Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.03 - Montaż, uruchamianie i konserwacja urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 13 lutego 2026 01:30
  • Data zakończenia: 13 lutego 2026 01:54

Egzamin zdany!

Wynik: 36/40 punktów (90,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Negatywny wpływ intensywnych fal elektromagnetycznych emitowanych przez działające urządzenie mechatroniczne można zredukować, stosując osłonę w postaci obudowy

A. metalowej
B. z żywicy epoksydowej
C. polwinitowej
D. drewnianej
Ekranowanie urządzeń mechatronicznych ma kluczowe znaczenie w zarządzaniu wpływem silnych fal elektromagnetycznych. Obudowy metalowe są najskuteczniejszym rozwiązaniem, ponieważ metale wykazują właściwości pochłaniające oraz odbijające fale elektromagnetyczne, co skutecznie minimalizuje ich przenikanie do wnętrza obudowy. Przykładem zastosowania metalowych obudów są urządzenia telekomunikacyjne, które muszą spełniać normy EMC (electromagnetic compatibility), co zapewnia ich prawidłowe funkcjonowanie w środowiskach o wysokim poziomie zakłóceń elektromagnetycznych. Standardy takie jak EN 55032 określają wymagania dotyczące emisji elektromagnetycznej, a obudowy metalowe są kluczowym elementem w ich spełnianiu. Dodatkowo, metalowe ekranowanie jest stosowane w wielu aplikacjach przemysłowych, takich jak maszyny CNC, gdzie zakłócenia mogą prowadzić do błędów w obróbce. Warto również wspomnieć, że odpowiednia konstrukcja obudowy, uwzględniająca różne czynniki, takie jak grubość materiału czy typ metalu, ma znaczący wpływ na efektywność ekranowania. Dlatego wybór metalowej obudowy jest najlepszym rozwiązaniem w kontekście ochrony przed niekorzystnymi skutkami fal elektromagnetycznych.

Pytanie 2

W przenośniku taśmowym zastosowano napęd mechatroniczny, którego schemat blokowy przedstawiono na rysunku. Który element umożliwiający programowe zmiany prędkości obrotowej silników napędowych oznaczono znakiem zapytania?

Ilustracja do pytania
A. Mostek typu H.
B. Softstart.
C. Przemiennik częstotliwości.
D. Prostownik sterowany.
Przemiennik częstotliwości, znany także jako falownik, jest kluczowym elementem w układach napędu elektrycznego, umożliwiającym precyzyjne kontrolowanie prędkości obrotowej silników. W kontekście przenośnika taśmowego, pozwala on na dostosowanie prędkości taśmy do zmieniających się warunków pracy, co jest niezbędne w wielu aplikacjach przemysłowych, gdzie obciążenie i wymagania transportowe mogą się różnić. Dzięki zastosowaniu przemiennika, operatorzy mogą optymalizować zużycie energii, unikając nadmiernego zużycia prądu w momentach, gdy pełna moc nie jest wymagana. W praktyce, regulacja częstotliwości zasilania silnika elektrycznego przekłada się na proporcjonalną zmianę jego prędkości obrotowej, co pozwala na osiągnięcie wyspecjalizowanych parametrów pracy. W standardach branżowych, takich jak IEC 61800, przemienniki częstotliwości są uznawane za efektywne urządzenia do zarządzania energią i zwiększania efektywności energetycznej systemów napędowych, co czyni ich nieodzownym elementem nowoczesnych systemów automatyki.

Pytanie 3

Który typ łożyska należy zastosować w zespole mechanicznym wiedząc, że średnica gniazda wynosi 35 mm, jego wysokość wynosi 11 mm, natomiast średnica zewnętrzna wału wynosi 10 mm?

TYPWymiary
dDB
7200 B10309
7300 B103511
7202 B153511
7302 B154213
7203 B174012
7207 B357217
7307 B358021
Ilustracja do pytania
A. Typ 7202 B
B. Typ 7307 B
C. Typ 7300 B
D. Typ 7200 B
Typ łożyska 7300 B jest odpowiedni do podanych wymiarów, ponieważ jego średnica wewnętrzna wynosi 10 mm, co idealnie pasuje do średnicy zewnętrznej wału, oraz wysokość wynosi 11 mm. W przypadku zastosowań mechanicznych, wybór właściwego łożyska jest kluczowy dla zapewnienia efektywności i trwałości całego zespołu. Wybierając łożysko, warto także zwrócić uwagę na jego zdolność do przenoszenia obciążeń, co w typie 7300 B jest zapewnione dzięki odpowiedniej konstrukcji i zastosowanym materiałom. Takie łożysko znajduje szerokie zastosowanie w maszynach przemysłowych, gdzie wymagana jest precyzja i niezawodność. Należy również pamiętać, że dobór łożyska powinien być zgodny z normami ISO oraz innymi standardami branżowymi, co zapewnia jego funkcjonalność w różnych aplikacjach. W praktyce, stosowanie właściwego typu łożysk pozwala na minimalizację awarii oraz zwiększenie wydajności pracy maszyn.

Pytanie 4

Dobierz minimalny zestaw sterownika S7-200 do realizacji sterowania windą w budynku trzykondygnacyjnym. Wykorzystaj w tym celu opis elementów wejściowych/wyjściowych podłączonych do sterownika.

Elementy
wejściowe
jeden czujnik na każdej kondygnacji informujący o stanie drzwi zewnętrznych (otwarte/zamknięte)
jeden czujnik na każdej kondygnacji informujący o położeniu windy
jeden przycisk na każdej kondygnacji przywołujący windę
3 przyciski wewnątrz windy służące do wyboru kondygnacji
jeden przycisk wewnątrz windy informujący o awarii (AWARIA)
Elementy
wyjściowe
dwa styczniki załączające otwieranie i zamykanie drzwi
dwa styczniki uruchamiające jazdę kabiny na dół i jazdę kabiny do góry
A. S7-200 o 24 wejściach i 16 wyjściach
B. S7-200 o 8 wejściach i 6 wyjściach
C. S7-200 o 14 wejściach i 10 wyjściach
D. S7-200 o 6 wejściach i 4 wyjściach
Odpowiedź "S7-200 o 14 wejściach i 10 wyjściach" jest poprawna, ponieważ aby skutecznie zrealizować system sterowania windą w budynku trzykondygnacyjnym, należy uwzględnić liczbę niezbędnych wejść i wyjść. W przypadku takiego systemu potrzeba przynajmniej 13 wejść do monitorowania różnych czujników oraz 4 wyjścia do kontroli silników i sygnalizacji świetlnej. Sterownik S7-200 o 14 wejściach i 10 wyjściach zapewnia wystarczające zasoby, aby nie tylko zrealizować podstawowe funkcje, ale także pozostawia pewien zapas na przyszłe rozszerzenia lub dodatkowe czujniki. Praktyczne zastosowanie tego typu sterownika w budynkach wielokondygnacyjnych jest zgodne z normami automatyki budynkowej, które zalecają przy projektowaniu systemów zwracanie uwagi na elastyczność i możliwość rozbudowy. Warto również wspomnieć, że dobór odpowiednich komponentów jest kluczowy dla zapewnienia bezpieczeństwa użytkowników, co podkreśla znaczenie przestrzegania dobrych praktyk inżynieryjnych w projektowaniu systemów automatyki.

