnym obliczeniu ilości pustaków na metr kwadratowy. Na przykład, jeżeli ktoś obliczał jedynie powierzchnię jednej ściany, mógłby dojść do błędnego wniosku, że potrzebuje mniej palet. Inne możliwe pomyłki obejmują zaokrąglanie wyniku przed dokonaniem podziału lub błędne przyjęcie liczby pustaków na paletę. Kluczowym elementem w takich obliczeniach jest również zrozumienie, że w budownictwie nie tylko sama liczba pustaków, ale i ich właściwe rozmieszczenie oraz przygotowanie podłoża mają ogromne znaczenie. W praktyce, błędne obliczenia mogą prowadzić do nie tylko do nadmiaru materiałów, ale również do opóźnień w realizacji budowy, co w rezultacie generuje dodatkowe koszty. Właściwe podejście do obliczeń materiałowych powinno być zgodne z normami budowlanymi i standardami stosowanymi w branży, które zalecają dokładne planowanie i przewidywanie potrzeb materiałowych przed rozpoczęciem prac budowlanych.

Pytanie 38

Który rysunek przedstawia schemat wiązania blokowego?

Ilustracja do pytania
A. C.
B. A.
C. B.
D. D.
Wybór nieprawidłowej odpowiedzi może wynikać z niepełnego zrozumienia zasad wiązania blokowego. Każdy z pozostałych rysunków przedstawia inne rodzaje wiązań, które nie spełniają kryteriów charakterystycznych dla wiązania blokowego. Na przykład, możliwe, że rysunki A, B, lub D ukazują wiązania w innych konfiguracjach, takich jak wiązanie w styk, które polega na układaniu cegieł w bezpośrednim sąsiedztwie, co może prowadzić do koncentracji obciążeń w miejscach styku. Taki sposób układania cegieł jest mniej stabilny i narażony na pęknięcia, co jest sprzeczne z zasadami dobrego budownictwa. Często podczas nauki o różnych rodzajach wiązań cegieł, nie zwraca się uwagi na praktyczne konsekwencje ich wyboru, co prowadzi do błędnych wniosków. Ważne jest, aby pamiętać, że każde wiązanie ma swoje specyficzne zastosowania oraz ograniczenia, a ich stosowanie powinno być zgodne z obowiązującymi normami budowlanymi. Zrozumienie tych różnic jest kluczowe dla właściwego projektowania i wykonawstwa, a także dla zapewnienia trwałości i bezpieczeństwa konstrukcji. Warto zatem zgłębić temat różnych rodzajów wiązań, aby umiejętnie je stosować w praktyce budowlanej, przyczyniając się tym samym do podniesienia jakości realizowanych projektów.

Pytanie 39

Tynk dwu warstwowy składa się z jakich elementów?

A. narzutu i gładzi
B. gruntownika i narzutu
C. obrzutki i gładzi
D. obrzutki i narzutu
Wybór odpowiedzi wskazujących na inne kombinacje warstw tynku dwuwarstwowego, takie jak gruntownik oraz narzut, obrzutka i gładź, czy narzut i gładź, wynika z nieporozumienia co do terminologii i zastosowania tych materiałów. Gruntownik jest produktem używanym w przygotowaniu podłoża, ale nie stanowi samodzielnej warstwy w tynku dwuwarstwowym. Z kolei gładź, będąca materiałem wykończeniowym, jest stosowana głównie w celu uzyskania idealnie gładkiej powierzchni, ale nie pełni roli w systemie tynku dwuwarstwowego, który wymaga konkretnego układu warstw dla zapewnienia właściwej trwałości i estetyki. Obrzutka i gładź to połączenie, które może prowadzić do błędnego zrozumienia funkcji tych materiałów. Obrzutka ma bowiem za zadanie odpowiednie przygotowanie podłoża i jego zgrubnienie, podczas gdy gładź służy wyłącznie do estetycznych wykończeń. W praktyce, stosowanie niewłaściwych warstw może skutkować problemami, takimi jak złe przyczepności tynku do podłoża, co może prowadzić do jego odspajania czy pękania. W kontekście branżowych standardów, ważne jest, aby stosować się do określonych norm dotyczących aplikacji tynku, co zapewnia nie tylko estetykę, ale przede wszystkim funkcjonalność i trwałość konstrukcji.

Pytanie 40

Oblicz wydatki na robociznę wzniesienia 100 m2 ścian obiektu z pustaków Porotherm, mając na uwadze, że czas potrzebny na wykonanie 1 m2 muru z tych pustaków wynosi 1,15 h, przy założonym 10-godzinnym czasie pracy, a wynagrodzenie murarza to 140 zł.

A. 1 610 zł
B. 1 410 zł
C. 2 012 zł
D. 1 232 zł
Obliczając koszt robocizny, kluczowe jest zrozumienie, jak różne parametry wpływają na całkowity koszt projektu budowlanego. W przypadku błędnych odpowiedzi błędy mogą wynikać z niewłaściwego podejścia do przeliczeń roboczogodzin i dniówek. Przyjmowanie stawki za roboczogodzinę na poziomie 14 zł, bez uwzględnienia rzeczywistego czasu pracy, może prowadzić do znaczących różnic w kosztach. Warto również zauważyć, że niektóre odpowiedzi mogą wynikać z założenia, że czas pracy na m2 jest zaniżony, co w rzeczywistości może prowadzić do sytuacji, w której przewidujemy mniej dni roboczych, niż jest to potrzebne. W budownictwie stosuje się standardy, które zalecają rzetelne pomiary i dokładne kalkulacje, aby uniknąć nieprzewidzianych kosztów. Również zaniedbanie zasad ergonomii w pracy może wpłynąć na wydajność murarzy, co w dłuższej perspektywie przekłada się na wyższe koszty robocizny. Dlatego kluczowe jest precyzyjne oszacowanie potrzebnych zasobów i czasu pracy, aby zapewnić efektywność i zgodność z budżetem projektu. Analizując różne odpowiedzi, dostrzegamy, że zrozumienie zasad ekonomiki budownictwa jest fundamentalne dla prawidłowego oszacowania zarówno kosztów, jak i czasu pracy."