Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 17 grudnia 2025 22:52
  • Data zakończenia: 17 grudnia 2025 22:58

Egzamin zdany!

Wynik: 31/40 punktów (77,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Jaki jest najmniejszy błąd pomiaru natężenia prądu wynoszącego 30 mA, gdy używamy cyfrowego miliamperomierza z wyświetlaczem do 2 miejsc po przecinku oraz miernika o określonej dokładności?

A. ±1,5% + 3 cyfry
B. ±1,0% + 4 cyfry
C. ±2,0% + 2 cyfry
D. ±2,5% + 1 cyfra
Odpowiedź ±1,0% + 4 cyfry jest prawidłowa, ponieważ oferuje najwyższą precyzję pomiaru wśród dostępnych opcji. Przy natężeniu prądu wynoszącym 30 mA błąd pomiaru obliczamy na podstawie wzoru: błąd = (wartość pomiaru × procent dokładności) + liczba cyfr. Dla podanej odpowiedzi, maksymalny błąd wynosi: 30 mA × 1,0% + 4 cyfry, co daje 0,3 mA + 0,04 mA, czyli 0,34 mA. Taki poziom dokładności jest szczególnie istotny w zastosowaniach, gdzie precyzyjne pomiary są kluczowe, np. w laboratoriach badawczych, w elektronice czy przy kalibracji urządzeń. Wybór miernika z lepszą dokładnością pozwala także na uniknięcie błędów w dalszych obliczeniach oraz wpływa na wiarygodność wyników. Stąd, zgodnie z dobrymi praktykami w inżynierii, zawsze warto wybierać urządzenia o jak najwyższej dokładności, aby zapewnić rzetelność pomiarów i ich zgodność z obowiązującymi normami.

Pytanie 2

Zakres działania wyzwalaczy elektromagnetycznych w nadprądowych wyłącznikach instalacyjnych o charakterystyce B mieści się w zakresie

A. 10-20 krotności prądu znamionowego
B. 3-5 krotności prądu znamionowego
C. 20-30 krotności prądu znamionowego
D. 5-10 krotności prądu znamionowego
Wyzwalacze elektromagnetyczne w wyłącznikach instalacyjnych nadprądowych o charakterystyce B są zaprojektowane do działania w określonym zakresie prądów zwarciowych, co zapewnia skuteczną ochronę obwodów elektrycznych. W przypadku wyłączników charakterystyki B obszar zadziałania wynosi 3-5 krotności prądu znamionowego. Oznacza to, że przy prądzie zwarciowym, który osiąga wartość od 3 do 5 razy wyższą niż nominalny prąd wyłącznika, następuje jego natychmiastowe wyłączenie. Dzięki temu, wyłączniki te skutecznie chronią przed skutkami przeciążeń i zwarć, co jest kluczowe w instalacjach elektrycznych w budynkach mieszkalnych oraz przemysłowych. Przykładowo, jeśli wyłącznik ma prąd znamionowy 10 A, zadziała przy prądzie zwarciowym w zakresie 30 A do 50 A. Tego typu wyłączniki są zalecane do zastosowań, gdzie istnieje ryzyko wystąpienia krótkotrwałych, ale intensywnych prądów, jak w przypadku silników elektrycznych czy transformatorów. Dodatkowo, zgodnie z normą IEC 60898, wyłączniki te powinny być stosowane w obwodach, gdzie istotna jest ochrona przed skutkami zwarć, co czyni je jednym z podstawowych elementów systemów zabezpieczeń elektrycznych.

