Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.03 - Montaż, uruchamianie i konserwacja urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 19 grudnia 2025 12:23
  • Data zakończenia: 19 grudnia 2025 12:43

Egzamin zdany!

Wynik: 22/40 punktów (55,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Która z wymienionych nieprawidłowości może powodować zbyt częste uruchamianie się silnika sprężarki tłokowej?

A. Zabrudzony filtr powietrza
B. Nieszczelność w przewodach pneumatycznych
C. Defekt silnika sprężarki
D. Brak smarowania powietrza
Zanieczyszczony filtr powietrza, uszkodzony silnik sprężarki oraz brak olejenia powietrza to kwestie, które mogą wpływać na wydajność i sprawność sprężarki, ale nie są bezpośrednio przyczyną zbyt częstego załączania się jej silnika. Zanieczyszczony filtr powietrza ogranicza przepływ powietrza do sprężarki, co może prowadzić do spadku efektywności, jednak nie wpływa na częstotliwość załączania się silnika. Wręcz przeciwnie, może to powodować jego dłuższe działanie w jednym cyklu, a nie zwiększać ilość cykli włączania. Uszkodzony silnik sprężarki może powodować wiele problemów, w tym niestabilną pracę, ale najczęściej skutkuje to całkowitym zatrzymaniem urządzenia, a nie częstszymi włączeniami. Z kolei brak olejenia powietrza prowadzi do zwiększonego zużycia i przegrzewania się elementów sprężarki, co może wymagać częstszej interwencji serwisowej, ale nie jest bezpośrednią przyczyną częstego włączania się silnika. W praktyce te nieprawidłowości mogą prowadzić do awarii sprężarki, ale nie generują one sytuacji, w której silnik włącza się nadmiernie. Typowe błędy myślowe dotyczące tych problemów często wynikają z niepełnego zrozumienia działania sprężarki oraz jej komponentów, co podkreśla konieczność solidnej wiedzy na temat systemów pneumatycznych i ich konserwacji.

Pytanie 2

Do czynności przygotowawczych, które pozwalają na późniejszy poprawny montaż nowego paska klinowego w przekładni pasowej, nie należy

A. oceny stopnia zużycia
B. weryfikacji wymiarów
C. sprawdzenia poziomu naprężenia
D. kontroli czystości paska
Sprawdzanie stopnia naprężenia paska klinowego nie jest częścią operacji przygotowawczych przed jego montażem, ponieważ to zadanie wykonuje się już po zainstalowaniu paska. W ery technicznych i mechanicznych, takie jak w przemyśle automotive czy produkcyjnym, prawidłowe napięcie paska jest kluczowe dla efektywnej pracy przekładni pasowej. Przed montażem należy przede wszystkim zająć się weryfikacją wymiarów nowych komponentów, ocenić stopień zużycia istniejących części oraz zapewnić, że wszystkie elementy są czyste. Na przykład, czysty pasek oraz odpowiednio przygotowane koła pasowe minimalizują ryzyko poślizgu i przedwczesnego zużycia. Dobrą praktyką jest także stosowanie specjalistycznych narzędzi do pomiaru wymiarów, co wpływa na precyzję montażu. Wiedza na temat różnych typów pasków klinowych i ich specyfikacji pozwala na podejmowanie świadomych decyzji w procesie wymiany lub montażu, co jest zgodne ze standardami branżowymi, takimi jak ISO 9001.

Pytanie 3

Siłownik, który przesuwa tłok w jedną stronę dzięki sprężonemu powietrzu, a powrót tłoka jest wymuszany przez sprężynę, określamy jako siłownik pneumatyczny

A. różnicowy.
B. jednostronnej pracy.
C. dwustronnej pracy.
D. dwustronnej pracy, bez amortyzacji.
Siłownik jednostronnego działania to urządzenie, w którym sprężone powietrze działa na tłok jedynie w jednym kierunku, podczas gdy jego powrót do pozycji wyjściowej jest wymuszany przez sprężynę. Tego typu siłowniki są powszechnie stosowane w aplikacjach, gdzie nie jest wymagane ciągłe działanie w obie strony, co czyni je idealnym rozwiązaniem w systemach automatyki i pneumatyki. Przykładem zastosowania siłowników jednostronnego działania są chwytaki pneumatyczne, które chwytają obiekty w jednym kierunku, a następnie powracają do pozycji startowej dzięki sprężynie. Warto zwrócić uwagę, że siłowniki tego typu są często projektowane zgodnie z normami ISO, co zapewnia ich wysoką jakość i niezawodność. Dodatkowo, ograniczenie ruchu do jednej strony pozwala na oszczędność miejsca oraz efektywniejsze wykorzystanie sprężonego powietrza, co przekłada się na niższe koszty eksploatacyjne w dłuższej perspektywie czasowej.

Pytanie 4

Jaka jest wartość rezystancji rezystora przedstawionego na rysunku?

Ilustracja do pytania
A. 100 Ω
B. 10 kΩ
C. 10 Ω
D. 1 kΩ
Ten rezystor, co go widzisz na rysunku, ma oznaczenie "10kΩ", co oznacza, że jego rezystancja wynosi 10 kiloomów. W elektronice to bardzo ważny element, bo reguluje przepływ prądu w obwodach. Takie rezystory o wartości 10 kΩ często spotyka się w układach analogowych, jak na przykład w filtrach RC. Wiesz, ich wartość wpływa na częstotliwość graniczną obwodu, więc to jest naprawdę istotne. Z doświadczenia wiem, że dobór odpowiedniego rezystora to kluczowy krok, żeby obwód działał jak należy. No i jeszcze warto wiedzieć, że wartości rezystorów są ustandaryzowane według norm E12 lub E24. Dzięki temu łatwiej je dobrać i wykorzystać w praktyce. Dlatego warto znać wartości rezystancji i ich zastosowanie, bo to jest fundamentalne dla każdego inżyniera elektronika.

Pytanie 5

Licznik impulsów rewersyjnych to urządzenie

A. które dokonuje odejmowania impulsów
B. które zajmuje się dodawaniem impulsów
C. które wykonuje dodawanie i odejmowanie impulsów
D. które zapisuje w pamięci określoną liczbę impulsów
Wybór odpowiedzi, która ogranicza się do dodawania impulsów, nie oddaje pełnego zakresu funkcji rewersyjnego licznika impulsów. Liczniki te, jak sama nazwa wskazuje, mają zdolność do rewersji, co oznacza, że mogą nie tylko akumulować impulsy, ale także je odejmować. Podejście, które koncentruje się wyłącznie na dodawaniu, pomija kluczowy aspekt ich wszechstronności, co jest niezwykle istotne w zastosowaniach przemysłowych. W kontekście pomiarów, na przykład w systemach automatyki, często potrzebne jest nie tylko zliczanie, ale także korekta błędów, co wymaga funkcji odejmowania. Zrozumienie zasady działania rewersyjnych liczników impulsów jest kluczowe, aby uniknąć nieporozumień dotyczących ich zastosowania. Próba wyboru opcji, która mówi tylko o zliczaniu impulsów w pamięci, również jest myląca, ponieważ nie oddaje ona dynamiki działania takich urządzeń. W praktyce, liczniki te muszą reagować na zmieniające się warunki operacyjne, co wymaga zarówno dodawania, jak i odejmowania impulsów. Ignorowanie tej funkcji prowadzi do uproszczonego postrzegania złożonych systemów automatyki, co może skutkować błędnymi decyzjami w inżynierii i projektowaniu układów sterujących.

Pytanie 6

Jak można zmierzyć prędkość przepływu gazu?

