Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik informatyk
  • Kwalifikacja: INF.02 - Administracja i eksploatacja systemów komputerowych, urządzeń peryferyjnych i lokalnych sieci komputerowych
  • Data rozpoczęcia: 9 grudnia 2025 14:52
  • Data zakończenia: 9 grudnia 2025 14:58

Egzamin zdany!

Wynik: 23/40 punktów (57,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Wtyczka zasilająca SATA ma uszkodzony żółty przewód. Jakie to niesie za sobą konsekwencje dla napięcia na złączu?

A. 5 V
B. 3,3 V
C. 12 V
D. 8,5 V
Odpowiedź 12 V jest poprawna, ponieważ żółty przewód w złączu zasilania SATA odpowiada za dostarczenie napięcia o wartości 12 V, które jest niezbędne do zasilania komponentów, takich jak dyski twarde SSD i HDD, które wymagają wyższych napięć do prawidłowego działania. W standardzie ATX, złącza zasilania dla dysków twardych i innych urządzeń zawierają różne napięcia, w tym 3.3 V, 5 V oraz 12 V. Dobrą praktyką jest regularne sprawdzanie kabli zasilających, aby unikać problemów z zasilaniem urządzeń, co może prowadzić do uszkodzeń sprzętu lub niewłaściwego działania systemu. W przypadku uszkodzenia żółtego przewodu, urządzenia, które wymagają 12 V, mogą nie działać prawidłowo, co może być przyczyną awarii systemu. Zrozumienie funkcji poszczególnych przewodów w złączu zasilania jest kluczowe dla diagnostyki oraz konserwacji sprzętu komputerowego."

Pytanie 2

Użytkownicy z grupy Pracownicy nie mają możliwości drukowania dokumentów za pomocą serwera wydruku w systemie Windows Server. Posiadają oni jedynie uprawnienia do „Zarządzania dokumentami”. Jakie kroki należy podjąć, aby naprawić ten problem?

A. Grupie Pracownicy powinno się usunąć uprawnienia „Zarządzanie dokumentami”
B. Grupie Pracownicy należy przydzielić uprawnienia „Drukuj”
C. Grupie Administratorzy trzeba odebrać uprawnienia „Drukuj”
D. Grupie Administratorzy należy anulować uprawnienia „Zarządzanie drukarkami”
Aby użytkownicy z grupy Pracownicy mogli drukować dokumenty przy użyciu serwera wydruku w systemie Windows Server, konieczne jest nadanie im odpowiednich uprawnień. Uprawnienia "Drukuj" są kluczowe, ponieważ pozwalają na realizację zadań związanych z drukowaniem, podczas gdy uprawnienia "Zarządzanie dokumentami" pozwalają jedynie na podstawowe operacje takie jak zatrzymywanie, wznawianie i usuwanie zadań drukowania, ale nie umożliwiają samego drukowania. Standardy branżowe wskazują, że zarządzanie uprawnieniami powinno być precyzyjnie dostosowane do ról i obowiązków użytkowników, aby zapewnić zarówno bezpieczeństwo, jak i funkcjonalność. W tym przypadku, po przypisaniu uprawnień "Drukuj", użytkownicy będą mogli korzystać z drukarki w pełni, co jest zgodne z najlepszymi praktykami zarządzania zasobami w sieci. Na przykład w środowisku korporacyjnym, gdzie różne zespoły mają różne potrzeby, precyzyjne zarządzanie uprawnieniami jest kluczowe dla wydajności i bezpieczeństwa operacji.

Pytanie 3

Aby w systemie Windows nadać użytkownikowi możliwość zmiany czasu systemowego, potrzebna jest przystawka

A. secpol.msc
B. services.msc
C. eventvwr.msc
D. certmgr.msc
Odpowiedź 'secpol.msc' jest poprawna, ponieważ to narzędzie, znane jako Zasady zabezpieczeń lokalnych, umożliwia administratorom zarządzanie uprawnieniami użytkowników w systemie Windows. W ramach tego narzędzia można skonfigurować różne polityki bezpieczeństwa, w tym przydzielanie praw użytkownikom, które są niezbędne do zmiany czasu systemowego. W praktyce, aby przydzielić użytkownikowi to prawo, należy otworzyć 'secpol.msc', przejść do sekcji 'Zasady lokalne', a następnie do 'Przydzielanie praw użytkowników'. Tutaj można znaleźć i edytować prawo 'Zmień systemowy czas'. Przykład zastosowania to sytuacja, w której użytkownik musi dostosować czas na serwerze lub komputerze w celu synchronizacji z innymi systemami, co jest kluczowe w środowiskach, gdzie precyzyjny czas jest istotny, jak w serwerach do baz danych. Zgodnie z dobrymi praktykami bezpieczeństwa, ograniczanie dostępu do takich uprawnień powinno być realizowane z rozwagą, aby nie dopuścić do nieautoryzowanych zmian w systemie.

Pytanie 4

Protokołem umożliwiającym bezpołączeniowe przesyłanie datagramów jest

A. UDP
B. ARP
C. IP
D. TCP
UDP (User Datagram Protocol) to protokół komunikacji, który zapewnia bezpołączeniową transmisję datagramów w sieciach komputerowych. W przeciwieństwie do TCP (Transmission Control Protocol), UDP nie wymaga nawiązywania połączenia przed rozpoczęciem wymiany danych, co czyni go bardziej efektywnym w sytuacjach wymagających szybkiej wymiany informacji, takich jak strumieniowanie wideo, gry online czy VoIP. UDP jest również bardziej elastyczny, ponieważ pozwala na przesyłanie danych bez dodatkowych narzutów związanych z kontrolą błędów i potwierdzeniami dostarczenia. To sprawia, że jest idealny do zastosowań, gdzie minimalizacja opóźnień jest kluczowa, a utrata niektórych pakietów nie wpływa znacząco na ogólną jakość usługi. Protokół ten działa na bazie portów, co umożliwia jednoczesne działanie wielu aplikacji na jednym urządzeniu. W praktyce użycie UDP można zaobserwować w protokołach takich jak DNS czy DHCP, które wymagają szybkiej odpowiedzi, a niekoniecznie pełnej niezawodności.

Pytanie 5

Wskaż poprawną kolejność czynności prowadzących do zamontowania procesora w gnieździe LGA na nowej płycie głównej, odłączonej od źródła zasilania.

Nr czynnościDziałanie
1Odgięcie dźwigni i otwarcie klapki
2Montaż układu chłodzącego
3Zamknięcie klapki i dociśnięcie dźwigni
4Podłączenie układu chłodzącego do zasilania
5Lokalizacja gniazda procesora
6Nałożenie pasty termoprzewodzącej
7Włożenie procesora do gniazda
A. 5, 1, 7, 3, 6, 2, 4
B. 5, 7, 6, 1, 4, 3, 2
C. 5, 6, 1, 7, 2, 3, 4
D. 5, 2, 3, 4, 1, 6, 7
Wybór błędnych kolejności czynności prowadzi do potencjalnych problemów z działaniem procesora oraz stabilnością całego systemu. Przykładem jest rozpoczęcie od montażu układu chłodzącego przed umiejscowieniem procesora, co jest niewłaściwe, ponieważ może prowadzić do uszkodzenia procesora. W niektórych odpowiedziach sugeruje się także nałożenie pasty termoprzewodzącej przed zamknięciem klapki gniazda, co jest niezgodne z prawidłowym podejściem, ponieważ pasta powinna być aplikowana bezpośrednio na procesor lub jego górną część przed montażem układu chłodzącego. Dodatkowo, niektóre odpowiedzi zakładają podłączenie układu chłodzącego przed jego montażem, co nie tylko jest technicznie nieprawidłowe, ale także stwarza ryzyko uszkodzenia elementów elektrycznych. Ważne jest również, aby pamiętać, że każdy krok w procesie montażu musi być realizowany w odpowiedniej kolejności, aby zapewnić efektywne chłodzenie procesora oraz minimalizować ryzyko błędów, które mogą prowadzić do awarii sprzętu. Gdy procesor jest zamontowany niewłaściwie, może to skutkować różnymi problemami, od przegrzewania się po uszkodzenia sprzętowe, co podkreśla znaczenie przestrzegania odpowiednich procedur montażowych.