Pytanie 3

Na izolatorach wsporczych instaluje się przewody

A. szynowe
B. uzbrojone
C. kabelkowe
D. rdzeniowe
Odpowiedź szynowe jest prawidłowa, ponieważ przewody szynowe są wykorzystywane w systemach elektroenergetycznych do przesyłania energii elektrycznej pomiędzy różnymi elementami instalacji. Izolatory wsporcze są kluczowym elementem, który podtrzymuje przewody szynowe, zapewniając ich stabilność i bezpieczeństwo w różnych warunkach atmosferycznych. Przewody szynowe charakteryzują się dużą zdolnością do prowadzenia prądu oraz odpornością na obciążenia mechaniczne, co czyni je odpowiednimi do zastosowań w stacjach transformacyjnych i rozdzielniach. Przykładem ich zastosowania są instalacje w elektrowniach, gdzie przewody szynowe łączą transformatory z systemem dystrybucji energii. Zgodnie z normami branżowymi, stosowanie przewodów szynowych w połączeniu z odpowiednimi izolatorami jest uznawane za jedną z najlepszych praktyk w projektowaniu sieci elektroenergetycznych.

Pytanie 4

Która zależność musi być spełniona podczas wymiany uszkodzonych przewodów instalacji elektrycznej i ewentualnej zmiany ich zabezpieczeń nadprądowych?

Iz – prąd obciążalności długotrwałej przewodu
Ib – prąd znamionowy zabezpieczenia przeciążeniowego
IB – prąd wynikający z przewidywanej mocy przesyłanej przewodem
A. IB ≤ IZ ≤ IN
B. IB ≤ IN ≤ IZ
C. IN ≤ IB ≤ IZ
D. IZ ≤ IN ≤ IB
Odpowiedź IB ≤ IN ≤ IZ jest prawidłowa, ponieważ odzwierciedla fundamentalne zasady projektowania instalacji elektrycznych. Prąd znamionowy obciążenia (IB) powinien być zawsze mniejszy lub równy prądowi znamionowemu zabezpieczenia przeciążeniowego (IN), aby zabezpieczenie mogło poprawnie zadziałać w przypadku nadmiernego obciążenia. Z kolei IN musi być mniejsze lub równe prądowi obciążalności długotrwałej przewodu (IZ), co zapewnia, że przewód nie ulegnie przegrzaniu ani uszkodzeniu w trakcie normalnej pracy. Takie podejście zgodne jest z normami, takimi jak PN-IEC 60364, które podkreślają znaczenie odpowiedniego doboru zabezpieczeń i przewodów. Przykładowo, w przypadku instalacji oświetleniowej, jeśli przewody mają maksymalną obciążalność 10 A (IZ), a przewidywane obciążenie to 8 A (IB), to zabezpieczenie powinno mieć wartość 10 A (IN). Taki dobór zabezpieczenia pozwala na ochronę zarówno przewodów, jak i urządzeń podłączonych do instalacji.

Pytanie 5

Do czego służą przy montażu instalacji elektrycznej przedstawione na rysunku kleszcze?

Ilustracja do pytania
A. Formowania oczek na końcach żył.
B. Montażu zacisków zakleszczających.
C. Zaprasowywania przewodów w połączeniach wsuwanych.
D. Zaciskania końcówek tulejkowych na żyłach przewodu.
Kleszcze do formowania oczek, które przedstawiono na rysunku, są kluczowym narzędziem w instalacjach elektrycznych, ponieważ umożliwiają precyzyjne formowanie oczek na końcach żył przewodów. Oczka te są niezbędne do wykonania solidnych połączeń elektrycznych, które muszą być trwałe i odporne na luzy. Stosowanie kleszczy zapewnia, że oczka są odpowiednio uformowane, co wpływa na jakość połączenia oraz jego bezpieczeństwo. W praktyce, na przykład w przypadku montażu rozdzielnic elektrycznych, dobrze uformowane oczka pozwalają na łatwe i szybkie przyłączenie żył do zacisków, co przekłada się na efektywność pracy elektryka. Dodatkowo, korzystanie z odpowiednich narzędzi zgodnych z normami, takimi jak PN-EN 60947-1, daje pewność, że instalacja spełnia standardy bezpieczeństwa oraz jakości. Warto pamiętać, że użycie kleszczy do formowania oczek jest częścią dobrych praktyk branżowych, które sprzyjają uzyskaniu długotrwałych i pewnych połączeń.