Pytanie 5

Radarowy czujnik wykorzystujący efekt Dopplera pozwala na określenie wartości

A. prędkości
B. nadciśnienia
C. temperatury
D. podciśnienia
Sensor radarowy działający na zasadzie efektu Dopplera jest wykorzystywany przede wszystkim do pomiaru prędkości obiektów. Efekt Dopplera polega na zmianie częstotliwości fali elektromagnetycznej w zależności od ruchu źródła fali oraz obserwatora. W kontekście radaru, gdy obiekt porusza się w kierunku sensora, fale radarowe są przesuwane ku wyższej częstotliwości, a gdy się oddala, dochodzi do obniżenia częstotliwości. Ta zmiana częstotliwości jest bezpośrednio związana z prędkością obiektu. Przykładem zastosowania tej technologii jest pomiar prędkości pojazdów w systemach monitorowania ruchu drogowego oraz w radarach meteorologicznych do analizy prędkości wiatru. W praktyce, radary oparte na efekcie Dopplera są standardem w wielu dziedzinach, takich jak lotnictwo, motoryzacja czy meteorologia, co czyni je nieocenionym narzędziem w nowoczesnej technologii pomiarowej.

Pytanie 6

Na rysunku przedstawiono

Ilustracja do pytania
A. zabezpieczenie przeciążeniowe.
B. przekaźnik czasowy.
C. wyłącznik silnikowy.
D. układ antyprzepięciowy.
Przykładem prawidłowej odpowiedzi jest przekaźnik czasowy, którego główną funkcją jest zarządzanie czasem w procesach automatyki. Urządzenie to umożliwia opóźnienie włączenia lub wyłączenia obwodów elektrycznych, co jest kluczowe w wielu aplikacjach przemysłowych. Przekaźniki czasowe znajdują zastosowanie w automatyzacji procesów, takich jak zarządzanie oświetleniem, wentylacją czy włączanie urządzeń w odpowiednich przedziałach czasowych. Dzięki regulowanym pokrętłom do ustawiania czasu, operatorzy mogą dostosować czas działania urządzenia do specyficznych potrzeb systemu. Standardy branżowe, takie jak IEC 60947-5-1, definiują wymagania dla takich urządzeń, co zapewnia ich niezawodność i bezpieczeństwo użytkowania. Znajomość i umiejętność prawidłowego używania przekaźników czasowych jest fundamentalna w projektowaniu układów automatyki, co pozwala na efektywne wykorzystanie zasobów i redukcję kosztów operacyjnych.

Pytanie 7

Na rysunku przedstawiono połączenie uzwojeń silnika na tabliczce zaciskowej w

Ilustracja do pytania
A. zygzak.
B. trójkąt.
C. podwójną gwiazdę.
D. gwiazdę.
Jeśli wybrałeś coś innego niż "trójkąt", to sądzę, że może być coś nie tak z Twoim rozumieniem połączeń uzwojeń w silnikach. Połączenie w gwiazdę oczywiście jest też stosowane, ale różni się od trójkąta, bo uzwojenia są tam połączone w jednym punkcie i to zmienia parametry pracy. W gwieździe obniża się napięcie i moment obrotowy, co czasem może być przydatne, ale nie zawsze, szczególnie jak potrzebujesz pełnej mocy. A co do połączenia zygzakowego, to to chyba jakieś nieporozumienie, bo to nie jest standardowa metoda. Jest też połączenie podwójnej gwiazdy, ale to rzadko się stosuje i tylko w specyficznych przypadkach. Musisz lepiej zrozumieć te różnice, bo to ważne w projektowaniu i użytkowaniu systemów elektrycznych. Często ludzie mylą sobie wymagania co do napięcia, mocy czy momentu, co prowadzi do błędnych decyzji.

Pytanie 8

Który opis siłowników hydraulicznych przedstawionych na rysunkach jest poprawny?

Siłownik hydraulicznyA.B.C.D.
TeleskopowyRys. 1Rys. 4Rys. 3Rys. 4
Jednostronnego działaniaRys. 2Rys. 1Rys. 4Rys. 1
Dwustronnego działania z dwustronnym tłoczyskiemRys. 3Rys. 2Rys. 1Rys. 3
Dwustronnego działania z jednostronnym tłoczyskiemRys. 4Rys. 3Rys. 2Rys. 2
Ilustracja do pytania
A. D.
B. A.
C. B.
D. C.
Poprawna odpowiedź to D, ponieważ rysunek 4 przedstawia siłownik teleskopowy, który jest konstrukcją wykorzystywaną w wielu zastosowaniach inżynieryjnych i przemysłowych. Siłowniki teleskopowe charakteryzują się tym, że składają się z kilku segmentów, które mogą się wysuwać jeden z drugiego, co pozwala na uzyskanie dużych skoków przy stosunkowo niewielkich wymiarach konstrukcyjnych. Tego typu siłowniki znajdują zastosowanie w budownictwie, automatyce przemysłowej, a także w systemach transportowych, gdzie przestrzeń jest ograniczona. W kontekście standardów branżowych, siłowniki teleskopowe muszą spełniać określone normy dotyczące wytrzymałości i bezpieczeństwa, co zapewnia ich niezawodność i długą żywotność w trudnych warunkach pracy. Zrozumienie różnych typów siłowników hydraulicznych, takich jak jednostronne czy dwustronne, jest kluczowe dla prawidłowego doboru komponentów w systemach hydraulicznych.

Pytanie 9

Którego z przedstawionych na ilustracjach elementów należy użyć do połączenia pneumatycznego przewodu gumowego z instalacją sprężonego powietrza wyposażoną w gniazdo szybkozłącza?

Ilustracja do pytania
A. Elementu 2.
B. Elementu 3.
C. Elementu 4.
D. Elementu 1.
Jak wybierzesz niewłaściwe elementy do połączenia przewodu gumowego z systemem sprężonego powietrza, to możesz się narazić na różne problemy, jak nieszczelności i spadek efektywności całego układu. Elementy 1, 2 i 3 nie nadają się do gniazda szybkozłącza, przez co łatwo można coś pomylić. Zdarza się, że ludzie mylą te rzeczy przez brak wiedzy o ich specyfikacji. Każdy element w instalacji musi być odpowiednio dobrany, bo inaczej można uszkodzić sprzęt, a to oznacza dodatkowe koszty na naprawy. Branżowe standardy mówią jasno, jakie złącza do czego są, więc trzeba na to zwracać uwagę. Często można spotkać się z błędem myślowym, że wszystko da się zastosować zamiennie. A to nieprawda – każdy typ złącza ma swoje własne właściwości, które są bardzo ważne dla bezpieczeństwa i efektywności całej instalacji.

Pytanie 10

Siłownik, który przesuwa tłok w jedną stronę dzięki sprężonemu powietrzu, a powrót tłoka jest wymuszany przez sprężynę, określamy jako siłownik pneumatyczny

A. dwustronnej pracy.
B. różnicowy.
C. jednostronnej pracy.
D. dwustronnej pracy, bez amortyzacji.
Siłownik jednostronnego działania to urządzenie, w którym sprężone powietrze działa na tłok jedynie w jednym kierunku, podczas gdy jego powrót do pozycji wyjściowej jest wymuszany przez sprężynę. Tego typu siłowniki są powszechnie stosowane w aplikacjach, gdzie nie jest wymagane ciągłe działanie w obie strony, co czyni je idealnym rozwiązaniem w systemach automatyki i pneumatyki. Przykładem zastosowania siłowników jednostronnego działania są chwytaki pneumatyczne, które chwytają obiekty w jednym kierunku, a następnie powracają do pozycji startowej dzięki sprężynie. Warto zwrócić uwagę, że siłowniki tego typu są często projektowane zgodnie z normami ISO, co zapewnia ich wysoką jakość i niezawodność. Dodatkowo, ograniczenie ruchu do jednej strony pozwala na oszczędność miejsca oraz efektywniejsze wykorzystanie sprężonego powietrza, co przekłada się na niższe koszty eksploatacyjne w dłuższej perspektywie czasowej.