A. z wykorzystaniem impulsatora fotoelektrycznego
B. za pomocą zwężki Venturiego
C. używając czujnika termoelektrycznego
D. przy pomocy pirometru radiacyjnego
Zwężka Venturiego jest urządzeniem pomiarowym, które wykorzystuje zjawisko Bernoulliego do pomiaru prędkości przepływu płynów, w tym gazów. Gdy gaz przechodzi przez zwężkę, jego prędkość wzrasta, a ciśnienie spada. Zmiana ciśnienia na wejściu i wyjściu zwężki pozwala na obliczenie prędkości przepływu, korzystając z równań dynamicznych. Zastosowanie zwężki Venturiego jest szerokie, obejmując przemysł chemiczny, energetykę oraz instalacje HVAC. Umożliwia ona nie tylko pomiar prędkości, ale również kontrolę i regulację przepływu mediów. Obliczenia dokonuje się najczęściej w oparciu o prawo Bernoulliego oraz równanie ciągłości, co czyni zwężkę skutecznym narzędziem w wielu zastosowaniach inżynieryjnych. Przykładem mogą być systemy wentylacyjne, gdzie precyzyjny pomiar przepływu gazu jest kluczowy dla efektywności energetycznej i jakości powietrza.

Pytanie 7

Które narzędzia należy zastosować podczas wymiany rezystora R1 przedstawionego na rysunku?

Ilustracja do pytania
A. Szczypce i pilnik.
B. Lutownicę i odsysacz.
C. Wkrętak i szczypce.
D. Pilnik i zaciskarkę.
Wybór lutownicy i odsysacza jest kluczowy przy wymianie rezystora na płytce drukowanej. Lutownica jest niezbędna do rozlutowania końcówek rezystora, co umożliwia jego usunięcie z obwodu. Dobrej jakości lutownica z regulowaną temperaturą pozwala na precyzyjne wykonanie tej operacji, co minimalizuje ryzyko uszkodzenia ścieżek na płytce. Odsysacz, z kolei, służy do efektywnego usunięcia cyny z lutowanych połączeń. To ważne, aby zapewnić czyste miejsce do montażu nowego rezystora, co przyczynia się do poprawności i niezawodności całego układu. Dodatkowo, stosowanie odsysacza cyny jest zgodne z najlepszymi praktykami w elektronice, które zalecają eliminację resztek lutowia przed montażem nowych elementów. Warto również pamiętać, że w sytuacjach, gdzie wymiana elementów elektronicznych jest częsta, takie narzędzia stają się integralną częścią wyposażenia każdego elektronika, a umiejętność ich użycia jest kluczowa dla zachowania wysokiej jakości napraw i modyfikacji.

Pytanie 8

Co należy zrobić w pierwszej kolejności, gdy poszkodowany w wypadku jest nieprzytomny i nie wykazuje oznak oddychania?

A. przeprowadzić reanimację poszkodowanego i wezwać pomoc
B. pozostawić poszkodowanego w aktualnej pozycji i zatelefonować po pomoc
C. wezwać pomoc i przeprowadzić sztuczne oddychanie
D. wezwać pomoc i zapewnić drożność dróg oddechowych poszkodowanego
Dobrze, że wybrałeś odpowiedź, która mówi o wezwaniu pomocy i udrożnieniu dróg oddechowych. Wiesz, że w sytuacji, gdy ktoś jest nieprzytomny i nie oddycha, to właśnie drożność dróg oddechowych jest kluczowa? Zgodnie z wytycznymi ERC, najpierw powinniśmy upewnić się, że drogi oddechowe są drożne, co można zrobić na przykład metodą 'tilt-chin' albo 'jaw-thrust'. Jak już upewnimy się, że wszystko jest ok, wtedy dzwonimy po pomoc i kontynuujemy resuscytację. Przykład? Wyobraź sobie wypadek samochodowy – pierwsze co, to musimy zadbać, by poszkodowany mógł oddychać, inaczej może dojść do niedotlenienia mózgu. I pamiętaj, według aktualnych wytycznych, nie należy robić sztucznego oddychania, zanim nie udrożnimy dróg, bo inaczej powietrze nie dotrze do płuc i tylko pogorszy sytuację.

Pytanie 9

Którą technikę łączenia materiałów przedstawiono na rysunku?

Ilustracja do pytania
A. Klejenia.
B. Zgrzewania.
C. Lutowania miękkiego.
D. Lutowania twardego.
Zgrzewanie, lutowanie miękkie oraz klejenie to techniki łączenia materiałów, które różnią się od lutowania twardego zarówno w zakresie procesu, jak i zastosowania. Zgrzewanie polega na połączeniu elementów poprzez ich miejscowe stopienie, co wymaga energii cieplnej generowanej poprzez opór elektryczny lub ultradźwięki. Choć zgrzewanie doskonale sprawdza się w łączeniu blach stalowych, nie osiąga takiej trwałości jak lutowanie twarde, szczególnie w kontekście różnorodności materiałów. Lutowanie miękkie, z kolei, opiera się na spoiwach o niższej temperaturze topnienia, co czyni je bardziej odpowiednim do delikatnych komponentów, jednak nie zapewnia odpowiedniej wytrzymałości w przypadku intensywnych obciążeń mechanicznych. Klejenie to proces łączenia materiałów przy użyciu substancji chemicznych, co w niektórych przypadkach może być korzystne, ale zazwyczaj nie jest wystarczająco mocne dla zastosowań przemysłowych wymagających dużych sił. Użytkownicy często mylą te techniki, co prowadzi do błędnych wniosków o ich zastosowalności. Zrozumienie różnic między tymi metodami jest kluczowe dla prawidłowego wyboru odpowiedniej technologii montażu w zależności od specyfikacji projektu oraz wymagań wytrzymałościowych.

Pytanie 10

Przedstawione narzędzie jest wykorzystywane podczas

Ilustracja do pytania
A. wiercenia.
B. gwintowania.
C. toczenia.
D. frezowania.
Odpowiedź "gwintowania" jest prawidłowa, ponieważ narzędzie przedstawione na zdjęciu to gwintownik, który jest przeznaczony do tworzenia gwintów wewnętrznych w otworach. Gwintowanie jest procesem, który pozwala na połączenie elementów mechanicznych, takich jak śruby i nakrętki, co jest niezwykle istotne w wielu branżach, w tym w budownictwie i inżynierii. Gwintowniki są dostępne w różnych typach, takich jak gwintowniki ręczne i maszynowe, które są dobierane w zależności od materiału obrabianego oraz wymagań dotyczących precyzji i głębokości gwintu. Stosowanie gwintowników zgodnie z normami i standardami branżowymi, takimi jak ISO, zapewnia wysoką jakość wykonania oraz zgodność z wymaganiami technicznymi. W praktyce, gwintowanie jest kluczowe w produkcji części maszyn oraz w montażu konstrukcji, gdzie właściwe dopasowanie i trwałość połączeń mają kluczowe znaczenie dla bezpieczeństwa i funkcjonalności finalnych produktów.

Pytanie 11

Jakie jest przesunięcie fazowe sygnału wyjściowego w odniesieniu do sygnału wejściowego sinusoidalnego w regulatorze typu PD?

A. 45°
B. 0°
C. 90°
D. -90°
Odpowiedź 90° jest prawidłowa w kontekście regulatorów typu PD (proporcjonalno-derywacyjne). W takim regulatorze sygnał wyjściowy jest opóźniony w stosunku do sygnału wejściowego o 90°. Oznacza to, że reakcja na zmiany sygnału wejściowego jest natychmiastowa, jednakże nie uwzględnia wartości sygnału, co prowadzi do przesunięcia fazowego. Praktycznie, w zastosowaniach inżynieryjnych, takich jak automatyka przemysłowa, regulator PD jest często stosowany do zwiększenia dynamiki systemu. Na przykład, w systemach kontroli temperatury, zastosowanie regulatora PD może poprawić odpowiedź systemu na zmiany obciążenia, umożliwiając szybsze osiągnięcie zadanej temperatury. Warto również zauważyć, że w praktyce dobór odpowiednich parametrów regulatora PD, tj. wzmocnienia proporcjonalnego i współczynnika pochodnej, ma kluczowe znaczenie dla zachowania stabilności i jakości regulacji. Właściwe zaprojektowanie systemu z wykorzystaniem regulatora PD zwiększa jego wydajność, co jest zgodne z najlepszymi praktykami w dziedzinie automatyki.