Pytanie 6

Na podstawie zamieszczonych w tabeli wyników pomiarów dotyczących przewodu przedstawionego na ilustracji określ, które z jego żył są ze sobą zwarte.

Ilustracja do pytania
A. N i L3
B. L1 i L3
C. N i PE
D. L1 i PE
Odpowiedź N i PE jest poprawna, ponieważ analizując wyniki pomiarów rezystancji, stwierdzamy, że rezystancja wynosi 0 Ω, co jednoznacznie wskazuje na zwarcie między tymi przewodami. W standardach elektrycznych, takich jak PN-IEC 60364, ważne jest, aby prawidłowo identyfikować różne żyły, zwłaszcza w kontekście ochrony przed porażeniem elektrycznym. W przypadku przewodu neutralnego (N) i przewodu ochronnego (PE) ich zwarcie może wskazywać na nieprawidłowości w instalacji, które mogą prowadzić do niebezpiecznych sytuacji. Wiedza na temat pomiarów rezystancji jest kluczowa w utrzymaniu bezpieczeństwa systemów elektrycznych, a także w diagnostyce awarii. W praktyce, przed przystąpieniem do pracy przy instalacjach elektrycznych, zaleca się przeprowadzanie dokładnych pomiarów, aby upewnić się, że nie występuje żadne zwarcie, co jest zgodne z najlepszymi praktykami w branży, takimi jak regularne kontrole i inspekcje instalacji.

Pytanie 7

Jakiego typu powinna być końcówka wkrętaka dobranego do wkrętu o główce, której kształt przedstawiono na rysunku?

Ilustracja do pytania
A. Torx.
B. Phillips.
C. Pozidriv.
D. Płaska.
Fajnie, że wybrałeś końcówkę Pozidriv do tego wkrętu. To naprawdę dobry wybór, bo ta konstrukcja lepiej pasuje do takich krzyżowych główek, dzięki czemu ryzyko, że narzędzie się poślizgnie, jest mniejsze. Z doświadczenia wiem, że to bardzo ważne, zwłaszcza gdy trzeba wkręty dobrze dokręcić, bo Pozidriv daje większy moment obrotowy niż tradycyjne Phillips. Mniejsze nacięcia końcówki sprawiają, że trzyma się wkrętu lepiej, przez co działanie jest bardziej efektywne. W zasadzie Pozidriv jest często używany przy montażach mebli czy elektroniki, ale też w budownictwie. Ważne jest, żeby dobierać odpowiednie narzędzia do wkrętów, bo to podstawa bezpiecznej i sprawnej pracy, a każdy, kto zajmuje się tym na co dzień, dobrze o tym wie.

Pytanie 8

Jaka maksymalna wartość impedancji pętli zwarcia może występować w trójfazowym obwodzie elektrycznym o napięciu nominalnym 230/400 V, aby ochrona przed porażeniem była skuteczna w przypadku uszkodzenia izolacji, wiedząc, że zasilanie tego obwodu powinien wyłączyć instalacyjny wyłącznik nadprądowy C10?