Pytanie 6

Analiza tłumienia w kablowym systemie przesyłowym umożliwia ustalenie

A. różnic między przesłuchami zdalnymi
B. czasu opóźnienia propagacji
C. spadku mocy sygnału w danej parze przewodu
D. błędów instalacyjnych związanych z zamianą pary
Pomiar tłumienia w kablowym torze transmisyjnym jest kluczowym aspektem oceny jakości transmisji sygnału. Tłumienie odnosi się do spadku mocy sygnału, który występuje na skutek przejścia przez medium transmisyjne, w tym przypadku parę przewodów. Właściwe pomiary tłumienia pozwalają zidentyfikować, jak dużo sygnału traci na drodze od nadajnika do odbiornika. W praktyce, dla kabli telekomunikacyjnych i sieci komputerowych, normy takie jak ETSI, IEC oraz TIA/EIA określają dopuszczalne wartości tłumienia, co pozwala na zapewnienie odpowiedniej jakości usług. Właściwe pomiary tłumienia mogą pomóc w określeniu, czy instalacja spełnia obowiązujące standardy, a także w diagnostyce problemów z siecią, takich jak spadki jakości sygnału mogące prowadzić do przerw w komunikacji. Dodatkowo, zrozumienie oraz umiejętność interpretacji wyników pomiarów tłumienia jest niezbędne podczas projektowania i budowy nowoczesnych sieci telekomunikacyjnych, gdzie odpowiednie parametry są kluczowe dla optymalnej wydajności systemu.

Pytanie 7

Program fsck jest stosowany w systemie Linux do

A. obserwacji parametrów działania i wydajności komponentów komputera
B. przeprowadzenia oceny kondycji systemu plików oraz wykrycia uszkodzonych sektorów
C. realizacji testów wydajnościowych serwera WWW poprzez wysłanie dużej ilości żądań
D. identyfikacji struktury sieci oraz diagnozowania przepustowości sieci lokalnej
Odpowiedź wskazująca na użycie programu fsck do oceny stanu systemu plików i wykrywania uszkodzonych sektorów jest prawidłowa, ponieważ fsck (File System Consistency Check) jest narzędziem dedykowanym do analizy i naprawy systemów plików w systemie Linux. Jego głównym celem jest zapewnienie integralności danych przechowywanych na dyskach. Przykładowo, podczas nieprawidłowego zamknięcia systemu lub awarii zasilania, struktura systemu plików może ulec uszkodzeniu. W takich przypadkach uruchomienie fsck pozwala na skanowanie i naprawę uszkodzonych sektorów oraz nieprawidłowych danych. Narzędzie to jest często stosowane w procesie konserwacji serwerów oraz stacji roboczych, zwłaszcza w środowiskach, w których bezpieczeństwo i dostępność danych są kluczowe. Regularne korzystanie z fsck, zgodnie z najlepszymi praktykami, może pomóc w uniknięciu poważniejszych problemów z systemem plików oraz w zapewnieniu ciągłości działania, co jest szczególnie istotne w kontekście zarządzania infrastrukturą IT.

Pytanie 8

W standardzie IEEE 802.3af metoda zasilania różnych urządzeń sieciowych została określona przez technologię

A. Power over Ethernet
B. Power over Internet
C. Power over Classifications
D. Power under Control
Power over Ethernet (PoE) to technologia, która pozwala na jednoczesne przesyłanie danych i energii elektrycznej przez standardowe kable Ethernet, co czyni ją niezwykle praktycznym rozwiązaniem w zastosowaniach sieciowych. W standardzie IEEE 802.3af, PoE umożliwia dostarczanie do 15,4 W energii do urządzeń, takich jak kamery IP, punkty dostępu bezprzewodowego oraz telefony VoIP. Dzięki zastosowaniu PoE, instalacja takich urządzeń jest znacznie uproszczona, ponieważ nie wymaga osobnego zasilania, co z kolei zmniejsza koszty oraz czas potrzebny na wdrożenie systemów. Przykłady praktycznego wykorzystania PoE obejmują instalacje w biurach, gdzie punkty dostępu Wi-Fi mogą być łatwo rozmieszczane bez konieczności dostępu do gniazdek elektrycznych. Standard IEEE 802.3af, wprowadzony w 2003 roku, stanowi podstawę dla wielu nowoczesnych rozwiązań sieciowych, a jego implementacja jest zgodna z zaleceniami innych standardów, co zapewnia kompatybilność i wydajność. To sprawia, że PoE stało się standardem w wielu branżach, w tym w systemach zabezpieczeń i automatyce budynkowej.

Pytanie 9

Przy zmianach w rejestrze Windows w celu zapewnienia bezpieczeństwa należy najpierw

A. zweryfikować, czy na komputerze nie ma wirusów
B. sprawdzić obecność błędów na dysku
C. wyeksportować klucze rejestru do pliku
D. utworzyć kopię zapasową ważnych plików
Wyeksportowanie kluczy rejestru do pliku jest kluczowym krokiem w procesie modyfikacji rejestru Windows, ponieważ pozwala na przywrócenie wcześniejszego stanu systemu w przypadku, gdy wprowadzone zmiany spowodują problemy z jego działaniem. Rejestr systemowy Windows jest bazą danych, która przechowuje ustawienia systemowe oraz konfiguracje aplikacji, a zmiany w nim mogą mieć dalekosiężne konsekwencje. Przykładowo, jeśli wprowadzone modyfikacje spowodują, że system nie uruchomi się prawidłowo, użytkownik może zaimportować wcześniej wyeksportowany plik rejestru, co przywróci system do stanu sprzed modyfikacji. Ponadto, zgodnie z najlepszymi praktykami w zakresie administracji systemów, zawsze zaleca się wykonanie kopii zapasowej rejestru przed jakimikolwiek zmianami, by zminimalizować ryzyko utraty danych lub destabilizacji systemu. Eksportowanie kluczy rejestru można zrealizować poprzez narzędzie 'regedit', co jest standardowym podejściem stosowanym przez specjalistów IT.

Pytanie 10

Monolityczne jądro (kernel) występuje w którym systemie?

A. Windows
B. QNX
C. Linux
D. Mac OS
Jądro monolityczne, takie jak to, które występuje w systemie Linux, jest architekturą, w której wszystkie podstawowe funkcje systemu operacyjnego, takie jak zarządzanie procesami, pamięcią, systemem plików oraz obsługą urządzeń, są zintegrowane w jednym dużym module. Ta konstrukcja umożliwia efektywną komunikację między różnymi komponentami jądra, co prowadzi do zwiększonej wydajności systemu. Praktycznym przykładem zastosowania jądra monolitycznego jest jego wykorzystanie w serwerach oraz urządzeniach wbudowanych, gdzie wydajność i niski narzut czasowy są kluczowe. Jądro monolityczne często charakteryzuje się również większą stabilnością i bezpieczeństwem, ponieważ jest mniej podatne na błędy w interakcjach między modułami. Dodatkowo, jądro Linux zyskało popularność dzięki aktywnemu wsparciu społeczności i szerokiemu wachlarzowi dostępnych sterowników, co czyni je wszechstronnym rozwiązaniem dla różnych zastosowań. W kontekście dobrych praktyk, korzystanie z jądra monolitycznego w systemach operacyjnych opartych na Linuxie jest zgodne z ideą otwartego oprogramowania, co sprzyja innowacji i współpracy w społeczności programistów.