Pytanie 12

Rezystor o wartości znamionowej 1,2 kΩ i tolerancji 2% ma kod barwny

KolorWartośćMnożnikTolerancja
1 pasek2 pasek3 pasek4 pasek
brak---± 20 %
srebrny--10-2 Ω± 10 %
złoty--10-1 Ω± 5 %
czarny-0100 Ω-
brązowy11101 Ω± 1 %
czerwony22102 Ω± 2 %
pomarańczowy33103 Ω-
żółty44104 Ω-
zielony55105 Ω± 0,5 %
niebieski66106 Ω± 0,25 %
fioletowy77107 Ω± 0,1 %
szary88108 Ω± 0,05 %
biały99109 Ω-
A. brązowy, czerwony, czerwony, czerwony.
B. czerwony, brązowy, czerwony, czerwony.
C. brązowy, brązowy, czerwony, czerwony.
D. brązowy, czerwony, czerwony, złoty.
Poprawna odpowiedź to brązowy, czerwony, czerwony, czerwony, która odpowiada rezystorowi o wartości znamionowej 1,2 kΩ z tolerancją 2%. W kodzie barwnym pierwszy pasek, brązowy, reprezentuje cyfrę 1, drugi pasek, czerwony, oznacza cyfrę 2, a trzeci pasek, również czerwony, to mnożnik ×100. Mnożąc wartość 12 przez 100, otrzymujemy 1200 Ω, co jest równoważne 1,2 kΩ. Czwarty pasek, czerwony, wskazuje na tolerancję 2%, co oznacza, że wartość rezystora może wahać się w granicach ±2% od nominalnej wartości. Zrozumienie kodu barwnego rezystorów jest kluczowe w elektronice, ponieważ pozwala na szybkie i efektywne identyfikowanie wartości komponentów. W praktyce, znajomość tych zasad pozwala inżynierom i technikom na właściwe dobieranie rezystorów do układów elektronicznych, co jest niezwykle istotne w projektowaniu obwodów elektronicznych. Warto również zaznaczyć, że prawidłowa interpretacja kodu barwnego jest zgodna z normą IEC 60062, która standaryzuje sposób oznaczania wartości rezystorów.

Pytanie 13

Jakie zasilanie należy zastosować do silnika, którego tabliczka znamionowa została przedstawiona na fotografii?

Ilustracja do pytania
A. Trójfazowe, 230 V
B. Jednofazowe, 400 V
C. Napięcie stałe, 84 V
D. Trójfazowe, 400 V
Odpowiedź "Trójfazowe, 400 V" jest poprawna, ponieważ na tabliczce znamionowej silnika znajduje się oznaczenie "3~ 400 V". Oznacza to, że silnik zbudowany jest do pracy w systemie trójfazowym z napięciem wynoszącym 400 V. Silniki trójfazowe są powszechnie stosowane w przemyśle ze względu na ich wyższą efektywność oraz mniejsze straty energii w porównaniu do silników jednofazowych. W zastosowaniach przemysłowych, gdzie wymagane są większe moce, zasilanie trójfazowe jest standardem, ponieważ pozwala na równomierne obciążenie linii zasilających oraz umożliwia lepsze wykorzystanie mocy. Warto również zwrócić uwagę na to, że przy podłączeniu silnika do zasilania, które nie odpowiada jego wymaganiom, może dojść do uszkodzenia wirnika, przegrzewania silnika lub w ogóle braku jego działania. Dlatego tak ważne jest, aby przy wyborze zasilania kierować się oznaczeniami na tabliczkach znamionowych oraz stosować się do branżowych standardów, aby zapewnić bezpieczeństwo i efektywność pracy urządzeń.

Pytanie 14

Którego z wymienionych narzędzi należy użyć do odkręcenia śruby przedstawionej na ilustracji?

Ilustracja do pytania
A. Wkrętaka z końcówką krzyżową.
B. Klucza imbusowego.
C. Wkrętaka z końcówką torx.
D. Klucza płaskiego.
Wkrętak z końcówką torx jest narzędziem idealnie przystosowanym do pracy z śrubami torx, które mają sześcioramienną główkę. Jego konstrukcja pozwala na doskonałe dopasowanie do kształtu śruby, co z kolei minimalizuje ryzyko poślizgu i uszkodzenia zarówno narzędzia, jak i samej śruby. Wkrętak torx zapewnia również lepszy moment obrotowy w porównaniu do standardowych wkrętaków, co pozwala na skuteczniejsze odkręcanie lub przykręcanie śrub. W zastosowaniach przemysłowych i technicznych, śruby torx są często preferowane ze względu na ich wytrzymałość i zdolność do przenoszenia większych obciążeń. Dobór odpowiedniego narzędzia jest kluczowy dla efektywności prac montażowych czy serwisowych, a stosowanie wkrętaka torx w przypadku śrub tego typu jest zgodne z branżowymi standardami, co wpływa na jakość i bezpieczeństwo wykonywanych prac.

Pytanie 15

Która budowa siłownika hydraulicznego umożliwia uzyskanie największego skoku przy niewielkiej długości cylindra?

A. Tłokowa z dwustronnym tłoczyskiem
B. Tłokowa z jednostronnym tłoczyskiem
C. Nurnikowa
D. Teleskopowa
Nurnikowe siłowniki hydrauliczne, w odróżnieniu od teleskopowych, mają jedną, prostą konstrukcję z jednym cylindrem, co ogranicza ich zdolność do osiągania dużych skoków przy małych długościach. Ich konstrukcja jest prostsza, co może prowadzić do błędnych wniosków, że są bardziej efektywne w każdym zastosowaniu. W rzeczywistości, ich zastosowanie jest ograniczone do sytuacji, gdzie skok nie jest kluczowy, a siła działania jest priorytetem. Tłokowa konstrukcja z dwustronnym tłoczyskiem również nie jest optymalna, gdyż wymaga znacznej długości cylindra, aby osiągnąć duży skok, co czyni ją nieodpowiednią w prostych przestrzeniach. Z kolei tłokowa konstrukcja z jednostronnym tłoczyskiem, pomimo że może być bardziej kompaktowa, również nie osiąga skoku porównywalnego z teleskopowym rozwiązaniem. Często występuje mylne przekonanie, że każda konstrukcja może być używana zamiennie, co prowadzi do błędnych decyzji w doborze siłowników do konkretnego zastosowania. W przemyśle hydrauliki, dobrą praktyką jest zawsze analizowanie specyfikacji i potrzeb danego projektu, co pozwala na skuteczne dopasowanie siłowników do wymagań.

Pytanie 16

Na płytce drukowanej w miejscach oznaczonych cyframi 1, 2, 3 należy zamontować

Ilustracja do pytania
A. 1 - diodę prostowniczą, 2 - kondensator elektrolityczny, 3 - rezystor.
B. 1 - diodę prostowniczą, 2 - rezystor, 3 - kondensator elektrolityczny.
C. 1 - kondensator elektrolityczny, 2 - diodę prostowniczą, 3 - rezystor.
D. 1 - kondensator elektrolityczny, 2 - rezystor, 3 - diodę prostowniczą.
Twoja odpowiedź jest prawidłowa. Miejsce oznaczone cyfrą 1 jest przeznaczone na diodę prostowniczą, co można zidentyfikować po charakterystycznym symbolu diody, który często przedstawia trójkąt i linię. Dioda prostownicza jest kluczowym elementem w obwodach elektronicznych, gdzie pełni funkcję prostowania prądu, co jest istotne w zasilaczach i układach rectifier. Miejsce oznaczone cyfrą 2 jest przeznaczone na kondensator elektrolityczny. Kondensatory te są używane głównie do filtracji w zasilaczach oraz do stabilizacji napięcia, co jest niezbędne dla prawidłowego działania układów elektronicznych. Ostatnie miejsce, oznaczone cyfrą 3, jest przeznaczone na rezystor. Rezystory są powszechnie stosowane do ograniczenia przepływu prądu w obwodach oraz do regulacji napięcia. Zrozumienie funkcji tych komponentów jest kluczowe w projektowaniu i analizie obwodów elektronicznych, a ich prawidłowy montaż na płytce drukowanej zgodnie z oznaczeniami jest niezbędny dla stabilności i bezpieczeństwa całego układu.