A. 8,0 Ω
B. 2,3 Ω
C. 4,6 Ω
D. 7,7 Ω
Odpowiedź 2,3 Ω jest poprawna, ponieważ jest zgodna z wymaganiami dotyczącymi impedancji pętli zwarcia w trójfazowych obwodach elektrycznych. W takich systemach, aby zapewnić skuteczną ochronę przeciwporażeniową, impedancja pętli zwarcia powinna być na tyle niska, aby wyłącznik nadprądowy mógł szybko zareagować na zwarcie. Wyłącznik C10, który ma prąd znamionowy 10 A, wymaga maksymalnej impedancji pętli zwarcia równej 2,3 Ω, aby przy zwarciu wyzwolił się w czasie nieprzekraczającym 0,4 s. Przykładem zastosowania tej zasady jest instalacja w budynkach mieszkalnych, gdzie ochrona przed porażeniem prądem jest kluczowa. W praktyce, aby uzyskać odpowiednią impedancję, projektanci instalacji elektrycznych muszą uwzględnić odpowiednie przekroje przewodów oraz ich długość, a także zainstalować zabezpieczenia, które umożliwią szybkie odcięcie zasilania w przypadku uszkodzenia izolacji. W kontekście norm, można przywołać normę PN-EN 60364, która szczegółowo opisuje wymagania dotyczące ochrony osób i mienia przed skutkami działania prądu elektrycznego.

Pytanie 9

Do czego służy narzędzie przedstawione na rysunku?

Ilustracja do pytania
A. Zdejmowania izolacji żył przewodów.
B. Zaciskania końcówek na żyłach przewodów.
C. Zdejmowania powłoki przewodów.
D. Formowania oczek z końców żył przewodów.
Narzędzie przedstawione na zdjęciu to specjalistyczne szczypce do ściągania izolacji, które są kluczowym elementem w pracy z przewodami elektrycznymi. Jego głównym zadaniem jest usuwanie warstwy izolacyjnej z żył przewodów, co jest niezbędne do zapewnienia poprawnego połączenia elektrycznego. Dzięki charakterystycznej budowie, która często posiada regulowany ogranicznik, użytkownik ma możliwość precyzyjnego dostosowania głębokości cięcia. Umożliwia to bezpieczne usunięcie izolacji bez uszkodzenia samej żyły, co jest istotne z punktu widzenia nie tylko wydajności, ale również bezpieczeństwa instalacji elektrycznych. W praktyce, stosując to narzędzie, można wykonać prace takie jak łączenie przewodów w instalacjach domowych czy przygotowywanie kabli do podłączeń w urządzeniach elektronicznych. Przestrzeganie dobrych praktyk, jak na przykład unikanie zbyt głębokiego nacięcia, jest kluczowe, aby zminimalizować ryzyko uszkodzenia przewodów. Narzędzie to jest zgodne z normami branżowymi, co potwierdza jego przydatność i efektywność w codziennym użytkowaniu.

Pytanie 10

Podczas inspekcji świeżo zainstalowanej sieci elektrycznej nie ma konieczności weryfikacji

A. układu tablic informacyjnych i ostrzegawczych
B. wartości natężenia oświetlenia w miejscach pracy
C. doboru zabezpieczeń i urządzeń
D. doboru oraz oznaczenia przewodów
Odpowiedź dotycząca wartości natężenia oświetlenia na stanowiskach pracy jest prawidłowa, ponieważ podczas oględzin nowo wykonanej instalacji elektrycznej, kluczowe jest sprawdzenie elementów, które bezpośrednio wpływają na bezpieczeństwo oraz funkcjonalność instalacji. Wartości natężenia oświetlenia są kontrolowane w kontekście ergonomii i komfortu pracy, ale ich pomiar nie jest wymagany w ramach odbioru samej instalacji elektrycznej. Zgodnie z normą PN-EN 12464-1, która określa wymagania dotyczące oświetlenia miejsc pracy, wartości natężenia powinny być dostosowane do rodzaju wykonywanej pracy, jednak ich pomiar jest bardziej związany z późniejszym użytkowaniem przestrzeni niż z samą instalacją elektryczną. Ważne jest, aby w trakcie odbioru zwracać szczególną uwagę na dobór i oznaczenie przewodów, zabezpieczeń oraz aparatury, które mają kluczowe znaczenie dla prawidłowego funkcjonowania instalacji i zapewnienia bezpieczeństwa użytkowników, co potwierdzają standardy branżowe i przepisy prawa budowlanego.