Pytanie 11

Wartość sygnału binarnego (11100111)2 na wyjściu ośmiobitowego przetwornika A/C w urządzeniu mechatronicznym odpowiada liczbie dziesiętnej

A. (230)10
B. (255)10
C. (231)10
D. (254)10
Sygnał binarny (11100111)<sub>2</sub> odpowiada liczbie dziesiętnej (231)<sub>10</sub> ze względu na konwersję z systemu binarnego na dziesiętny. Aby to przeliczyć, możemy rozłożyć wartość binarną na poszczególne bity: 1*2<sup>7</sup> + 1*2<sup>6</sup> + 1*2<sup>5</sup> + 0*2<sup>4</sup> + 0*2<sup>3</sup> + 1*2<sup>2</sup> + 1*2<sup>1</sup> + 1*2<sup>0</sup>, co daje 128 + 64 + 32 + 0 + 0 + 4 + 2 + 1 = 231. Tego typu przetwarzanie sygnałów jest kluczowe w systemach mechatronicznych, gdzie przetworniki analogowo-cyfrowe (A/C) umożliwiają digitalizację sygnałów w celu dalszej obróbki. Przykład zastosowania to systemy pomiarowe, gdzie wartości analogowe, takie jak napięcie, są przetwarzane na formę cyfrową umożliwiającą ich analizę przez procesory. Zrozumienie konwersji binarnej jest fundamentalne dla inżynierów zajmujących się automatyką oraz elektroniką, a znajomość tych procesów przyczynia się do poprawnej konstrukcji oraz interpretacji danych w systemach przetwarzania informacji.

Pytanie 12

Który miernik należy zastosować w układzie, którego schemat przedstawiono na ilustracji, w celu pomiaru napięcia metodą bezpośrednią?

Ilustracja do pytania
A. Woltomierz.
B. Omomierz.
C. Watomierz.
D. Amperomierz.
Woltomierz jest kluczowym narzędziem w pomiarach elektrycznych, które umożliwia bezpośrednie określenie napięcia w obwodzie. Jego zastosowanie polega na podłączeniu do układu równolegle do elementu, którego napięcie chcemy zmierzyć. Dzięki temu woltomierz nie zakłóca pracy obwodu, co jest zgodne z zasadami pomiarów elektrycznych. Przykładowo, w praktyce inżynierskiej, woltomierz jest używany do sprawdzania napięcia w obwodach zasilających urządzenia, co pozwala na ocenę ich stanu funkcjonalności. Zgodnie z normami IEC, pomiar napięcia powinien być przeprowadzany z użyciem sprzętu odpowiedniego do wartości mierzonych oraz warunków pracy - woltomierze cyfrowe są w tym przypadku preferowane ze względu na ich dokładność i łatwość odczytu. Dodatkowo, woltomierze mogą mieć różne tryby pracy, co pozwala na pomiar zarówno napięcia stałego, jak i zmiennego, co czyni je wszechstronnym narzędziem inżynierskim.

Pytanie 13

Zgodnie z wytycznymi producenta przedstawionymi w tabeli układ sterowniczy urządzenia mechatronicznego pracującego przy napięciu zasilania 24 V DC należy połączyć przewodami w kolorach żółto-zielonym oraz

Nazwa przewoduOznaczenie przewodu lub zacisku kodem alfanumerycznymOznaczenie przewodu kolorem
Przewód liniowy 1 (AC)
Przewód liniowy 2 (AC)
Przewód liniowy 3 (AC)
L1
L2
L3
czarnym lub
brązowym, lub szarym
Przewód neutralny (AC)N
Przewód środkowy (AC)Mniebieskim
Przewód dodatni (DC)L+czerwonym
Przewód ujemny (DC)L-czarnym
Przewód ochronny
Przewód ochronno-neutralny
Przewód ochronno-liniowy
Przewód ochronno-środkowy
PE
PEN
PEL
PEM
żółto-zielonym
A. czarnym i niebieskim.
B. brązowym i niebieskim.
C. szarym i niebieskim.
D. czerwonym i czarnym.
Odpowiedź jest poprawna, ponieważ zgodnie z wytycznymi producenta, przewód dodatni w układach zasilania DC oznaczony jest kolorem czerwonym, a przewód ujemny kolorem czarnym. W praktyce, oznaczenia kolorami przewodów mają na celu ułatwienie prawidłowego podłączenia komponentów elektronicznych i mechatronicznych, minimalizując ryzyko błędów, które mogą prowadzić do uszkodzenia urządzeń. Użycie przewodów w kolorach czerwonym i czarnym jest zgodne z powszechnie przyjętymi standardami, jak np. normy IEC 60446, które definiują oznaczenia kolorów przewodów elektrycznych. W kontekście układów zasilania 24 V DC, prawidłowe podłączenie przewodów jest kluczowe dla zapewnienia stabilności i bezpieczeństwa systemu. Dodatkowo, w przypadku błędnego podłączenia, mogą wystąpić usterki w działaniu urządzenia, a nawet jego trwałe uszkodzenie, co podkreśla znaczenie przestrzegania ustalonych zasad i norm w praktyce inżynierskiej.

Pytanie 14

Po przesunięciu suwaka potencjometru z pozycji "c" do pozycji "a" wartość prądu płynącego w obwodzie

Ilustracja do pytania
A. zmaleje i będzie równa 6 mA
B. wzrośnie i będzie równa 4 mA
C. wzrośnie i będzie równa 6 mA
D. zmaleje i będzie równa 4 mA
Przesunięcie suwaka potencjometru z pozycji "c" do pozycji "a" skutkuje wyłączeniem rezystancji potencjometru z obwodu, co prowadzi do zmniejszenia całkowitej rezystancji obwodu. Przy stałym napięciu zasilania, zgodnie z prawem Ohma (I = U/R), mniejsza rezystancja powoduje wzrost prądu. W tym przypadku, całkowita rezystancja obwodu po przesunięciu suwaka wynosi 4kΩ. Przy standardowym napięciu 24V, obliczamy prąd: I = 24V / 4000Ω = 0,006A, co odpowiada 6 mA. Taka zmiana prądu jest istotna w kontekście obwodów elektronicznych, gdzie precyzyjne regulowanie wartości prądu ma kluczowe znaczenie dla poprawnej pracy urządzeń. Przykładem zastosowania może być układ audio, w którym regulacja głośności odbywa się za pomocą potencjometru. Zmniejszenie rezystancji prowadzi do większego prądu, co z kolei wpływa na głośność emitowanego dźwięku. Takie zasady są fundamentem w projektowaniu układów elektronicznych i są szeroko stosowane w praktyce inżynierskiej.

Pytanie 15

Który rodzaj sprężarki powietrza przedstawiono na rysunku?