Pytanie 11

Włączenie systemu Windows w trybie diagnostycznym umożliwia

A. zapobieganie automatycznemu ponownemu uruchomieniu systemu w razie wystąpienia błędu
B. uruchomienie systemu z ostatnią poprawną konfiguracją
C. usuwanie błędów w funkcjonowaniu systemu
D. generowanie pliku dziennika LogWin.txt podczas uruchamiania systemu
Uruchomienie systemu Windows w trybie debugowania jest kluczowym narzędziem dla programistów oraz administratorów systemów, które pozwala na głębszą analizę działania systemu operacyjnego. Tryb debugowania umożliwia identyfikację i eliminację błędów w działaniu systemu poprzez analizę logów i zachowania oprogramowania w czasie rzeczywistym. Przykładowo, kiedy system operacyjny napotyka na problem podczas uruchamiania, tryb debugowania może dostarczyć szczegółowych informacji o stanie pamięci, rejestrach oraz funkcjach, które zostały wywołane przed wystąpieniem błędu. Umiejętność korzystania z tego trybu jest nieoceniona w kontekście diagnostyki oraz rozwoju oprogramowania, ponieważ pozwala na precyzyjne określenie przyczyny problemu i szybsze wprowadzenie poprawek. Standardy branżowe zalecają wykorzystanie narzędzi debugujących w procesie testowania oprogramowania, co wpływa na jakość i stabilność finalnych produktów.

Pytanie 12

Liczba szesnastkowa 1E2F(16) zapisana w systemie ósemkowym ma postać

A. 7277
B. 7727
C. 17057
D. 74274
Wybór innej odpowiedzi niż 17057 najczęściej wynika z niepoprawnego przeliczania wartości między systemami liczbowymi lub uproszczenia procedury konwersji. W praktyce, jednym z najczęstszych błędów jest próba zamiany każdej cyfry szesnastkowej bezpośrednio na cyfrę ósemkową – co jest niestety niezgodne z zasadami matematycznymi. Szesnastkowy i ósemkowy opierają się na różnych podstawach i nie istnieje prosta „podmiana” cyfr. Kolejnym problemem jest nieuwzględnienie wartości pozycyjnych – na przykład, cyfra 'E' w szesnastkowym to 14 w dziesiętnym, a nie 7 czy 2. Jeśli ktoś uzyskał wyniki takie jak 7277 lub 7727, to najprawdopodobniej próbował przypisać każdej szesnastkowej cyfrze jakąś ósemkową, ignorując ich realną wartość. To klasyczny błąd początkujących, który moim zdaniem pojawia się przez chęć skrócenia drogi albo przez presję czasu. Odpowiedź 74274 sugeruje natomiast, że mogło dojść do pomylenia systemu binarnego z ósemkowym lub niewłaściwego zgrupowania bitów podczas konwersji. W rzeczywistości, poprawna metoda polega na rozbiciu każdej cyfry szesnastkowej na 4 bity, połączeniu wszystkiego w jeden ciąg, a później grupowaniu tych bitów po trzy (dla ósemkowego) od końca i przeliczaniu na cyfry ósemkowe. To zgodne z dobrymi praktykami opisanymi w wielu podręcznikach do informatyki czy elektroniki. Z mojego punktu widzenia, takie błędy są naturalne na początku nauki pracy z systemami liczbowymi – mnie samemu to się zdarzało. Dlatego warto trenować zamianę przez system binarny lub dziesiętny, bo wtedy unika się nieporozumień i nie popełnia się tych drobnych, ale kosztownych w praktyce błędów. W codziennej pracy, np. przy programowaniu niskopoziomowym, takie pomyłki mogą prowadzić do bardzo poważnych konsekwencji, więc dobrze już teraz wyrobić sobie właściwe nawyki.

Pytanie 13

Jaką fizyczną topologię sieci komputerowej przedstawiono na załączonym rysunku?

Ilustracja do pytania
A. topologię gwiazdy rozszerzonej
B. topologię hierarchiczną
C. topologię magistrali
D. topologię gwiazdy
Topologia hierarchiczna, zwana również topologią drzewa, jest strukturą sieci, gdzie urządzenia są zorganizowane w sposób przypominający drzewo. Główna cecha tej topologii to hierarchiczne połączenie urządzeń, gdzie każde urządzenie może mieć wiele połączeń z urządzeniami niższego poziomu. W tej strukturze centralne urządzenia są połączone z urządzeniami podrzędnymi, co zapewnia skalowalność i łatwość zarządzania. Topologia hierarchiczna jest często stosowana w dużych sieciach korporacyjnych, gdzie wymagana jest infrastruktura, która może się łatwo rozwijać wraz z rosnącymi potrzebami firmy. Taka organizacja umożliwia efektywne zarządzanie ruchem sieciowym i łatwe lokalizowanie usterek. W przypadku awarii jednego elementu sieci, inne mogą nadal funkcjonować, co zwiększa niezawodność systemu. Przykładem praktycznego zastosowania topologii hierarchicznej jest struktura sieci w dużych organizacjach, gdzie są stosowane wielopoziomowe systemy przełączników i routerów, które łączą różne działy i oddziały firmy. Dzięki temu można skutecznie zarządzać ruchem danych i zapewnić odpowiednią przepustowość dla różnych aplikacji biznesowych.

Pytanie 14

Do czego służy polecenie 'ping' w systemie operacyjnym?

A. Do sprawdzenia dostępności hosta w sieci
B. Do formatowania dysku twardego
C. Do instalacji nowych sterowników
D. Do kopiowania plików między folderami
Polecenie 'ping' jest jednym z podstawowych narzędzi sieciowych, które służy do diagnozowania połączeń sieciowych. Jego głównym zadaniem jest sprawdzenie, czy dany host w sieci jest dostępny i jak długo trwa przesyłanie pakietów do niego. Działa na zasadzie wysyłania pakietów ICMP (Internet Control Message Protocol) do celu i oczekiwania na odpowiedź. Jeśli host jest dostępny, otrzymamy odpowiedź, co świadczy o poprawnym połączeniu. Ping jest niezwykle przydatny w administracji sieciowej, ponieważ pozwala szybko zweryfikować problemy z łącznością, takie jak brak połączenia z serwerem lub opóźnienia w sieci. Dzięki niemu administratorzy mogą także monitorować stabilność łącza oraz identyfikować potencjalne problemy z wydajnością. W praktyce, polecenie 'ping' jest często pierwszym krokiem w diagnozowaniu problemów sieciowych, co czyni je nieocenionym narzędziem w codziennej pracy z sieciami komputerowymi.