Pytanie 11

Określ sposób podłączenia łącznika przedstawionego na fotografii, aby w układzie, którego schemat przedstawiono na rysunku, zapewnione było sterowanie oświetleniem z trzech niezależnych miejsc.

Ilustracja do pytania
A. I-2, II-4, III-1, IV-3
B. I-1, II-2, III-3, IV-4
C. I-4, II-3, III-2, IV-1
D. I-1, II-4, III-2, IV-3
Poprawne podłączenie łącznika krzyżowego oznaczone jako I-1, II-4, III-2, IV-3 wynika z analizy schematu elektrycznego oraz właściwego oznaczenia wejść i wyjść łącznika. Wejścia 1 i 4 są odpowiedzialne za przyjmowanie sygnałów z dwóch niezależnych punktów sterujących, co pozwala na ich połączenie w systemie wielopunktowego sterowania oświetleniem. Dobrze skonstruowany układ umożliwia użytkownikowi włączanie i wyłączanie źródła światła z trzech różnych punktów, co jest szczególnie przydatne w dużych pomieszczeniach lub korytarzach. Tego typu rozwiązanie jest zgodne z normami instalacji elektrycznych oraz zaleceniami dotyczącymi ergonomii w projektowaniu przestrzeni. Ponadto, zastosowanie łącznika krzyżowego zwiększa elastyczność w zakresie zarządzania oświetleniem, co przyczynia się do oszczędności energii i poprawy komfortu użytkowania, spełniając standardy zrównoważonego rozwoju.

Pytanie 12

Jakie z poniższych działań jest uznawane za czynność konserwacyjną w instalacji elektrycznej?

A. Modernizacja rozdzielnicy instalacji elektrycznej
B. Wymiana uszkodzonych źródeł światła
C. Instalacja dodatkowego gniazda elektrycznego
D. Zmiana rodzaju użytych przewodów
Wymiana uszkodzonych źródeł światła to naprawdę ważna sprawa, jeśli chodzi o dbanie o instalację elektryczną. To nie tylko poprawia oświetlenie, co jest kluczowe dla komfortu ludzi, ale także dba o ich bezpieczeństwo. Uszkodzone żarówki czy świetlówki mogą być niebezpieczne, bo mogą prowadzić do pożarów czy porażenia prądem, jeśli ich nie wymienimy na czas. Z tego, co wiem, zgodnie z normami PN-IEC 60364, regularne sprawdzanie i konserwacja, w tym wymiana źródeł światła, powinny się odbywać w ustalonych odstępach czasowych. Dzięki temu wszystko działa sprawnie i bez pieprzenia. Przykładowo, zamiana tradycyjnych żarówek na LEDy nie tylko oszczędza prąd, ale też dłużej działają, a to jest korzystne zarówno dla portfela, jak i dla środowiska.

Pytanie 13

Na rysunku przedstawiono schemat do pomiaru impedancji pętli zwarciowej metodą

Ilustracja do pytania
A. bezpośredniego pomiaru.
B. techniczną.
C. zastosowania dodatkowego źródła.
D. spadku napięcia.
Odpowiedź 'spadku napięcia' jest prawidłowa, ponieważ odnosi się do metody pomiaru impedancji pętli zwarciowej, która polega na pomiarze spadku napięcia wywołanego przez prąd zwarcia. W tym układzie stosuje się woltomierz do pomiaru napięcia oraz amperomierz do pomiaru prądu. Na podstawie tych pomiarów można zastosować prawo Ohma, aby obliczyć impedancję pętli, co jest kluczowe w ocenie funkcjonalności systemów elektroenergetycznych. Zgodnie z normą PN-EN 61010-1, zasady dotyczące bezpieczeństwa przy pomiarach elektrycznych wymagają, aby pomiary były dokładne i wiarygodne, co właśnie ta metoda zapewnia. Praktyczne zastosowanie tej metody znajduje się w procesach diagnostycznych instalacji elektrycznych, gdzie kluczowe jest określenie impedancji pętli zwarciowej dla oceny bezpieczeństwa użytkowania oraz zapewnienia, że systemy zabezpieczeń działają prawidłowo w przypadku awarii. Stosowanie metody spadku napięcia umożliwia również ocenę stanu izolacji oraz identyfikację potencjalnych problemów z instalacją.