Ilustracja do pytania
A. Spiralną.
B. Śrubową.
C. Membranową.
D. Tłokową.
Sprężarka tłokowa, przedstawiona na rysunku, jest jednym z najpopularniejszych rodzajów sprężarek powietrza używanych w różnych branżach. Wykorzystuje ruch tłoków w cylindrach do sprężania powietrza, co pozwala na znaczne zwiększenie ciśnienia. Tego typu sprężarki są często stosowane w warsztatach, zakładach przemysłowych, a także w systemach klimatyzacyjnych i chłodniczych. Ich zaletą jest prostota konstrukcji oraz możliwość osiągania wysokich ciśnień. Sprężarki tłokowe są zgodne z wieloma międzynarodowymi standardami jakości, takimi jak ISO 9001, co potwierdza ich niezawodność i efektywność. Przykładem zastosowania sprężarek tłokowych są urządzenia pneumatyczne, narzędzia wiertnicze oraz systemy automatyzacji przemysłowej, gdzie wymagana jest stała i wydajna dostawa sprężonego powietrza. Warto zaznaczyć, że poprawne użytkowanie oraz konserwacja sprężarek tłokowych, zgodnie z zaleceniami producentów, mają kluczowe znaczenie dla ich długowieczności i efektywności operacyjnej.

Pytanie 16

Maksymalne napięcie na analogowym wejściu kontrolera PLC wynosi 10 V DC, a rozdzielczość tego wejścia, wynosząca około 40 mV, zapewnia zastosowanie kontrolera PLC z przetwornikiem A/C.

A. 64-bitowym
B. 8-bitowym
C. 16-bitowym
D. 32-bitowym
Wybór odpowiedzi 16-bitowej, 32-bitowej czy 64-bitowej jest błędny w kontekście określonej rozdzielczości 40 mV. Te formaty oferują znacznie większą liczbę poziomów rozdzielczości, co prowadzi do nieadekwatnych wyników w tym przypadku. Przykładowo, 16-bitowy przetwornik A/C generuje 65,536 poziomów (2^16), co w przypadku 10 V daje krok napięcia równy około 0,15 mV. Tak mała rozdzielczość jest niepraktyczna, gdy wymagana rozdzielczość wynosi 40 mV. Podobnie, 32-bitowe i 64-bitowe przetworniki oferują jeszcze wyższą precyzję, która w tym kontekście jest zbyteczna. Wybierając zbyt wysoką rozdzielczość, można napotkać problemy związane z przetwarzaniem danych i ich interpretacją, co w praktyce może obniżyć efektywność systemu. Często użytkownicy mylnie zakładają, że wyższa rozdzielczość jest zawsze lepsza, co prowadzi do nieefektywnego wykorzystania zasobów. Dobór odpowiedniego przetwornika A/C powinien być dostosowany do specyficznych wymagań aplikacji, biorąc pod uwagę zarówno wymagania dotyczące rozdzielczości, jak i szybkości pomiaru. W rzeczywistości, dla wielu zastosowań przemysłowych, 8-bitowy przetwornik A/C zapewnia wystarczającą dokładność, co potwierdzają standardy branżowe oraz praktyki inżynieryjne.

Pytanie 17

Przedstawiony na rysunku czujnik Pt100 jest przeznaczony do pomiaru

Ilustracja do pytania
A. poziomu cieczy.
B. temperatury cieczy.
C. przepływu w cieczy.
D. ciśnienia cieczy.
Czujnik Pt100 jest jednym z najpowszechniej stosowanych czujników temperatury w przemyśle i laboratoriach. Jego zasada działania opiera się na zmianie rezystancji platyny w funkcji temperatury, co czyni go bardzo dokładnym i stabilnym rozwiązaniem. Przy 0°C rezystancja wynosi dokładnie 100 omów, co pozwala na precyzyjne pomiary w szerokim zakresie temperatur, zazwyczaj od -200°C do 850°C. Czujniki te są stosowane w wielu aplikacjach, od monitorowania procesów przemysłowych, przez systemy HVAC, aż po laboratoria naukowe. Warto podkreślić, że stosowanie czujników Pt100 jest zgodne z międzynarodowymi standardami, takimi jak IEC 60751, co zapewnia ich wysoką jakość i niezawodność. Dzięki ich precyzyjności i stabilności, czujniki te są często wybierane do zastosowań wymagających dokładnych danych temperaturowych, co w praktyce może wpływać na wydajność i bezpieczeństwo różnych procesów.

Pytanie 18

Osoba pracująca przy monitorze komputerowym ma prawo do

A. zmniejszenia o 10 minut czasu pracy za każdą godzinę pracy
B. skrócenia o 5 minut czasu pracy za każdą godzinę pracy
C. 10-minutowej przerwy po każdej godzinie pracy, wliczanej do czasu pracy
D. 5-minutowej przerwy po każdej godzinie pracy, wliczanej do czasu pracy
Dobra robota! Wskazanie, że powinna być 5-minutowa przerwa po każdej godzinie pracy, to zgodne z tym, co mówią przepisy. Takie przerwy są ważne, bo pomagają zadbać o zdrowie, zwłaszcza kiedy się spędza tyle czasu przed komputerem. Regularne oderwanie wzroku od ekranu to dobry pomysł, bo to może zmniejszyć zmęczenie oczu i poprawić krążenie. Z mojego doświadczenia takie przerwy naprawdę pomagają w pracy, bo pozwalają się zrelaksować i lepiej się skupić. Wiele firm zauważa korzyści płynące z promowania zdrowych nawyków, więc organizują szkolenia na temat ergonomii i przypominają pracownikom o przerwach. Warto to mieć na uwadze, bo to może się przełożyć na lepsze samopoczucie i satysfakcję z pracy.

Pytanie 19

Na rysunku przedstawiono pneumatyczną prasę do wtłaczania tulejek. Cyfrą 2 oznaczono

Ilustracja do pytania
A. wspornik.
B. siłownik.
C. dźwignię.
D. trzpień.
Na rysunku przedstawiono siłownik pneumatyczny, co jest kluczowym elementem w systemach automatyzacji i mechanizacji procesów produkcyjnych. Siłownik pneumatyczny konwertuje energię sprężonego powietrza na ruch mechaniczny, co jest niezbędne w wielu zastosowaniach przemysłowych, takich jak montaż, pakowanie czy formowanie. W przypadku siłowników należnych do standardowych aplikacji, ich budowa składa się z korpusu, tłoka oraz osprzętu do podłączenia do źródła sprężonego powietrza. Rozpoznawanie siłowników pneumatycznych jest istotne dla inżynierów i techników zajmujących się automatyzacją, gdyż pozwala na dobór odpowiednich komponentów do systemów zasilania. W praktyce, wdrożenie siłowników pneumatycznych może poprawić efektywność procesów oraz zredukować czas potrzebny na realizację zadań, co przyczynia się do zwiększenia wydajności produkcji. Dobrą praktyką jest regularne serwisowanie siłowników, aby zapewnić ich bezawaryjność i długą żywotność, co jest zgodne z zaleceniami producentów oraz normami branżowymi.

Pytanie 20

Aby zmierzyć napięcie na cewce elektrozaworu o nominalnym Un = 24 V, zastosowano analogowy woltomierz z 75 podziałami na skali, ustawiony na zakres 30 V. Ile podziałów wskaże ten woltomierz, jeśli napięcie na cewce elektrozaworu jest poprawne?

A. 30
B. 60
C. 75
D. 24
Odpowiedź 60 działek jest prawidłowa, ponieważ w celu obliczenia, ile działek wskaże woltomierz przy napięciu 24 V, należy najpierw ustalić, na ile jednostek odpowiada zakres 30 V woltomierza o 75 działkach. Każda działka na skali woltomierza odpowiada napięciu równemu 30 V / 75 działek = 0,4 V na działkę. Następnie, aby obliczyć, ile działek odpowiada napięciu 24 V, dzielimy 24 V przez wartość jednej działki: 24 V / 0,4 V/działkę = 60 działek. Takie podejście jest zgodne z praktykami stosowanymi w pomiarach elektrotechnicznych, gdzie dokładność i znajomość charakterystyki używanego sprzętu są kluczowe. Woltomierz analogowy jest przydatnym narzędziem w diagnostyce układów elektronicznych, a jego prawidłowe odczytywanie skali pozwala na szybką ocenę stanu urządzeń oraz systemów. Przykładem zastosowania jest kontrola elementów w instalacjach automatyki przemysłowej, gdzie precyzyjne pomiary napięcia mogą zapobiegać uszkodzeniom sprzętu oraz zapewniać ich efektywność operacyjną.