Pytanie 15

Aby poprawić bezpieczeństwo prywatnych danych sesji na stronie internetowej, zaleca się dezaktywację w ustawieniach przeglądarki

A. bloku wyskakujących okienek
B. bloku uruchamiania skryptów
C. funkcji zapamiętywania haseł
D. powiadamiania o wygasłych certyfikatach
Wyłączenie funkcji zapamiętywania haseł w przeglądarkach internetowych jest kluczowym krokiem w kierunku zwiększenia bezpieczeństwa prywatnych danych sesji. Funkcja ta, chociaż wygodna, może stać się wektorem ataku, jeśli urządzenie zostanie skradzione lub jeśli osoba nieupoważniona uzyska dostęp do konta użytkownika. W momencie, gdy przeglądarka zapisuje hasła, istnieje ryzyko, że w przypadku jakiejkolwiek podatności na atak, te dane mogą być łatwo przechwycone przez złośliwe oprogramowanie. Dodatkowo, w przypadku korzystania z publicznych komputerów, zapamiętane hasła mogą być dostępne dla innych użytkowników. Dobre praktyki bezpieczeństwa, takie jak korzystanie z menedżerów haseł, które oferują szyfrowanie danych oraz autoryzację wieloskładnikową, są zdecydowanie preferowane. Zastosowanie takich metod zabezpieczających pozwala użytkownikom na przechowywanie haseł w sposób bardziej bezpieczny, bez konieczności polegania na funkcjach przeglądarki. Ostatecznie, świadome podejście do zarządzania hasłami ma fundamentalne znaczenie w ochronie prywatnych danych użytkowników.

Pytanie 16

Wskaż błędne twierdzenie dotyczące Active Directory?

A. W Active Directory dane są uporządkowane w sposób hierarchiczny
B. Domeny zorganizowane hierarchicznie mogą tworzyć strukturę drzewa
C. Active Directory to usługa służąca do monitorowania użycia limitów dyskowych aktywnych katalogów
D. Active Directory to usługa katalogowa w systemach operacyjnych sieciowych firmy Microsoft
Odpowiedź wskazująca, że Active Directory to usługa służąca do monitorowania użycia limitów dyskowych aktywnych katalogów, jest nieprawidłowa, ponieważ główną funkcją Active Directory (AD) jest zarządzanie tożsamością i dostępem w sieciach komputerowych. AD organizuje obiekty, takie jak użytkownicy, komputery i zasoby, w strukturę hierarchiczną, co ułatwia zarządzanie i kontrolowanie dostępu do zasobów w sieci. Przykładem wykorzystania AD w praktyce jest centralizacja zarządzania użytkownikami i grupami w organizacji, co pozwala na wydajne przydzielanie uprawnień oraz monitorowanie aktywności. Dobrą praktyką jest również implementacja polityk zabezpieczeń, które mogą być stosowane w Active Directory, co przyczynia się do zwiększenia bezpieczeństwa całej infrastruktury IT. W kontekście AD, informacje są grupowane i zarządzane w sposób hierarchiczny, co pozwala na efektywne zarządzanie dużymi zbiorami danych oraz optymalizację procesów administracyjnych.

Pytanie 17

Ilustracja przedstawia rodzaj pamięci

Ilustracja do pytania
A. SDRAM DIMM
B. DDR DIMM
C. SIMM
D. Compact Flash
SDRAM DIMM czyli Synchronous Dynamic Random Access Memory jest rodzajem pamięci dynamicznej RAM, która synchronizuje się z magistralą systemową komputera co pozwala na większą wydajność przez zmniejszenie opóźnień. SDRAM DIMM jest szeroko stosowany w komputerach PC i serwerach. Jej architektura pozwala na równoczesne przetwarzanie wielu poleceń poprzez dzielenie pamięci na różne banki co zwiększa efektywność transmisji danych. Przykładowo SDRAM umożliwia lepsze zarządzanie danymi w systemach wymagających dużej przepustowości jak aplikacje multimedialne gry komputerowe czy systemy baz danych. Pamięć ta wspiera technologię burst mode co oznacza że może przetwarzać serie danych bez dodatkowego oczekiwania na kolejne sygnały zegarowe co jest kluczowe w zastosowaniach wymagających szybkiej transmisji danych. Standardy takie jak PC100 czy PC133 określają prędkości magistrali wyrażone w megahercach co dodatkowo ułatwia integrację z różnymi systemami komputerowymi. Wybór SDRAM DIMM jest zgodny z dobrymi praktykami branżowymi szczególnie w kontekście starszych systemów które nadal są w użyciu w wielu profesjonalnych środowiskach. Znajomość specyfikacji i kompatybilności SDRAM jest kluczowa przy modernizacji starszych jednostek komputerowych.

Pytanie 18

Jakie polecenie w systemie Linux przyzna możliwość zapisu dla wszystkich obiektów w /usr/share dla wszystkich użytkowników, nie modyfikując innych uprawnień?

A. chmod a-w /usr/share
B. chmod ugo+rw /usr/share
C. chmod -R a+w /usr/share
D. chmod -R o+r /usr/share
Polecenie 'chmod -R a+w /usr/share' jest stosowane do nadania uprawnień do pisania dla wszystkich użytkowników ( właścicieli, grup oraz innych) do katalogu /usr/share oraz wszystkich jego podkatalogów i plików. Flaga '-R' oznacza rekurencyjne zastosowanie tej operacji, co oznacza, że wszystkie podkatalogi i pliki wewnątrz /usr/share również otrzymają to samo uprawnienie. Przykładowo, jeśli istnieją pliki lub katalogi w /usr/share, które są używane do przechowywania plików konfiguracyjnych lub zasobów aplikacji, to nadanie im tych uprawnień umożliwia wszystkim użytkownikom systemu ich modyfikację. Warto jednak zachować ostrożność przy nadawaniu szerokich uprawnień, aby uniknąć potencjalnych luk w zabezpieczeniach oraz niezamierzonych zmian w plikach systemowych. W kontekście najlepszych praktyk, zaleca się stosowanie takich uprawnień tylko w sytuacjach, gdy jest to bezwzględnie konieczne, a dostęp do katalogu powinien być ograniczony do tych użytkowników, którzy naprawdę tego potrzebują.

Pytanie 19

Jaki jest największy rozmiar pojedynczego datagramu IPv4, uwzględniając jego nagłówek?

A. 64 kB
B. 32 kB
C. 128 kB
D. 256 kB
Maksymalny rozmiar datagramu IPv4 to 65 535 bajtów, a po odjęciu nagłówka, to tak naprawdę 65 507 bajtów na same dane. Dlatego odpowiedzią 64 kB jest właściwa – jest blisko tej maksymalnej wartości, no bo 64 kB to 65 536 bajtów. W sieciach komputerowych to jest mega istotne, bo inżynierowie muszą pamiętać o tych rozmiarach, żeby nie było problemów z fragmentacją. Jak datagramy będą za duże, to mogą spowolnić przesyłanie danych, a to nam się nie opłaca. W RFC 791, który mówi o protokole IPv4, są dokładnie opisane te wartości, co jest ważne dla programistów i sieciowców. Rozumienie maksymalnych rozmiarów datagramów naprawdę pomaga w lepszym przesyłaniu danych i sprawia, że wszystko działa sprawniej na różnych urządzeniach w sieci.

Pytanie 20

Ile sieci obejmują adresy IPv4 pokazane w tabeli?