Pytanie 14

W jakiej sytuacji poślizg silnika indukcyjnego wyniesie 100%?

A. Silnik będzie funkcjonować w trybie jałowym
B. Silnik będzie zasilany prądem w przeciwnym kierunku
C. Gdy silnik będzie zasilany, jego wirnik pozostanie w bezruchu
D. Wirnik silnika osiągnie prędkość wyższą niż prędkość synchroniczna
Poślizg silnika indukcyjnego określa różnicę między prędkością synchroniczną a rzeczywistą prędkością wirnika. Gdy wirnik jest nieruchomy, oznacza to, że nie porusza się w stosunku do pola magnetycznego wytwarzanego przez uzwojenia statora. W takiej sytuacji prędkość wirnika wynosi 0, a prędkość synchroniczna, zależna od częstotliwości zasilania i liczby par biegunów, jest znacznie wyższa. Z tego powodu poślizg wynosi 100%, co oznacza maksymalne obciążenie silnika, a jego moment obrotowy jest równy zeru, co jest warunkiem niezbędnym do rozpoczęcia pracy silnika. W praktyce taka sytuacja ma miejsce podczas uruchamiania silników, gdy są one podłączane do zasilania, ale wirnik nie ma jeszcze możliwości obrotu, na przykład w przypadku zablokowania. W przemyśle, szczególnie w aplikacjach wymagających dużego momentu rozruchowego, jak w przypadku transportu materiałów, monitoruje się poślizg, aby zapewnić optymalne działanie silników. Zrozumienie poślizgu jest kluczowe dla efektywności energetycznej i żywotności silników indukcyjnych.

Pytanie 15

Jaką rolę odgrywa uzwojenie biegunów komutacyjnych w urządzeniach prądu stałego?

A. Redukuje hałas podczas eksploatacji
B. Tworzy nieruchome, stałe pole magnetyczne
C. Generuje moment magnetyczny o stałym kierunku
D. Kompensuje SEM samoindukcji, co eliminuje iskrzenie na szczotkach
Uzwojenie biegunów komutacyjnych w maszynach prądu stałego pełni kluczową rolę w kompensacji siły elektromotorycznej (SEM) samoindukcji, co jest istotne dla prawidłowego funkcjonowania silników. W trakcie pracy silnika, gdy zmienia się kierunek prądu, powstaje SEM samoindukcji, która może prowadzić do iskrzenia na szczotkach. Uzwojenie biegunów komutacyjnych, poprzez odpowiednie wytwarzanie pola magnetycznego, pomaga zminimalizować to zjawisko, co przekłada się na dłuższą żywotność szczotek oraz zmniejszenie strat energetycznych. Przykładem zastosowania tej zasady jest wykorzystanie silników prądu stałego w aplikacjach, gdzie wymagana jest duża niezawodność, jak w napędach elektrycznych tramwajów czy w robotyce. Dobre praktyki w projektowaniu maszyn prądu stałego uwzględniają parametry uzwojenia komutacyjnego, co umożliwia uzyskanie optymalnej charakterystyki pracy silnika oraz minimalizację zakłóceń.

Pytanie 16

Który z wymienionych systemów powinien być zainstalowany w instalacji elektrycznej zasilającej istotne odbiory niskiego napięcia, aby w momencie utraty zasilania nastąpiło automatyczne przełączenie pomiędzy podstawowym źródłem a rezerwowym źródłem zasilania?