Pytanie 21

Do jakiego rodzaju pracy przystosowany jest silnik indukcyjny, którego tabliczkę znamionową przedstawiono na rysunku?

Ilustracja do pytania
A. Ciągłej.
B. Okresowej przerywanej z rozruchem.
C. Dorywczej.
D. Okresowej przerywanej.
Silnik indukcyjny oznaczony jako 'Praca S1' na tabliczce znamionowej jest przystosowany do pracy ciągłej, co oznacza, że może on funkcjonować przez dłuższy czas w stałych warunkach. Praca ciągła jest standardem w wielu zastosowaniach przemysłowych, gdzie silniki są wykorzystywane w maszynach produkcyjnych, wentylatorach, pompach oraz innym sprzęcie, który wymaga nieprzerwanego działania. Zastosowanie takiego silnika w sytuacjach, gdzie obciążenie jest stabilne, pozwala na efektywne wykorzystanie energii oraz minimalizację zużycia energii elektrycznej. W praktyce, silniki klasy S1 są projektowane z myślą o optymalizacji wydajności i trwałości, a ich wskaźniki, takie jak moment obrotowy i moc, są dostosowane do specyficznych potrzeb aplikacji. Dodatkowo, takie silniki muszą spełniać normy dotyczące wydajności energetycznej, co ma kluczowe znaczenie w kontekście zrównoważonego rozwoju i minimalizacji wpływu na środowisko.

Pytanie 22

Podwyższenie temperatury oleju w systemie hydraulicznym prowadzi do

A. zwiększenia efektywności układu
B. zmniejszenia objętości oleju
C. zwiększenia lepkości oleju
D. zmniejszenia lepkości oleju
Jak temperatura oleju w hydraulice rośnie, to jego lepkość spada. Fajnie, bo to zjawisko można zobaczyć nie tylko w olejach hydraulicznych, ale i w innych cieczach. Po prostu, im wyższa temperatura, tym cząsteczki oleju mają więcej energii i szybciej się poruszają. W praktyce, olej staje się bardziej płynny, co znaczy, że lepiej krąży w układzie hydraulicznym. Dzięki mniejszej lepkości łatwiej pokonywane są opory, co sprawia, że wszystko działa lepiej. W branży hydraulicznej dobrze jest pilnować temperatury oleju. Jak pracuje długo w wysokich temperaturach, to warto pomyśleć o wymianie lub użyciu innego oleju, który lepiej znosi upały. Te wszystkie standardy, jak ISO 4406 dotyczący czystości oleju, są mega ważne, by olej zachował swoje właściwości w trudniejszych warunkach.

Pytanie 23

Na rysunku przedstawione zostały fragmenty dwóch elementów, które należy połączyć techniką połączenia wciskowego wtłaczanego. Jaka powinna być zależność pomiędzy wymiarami d1 i d2?

Ilustracja do pytania
A. d1 > d2
B. d1 = d2
C. d1 ≤ d2
D. d1 < d2
Odpowiedź, w której d1 jest większe od d2, jest poprawna, ponieważ technika połączenia wciskowego wtłaczanego wymaga, aby średnica elementu wciskanego (d1) była większa od średnicy otworu (d2) w elemencie, do którego jest on wciśnięty. Taki układ zapewnia odpowiednie naprężenia, które są kluczowe dla trwałości i stabilności połączenia. W praktyce, podczas projektowania takich połączeń, inżynierowie stosują zasady dobrych praktyk, które obejmują uwzględnienie tolerancji wymiarowych oraz materiałów użytych do produkcji elementów. Na przykład, w przemyśle motoryzacyjnym lub elektronice, zastosowanie połączeń wciskowych ma na celu nie tylko montaż, ale także umożliwienie szybkiej wymiany części, co jest istotne w kontekście serwisowania. Dobrze zaprojektowane połączenie wciskowe powinno również uwzględniać aspekty takie jak odporność na wibracje czy zmiany temperatury, co dodatkowo potwierdza, że d1 musi być większe od d2, aby połączenie pozostało stabilne w różnych warunkach użytkowania.

Pytanie 24

Który miernik należy zastosować w układzie, którego schemat przedstawiono na rysunku, w celu pomiaru napięcia metodą bezpośrednią?

Ilustracja do pytania
A. Omomierz.
B. Woltomierz.
C. Watomierz.
D. Amperomierz.
Woltomierz to kluczowe narzędzie w pomiarach elektrycznych, które służy do bezpośredniego pomiaru napięcia w obwodach. Jego zastosowanie jest niezwykle istotne w praktyce, zwłaszcza w kontekście analizowania działania różnych układów elektronicznych oraz w diagnostyce systemów energetycznych. Woltomierz działa na zasadzie pomiaru różnicy potencjałów między dwoma punktami, co pozwala na dokładne określenie wartości napięcia. W praktyce, podczas pomiaru, woltomierz jest podłączany równolegle do elementu, którego napięcie chcemy zmierzyć. Warto również zaznaczyć, że korzystanie z woltomierzy cyfrowych, które oferują większą dokładność i dodatkowe funkcje analityczne, stało się powszechne w laboratoriach oraz w pracach serwisowych. W kontekście norm branżowych, pomiary napięcia powinny być przeprowadzane zgodnie z wytycznymi zawartymi w standardach IEC 61010, które określają wymagania dotyczące bezpieczeństwa przy pomiarach elektrycznych.

Pytanie 25

Elektryczne żelazko wyposażone w termoregulator bimetaliczny stanowi przykład

A. układu regulacji automatycznej
B. sterowania sekwencyjnego
C. układu sterowania programowalnego
D. sterowania w układzie otwartym
Żelazko elektryczne z termoregulatorem bimetalicznym jest doskonałym przykładem układu regulacji automatycznej, ponieważ wykorzystuje mechanizm, który automatycznie dostosowuje temperaturę grzania w zależności od wymagań użytkownika i właściwości materiału, który jest prasowany. Termoregulator bimetaliczny składa się z dwóch różnych metali, które rozszerzają się różnie pod wpływem temperatury, co powoduje odkształcenie i włączenie lub wyłączenie zasilania do grzałki żelazka. Przykładem praktycznego zastosowania tego rozwiązania jest żelazko, które automatycznie dostosowuje temperaturę do rodzaju tkaniny, co zapobiega ich przypaleniu lub uszkodzeniu. Tego typu regulacja automatyczna jest zgodna z zasadami efektywności energetycznej oraz komfortu użytkowania, co czyni ją standardem w projektowaniu urządzeń gospodarstwa domowego. Zastosowanie termoregulatorów bimetalicznych w żelazkach jest zgodne z najlepszymi praktykami w dziedzinie automatyki i kontrolowania procesów, zapewniając niezawodność oraz bezpieczeństwo eksploatacji urządzeń. Dodatkowo, układy regulacji automatycznej są szeroko stosowane w różnych dziedzinach przemysłu, gdzie precyzyjne utrzymywanie parametrów jest kluczowe dla jakości produkcji.