Pytanie 17

Jeśli na tłok siłownika o powierzchni S = 0,003 m2 działa ciśnienie czynnika wynoszące 2 MPa, to jaka jest siła działająca na tłok?

A. 9 kN
B. 2 kN
C. 12 kN
D. 6 kN
Aby obliczyć siłę naporu działającą na tłok siłownika, należy skorzystać ze wzoru F = p * S, gdzie F to siła, p to ciśnienie, a S to powierzchnia przekroju tłoka. W naszym przypadku ciśnienie p wynosi 2 MPa, co należy przeliczyć na pascale: 2 MPa = 2 * 10^6 Pa. Powierzchnia S wynosi 0,003 m². Podstawiając wartości do wzoru, otrzymujemy F = 2 * 10^6 Pa * 0,003 m² = 6000 N, co jest równoważne 6 kN. Zrozumienie tego działania ma fundamentalne znaczenie w hydraulice, gdzie siły generowane przez ciśnienie są kluczowe dla działania maszyn i systemów. Na przykład w układach hydraulicznych w samochodach, takich jak hamulce czy podnośniki, prawidłowe obliczenie siły pozwala na efektywne i bezpieczne działanie tych mechanizmów. Zastosowanie ciśnienia i przekroju tłoka jest również istotne przy projektowaniu urządzeń takich jak prasy hydrauliczne czy siłowniki, gdzie precyzyjna manipulacja siłą jest niezbędna.

Pytanie 18

Jakie urządzenia oraz przyrządy pomiarowe są kluczowe do określenia parametrów filtrów pasmowych?

A. Generator fali stojącej oraz woltomierz
B. Generator i oscyloskop
C. Częstościomierz i miernik uniwersalny
D. Amperomierz i oscyloskop
Wybór narzędzi do analizy filtrów pasmowych jest ważny, bo czasem można się pomylić. Amperomierz i oscyloskop przydają się w pomiarze prądu i analizie sygnałów, ale nie wystarczą do określenia parametrów filtrów pasmowych. Amperomierz mierzy tylko prąd, więc nie mówi nic o tym, jak filtr działa w kontekście częstotliwości. Dlatego ważne jest, żeby znać relacje między napięciem a częstotliwością. Z drugiej strony, generator fali stojącej i woltomierz też nie będą dobrym wyborem, bo ten pierwszy nie obsługuje sygnałów o zmiennych częstotliwościach, a to jest kluczowe w analizie filtrów. Miernik uniwersalny, choć może być użyteczny w wielu sytuacjach, nie daje wystarczających informacji o charakterystyce częstotliwościowej. Przez wybór złych narzędzi można przeoczyć ważne aspekty analizy, na przykład pasmo przenoszenia i tłumienie, co może prowadzić do błędnych wniosków o działaniu filtrów. Wiedza o odpowiednich narzędziach jest kluczowa, jeśli chodzi o projektowanie i testowanie układów elektronicznych. Użycie generatora i oscyloskopu w tym kontekście to dobra praktyka.

Pytanie 19

Zwiększenie wartości częstotliwości wyjściowej falownika zasilającego silnik indukcyjny, przy niezmiennym obciążeniu silnika, prowadzi do

A. zwiększenia prędkości obrotowej
B. zmniejszenia prędkości obrotowej
C. wzrostu rezystancji uzwojeń
D. spadku rezystancji uzwojeń
Wzrost wartości częstotliwości wyjściowej falownika zasilającego silnik indukcyjny prowadzi do zwiększenia prędkości obrotowej silnika. Wynika to z faktu, że prędkość obrotowa silnika indukcyjnego jest bezpośrednio proporcjonalna do częstotliwości zasilania, co jest opisane równaniem: n = (120 * f) / p, gdzie n to prędkość obrotowa w obrotach na minutę (RPM), f to częstotliwość w hercach (Hz), a p to liczba par biegunów silnika. W praktyce oznacza to, że zmiana częstotliwości zasilania pozwala na precyzyjne sterowanie prędkością obrotową silnika, co jest kluczowe w wielu aplikacjach przemysłowych, takich jak napędy wentylatorów, pomp czy przenośników taśmowych. Wzrost prędkości obrotowej może również skutkować zwiększeniem wydajności procesu produkcyjnego oraz optymalizacją zużycia energii, ponieważ falowniki pozwalają na dostosowanie parametrów pracy silnika w zależności od aktualnych potrzeb. Współczesne standardy w automatyce przemysłowej promują wykorzystanie falowników jako najbardziej efektywnego sposobu zarządzania napędami elektrycznymi, co przekłada się na większą elastyczność i oszczędności energetyczne.

Pytanie 20

Silnik komutatorowy przez dłuższy czas był przeciążony, co doprowadziło do powstania zwarć międzyzwojowych. Proces naprawy silnika obejmuje wymianę

A. uzwojenia
B. komutatora
C. łożysk
D. szczotek
Kiedy mówimy o naprawach silnika komutatorowego, wybór odpowiednich komponentów do wymiany jest kluczowy dla przywrócenia jego sprawności. Odpowiedzi takie jak łożyska, komutator czy szczotki, mimo że mogą być istotnymi elementami silnika, nie są odpowiednie w kontekście problemu z zwarciami międzyzwojowymi. W przypadku łożysk, ich zadaniem jest jedynie umożliwienie swobodnego obrotu wirnika, a ich uszkodzenie nie prowadzi bezpośrednio do zwarć w uzwojeniu. Z kolei komutator, który przekształca prąd stały na prąd zmienny, również nie jest bezpośrednią przyczyną takich awarii. Jeśli komutator jest uszkodzony, może to prowadzić do niewłaściwego działania silnika, ale nie jest to bezpośredni skutek przeciążenia uzwojenia. Wymiana szczotek, które są elementami stykowymi, również nie rozwiąże problemu przyczynowego, jakim są zwarcia w uzwojeniach. Te pomyłki wynikają często z braku zrozumienia roli poszczególnych elementów w silniku komutatorowym oraz ich wpływu na ogólną funkcjonalność urządzenia. Aby skutecznie naprawić silnik, konieczne jest zrozumienie, że uzwojenie w przypadku uszkodzeń związanych z przeciążeniem wymaga szczególnej uwagi, co jest zgodne z najlepszymi praktykami w dziedzinie inżynierii elektrycznej.

Pytanie 21

Jakiego materiału powinno się użyć do ekranowania urządzeń pomiarowych, aby zredukować wpływ pól elektromagnetycznych na ich funkcjonowanie?

A. Preszpan
B. Szkło
C. Teflon
D. Aluminium
Teflon, szklano i preszpan to materiały, które z różnych powodów nie nadają się do ekranowania elektromagnetycznego. Teflon, chociaż ma dobre właściwości dielektryczne i jest odporny na wiele chemikaliów, nie ma ani wystarczającej przewodności elektrycznej, ani zdolności do odbicia fal elektromagnetycznych. Z tego powodu nie jest skutecznym materiałem do ochrony przed zakłóceniami elektromagnetycznymi. Podobnie szkło, które również charakteryzuje się niską przewodnością, nie ma zdolności do efektywnego blokowania pól elektromagnetycznych. W rzeczywistości szkło może nawet stwarzać problemy w aplikacjach wymagających ekranowania, ponieważ promieniowanie elektromagnetyczne może przechodzić przez nie, co skutkuje zakłóceniami w działaniu delikatnych urządzeń pomiarowych. Preszpan, z kolei, to materiał kompozytowy, który ma zastosowanie głównie w dziedzinie elektroniki ze względu na swoje właściwości izolacyjne, ale ponownie, jego brak przewodności elektrycznej czyni go nieodpowiednim do ekranowania. Nieporozumienia związane z tymi materiałami często wynikają z mylnego przekonania, że dobra izolacja wystarcza do ochrony przed zakłóceniami elektromagnetycznymi. Kluczowe jest rozumienie różnicy między materiałami dielektrycznymi a przewodzącymi w kontekście ekranowania, co prowadzi do bardziej efektywnego projektowania systemów odpornych na zakłócenia.