A. SCO
B. SPZ
C. SZR
D. SRN
Odpowiedź SZR (System Zasilania Rezerwowego) jest prawidłowa, ponieważ ten układ jest zaprojektowany do automatycznego przełączania źródeł zasilania w przypadku zaniku zasilania z głównego źródła. Działa on na zasadzie monitorowania napięcia w sieci zasilającej; w momencie wykrycia spadku napięcia lub całkowitego braku zasilania, SZR automatycznie uruchamia rezerwowe źródło zasilania, co zapewnia ciągłość pracy ważnych odbiorników niskiego napięcia, takich jak systemy alarmowe, oświetlenie awaryjne czy urządzenia medyczne. Przykładowo, w szpitalach i centrach danych, gdzie nieprzerwane zasilanie jest kluczowe, SZR eliminuje ryzyko przestojów. Stosowanie SZR jest zgodne z normami PN-EN 50171 oraz PN-EN 62040, które określają wymagania dotyczące systemów zasilania awaryjnego oraz UPS. Dzięki temu, instalacje z SZR nie tylko zwiększają bezpieczeństwo, ale też poprawiają efektywność operacyjną, co jest niezbędne w obiektach o krytycznym znaczeniu.

Pytanie 17

Które czynności powinien wykonać elektryk, posiadający uprawnienia do eksploatacji urządzeń i instalacji do 1 kV, przed wymianą uszkodzonego wyłącznika nadprądowego B16 w obwodzie gniazd wtyczkowych, aby nie pozbawić zasilania płyty grzewczej i piekarnika?

Ilustracja do pytania
A. Wyłączyć rozłącznik izolacyjny FR 304 32 A i wyłącznik nadprądowy S304 B16.
B. Wyłączyć wszystkie wyłączniki nadprądowe.
C. Wyłączyć wszystkie wyłączniki różnicowoprądowe.
D. Wyłączyć wyłącznik różnicowoprądowy P312 B25A.
Wyłączenie wszystkich wyłączników różnicowoprądowych lub nadprądowych przed wymianą uszkodzonego wyłącznika nadprądowego B16 może prowadzić do niezamierzonych konsekwencji. Wybierając tę opcję, wprowadza się ryzyko, że zasilanie w całym obwodzie zostanie przerwane, co może być nieodpowiednie w sytuacji, gdy inne urządzenia, takie jak płyta grzewcza czy piekarnik, również są zasilane z tej samej instalacji. Wyłączając wszystkie wyłączniki, nie tylko ryzykuje się utratę zasilania w lokalach, ale także narusza się zasady efektywności energetycznej i dobrych praktyk przy pracy z instalacjami elektrycznymi. Ponadto, wyłączanie wszystkich wyłączników jest nieefektywne i czasochłonne, co w praktyce staje się uciążliwe, zwłaszcza w obiektach komercyjnych, gdzie ciągłość zasilania jest kluczowa. W kontekście ochrony przeciwporażeniowej, wyłącznik różnicowoprądowy powinien być regularnie testowany, a jego wyłączenie powinno być uzasadnione potrzebą konserwacji lub naprawy tylko w określonych obwodach. Z tego powodu, nieprzemyślane wyłączenie wszystkich zabezpieczeń narusza zasady bezpieczeństwa i efektywności w zarządzaniu instalacjami elektrycznymi.

Pytanie 18

Który symbol graficzny oznacza na planie instalacji elektrycznej sposób prowadzenia przewodów przedstawiony na zdjęciu?

Ilustracja do pytania
A. B.
B. C.
C. D.
D. A.
Odpowiedź C faktycznie jest trafna, bo symbol podany w tej opcji świetnie pokazuje, jak powinny być prowadzone przewody w listwie przypodłogowej, co można zobaczyć na zdjęciu. Wiele instalacji elektrycznych korzysta z listew przypodłogowych, bo to nie tylko estetyczne, ale też bezpieczne. Dzięki temu przewody są dobrze schowane i nie wystają na wierzch, co na pewno jest lepsze w projektowaniu wnętrz. Z tego, co wiem, normy IEC również zalecają używanie takich kanałów kablowych, jak w symbolu C, aby zapewnić bezpieczeństwo i przestrzegać przepisów budowlanych. Takie rozwiązanie można spotkać w biurach, mieszkaniach, a nawet w miejscach publicznych, gdzie estetyka i bezpieczeństwo są bardzo ważne.