Pytanie 26

Na podstawie widoku płytki drukowanej i schematu ideowego wskaż, który element należy zamontować na płytce drukowanej w miejscu oznaczonym C3.

Ilustracja do pytania
A. Element 3.
B. Element 2.
C. Element 4.
D. Element 1.
Zgadza się, że element 2 to kondensator elektrolityczny o pojemności 100uF. To pasuje do tego, co widzimy w schemacie na miejscu oznaczonym C3. Wiesz, dobór odpowiednich komponentów w obwodach jest naprawdę ważny, bo od tego zależy, jak całość będzie działać. Kondensatory mają do odegrania sporo ról, zwłaszcza w filtracji sygnałów i stabilizacji napięcia. Gdybyśmy użyli kondensatora o innej pojemności, to mogłoby to wprowadzać jakieś zakłócenia w pracy urządzenia. Dlatego warto być dokładnym w projektowaniu i trzymać się specyfikacji, które podają producenci. Używanie komponentów zgodnych z normami, takimi jak IPC-2221, to dobry pomysł, bo to pomaga uniknąć problemów. No i pamiętajmy o montażu kondensatorów – jeśli podłączymy je źle, to możemy stracić ich wydajność. Dlatego warto mieć pod ręką dobrą dokumentację i umieć czytać schematy.

Pytanie 27

Osoba pracująca na linii produkcyjnej blach, która prowadzi proces odlewania taśmy cynkowo-tytanowej, powinna poza obuwiem, rękawicami i kaskiem roboczym posiadać odzież

A. bawełnianą w formie kombinezonu
B. roboczą trudnopalną
C. roboczą standardową
D. termoaktywną
Odpowiedź "robocze trudnopalne" jest poprawna, ponieważ w procesach związanych z odlewaniem metali, takich jak cynkowo-tytanowa taśma, istnieje wysokie ryzyko wystąpienia pożaru oraz poparzeń. Ubrania robocze trudnopalne są zaprojektowane z myślą o ochronie przed wysokimi temperaturami i płomieniami, co jest szczególnie istotne w środowiskach przemysłowych, gdzie pracownicy mogą być narażeni na kontakt z gorącymi materiałami czy odpryskami. Takie odzież jest wykonana z materiałów, które nie tylko opóźniają zapłon, ale także ograniczają rozwój ognia, co daje pracownikom cenny czas na ewakuację w przypadku zagrożenia. Przykładem może być odzież wykonana z tkanin takich jak Nomex czy Kevlar, które są powszechnie stosowane w przemyśle. Ponadto, stosowanie odzieży roboczej trudnopalnej jest zgodne z normami BHP oraz standardami branżowymi, które wymagają odpowiednich środków ochrony osobistej w środowisku pracy. Dlatego ważne jest, aby operatorzy linii produkcyjnej byli odpowiednio zabezpieczeni, by zminimalizować ryzyko wypadków związanych z ogniem.

Pytanie 28

Jakie urządzenie chroni silnik przed zwarciem i przeciążeniem?

A. przekaźnik termiczny
B. odgromnik
C. termistor
D. wyłącznik silnikowy
Wyłącznik silnikowy to urządzenie zabezpieczające, które chroni silniki przed zwarciem oraz przeciążeniem. Jego działanie opiera się na wykrywaniu prądów, które przekraczają ustalone wartości graniczne, co może prowadzić do uszkodzenia silnika. W przypadku wykrycia przeciążenia, wyłącznik silnikowy automatycznie odcina zasilanie, co zapobiega przegrzaniu i potencjalnym uszkodzeniom mechanicznym. W praktycznych zastosowaniach wyłączniki silnikowe stosowane są w różnych aplikacjach, od przemysłowych do budowlanych, zapewniając bezpieczeństwo operacyjne. Zgodnie z normami IEC 60947-4-1, instalacja wyłączników silnikowych powinna być zgodna z zasadami ochrony przeciwporażeniowej oraz zabezpieczeń przed skutkami zwarć. Oprócz zabezpieczenia przed przeciążeniem, wiele modeli wyłączników silnikowych wyposażonych jest w dodatkowe funkcje, takie jak serwisowe wskaźniki błędów, które informują użytkowników o awariach, co zwiększa bezpieczeństwo i efektywność operacyjną.

Pytanie 29

Aby zdemontować sterownik PLC z szyny DIN (TS-35), potrzebne jest

A. klucza imbusowego
B. wkrętaka krzyżowego
C. klucza płaskiego
D. wkrętaka płaskiego
Wkrętak płaski to najlepsze narzędzie do demontowania sterowników PLC z szyny DIN. Dlaczego? Bo te sterowniki mają często specjalne zatrzaski, które można łatwo zwolnić właśnie tym wkrętakiem. Jak to robić? Wystarczy delikatnie wsunąć końcówkę wkrętaka w szczelinę zatrzasku i lekko pchnąć, żeby go odczepić. To naprawdę działa. Używanie wkrętaka płaskiego jest też zgodne z zasadami bezpieczeństwa, bo pozwala na dokładne działanie bez ryzyka uszkodzenia zarówno sterownika, jak i szyny. W automatyce przemysłowej, jak wiadomo, odpowiednie narzędzia to podstawa, żeby urządzenia działały długo i aby nie wydawać kasy na naprawy. No i nie zapominajmy, że wkrętaki płaskie są mega uniwersalne. Można je stosować nie tylko do demontażu, ale też do instalacji i konserwacji różnych sprzętów elektrycznych. Naprawdę warto mieć je w swoim warsztacie, bo ułatwiają pracę.

Pytanie 30

Które kolory przewodów należy zastosować do połączenia urządzenia z siecią pokazaną na rysunku?

Ilustracja do pytania
A. PE - żółto-zielony, N - czarny, LI - niebieski.
B. PE - niebieski, N - żółto-zielony, LI - brązowy.
C. PE - brązowy, N - niebieski, LI - czarny.
D. PE - żółto-zielony, N - niebieski, LI - czarny.
Poprawna odpowiedź to PE - żółto-zielony, N - niebieski, LI - czarny. W instalacjach elektrycznych zgodnie z normami PN-EN 60446 oraz PN-IEC 60446, kolory przewodów są ściśle określone dla zapewnienia bezpieczeństwa i poprawności wykonania połączeń. Przewód ochronny (PE) zawsze powinien być oznaczony kolorem żółto-zielonym, co wskazuje na jego funkcję ochronną, zabezpieczającą przed porażeniem prądem. Przewód neutralny (N) powinien mieć kolor niebieski, co jest standardem międzynarodowym, ułatwiającym identyfikację i poprawne podłączenie urządzeń. Przewód fazowy (L1) w tym przypadku oznaczono kolorem czarnym, co jest jedną z akceptowanych opcji. Te standardy nie tylko zwiększają bezpieczeństwo, ale również ułatwiają prace konserwacyjne, gdyż wyraźna kolorystyka pozwala na szybkie rozpoznanie funkcji poszczególnych przewodów. Dla przykładu, w przypadku awarii systemu elektrycznego, znajomość tych standardów pozwala technikom na sprawne diagnozowanie problemów i ich eliminowanie, co jest kluczowe dla zapewnienia ciągłości pracy urządzeń.