Pytanie 22

Zastosowany w podsystemie pneumatycznym zespół, którego wygląd i symbole graficzne przedstawiono na rysunkach, umożliwia

Ilustracja do pytania
A. płynną regulację temperatury sprężonego powietrza zasilającego układ.
B. płynną regulację wilgotności sprężonego powietrza zasilającego układ.
C. zasilanie układu pneumatycznego sprężonym powietrzem o stałym ciśnieniu.
D. zasilanie układu pneumatycznego sprężonym powietrzem o stałej wartości przepływu.
Wybranie odpowiedzi, która sugeruje płynną regulację temperatury sprężonego powietrza, świadczy o nieporozumieniu w zakresie funkcji tego zestawu. Regulacja temperatury powietrza jest procesem, który zazwyczaj nie jest realizowany przez standardowe zespoły przygotowania powietrza. Zamiast tego, standardowe elementy, takie jak chłodnice powietrza, są stosowane do tego celu. Również koncepcja regulacji wilgotności sprężonego powietrza jest mylna. Wilgotność powietrza jest kontrolowana w sposób bardziej zaawansowany, często z użyciem osuszaczy, które eliminują nadmiar wilgoci. Dodatkowo, odpowiedź dotycząca stałej wartości przepływu sprężonego powietrza również odbiega od rzeczywistości. W kontekście pneumatyki, przepływ powietrza może być regulowany, ale zespół przygotowania powietrza, jak ten przedstawiony na zdjęciu, nie ma zastosowania do takiego zadania. Przerwy w zrozumieniu tych różnic mogą prowadzić do nieefektywnego wykorzystania systemów pneumatycznych oraz do potencjalnych awarii. Kluczowe jest zrozumienie, że każdy element w systemie pneumatycznym ma swoje specyficzne zadanie, które nie może być realizowane przez inne urządzenia. Dlatego tak ważne jest, aby znać nie tylko funkcje, ale i ograniczenia poszczególnych komponentów, co jest niezbędne do zapewnienia niezawodności i efektywności operacyjnej w przemyśle.

Pytanie 23

Który z poniższych elementów nagle obniża swoją rezystancję po osiągnięciu określonego poziomu napięcia na jego terminalach?

A. Warystor.
B. Tensometr.
C. Termistor.
D. Gaussotron.
Tensometr, będący czujnikiem, który przekształca odkształcenie mechaniczne w zmianę rezystancji, działa na zupełnie innych zasadach. Jego głównym zastosowaniem jest mierzenie sił i momentów, co czyni go niezwykle użytecznym w inżynierii do monitorowania naprężeń w konstrukcjach. Obserwując zmiany rezystancji w odpowiedzi na odkształcenia, tensometr nie reaguje na napięcia w sposób, w jaki robi to warystor. Termistor, z kolei, to element, którego rezystancja zmienia się w odpowiedzi na zmiany temperatury, a nie napięcia. Używając go w obwodach, możemy monitorować temperaturę oraz regulować różne procesy, ale nie ma związku z gwałtownym spadkiem rezystancji wskutek wzrostu napięcia. Gaussotron to z kolei rodzaj detektora, który działa na zasadzie zjawisk magnetycznych, a nie elektrycznych, co czyni go nieodpowiednim w kontekście analizowanego pytania. Zrozumienie różnicy pomiędzy tymi elementami jest kluczowe dla prawidłowego projektowania układów elektronicznych oraz systemów pomiarowych. Typowe błędy myślowe, które mogą prowadzić do pomyłek w takich pytaniach, obejmują mylenie funkcji zależnych od napięcia i temperatury, co pokazuje, jak ważna jest znajomość specyfiki działania każdego z tych komponentów w praktyce inżynieryjnej.

Pytanie 24

Którym medium roboczym jest zasilany element o symbolu graficznym przedstawionym na rysunku zastosowany w urządzeniu mechatronicznym?

Ilustracja do pytania
A. Cieczą hydrauliczną.
B. Prądem przemiennym.
C. Prądem stałym.
D. Sprężonym powietrzem.
Odpowiedź "Cieczą hydrauliczną" jest poprawna, ponieważ symbol graficzny przedstawia siłownik hydrauliczny, który jest kluczowym elementem w systemach hydraulicznych. Siłowniki hydrauliczne wykorzystują energię ciśnienia cieczy do wytwarzania ruchu liniowego, co jest niezwykle istotne w aplikacjach wymagających dużej siły, takich jak maszyny budowlane, prasy hydrauliczne czy systemy automatyki przemysłowej. W praktyce, zastosowanie siłowników hydraulicznych pozwala na precyzyjne sterowanie ruchem oraz osiąganie bardzo dużych obciążeń przy stosunkowo niewielkich rozmiarach komponentów. Warto zaznaczyć, że w hydraulice istotne są także standardy dotyczące projektowania i doboru elementów, takie jak normy ISO, które określają wymagania dotyczące wydajności oraz bezpieczeństwa systemów hydraulicznych. Dobrze zaprojektowane układy hydrauliczne są bardziej efektywne i niezawodne, co przekłada się na dłuższy czas eksploatacji urządzeń mechatronicznych.

Pytanie 25

Do działań wstępnych, które pozwolą na prawidłowy montaż nowego paska klinowego w przekładni pasowej, nie należy zaliczać

A. weryfikacji czystości paska
B. oceny stopnia naprężenia
C. sprawdzenia wymiarów
D. analizy stopnia zużycia
Wszystkie wymienione czynności, z wyjątkiem sprawdzenia stopnia naprężenia, są istotnymi operacjami przygotowawczymi, które należy wykonać przed montażem nowego paska klinowego. Weryfikacja wymiarów jest kluczowym krokiem, ponieważ właściwe dopasowanie paska do przekładni pasowej zapewnia jego prawidłowe działanie. W przeciwnym razie, jeśli pasek będzie za długi lub za krótki, może prowadzić do nadmiernego zużycia, a nawet uszkodzenia innych elementów układu napędowego. Kontrola czystości paska oraz otoczenia montażowego również nie może być pomijana. Zanieczyszczenia mogą prowadzić do niewłaściwego osadzenia paska, co z kolei może skutkować awariami. Ocena stopnia zużycia jest równie ważna, gdyż pozwala na identyfikację, czy wymiana paska jest rzeczywiście konieczna. Typowym błędem myślowym jest przekonanie, że sprawdzenie naprężenia można wykonać przed montażem paska. Jednakże naprężenie dotyczy już zamontowanego paska, dlatego nie jest to czynność przygotowawcza. Właściwe zrozumienie procesu montażu paska klinowego i związanych z nim operacji przygotowawczych jest kluczowe dla zapewnienia długotrwałego i niezawodnego działania układów napędowych.

Pytanie 26

Przed przystąpieniem do wymiany zaworu elektropneumatycznego, sterowanego przez PLC, co należy zrobić?