Adres IPv4Maska sieci
10.10.10.10255.255.0.0
10.10.20.10255.255.0.0
10.10.20.20255.255.0.0
10.10.30.30255.255.0.0
10.20.10.10255.255.0.0
10.20.20.10255.255.0.0
10.20.20.30255.255.0.0
A. 2 sieci
B. 5 sieci
C. 4 sieci
D. 3 sieci
Adresy IPv4 przedstawione w tabeli należą do dwóch różnych sieci. Każdy adres IPv4 składa się z części adresu sieciowego oraz części hosta. Część sieciową określa maska sieci. W przypadku maski 255.255.0.0 pierwsze dwa oktety adresu IPv4 określają sieć. Dzięki temu wszystkie adresy 10.10.x.x znajdują się w jednej sieci a adresy 10.20.x.x w innej. Maska sieciowa 255.255.0.0 pozwala na tworzenie mniej więcej 256 sieci z klasy adresów A z maksymalnie 65534 hostami w każdej sieci co czyni ją idealną do większych organizacji wymagających podziału na logiczne sieci zależnie od działów lub funkcji. W praktyce odpowiednie zrozumienie i zastosowanie masek sieciowych jest kluczowe w projektowaniu wydajnych struktur sieciowych co pozwala na optymalne wykorzystanie dostępnych adresów IP oraz poprawę bezpieczeństwa i zarządzania siecią. Dlatego wiedza ta jest podstawą dla każdego specjalisty IT zajmującego się administracją oraz projektowaniem sieci komputerowych.

Pytanie 21

Jakiego numeru kodu należy użyć w komendzie do zmiany uprawnień folderu w systemie Linux, aby właściciel miał dostęp do zapisu i odczytu, grupa miała prawo do odczytu i wykonania, a pozostali użytkownicy mogli jedynie odczytywać zawartość?

A. 654
B. 751
C. 765
D. 123
Wybierając inne kombinacje, takie jak 751, 765 czy 123, popełniamy fundamentalny błąd w zrozumieniu struktury uprawnień w systemie Linux. Na przykład, odpowiedź 751 przyznaje właścicielowi pełne uprawnienia (7), grupie dostęp jedynie do wykonania (5) oraz pozwala innym użytkownikom na wykonanie (1), co w praktyce może prowadzić do nieautoryzowanego dostępu przez użytkowników spoza grupy. To podejście zagraża bezpieczeństwu danych. Odpowiedź 765 zwiększa uprawnienia grupy do zapisu (6), co jest niewłaściwe w kontekście podanego pytania, gdzie grupa powinna mieć jedynie odczyt i wykonanie. Z kolei odpowiedź 123 przyznaje uprawnienia tylko do wykonania dla wszystkich kategorii użytkowników, co jest ekstremalnie restrykcyjne i niepraktyczne, ponieważ nie pozwala na odczyt ani zapis, co z pewnością uniemożliwi większość standardowych operacji na plikach. Typowe błędy myślowe w tym przypadku wynikają z braku zrozumienia hierarchii uprawnień oraz ich praktycznego zastosowania w codziennej pracy z systemem. Rozumienie, jak prawidłowo przydzielać uprawnienia, jest kluczowe dla zapewnienia zarówno użyteczności, jak i bezpieczeństwa systemu operacyjnego.

Pytanie 22

W systemie Windows pamięć wirtualna ma na celu

A. Zapisanie stron internetowych w trybie offline
B. Długoterminowe przechowywanie plików
C. Obsługę maszyny wirtualnej
D. Powiększenie dostępnej pamięci RAM
Pamięć wirtualna w systemie Windows to mechanizm, który pozwala systemowi operacyjnemu na efektywne zarządzanie pamięcią i zwiększenie dostępnej pamięci RAM dla aplikacji. Umożliwia to uruchamianie większej liczby programów jednocześnie, nawet jeśli fizyczna pamięć RAM jest ograniczona. Pamięć wirtualna działa poprzez wykorzystanie przestrzeni na dysku twardym do emulacji dodatkowej pamięci. Gdy system wymaga więcej pamięci, mniej aktywne strony z pamięci RAM są zapisywane na dysku (do pliku stronicowania), a ich miejsce zajmują aktywne dane. Ten proces zwiększa elastyczność i wydajność pracy systemu. Przykładowo, gdy użytkownik otworzy kilka aplikacji, takich jak edytor tekstu, arkusz kalkulacyjny i przeglądarka, pamięć wirtualna pozwala na efektywne przełączanie się między nimi, nawet jeśli całkowita pamięć RAM jest niewystarczająca. To podejście jest zgodne z najlepszymi praktykami wydajności komputerowej, ponieważ pozwala na lepsze wykorzystanie zasobów systemowych i poprawia ogólną wydajność systemu operacyjnego.

Pytanie 23

Symbol graficzny zaprezentowany na rysunku oznacza opakowanie

Ilustracja do pytania
A. możliwe do wielokrotnego użycia
B. wykonane z materiałów wtórnych
C. spełniające normę TCO
D. przeznaczone do recyklingu
Błędne odpowiedzi wynikają z nieporozumień dotyczących znaczenia poszczególnych symboli związanych z opakowaniami. Znak wyprodukowane z surowców wtórnych oznacza, że produkt został wykonany z materiałów już wcześniej przetworzonych. Jest to ważne z punktu widzenia ograniczania zużycia nowych surowców, ale nie wskazuje na zdolność do dalszego recyklingu. Opakowanie wielokrotnego użytku odnosi się do przedmiotów, które można używać wielokrotnie bez przetwarzania, jak torby materiałowe czy wielorazowe butelki. Jest to odmienna koncepcja skupiająca się na redukcji jednorazowego wykorzystania, lecz nie zawsze oznacza to, że takie opakowania mogą być recyklingowane. Z kolei zgodne z normą TCO to certyfikat dotyczący głównie produktów technologicznych, koncentrujący się na ergonomii, energooszczędności i ekologii, ale nie jest to związane bezpośrednio z recyklingiem opakowań. Te nieporozumienia mogą wynikać z zamieszania wokół różnorodności certyfikatów i oznaczeń, jakie pojawiają się na rynku. Ważne jest, aby umieć rozróżniać te symbole, aby podejmować świadome decyzje zakupowe i projektowe, które przyczyniają się do ochrony środowiska i zrównoważonego rozwoju. Edukacja w tym zakresie jest kluczem do lepszego zrozumienia i prawidłowego stosowania pojęć związanych z recyklingiem i zrównoważonym rozwojem w praktyce zawodowej.

Pytanie 24

Które z poniższych stwierdzeń NIE odnosi się do pamięci cache L1?

A. Zastosowano w niej pamięć typu SRAM
B. Jej wydajność jest równa częstotliwości procesora
C. Znajduje się we wnętrzu układu procesora
D. Czas dostępu jest dłuższy niż w przypadku pamięci RAM
Wybór odpowiedzi, że pamięć cache L1 ma dłuższy czas dostępu niż pamięć RAM jest poprawny, ponieważ pamięć cache, w tym L1, charakteryzuje się znacznie szybszym czasem dostępu niż tradycyjna pamięć RAM. Cache L1, będąca pamięcią typu SRAM (Static Random Access Memory), jest projektowana z myślą o minimalizowaniu opóźnień w dostępie do danych, co jest kluczowe dla wydajności procesora. Przykładem zastosowania tej technologii jest jej rola w architekturze procesorów, gdzie dane najczęściej używane są przechowywane w cache, co znacząco przyspiesza operacje obliczeniowe. Normalny czas dostępu do pamięci RAM wynosi kilka nanosekund, podczas gdy cache L1 operuje na poziomie około 1-3 nanosekund, co czyni ją znacznie szybszą. W praktyce, umiejscowienie pamięci cache wewnątrz rdzenia procesora oraz jej związane z tym szybkie połączenia z centralną jednostką obliczeniową (CPU) pozwala na znaczne zredukowanie czasu potrzebnego do wykonania operacji, co jest standardem w projektowaniu nowoczesnych mikroprocesorów. Dobre praktyki inżynieryjne zalecają maksymalne wykorzystanie pamięci cache, aby zminimalizować opóźnienia i zwiększyć efektywność energetyczną systemów obliczeniowych.