Pytanie 31

Demontaż niepodłączonego elementu, przedstawionego na rysunku, zamontowanego na szynie DIN wymaga użycia

Ilustracja do pytania
A. wkrętaka płaskiego.
B. klucza z regulowaną szerokością rozstawu szczęk.
C. wkrętaka o specjalnych końcówkach.
D. klucza nasadowego.
Wybór wkrętaka płaskiego jako narzędzia do demontażu elementu zamontowanego na szynie DIN jest prawidłowy, ponieważ ten typ narzędzia został zaprojektowany do odciągania dźwigni blokującej, która jest typową konstrukcją w urządzeniach montowanych na szynach DIN, jak np. wyłączniki nadprądowe. W praktyce, aby wymontować ten element, należy najpierw zlokalizować dźwignię blokującą, a następnie włożyć wkrętak płaski w szczelinę i delikatnie pociągnąć, co pozwala na zwolnienie mechanizmu blokującego. Tego rodzaju operacje są powszechne w instalacjach elektrycznych, gdzie konieczna jest wymiana lub konserwacja urządzeń. Prawidłowe użycie narzędzi, takich jak wkrętaki płaskie, jest zgodne z normami bezpieczeństwa oraz dobrymi praktykami, które zalecają użycie odpowiednich narzędzi do konkretnego zadania, co minimalizuje ryzyko uszkodzenia urządzeń oraz zapewnia bezpieczeństwo użytkownika.

Pytanie 32

W sytuacji krwawienia zewnętrznego dłoni pracownika po upadku z wysokości (pracownik jest przytomny, oddycha, tętno jest wyczuwalne, wezwano pogotowie), należy

A. zatamować krew używając opaski powyżej rany i owinąć ranę bandażem
B. zatamować krew stosując opaskę poniżej rany i zabezpieczyć ranę bandażem
C. przygotować jałowy opatrunek i mocno nacisnąć go na ranę
D. nałożyć opatrunek, a po chwili zmienić go sprawdzając, czy krwawienie ustąpiło
W przypadku krwotoku zewnętrznego, kluczowe jest podjęcie odpowiednich działań, aby zminimalizować utratę krwi i wspierać dalsze leczenie. Przygotowanie jałowego opatrunku i mocne uciskanie go na ranie to prawidłowa metoda postępowania, ponieważ ucisk na ranę pomaga zatrzymać krwawienie. Takie działanie jest zgodne z zasadami pierwszej pomocy, które zalecają stosowanie ucisku w miejscach krwawienia, zwłaszcza w przypadku krwotoków tętniczych i żylnych. W praktyce, zastosowanie jałowego opatrunku eliminuje ryzyko zakażenia, a mocne uciskanie sprzyja tworzeniu się skrzepu i stabilizuje ranę. Ważne jest również, aby nie zakładać opaski uciskowej powyżej rany, ponieważ może to prowadzić do dalszych uszkodzeń tkanek. W sytuacji, gdy krwawienie nie ustępuje, należy kontynuować ucisk oraz wezwać pomoc medyczną. Ponadto, znajomość techniki użytku opatrunków i ich właściwego stosowania w praktycznych sytuacjach jest niezbędna dla każdego, kto może być narażony na sytuacje wymagające udzielenia pierwszej pomocy.

Pytanie 33

Ile napędów jest zastosowanych w manipulatorze, którego schemat przedstawiono na rysunku?

Ilustracja do pytania
A. 4 napędy
B. 5 napędów
C. 3 napędy
D. 6 napędów
Odpowiedź wskazująca na pięć napędów w manipulatorze jest prawidłowa, ponieważ wiele nowoczesnych manipulatorów wykorzystuje zaawansowane systemy napędowe, które pozwalają na precyzyjne sterowanie ruchem. W przypadku pięciu napędów, każdy z nich może odpowiadać za różne osie ruchu, co zapewnia większą elastyczność i dokładność podczas wykonywania zadań. Na przykład, w robotyce przemysłowej, manipulatory z pięcioma napędami są w stanie wykonać bardziej skomplikowane operacje, takie jak montaż, pakowanie czy manipulowanie delikatnymi przedmiotami. W praktyce, stosowanie pięciu napędów pozwala na uzyskanie większej liczby stopni swobody, co jest kluczowe w wielu aplikacjach. Dobre praktyki w projektowaniu manipulatorów sugerują również, że większa liczba napędów może poprawić zdolności adaptacyjne robota, umożliwiając mu lepsze dostosowanie się do zmiennych warunków pracy. Ponadto, zgodnie z normami ISO 10218 dotyczącymi bezpieczeństwa robotów przemysłowych, odpowiednia liczba napędów może wpłynąć na poprawę stabilności i bezpieczeństwa operacji, co jest kluczowe w środowisku przemysłowym.

Pytanie 34

Z przedstawionego rysunku złożeniowego (a) oraz schematu montażowego (b) pompy zębatej wynika, że

Ilustracja do pytania
A. koło zębate montowane na wale i zablokowane kołkiem.
B. koło pasowe montowane jest przed uszczelnieniem.
C. pokrywa mocowana jest do korpusu przed montażem wału i osi.
D. do montażu pokrywy potrzebne są 2 wkręty.
Jak się przyjrzysz rysunkowi i schematowi montażowemu, to widać, że koło zębate na wale to naprawdę istotna część, żeby pompa zębata działała. To koło zębate (to oznaczone jako 7) jest na wale (oznaczonym jako 1) i jest przytrzymane kołkiem (oznaczonym jako 8). Wiesz, to jest bardzo ważne, żeby wszystko było zamocowane zgodnie z inżynieryjnymi zaleceniami. Dzięki temu pompa działa sprawniej i jest bardziej stabilna. Ja mam doświadczenie, że jak koło zębate nie jest dobrze zamocowane, to mogą być różne problemy — od niewłaściwej pracy aż po uszkodzenie mechanizmu. No i pamiętaj, przy montażu warto używać dobrych narzędzi i technik, takich jak odpowiednie momenty dokręcania, co często można znaleźć w instrukcji producenta. Zrozumienie tych zasad naprawdę pomaga w bezpiecznym użytkowaniu pomp w różnych zastosowaniach przemysłowych.

Pytanie 35

Sprężarka typu śrubowego jest sprężarką

A. turbinową
B. rotacyjną
C. przepływową
D. wyporową
Sprężarka śrubowa jest typem sprężarki rotacyjnej, w której proces sprężania gazu odbywa się za pomocą dwóch śrub, które obracają się w przeciwnych kierunkach. Ta konstrukcja pozwala na ciągłe, płynne sprężanie powietrza, co przekłada się na wysoką wydajność oraz niskie straty energii. W zastosowaniach przemysłowych, sprężarki śrubowe są powszechnie wykorzystywane w systemach pneumatycznych, gdzie wymagane jest dostarczenie dużych ilości sprężonego powietrza w stabilny sposób. Przykładowo, w branży motoryzacyjnej, sprężarki te dostarczają powietrze do narzędzi pneumatycznych, a w przemyśle spożywczym często wykorzystuje się je do pakowania produktów. Standardy ISO dotyczące efektywności energetycznej sprężarek wskazują na korzyści związane z zastosowaniem sprężarek rotacyjnych, takich jak obniżenie kosztów eksploatacji przez zmniejszenie zużycia energii. Dzięki ich niezawodności i efektywności, sprężarki śrubowe stały się standardem w wielu zakładach przemysłowych.

Pytanie 36

Podaj właściwą sekwencję montażu składników w układzie przygotowania sprężonego powietrza, zaczynając od strony złożonego systemu pneumatycznego.