A. wyłączyć dopływ sprężonego powietrza, odłączyć siłownik oraz PLC
B. odłączyć przewody zasilające do sterownika oraz przewody pneumatyczne od elektrozaworu
C. wprowadzić sterownik PLC w stan STOP, a następnie wyłączyć zasilanie elektryczne i pneumatyczne układu
D. zatrzymać zasilanie pneumatyczne, odłączyć przewody od cewki elektrozaworu oraz przewody pneumatyczne
Wprowadzenie sterownika PLC w tryb STOP oraz wyłączenie zasilania elektrycznego i pneumatycznego układu to kluczowe kroki przed rozpoczęciem wymiany zaworu elektropneumatycznego. Takie podejście minimalizuje ryzyko błędów oraz zapewnia bezpieczeństwo podczas prac serwisowych. W trybie STOP sterownik nie wykonuje żadnych operacji, co zapobiega niekontrolowanemu działaniu urządzeń. Wyłączenie zasilania elektrycznego oraz pneumatycznego jest zgodne z najlepszymi praktykami w zakresie bezpieczeństwa pracy z systemami pneumatycznymi i automatyki. Przykładowo, w przemyśle automatycznym często stosuje się blokady mechaniczne i elektryczne, aby upewnić się, że urządzenia są całkowicie unieruchomione. Dobrym standardem jest również przeprowadzenie analizy ryzyka przed rozpoczęciem takich prac oraz oznaczenie strefy roboczej, aby zminimalizować ryzyko wypadków. W ten sposób, poprzez zastosowanie odpowiednich procedur, można uniknąć niebezpiecznych sytuacji i zapewnić bezpieczne warunki pracy.

Pytanie 27

Na podstawie fragmentu instrukcji określ możliwe napięcie zasilające przetwornik ultradźwiękowy zastosowany w urządzeniu pracującym w strefie zagrożonej wybuchem.

A. Zdalny czujnik temperatury (tylko 3108)
B. Czarny: 0 V DC
C. Czerwony: 12 ÷ 40 V DC (w obszarze bezpiecznym), 12 ÷ 30 V DC z bariery ochronnej (w obszarze zagrożonym)
D. Obszar bezpieczny: Ekran kabla podłączyć do standardowego uziemienia (masy) lub obszar zagrożony: Ekran kabla podłączyć do uziemienia iskrobezpiecznego (masy)
Ilustracja do pytania
A. Napięcie stałe 30 V.
B. Napięcie stałe 40 V.
C. Napięcie przemienne 30 V.
D. Napięcie przemienne 12 V.
Napięcie stałe 30 V jest prawidłowym napięciem zasilającym przetwornik ultradźwiękowy w strefie zagrożonej wybuchem, ponieważ zgodnie z obowiązującymi standardami i normami, takimi jak ATEX, urządzenia pracujące w takich strefach muszą być zasilane napięciem, które nie stwarza ryzyka zapłonu. Przetworniki ultradźwiękowe stosowane w przemysłowych aplikacjach wymagają zasilania z baterii ochronnych, które zapewniają napięcie w bezpiecznym zakresie od 12 do 30 V DC. Napięcie 30 V jest maksymalnym dopuszczalnym napięciem w tym zakresie, co czyni je idealnym dla zastosowań w warunkach zagrożenia wybuchem. Ponadto, stosowanie napięcia stałego minimalizuje ryzyko związane z zakłóceniami elektromagnetycznymi, które mogą wystąpić w przypadku zasilania przemiennego. Warto zauważyć, że eksploatacja urządzeń w strefach niebezpiecznych wymaga szczególnej staranności i przestrzegania regulacji dotyczących bezpieczeństwa, aby zminimalizować ryzyko wystąpienia niebezpiecznych sytuacji.

Pytanie 28

Który z programów przekształca kod napisany w danym języku programowania na kod maszynowy stosowany przez mikrokontroler?

A. Debugger
B. Kompilator
C. Deasembler
D. Emulator
Kompilator jest narzędziem, które tłumaczy kod źródłowy napisany w określonym języku programowania na kod maszynowy, który jest zrozumiały dla mikrokontrolera. Proces ten obejmuje kilka kroków, w tym analizę składniową, analizę semantyczną oraz generację kodu. Kompilatory są kluczowe w programowaniu systemów embedded, gdzie efektywność i optymalizacja kodu są niezwykle istotne. Przykładem popularnego kompilatora dla języka C jest GCC (GNU Compiler Collection), który jest szeroko stosowany w projektach związanych z mikrokontrolerami, takimi jak platforma Arduino. Kompilacja pozwala także na wykorzystanie różnych poziomów optymalizacji, co sprawia, że końcowy kod maszynowy działa szybciej i zużywa mniej zasobów. W dobrze zaprojektowanym procesie kompilacji, programiści mogą również zastosować dyrektywy preprocesora, co umożliwia dostosowanie kodu do różnych platform sprzętowych. Z tego powodu, znajomość działania kompilatorów jest niezbędna dla każdego, kto pragnie efektywnie programować mikrokontrolery.

Pytanie 29

Jakie urządzenie chroni silnik przed zwarciem i przeciążeniem?

A. odgromnik
B. przekaźnik termiczny
C. wyłącznik silnikowy
D. termistor
Wyłącznik silnikowy to urządzenie zabezpieczające, które chroni silniki przed zwarciem oraz przeciążeniem. Jego działanie opiera się na wykrywaniu prądów, które przekraczają ustalone wartości graniczne, co może prowadzić do uszkodzenia silnika. W przypadku wykrycia przeciążenia, wyłącznik silnikowy automatycznie odcina zasilanie, co zapobiega przegrzaniu i potencjalnym uszkodzeniom mechanicznym. W praktycznych zastosowaniach wyłączniki silnikowe stosowane są w różnych aplikacjach, od przemysłowych do budowlanych, zapewniając bezpieczeństwo operacyjne. Zgodnie z normami IEC 60947-4-1, instalacja wyłączników silnikowych powinna być zgodna z zasadami ochrony przeciwporażeniowej oraz zabezpieczeń przed skutkami zwarć. Oprócz zabezpieczenia przed przeciążeniem, wiele modeli wyłączników silnikowych wyposażonych jest w dodatkowe funkcje, takie jak serwisowe wskaźniki błędów, które informują użytkowników o awariach, co zwiększa bezpieczeństwo i efektywność operacyjną.

Pytanie 30

Którego narzędzia trzeba użyć, by zamocować siłownik w sposób przedstawiony na ilustracji?

Ilustracja do pytania
A. Wkrętaka krzyżowego.
B. Klucza oczkowego.
C. Wkrętaka płaskiego.
D. Klucza imbusowego.
Wybór klucza imbusowego jako narzędzia do zamocowania siłownika jest zgodny z najlepszymi praktykami w zakresie montażu elementów mechanicznych. Śruby z łbem sześciokątnym wewnętrznym, znane również jako śruby imbusowe, wymagają do dokręcenia klucza imbusowego, który idealnie dopasowuje się do ich kształtu. Tego typu śruby są powszechnie stosowane w różnych aplikacjach, od mebli po maszyny przemysłowe, ze względu na swoją wytrzymałość oraz estetykę. Użycie klucza imbusowego pozwala na równomierne i precyzyjne dokręcenie, minimalizując ryzyko uszkodzenia główki śruby. Dlatego, stosując klucz imbusowy, zapewniamy sobie nie tylko wygodę, ale również efektywność oraz długotrwałość połączenia. W przypadku, gdy siłownik wymaga późniejszej regulacji, klucz imbusowy umożliwia łatwe dostosowanie, co jest istotne w przypadku aplikacji, gdzie precyzyjne ustawienie jest kluczowe.

Pytanie 31

Który materiał o właściwościach podanych w tabeli należy wybrać do konstrukcji lekkiej i odpornej na odkształcenia mobilnej podstawy konstrukcyjnej urządzenia mechatronicznego?