Pytanie 25

Usterka przedstawiona na ilustracji, widoczna na monitorze komputera, nie może być spowodowana przez

Ilustracja do pytania
A. nieprawidłowe napięcie zasilacza
B. spalenie rdzenia lub pamięci karty graficznej po overclockingu
C. przegrzanie karty graficznej
D. uszkodzenie modułów pamięci operacyjnej
Przegrzewanie się karty graficznej może powodować różne dziwne artefakty na ekranie, bo generowanie grafiki 3D wymaga sporo mocy i ciepła. Jeśli chłodzenie karty jest za słabe albo powietrze krąży źle, to temperatura może wzrosnąć, co prowadzi do kłopotów z działaniem chipów graficznych i problemów z obrazem. Zasilacz to też sprawa kluczowa, bo jak napięcie jest złe, to może to wpłynąć na stabilność karty. Zasilacz z niewystarczającą mocą lub z uszkodzeniem może spowodować przeciążenia i wizualne problemy. Jak ktoś kręci rdzeń czy pamięć karty graficznej po overclockingu, to może dojść do błędów w wyświetlaniu, bo przekraczanie fabrycznych ograniczeń mocno obciąża komponenty i może je uszkodzić termicznie. Podsumowując, wszystkie te przyczyny, poza problemami z pamięcią RAM, są związane z kartą graficzną i jej działaniem, co skutkuje zakłóceniami w obrazie.

Pytanie 26

W modelu RGB, kolor w systemie szesnastkowym przedstawia się w ten sposób: ABCDEF. Wartość natężenia koloru niebieskiego w tym zapisie odpowiada liczbie dziesiętnej

A. 186
B. 171
C. 239
D. 205
Odpowiedź 239 jest poprawna, ponieważ natężenie koloru niebieskiego w modelu RGB jest reprezentowane przez ostatnie dwa znaki zapisu szesnastkowego. W przypadku koloru ABCDEF, oznacza to, że wartości składowe są: A (czerwony) = 10, B (zielony) = 11, a F (niebieski) = 15. Szesnastkowe F to 15 w systemie dziesiętnym. Jednak w kontekście całego koloru, aby uzyskać wartość intensywności koloru niebieskiego, musimy zrozumieć, że 'EF' w zapisie hex oznacza 239 w systemie dziesiętnym, co możemy obliczyć jako 14 * 16^1 + 15 * 16^0 = 224 + 15 = 239. Zrozumienie konwersji z systemu szesnastkowego na dziesiętny jest kluczowe w pracy z kolorami w grafice komputerowej, programowaniu oraz projektowaniu stron internetowych. W praktyce, znajomość modelu RGB oraz umiejętność przeliczania wartości pozwala na precyzyjne dobieranie kolorów w różnych aplikacjach, co jest niezbędne dla uzyskania odpowiednich efektów wizualnych. Tego rodzaju umiejętności są istotne w branżach związanych z grafiką, web designem oraz tworzeniem aplikacji multimedialnych.

Pytanie 27

Wartość liczby dziesiętnej 128(d) w systemie heksadecymalnym wyniesie

A. 128H
B. 10H
C. 80H
D. 10000000H
Liczba dziesiętna 128(d) w systemie heksadecymalnym jest reprezentowana jako 80H, co wynika z konwersji systemów numerycznych. Heksadecymalny system liczbowy, oparty na szesnastu cyfrach (0-9 oraz A-F), jest często stosowany w informatyce, szczególnie w kontekście programowania i adresacji pamięci. Aby przeliczyć liczbę dziesiętną 128 na system heksadecymalny, należy dzielić ją przez 16 i zapisywać reszty z tych dzielenia. 128 podzielone przez 16 daje 8 jako wynik i 0 jako resztę. To oznacza, że w systemie heksadecymalnym 128(d) to 80H. Przykłady zastosowania tego systemu obejmują kolorowanie stron internetowych, gdzie kolory są często określane za pomocą wartości heksadecymalnych, a także w programowaniu, gdzie adresy pamięci są często zapisywane w tym formacie. Zrozumienie konwersji między systemami numerycznymi jest kluczowe dla każdego programisty oraz inżyniera zajmującego się komputerami i elektroniką.

Pytanie 28

Który z poniższych protokołów służy do zarządzania urządzeniami w sieciach?

A. SFTP
B. SMTP
C. DNS
D. SNMP
SNMP, czyli Simple Network Management Protocol, to protokół komunikacyjny, który jest kluczowy w zarządzaniu i monitorowaniu urządzeń w sieciach komputerowych. SNMP pozwala administratorom na zbieranie informacji o statusie i wydajności urządzeń, takich jak routery, przełączniki, serwery oraz inne elementy infrastruktury sieciowej. Dzięki temu protokołowi możliwe jest m.in. zbieranie danych dotyczących obciążenia, błędów transmisyjnych, a także stanu interfejsów. W praktyce, administratorzy często korzystają z narzędzi SNMP do monitorowania sieci w czasie rzeczywistym, co pozwala na szybką reakcję na potencjalne problemy. Organizacje mogą wdrażać SNMP zgodnie z najlepszymi praktykami, stosując odpowiednie zabezpieczenia, takie jak autoryzacja i szyfrowanie komunikacji, co zwiększa bezpieczeństwo zarządzania urządzeniami. Protokół ten jest zgodny z różnymi standardami, takimi jak RFC 1157, co czyni go powszechnie akceptowanym rozwiązaniem w branży IT.

Pytanie 29

W przypadku zalania układu elektronicznego klawiatury słodkim napojem należy natychmiast odłączyć ją od zestawu komputerowego, a następnie

A. zdemontować klawisze i pozostawić do wyschnięcia na minimum 48 h.
B. zdemontować każdy z klawiszy, przesmarować elementy ruchome smarem łożyskowym i podłączyć klawiaturę do komputera.
C. przeczyścić całą klawiaturę w alkoholu izopropylowym i pozostawić na 24 h do wyschnięcia.
D. wypłukać klawiaturę w wodzie destylowanej z detergentem i podłączyć ją do komputera.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wybrałeś najlepszą możliwą opcję. Czyszczenie klawiatury po zalaniu słodkim napojem powinno być przeprowadzone bardzo dokładnie, a alkohol izopropylowy jest tu prawdziwym bohaterem. Jest to środek, który nie przewodzi prądu, odparowuje szybko i nie zostawia żadnych osadów, a co najważniejsze – bardzo dobrze rozpuszcza resztki cukru oraz inne zanieczyszczenia organiczne. Praktyka mówi jasno: po odłączeniu klawiatury od zasilania należy ją zdemontować na tyle, na ile pozwala konstrukcja, a potem przemyć obficie alkoholem izopropylowym – można to zrobić np. miękkim pędzelkiem nasączonym w alkoholu. Warto zostawić klawiaturę na minimum 24 godziny do pełnego wyschnięcia, bo nawet niewielka ilość wilgoci może później powodować zwarcia czy korozję ścieżek. Z własnej praktyki wiem, że często po takim zabiegu klawiatura działa jeszcze przez długie lata. Warto wiedzieć, że takie postępowanie zgadza się ze standardami serwisowymi większości producentów sprzętu elektronicznego. Alkohol izopropylowy to podstawa każdego serwisu elektroniki – nie dość, że czyści, to jeszcze dezynfekuje, a przy tym nie rozpuszcza plastiku. Gdyby użyć wody lub zwykłego detergentu, to ryzyko trwałego uszkodzenia byłoby dużo większe. Pamiętaj, żeby nie spieszyć się z podłączaniem klawiatury po czyszczeniu – lepiej poczekać te 24 godziny, niż potem żałować.