A. Reduktor, manometr, filtr powietrza, smarownica
B. Filtr powietrza, manometr, reduktor, smarownica
C. Manometr, reduktor, smarownica, filtr powietrza
D. Smarownica, manometr, reduktor, filtr powietrza
Odpowiedź, która wskazuje na kolejność smarownica, manometr, reduktor, filtr powietrza, jest poprawna, ponieważ odzwierciedla właściwą konfigurację montażu elementów w układzie przygotowania sprężonego powietrza. Smarownica jest pierwszym elementem, który powinien być zainstalowany bezpośrednio po źródle sprężonego powietrza. Jej zadaniem jest dostarczanie odpowiedniej ilości oleju do narzędzi i urządzeń pneumatycznych, co znacząco wpływa na ich żywotność i efektywność pracy. Następnie manometr, który monitoruje ciśnienie w układzie, powinien być zamontowany, aby umożliwić użytkownikowi bieżącą kontrolę ciśnienia roboczego. Reduktor, który reguluje ciśnienie, powinien być umieszczony w dalszej kolejności, co pozwala na dostosowanie ciśnienia do wymagań urządzeń zasilanych sprężonym powietrzem. Na końcu, filtr powietrza powinien oczyszczać powietrze przed jego dostarczeniem do urządzeń, co jest kluczowe dla zapewnienia ich prawidłowego funkcjonowania. Taka kolejność montażu jest zgodna z najlepszymi praktykami w dziedzinie pneumatyki, co gwarantuje niezawodność oraz efektywność całego układu.

Pytanie 37

Przepisy dotyczące usuwania używanych urządzeń elektronicznych nakładają obowiązek

A. pozostawić je obok kontenera na śmieci
B. przekazać je firmie zajmującej się odbiorem odpadów po wcześniejszym uzgodnieniu
C. wyrzucić je do pojemnika na śmieci po wcześniejszym stłuczeniu szyjki kineskopu
D. wrzucić je do kosza na śmieci
Odpowiedź "przekazać je firmie wywożącej śmieci po uprzednim uzgodnieniu" jest prawidłowa, ponieważ zgodnie z przepisami dotyczącymi gospodarki odpadami, w tym szczególnie dotyczy to urządzeń elektronicznych, istnieją ściśle określone procedury ich utylizacji. Utylizacja tego typu odpadów wymaga, aby były one przekazywane do wyspecjalizowanych firm, które mają odpowiednie zezwolenia i zasoby do ich bezpiecznego przetwarzania. Tego rodzaju przedsiębiorstwa posiadają technologie pozwalające na recykling części elektronicznych oraz odpowiednie metody unieszkodliwiania niebezpiecznych substancji, takich jak rtęć czy ołów, które mogą występować w niektórych urządzeniach. Przykładowo, wiele z tych firm oferuje usługi odbioru z miejsca zamieszkania, co ułatwia użytkownikom przestrzeganie przepisów. Przekazanie urządzeń wykwalifikowanym specjalistom nie tylko zapewnia zgodność z prawem, ale również chroni środowisko i zdrowie ludzi, zmniejszając ryzyko zanieczyszczenia.

Pytanie 38

Który zawór został przedstawiony na rysunku?

Ilustracja do pytania
A. 5/2 sterowany jednostronnie pneumatycznie.
B. 2/2 sterowany dwustronnie elektrycznie.
C. 3/2 sterowany jednostronnie pneumatycznie.
D. 3/2 sterowany jednostronnie elektrycznie.
Zawór przedstawiony na rysunku to zawór 3/2 sterowany jednostronnie elektrycznie. Oznaczenie 3/2 wskazuje, że zawór posiada trzy porty: jedno wejście i dwa wyjścia, co jest powszechnie stosowane w aplikacjach pneumatycznych i hydraulicznych. Sterowanie elektryczne umożliwia precyzyjne i zdalne zarządzanie przepływem medium, co jest kluczowe w nowoczesnych systemach automatyki przemysłowej. Przykładem zastosowania takiego zaworu jest automatyzacja procesów produkcyjnych, gdzie kontrola nad siłownikami pneumatycznymi wymaga szybkiej reakcji i dokładności. W praktyce, zastosowanie zaworu 3/2 z elektrycznym sterowaniem może znacząco zwiększyć efektywność operacyjną maszyn oraz obniżyć ryzyko awarii poprzez zdalne monitorowanie stanu systemu. Zgodnie z normami ISO 1219, symbole zaworów powinny być jednolite i czytelne, co również potwierdza prawidłowość identyfikacji tego zaworu.

Pytanie 39

Na podstawie tabeli z kodami paskowymi rezystorów określ rezystancję rezystora oznaczonego paskami w kolejności: pomarańczowy, niebieski, czarny.

kolor1. cyfra2. cyframnożnik
czarny00100
brązowy11101
czerwony22102
pomarańczowy33103
żółty44104
zielony55105
niebieski66106
fioletowy77107
szary88108
biały99109
A. 36 Ω
B. 360 Ω
C. 36 000 Ω
D. 3600 Ω
Odpowiedź 36 Ω jest poprawna, ponieważ oznaczenia kolorów na rezystorze wskazują wartość rezystancji zgodnie z ogólnie przyjętą normą kodów kolorów rezystorów. Kolor pomarańczowy oznacza cyfrę 3, natomiast niebieski oznacza cyfrę 6. Czarny pasek na końcu wskazuje, że nie ma wartości mnożnika, co w tym przypadku oznacza, że wynik należy odczytać jako 36. Taka interpretacja jest kluczowa w elektronice, gdzie rezystory o dokładnych wartościach są niezbędne do zapewnienia poprawnego funkcjonowania układów elektronicznych. Przykładowo, w obwodach zasilających, dokładne wartości rezystancji są istotne dla regulacji prądu, co ma kluczowe znaczenie dla bezpieczeństwa i efektywności pracy urządzeń. Wiedza na temat kodów kolorów jest nie tylko przydatna w praktyce, ale również stanowi fundament dla bardziej zaawansowanych zastosowań w projektowaniu układów elektronicznych.

Pytanie 40

Który zawór należy zamontować w układzie prasy hydraulicznej, wymieniając element oznaczony na schemacie strzałką?

Ilustracja do pytania
A. Szybkiego spustu.
B. Podwójnego sygnału.
C. Dławiący.
D. Odcinający.
Wybór niewłaściwego zaworu w układzie prasy hydraulicznej ma istotne konsekwencje dla działania całego systemu. Odpowiedzi, które sugerują zastosowanie zaworu dławiącego, odcinającego lub podwójnego sygnału, opierają się na błędnych założeniach dotyczących funkcji tych komponentów. Zawór dławiący, choć jest użyteczny do regulacji przepływu, nie zapewnia szybkiego odprowadzania medium roboczego, co jest kluczowe, gdyż jego główną funkcją jest kontrolowanie prędkości ruchu tłoka, a nie jego szybkiego opuszczania. Zawór odcinający, z kolei, jest przeznaczony do blokowania przepływu medium, co w kontekście prasy hydraulicznej może prowadzić do niebezpiecznych sytuacji, takich jak zablokowanie elementów prasy pod ciśnieniem. Zastosowanie zaworu podwójnego sygnału w tym przypadku również jest błędne, ponieważ jego głównym celem jest umożliwienie sterowania dwoma różnymi funkcjami w układzie hydraulicznym, co nie odpowiada potrzebom szybkiego spustu medium. W praktyce, wybór niewłaściwego zaworu może prowadzić do poważnych problemów, w tym do uszkodzenia mechanizmów, zwiększenia zużycia energii i obniżenia efektywności operacyjnej. Dlatego tak ważne jest odpowiednie zrozumienie roli i zastosowania różnych typów zaworów w hydraulice, aby zapewnić bezpieczne i wydajne działanie systemów hydraulicznych.