Gęstość
ρ
[g/cm3]
Granica plastyczności
Re
[MPa]
Materiał 1.2,7040
Materiał 2.2,75320
Materiał 3.7,70320
Materiał 4.8,8535
A. Materiał 1.
B. Materiał 2.
C. Materiał 4.
D. Materiał 3.
Materiał 2 jest najodpowiedniejszym wyborem do konstrukcji lekkiej i odpornej na odkształcenia, co wynika z jego korzystnych właściwości fizycznych. Gęstość materiału wynosząca 2,75 g/cm3 oznacza, że jest on stosunkowo lekki w porównaniu do innych materiałów, co jest kluczowe w projektach wymagających mobilności i łatwego transportu. Wysoka granica plastyczności na poziomie 320 MPa zapewnia, że materiał ten może wytrzymać znaczące obciążenia bez deformacji, co jest niezbędne w kontekście zastosowań mechatronicznych, gdzie precyzja i niezawodność są kluczowe. Przykłady zastosowania Materiału 2 obejmują elementy konstrukcyjne w robotyce, gdzie wymagana jest zarówno lekkość, jak i wytrzymałość, jak również w produkcji różnych komponentów w systemach automatyki. Wybór odpowiednich materiałów jest zgodny z dobrymi praktykami inżynieryjnymi, gdzie zawsze należy dążyć do optymalizacji masy i wytrzymałości, co pozwala na zwiększenie efektywności energetycznej i poprawę wydajności całego systemu.

Pytanie 32

Taśmociąg, który jest napędzany trójfazowym silnikiem indukcyjnym, porusza się w kierunku przeciwnym do oczekiwanego. Co może być tego przyczyną?

A. zwarciem dwóch faz.
B. przerwą w jednej z faz.
C. zwarciem jednej fazy z obudową.
D. błędną sekwencją faz.
Kolejność faz w trójfazowym silniku indukcyjnym to naprawdę istotna sprawa, bo ma duży wpływ na to, w którą stronę silnik się obraca. Te silniki działają dzięki wirującemu polu magnetycznemu, które powstaje właśnie przez różnice między fazami w przewodach. Kiedy zamieniasz miejscami fazy A, B i C, pole zmienia kierunek, no i silnik obraca się w drugą stronę. To ma znaczenie w wielu miejscach, jak na przykład przy taśmociągach w fabrykach, gdzie wszystko musi działać jak należy, żeby nie tracić czasu. Jak już coś nie gra z podłączeniem, to można szybko sprawdzić sytuację z miernikiem fazowym, który pokaże, jak to wygląda. Dlatego warto przestrzegać zasad przy podłączaniu silników, bo to ważne dla ich działania i bezpieczeństwa. Bez tego, mogą się pojawić poważne problemy.

Pytanie 33

Jaki czujnik jest stosowany do pomiaru prędkości obrotowej wału silnika?

A. Mostek tensometryczny
B. Selsyn trygonometryczny
C. Prądnica tachometryczna
D. Potencjometr obrotowy
No więc, selesyn trygonometryczny, mostek tensometryczny i potencjometr obrotowy to elementy, które nie są do pomiaru prędkości obrotowej wału silnika. Selesyn trygonometryczny jest używany do przenoszenia informacji o położeniu, ale nie do pomiaru prędkości. Z kolei mostek tensometryczny służy do mierzenia odkształceń, co sprawia, że lepiej się nadaje do analizy sił czy obciążeń, a nie prędkości obrotowej. Potencjometr obrotowy znowu mierzy kąt obrotu, generując napięcie proporcjonalne do tego kąta, ale nie daje nam informacji o tym, jak szybko ten kąt się zmienia. Często w kontekście pomiaru prędkości pojawiają się błędne założenia co do tych urządzeń, co może prowadzić do kiepskiego projektowania systemów pomiarowych. Jak wybierasz czujniki do analizy prędkości obrotowej, ważne jest, żeby rozumieć, że prądnica tachometryczna daje najbardziej precyzyjne dane dzięki swojej konstrukcji i zasadzie działania, co czyni ją standardem w branży.

Pytanie 34

Podaj właściwą sekwencję montażu składników w układzie przygotowania sprężonego powietrza, zaczynając od strony złożonego systemu pneumatycznego.

A. Manometr, reduktor, smarownica, filtr powietrza
B. Smarownica, manometr, reduktor, filtr powietrza
C. Filtr powietrza, manometr, reduktor, smarownica
D. Reduktor, manometr, filtr powietrza, smarownica
Wybór innej kolejności montażu elementów składowych w zespole przygotowania sprężonego powietrza prowadzi do wielu problemów funkcjonalnych oraz technicznych. Na przykład, umieszczając manometr przed reduktorem, możemy wprowadzać odczyty ciśnienia, które nie będą odzwierciedlały rzeczywistego ciśnienia roboczego w systemie, ponieważ nie uwzględniają one redukcji ciśnienia, jaką wprowadza reduktor. Taki błąd może prowadzić do nieprawidłowych ustawień, które w rezultacie obniżają efektywność pracy narzędzi pneumatycznych. Ponadto montaż filtra powietrza na początku układu, jak sugerują niektóre odpowiedzi, może spowodować, że zanieczyszczenia będą wprowadzane do smarownicy, co może negatywnie wpłynąć na jej działanie oraz na jakość smarowania. To z kolei może prowadzić do szybszego zużycia narzędzi i komponentów. Kluczowym aspektem jest również zrozumienie, że każdy z elementów ma swoje specyficzne funkcje i powinien być zamontowany w odpowiedniej kolejności, aby system działał optymalnie. Nieprzemyślana kolejność montażu elementów składowych może skutkować także zwiększeniem kosztów serwisowania i napraw, a także obniżeniem efektywności energetycznej całego systemu. Dlatego tak ważne jest, aby stosować się do ustalonych standardów i dobrych praktyk w zakresie instalacji systemów sprężonego powietrza.

Pytanie 35

Jaką metodę spawania wykorzystuje się z gazem o właściwościach chemicznych aktywnych?

A. MIG
B. SAW
C. MAG
D. TIG
Wybór odpowiedzi dotyczących metod TIG, MIG czy SAW wskazuje na pewne nieporozumienia dotyczące zastosowania gazów w procesach spawania. Metoda TIG (Tungsten Inert Gas) opiera się na użyciu tungstenowego elektrody oraz gazu obojętnego, takiego jak argon, co oznacza brak zastosowania gazu chemicznie aktywnego. To sprawia, że metoda TIG nie jest odpowiednia do spawania materiałów podatnych na utlenianie, co czyni ją bardziej skomplikowaną w kontekście spawania stali konstrukcyjnych. Metoda MIG, podobnie jak TIG, także posługuje się gazami obojętnymi, co eliminuje możliwość wpływania aktywnych gazów na proces spawania. Na dodatek, w metodzie SAW (Submerged Arc Welding) stosuje się spawanie pod topnikiem, gdzie gaz nie jest kluczowym elementem procesu, co czyni tę metodę mniej elastyczną w kontekście zastosowań wymagających aktywnych gazów. Zrozumienie różnic między tymi technikami oraz ich odpowiednim zastosowaniem jest kluczowe dla uzyskania wysokiej jakości spoin. W praktyce, wybór odpowiedniej metody spawania powinien być podyktowany specyfiką materiałów oraz wymaganiami technologicznymi danego projektu, co jest zgodne z normami i dobrymi praktykami branżowymi.

Pytanie 36

Które elementy przedstawiono na rysunku?

Ilustracja do pytania
A. Akumulatory hydrauliczne.
B. Pojemniki na sprężone powietrze.
C. Sondy pomiarowe.
D. Obciążniki do układów hydraulicznych.
Wydaje mi się, że wybór obciążników hydraulicznych, sond pomiarowych czy pojemników na sprężone powietrze jako odpowiedzi na to pytanie nie do końca pasuje do akumulatorów hydraulicznych. Obciążniki są używane głównie dla stabilizacji, ale nie są magazynami energii. Ich funkcjonalność jest dosyć ograniczona i nie odpowiada ogólnej roli akumulatorów. Sondy pomiarowe monitorują parametry, jak ciśnienie czy temperatura, ale nie przechowują energii. Pojemniki na sprężone powietrze to już zupełnie inna bajka, bo dotyczą pneumatyki, gdzie energia jest w sprężonym powietrzu, nie w cieczy. Ta pomyłka pokazuje, że możesz nie do końca rozumieć różnice między hydrauliką a pneumatyka oraz ich komponentami. Zrozumienie tych różnic jest naprawdę istotne, żeby dobrze dobierać elementy do maszyn i systemów. Znalezienie się w temacie hydrauliki wymaga znajomości specyfiki poszczególnych części i ich zastosowań, co jest ważne, jeśli chcesz działać w branży inżynieryjnej.