Pytanie 30

Czym jest serwer poczty elektronicznej?

A. PostgreSQL
B. MySQL
C. Postfix
D. Firebird

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Postfix jest jednym z najpopularniejszych serwerów poczty e-mail, używanym do wysyłania i odbierania wiadomości e-mail w Internecie. Jako serwer poczty, Postfix działa jako agent transportowy, co oznacza, że odpowiedzialny jest za zarządzanie przesyłaniem wiadomości między różnymi serwerami oraz ich dostarczaniem do lokalnych skrzynek pocztowych. Jest to oprogramowanie typu open-source, co daje użytkownikom możliwość dostosowania i rozbudowy w zależności od ich potrzeb. Przykładowo, wiele organizacji korzysta z Postfixa w połączeniu z innymi narzędziami, takimi jak Dovecot, aby stworzyć kompleksowy system pocztowy, który obsługuje zarówno protokół SMTP do wysyłania wiadomości, jak i IMAP/POP3 do ich odbierania. Postfix charakteryzuje się wysoką wydajnością, elastycznością oraz dużą skalowalnością, co czyni go idealnym rozwiązaniem dla firm różnej wielkości. Dobra praktyka w konfiguracji Postfixa obejmuje zabezpieczenie serwera za pomocą metod takich jak TLS oraz autoryzacja użytkowników, co zmniejsza ryzyko nieautoryzowanego dostępu.

Pytanie 31

W systemach operacyjnych z rodziny Windows, funkcja EFS umożliwia ochronę danych poprzez ich

A. archiwizowanie
B. szyfrowanie
C. kopiowanie
D. przenoszenie

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
EFS, czyli Encrypting File System, to taka technologia, która pozwala na szyfrowanie danych w systemach Windows. Fajnie, bo jej głównym celem jest ochrona ważnych informacji. Dzięki temu osoby, które nie mają uprawnień, nie mogą ich odczytać. System operacyjny zarządza kluczami szyfrującymi, a użytkownicy mogą wybrać, które pliki czy foldery mają być zabezpieczone. Przykładowo, w firmach EFS może być używane do szyfrowania dokumentów z wrażliwymi danymi, jak numery identyfikacyjne klientów czy dane finansowe. To ważne, bo nawet jeśli ktoś ukradnie dysk twardy, dane będą bezpieczne, jeśli nie ma odpowiednich uprawnień. No, i warto dodać, że EFS jest zgodne z dobrymi praktykami dotyczącymi zabezpieczania danych. Z mojego doświadczenia, szyfrowanie to kluczowy element ochrony prywatności i danych, a EFS dobrze się z tym wpisuje. EFS współpracuje też z innymi metodami zabezpieczeń, jak robienie kopii zapasowych czy zarządzanie dostępem.

Pytanie 32

Na których urządzeniach do przechowywania danych uszkodzenia mechaniczne są najczęściej spotykane?

A. W dyskach SSD
B. W dyskach HDD
C. W pamięciach Flash
D. W kartach pamięci SD

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Dyski twarde (HDD) są najbardziej narażone na uszkodzenia mechaniczne ze względu na ich konstrukcję. Wyposażone są w wirujące talerze oraz ruchome głowice, które odczytują i zapisują dane. Ta mechanika sprawia, że nawet niewielkie wstrząsy czy upadki mogą prowadzić do fizycznych uszkodzeń, takich jak zatarcie głowicy czy zgięcie talerzy. W praktyce oznacza to, że użytkownicy, którzy często transportują swoje urządzenia, powinni być szczególnie ostrożni z dyskami HDD. Warto zauważyć, że w przypadku zastosowań, gdzie mobilność jest kluczowa, np. w laptopach czy urządzeniach przenośnych, wiele osób decyduje się na dyski SSD, które nie mają ruchomych części, a więc są bardziej odporne na uszkodzenia mechaniczne. To podejście jest zgodne z branżowymi standardami bezpieczeństwa danych, które zalecają wybór odpowiednich nośników pamięci w zależności od warunków użytkowania.

Pytanie 33

Na ilustracji zaprezentowane jest urządzenie, które to

Ilustracja do pytania
A. bramka VoIP.
B. koncentrator.
C. wtórnik.
D. router.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Koncentrator, znany również jako hub, to urządzenie sieciowe wykorzystywane do łączenia wielu urządzeń w sieci lokalnej LAN. Działa na warstwie fizycznej modelu OSI co oznacza że przekazuje dane bez analizy ich zawartości. Głównym zadaniem koncentratora jest odbieranie sygnałów z jednego urządzenia i rozsyłanie ich do wszystkich pozostałych portów. To proste działanie sprawia że koncentrator jest mniej skomplikowany niż bardziej zaawansowane urządzenia sieciowe jak przełączniki czy routery które operują na wyższych warstwach modelu OSI. Koncentratory były popularne w początkowej fazie rozwoju sieci Ethernet jednak z czasem zostały zastąpione przez przełączniki które efektywniej zarządzają ruchem sieciowym dzięki możliwości kierowania pakietów tylko do docelowego portu co minimalizuje kolizje w sieci. Współcześnie koncentratory są rzadziej używane i mogą być spotykane głównie w prostych sieciach domowych lub jako narzędzia do testowania sygnałów. Standardowe praktyki branżowe sugerują ich unikanie w bardziej złożonych środowiskach ze względu na ograniczoną przepustowość i potencjał do wywoływania przeciążeń sieciowych.

Pytanie 34

Który z wymienionych systemów operacyjnych nie obsługuje wielozadaniowości?

A. Windows
B. Linux
C. UNIX
D. DOS

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
DOS (Disk Operating System) to jeden z najwcześniejszych systemów operacyjnych, który został zaprojektowany głównie do pracy w trybie jednego zadania. Oznacza to, że w danym momencie mógł obsługiwać tylko jedno zadanie lub proces, co było charakterystyczne dla systemów operacyjnych z lat 80. i wcześniejszych. Przykładowo, gdy użytkownik uruchamiał program w DOS-ie, nie było możliwości jednoczesnego uruchamiania innych aplikacji. Dzięki prostocie i niskim wymaganiom sprzętowym, DOS stał się popularny wśród użytkowników komputerów osobistych. W praktyce, pomimo ograniczeń, DOS był używany w różnych zastosowaniach, takich jak gry komputerowe, programowanie w języku C oraz do obsługi urządzeń peryferyjnych. W kontekście standardów branżowych, DOS stanowił fundament dla wielu systemów operacyjnych, które później wprowadziły wielozadaniowość, umożliwiając równoczesne wykonywanie wielu procesów, co stało się normą w nowoczesnych systemach takich jak Linux czy Windows."

Pytanie 35

Komputer A, który musi wysłać dane do komputera B znajdującego się w sieci z innym adresem IP, najpierw przekazuje pakiety do adresu IP

A. bramy domyślnej
B. komputera docelowego
C. alternatywnego serwera DNS
D. serwera DNS

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź "bramy domyślnej" jest jak najbardziej trafna. Kiedy komputer A chce przesłać dane do komputera B w innej sieci, najpierw musi skontaktować się z bramą domyślną, czyli routerem. To właśnie ten router ma dostęp do różnych sieci. Brawo, brama domyślna kieruje ruch poza lokalną sieć. Więc kiedy komputer A wysyła pakiet do B, to najpierw ten pakiet trafia do bramy, która decyduje, gdzie te dane powinny dalej iść, zapewniając, że trafią na odpowiednią trasę. Właśnie to jest zgodne z modelem OSI, gdzie warstwa sieciowa odpowiada za to adresowanie. Dobrze jest wiedzieć, że jeśli na komputerze A zostanie ustawiona brama, to wszystkie pakiety do adresów IP zewnętrznych przejdą przez nią. To naprawdę istotny element w zarządzaniu ruchem w sieci, który jest kluczowy w projektowaniu i administrowaniu sieciami.