Pytanie 37

Który z komponentów powinien zostać wymieniony w podnośniku hydraulicznym, gdy tłoczysko siłownika unosi się, ale po pewnym czasie samoistnie opada?

A. Filtr oleju
B. Zawór bezpieczeństwa
C. Tłokowy pierścień uszczelniający
D. Sprężynę zaworu zwrotnego
Wymiana zaworu bezpieczeństwa, sprężyny zaworu zwrotnego czy filtra oleju nie rozwiązuje problemu samoczynnego opadania tłoczyska siłownika, ponieważ każde z tych komponentów pełni inną funkcję w systemie hydraulicznym. Zawór bezpieczeństwa jest zaprojektowany do ochrony systemu przed nadmiernym ciśnieniem, co w przypadku awarii mogłoby prowadzić do uszkodzenia podnośnika. Jeśli tłoczysko opada, problem nie jest związany z nadciśnieniem, lecz z utratą ciśnienia spowodowaną wyciekiem oleju. Sprężyna zaworu zwrotnego odpowiada za zatrzymywanie przepływu oleju, co ma znaczenie przy ustalaniu kierunku przepływu cieczy, jednak nie wpływa ona na zdolność podnośnika do utrzymywania pozycji. Filtr oleju ma na celu usuwanie zanieczyszczeń z oleju hydraulicznego, ale jego zanieczyszczenie nie prowadzi bezpośrednio do opadania tłoczyska, a raczej może wpływać na efektywność całego systemu. W szczególności, niewłaściwe spojrzenie na te elementy może prowadzić do niepotrzebnych kosztów związanych z ich wymianą, podczas gdy rzeczywistą przyczyną problemu jest zużyty lub uszkodzony tłokowy pierścień uszczelniający. W związku z tym, ważne jest, aby prawidłowo diagnozować usterki, co pozwala na skuteczne i ekonomiczne utrzymanie systemów hydraulicznych, zgodnie z wytycznymi standardów jakości i bezpieczeństwa w przemyśle.

Pytanie 38

W pomiarze deformacji konstrukcji nośnych najczęściej wykorzystuje się czujniki, które działają na zasadzie

A. zmiany rezystancji
B. zmiany indukcyjności własnej
C. efektu piezoelektrycznego
D. zmiany pojemności elektrycznej
W przypadku pomiarów odkształceń, metody oparte na zmianie indukcyjności własnej, pojemności elektrycznej oraz efekcie piezoelektrycznym nie są tak powszechnie stosowane jak tensometry. Zmiana indukcyjności własnej może być wykorzystywana w niektórych aplikacjach, jednak nie jest ona standardowym rozwiązaniem w kontekście monitorowania odkształceń konstrukcji nośnych. Wzory analityczne związane z tą metodą często wymagają skomplikowanych obliczeń oraz precyzyjnego dostrojenia, co czyni je mniej praktycznymi w realnych zastosowaniach budowlanych. Zmiana pojemności elektrycznej może być używana w czujnikach pojemnościowych, jednak ich zastosowanie w kontekście monitorowania odkształceń wymaganych w inżynierii budowlanej nie jest tak efektywne. Efekt piezoelektryczny, zaś, mimo że ma swoje miejsce w technologii czujników, głównie w aplikacjach takich jak detekcja drgań, nie jest typowym sposobem na pomiar odkształceń konstrukcyjnych. Te metody mogą prowadzić do błędów pomiarowych, zwłaszcza w dynamicznych warunkach pracy konstrukcji, gdzie tensometry zapewniają znacznie większą dokładność i niezawodność. Zastosowanie bardziej skomplikowanych technologii powinno być zarezerwowane dla specyficznych przypadków, gdzie prostsze metody, takie jak zmiana rezystancji, nie mogą być zastosowane.

Pytanie 39

Który zawór należy zamontować w układzie prasy hydraulicznej, wymieniając element oznaczony na schemacie strzałką?

Ilustracja do pytania
A. Podwójnego sygnału.
B. Szybkiego spustu.
C. Dławiący.
D. Odcinający.
Wybór niewłaściwego zaworu w układzie prasy hydraulicznej ma istotne konsekwencje dla działania całego systemu. Odpowiedzi, które sugerują zastosowanie zaworu dławiącego, odcinającego lub podwójnego sygnału, opierają się na błędnych założeniach dotyczących funkcji tych komponentów. Zawór dławiący, choć jest użyteczny do regulacji przepływu, nie zapewnia szybkiego odprowadzania medium roboczego, co jest kluczowe, gdyż jego główną funkcją jest kontrolowanie prędkości ruchu tłoka, a nie jego szybkiego opuszczania. Zawór odcinający, z kolei, jest przeznaczony do blokowania przepływu medium, co w kontekście prasy hydraulicznej może prowadzić do niebezpiecznych sytuacji, takich jak zablokowanie elementów prasy pod ciśnieniem. Zastosowanie zaworu podwójnego sygnału w tym przypadku również jest błędne, ponieważ jego głównym celem jest umożliwienie sterowania dwoma różnymi funkcjami w układzie hydraulicznym, co nie odpowiada potrzebom szybkiego spustu medium. W praktyce, wybór niewłaściwego zaworu może prowadzić do poważnych problemów, w tym do uszkodzenia mechanizmów, zwiększenia zużycia energii i obniżenia efektywności operacyjnej. Dlatego tak ważne jest odpowiednie zrozumienie roli i zastosowania różnych typów zaworów w hydraulice, aby zapewnić bezpieczne i wydajne działanie systemów hydraulicznych.

Pytanie 40

Aby odkręcić śrubę z sześciokątnym gniazdem, konieczne jest zastosowanie klucza

A. nasadowego
B. płaskiego
C. imbusowego
D. nasadowego
Wybór odpowiedzi dotyczących klucza nasadowego lub płaskiego jest nieprawidłowy, a ich zastosowanie w kontekście wykręcania śruby z gniazdem sześciokątnym jest niewłaściwe. Klucz nasadowy, mimo że jest popularnym narzędziem do pracy z różnymi rodzajami śrub, jest skonstruowany głównie do pracy z gniazdami prostokątnymi lub sześciokątnymi zewnętrznie, a nie wewnętrznie jak w przypadku gniazd sześciokątnych. Użycie klucza nasadowego w tym przypadku może prowadzić do uszkodzenia gniazda, ponieważ nie zapewnia on płynnego dopasowania do kształtu sześciokątnego. Klucz płaski z kolei, choć również użyteczny w wielu zastosowaniach, jest przeznaczony do pracy z zewnętrznymi krawędziami śrub, a nie do gniazd wewnętrznych. Użycie klucza płaskiego w przypadku śrub sześciokątnych jest mało efektywne, ponieważ nie zapewnia odpowiedniego chwytu, co może skutkować poślizgiem i uszkodzeniem zarówno klucza, jak i samej śruby. Typowym błędem myślowym jest założenie, że klucze nasadowe i płaskie mogą zastąpić klucz imbusowy w każdym zastosowaniu, co nie znajduje uzasadnienia w praktyce inżynieryjnej i może prowadzić do niepożądanych sytuacji podczas pracy. Dlatego ważne jest, aby dobierać narzędzia zgodnie z ich przeznaczeniem, co jest kluczowe dla bezpieczeństwa i efektywności pracy.