Pytanie 36

Typ profilu użytkownika w systemie Windows Serwer, który nie zapisuje zmian wprowadzonych na bieżącym pulpicie ani na serwerze, ani na stacji roboczej po wylogowaniu, to profil

A. lokalny
B. zaufany
C. tymczasowy
D. mobilny

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Profil tymczasowy w Windows Serwer to taki typ profilu, który powstaje, jak się logujesz do systemu, a znika, gdy się wylogowujesz. To znaczy, że wszystkie zmiany, jakie wprowadzisz, jak ustawienia pulpitu czy dokumenty, nie zostaną zapamiętane ani na komputerze, ani na serwerze. Jest to mega przydatne w miejscach, gdzie ludzie korzystają z tych samych komputerów, bo pozwala utrzymać porządek. Na przykład w szkołach czy bibliotekach, gdzie sporo osób siada do jednego kompa. W takich sytuacjach profile tymczasowe pomagają chronić dane użytkowników i zmniejszają ryzyko problemów z bezpieczeństwem. Fajnie jest też używać ich, gdy ktoś potrzebuje dostępu na chwilę, ale nie chce, żeby jego ustawienia zostały zapamiętane. To wprowadza dodatkowe zabezpieczenia i zapobiega bałaganowi w systemie przez niechciane zmiany.

Pytanie 37

Jakie polecenie należy wydać, aby skonfigurować statyczny routing do sieci 192.168.10.0?

A. route 192.168.10.1 MASK 255.255.255.0 192.168.10.0 5 ADD
B. static 192.168.10.0 MASK 255.255.255.0 192.168.10.1 5 route
C. route ADD 192.168.10.0 MASK 255.255.255.0 192.168.10.1 5
D. static route 92.168.10.1 MASK 255.255.255.0 192.168.10.0 5

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
To polecenie "route ADD 192.168.10.0 MASK 255.255.255.0 192.168.10.1 5" jest całkiem dobrze skonstruowane. Widać, że określasz trasę statyczną do sieci 192.168.10.0 z maską 255.255.255.0, a do tego przez bramę 192.168.10.1 i z metryką 5. To ważne, żeby przy konfigurowaniu routingu zwracać uwagę na każdy parametr. Użycie słowa „ADD” pokazuje, że chodzi o dodanie nowej trasy do tablicy routingu, co ma duże znaczenie. W praktyce, routing statyczny sprawdza się świetnie w małych sieciach albo tam, gdzie nie ma sensu wdrażać dynamicznego routingu. Dzięki temu administrator ma kontrolę nad tym, jak przepływają dane, co jest istotne dla bezpieczeństwa i wydajności. Dobrze skonfigurowane trasy statyczne mogą pomóc w efektywniejszym działaniu sieci i w łatwiejszym rozwiązywaniu problemów z łącznością. Dodatkowo, trzymanie się dobrych praktyk w dokumentacji sieci, takich jak opisywanie tras, ułatwia późniejsze zarządzanie oraz aktualizacje systemu.

Pytanie 38

Osoba korzystająca z systemu Windows zdecydowała się na przywrócenie systemu do określonego punktu. Które pliki utworzone po tym punkcie NIE zostaną zmienione w wyniku tej operacji?

A. Pliki aktualizacji
B. Pliki aplikacji
C. Pliki osobiste
D. Pliki sterowników

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Pliki osobiste nie zostaną naruszone podczas przywracania systemu do wcześniejszego punktu, ponieważ ta operacja dotyczy głównie plików systemowych oraz programowych, a nie danych użytkownika. Przywracanie systemu jest funkcją, która pozwala na cofnięcie systemu do stanu, w którym znajdował się w momencie utworzenia punktu przywracania, co oznacza, że zmiany wprowadzone w systemie operacyjnym po tym punkcie zostaną wycofane. Natomiast pliki osobiste, jak dokumenty, zdjęcia czy pliki multimedialne, są przechowywane w osobnych folderach i nie są objęte tą operacją. W praktyce oznacza to, że użytkownik może bez obaw przywrócić system do wcześniejszego stanu, nie martwiąc się o utratę swoich osobistych danych. Dobrą praktyką jest regularne tworzenie kopii zapasowych ważnych plików, zwłaszcza przed wykonaniem operacji przywracania systemu, co stanowi dodatkową warstwę ochrony danych użytkownika.

Pytanie 39

Aby zapewnić maksymalną ochronę danych przy użyciu dokładnie 3 dysków, powinny one być przechowywane w macierzy RAID

A. RAID 50
B. RAID 6
C. RAID 5
D. RAID 10

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
RAID 5 to popularny poziom macierzy dyskowej, który wykorzystuje zarówno striping, jak i parzystość, co pozwala na zapewnienie bezpieczeństwa danych przy użyciu co najmniej trzech dysków. W przypadku utraty jednego dysku, dane mogą być odtworzone z pozostałych, dzięki zapisanej parzystości. RAID 5 jest często wykorzystywany w zastosowaniach, gdzie ważna jest zarówno wydajność, jak i bezpieczeństwo, na przykład w serwerach plików czy systemach baz danych. Warto zauważyć, że RAID 5 zapewnia efektywne wykorzystanie przestrzeni dyskowej, ponieważ tylko jeden dysk jest zarezerwowany na parzystość. Dodatkowo, przy zastosowaniu RAID 5 możliwe jest zwiększenie wydajności odczytu, co czyni go dobrym wyborem dla średnich i dużych organizacji. Zgodnie z najlepszymi praktykami, RAID 5 należy stosować w środowiskach, które mogą tolerować awarię jednego dysku, ale nie więcej. Ważne jest również regularne tworzenie kopii zapasowych danych, aby zabezpieczyć się przed innymi zagrożeniami, takimi jak usunięcie danych przez błąd ludzki czy złośliwe oprogramowanie.

Pytanie 40

Jakie jest usytuowanie przewodów w złączu RJ45 według schematu T568A?

Ilustracja do pytania
A. D
B. B
C. C
D. A

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Sekwencja połączeń T568A dla wtyku RJ45 jest normowana przez standardy telekomunikacyjne, a dokładnie przez normę TIA/EIA-568. Poprawna kolejność przewodów we wtyku RJ45 zgodnie z tym standardem to: 1) Biało-zielony 2) Zielony 3) Biało-pomarańczowy 4) Niebieski 5) Biało-niebieski 6) Pomarańczowy 7) Biało-brązowy 8) Brązowy. Taka kolejność ma na celu zapewnienie kompatybilności i efektywności połączeń sieciowych, przede wszystkim w systemach Ethernet. W praktyce zastosowanie tej sekwencji jest kluczowe w instalacjach sieciowych, gdzie wymagane jest zachowanie standardów, aby urządzenia różnych producentów mogły ze sobą współpracować bez problemów. Dostosowanie się do normy T568A jest powszechnie stosowane w instalacjach w budynkach mieszkalnych i biurowych. Poprawne okablowanie wg tego standardu minimalizuje zakłócenia sygnału i zwiększa niezawodność transmisji danych, co jest szczególnie istotne w środowiskach biurowych, gdzie wymagana jest wysoka przepustowość i stabilność połączeń.