Pytanie 19

Jakie oznaczenia oraz jaka minimalna wartość prądu znamionowego powinna mieć wkładka topikowa do ochrony przewodów przed skutkami zwarć i przeciążeń w obwodzie jednofazowego grzejnika rezystancyjnego o danych znamionowych: Pₙ = 3 kW, Uₙ = 230 V?

A. aM 20 A
B. gG 16 A
C. gB 20 A
D. aR 16 A
Wkładka topikowa gG 16 A jest odpowiednia dla obwodu jednofazowego grzejnika rezystancyjnego o mocy 3 kW przy napięciu znamionowym 230 V. Obliczając wartość prądu znamionowego, stosujemy wzór: I = P / U, gdzie P to moc, a U to napięcie. W tym przypadku: I = 3000 W / 230 V ≈ 13 A. Wybór wkładki gG 16 A jest uzasadniony, ponieważ jest ona przeznaczona do zabezpieczania obwodów przed przeciążeniem oraz zwarciem, a jej wartość znamionowa (16 A) zapewnia odpowiednią margines dla ewentualnych chwilowych wzrostów prądu, które mogą wystąpić przy rozruchu grzejnika. Zastosowanie wkładek gG w instalacjach domowych jest zgodne z normami IEC 60269, które podkreślają ich właściwości ochronne i dostosowanie do obciążeń rezystancyjnych. W praktyce wkładki gG są często stosowane w systemach zasilania urządzeń grzewczych, co czyni je idealnym wyborem w tym przypadku.

Pytanie 20

Kabel typu YAKY przedstawiono na rysunku

Ilustracja do pytania
A. A.
B. C.
C. D.
D. B.
Kabel typu YAKY jest kluczowym elementem instalacji elektroenergetycznych, charakteryzującym się izolacją z polwinitu oraz okrągłym przekrojem. Odpowiedź B jest właściwa, ponieważ przedstawiony kabel spełnia te kryteria. W praktyce kable YAKY są powszechnie wykorzystywane w różnych zastosowaniach, zarówno w budynkach mieszkalnych, jak i przemysłowych. Dzięki swojej konstrukcji, kable te zapewniają wysoką odporność na działanie niekorzystnych warunków atmosferycznych oraz mechanicznych uszkodzeń, co czyni je idealnym rozwiązaniem w instalacjach na zewnątrz budynków. Zgodnie z normami PN-EN 60332-1, kable YAKY muszą wykazywać określone właściwości dielektryczne i mechaniczne, co zapewnia ich niezawodność i bezpieczeństwo użytkowania. Wiedza na temat takich kabli jest niezbędna dla inżynierów i techników zajmujących się projektowaniem oraz montażem instalacji elektrycznych, co pozwala na dobór odpowiednich komponentów do konkretnych warunków pracy.

Pytanie 21

Który przekaźnik oznacza się przedstawionym symbolem graficznym?

Ilustracja do pytania
A. Impulsowy.
B. Wielofunkcyjny.
C. Priorytetowy.
D. Czasowy.
Przekaźnik impulsowy, który widzisz na rysunku w pytaniu, to fajne urządzenie, które jest często używane w automatyce. Działa tak, że przy każdym kolejnym impulsie prądu zmienia stan obwodu. To pozwala na lepsze zarządzanie sygnałami i sterowanie różnymi procesami. W praktyce można go spotkać w systemach zabezpieczeń, automatycznych włącznikach światła czy w urządzeniach do zdalnego sterowania. Jak to działa? Pierwszy impuls zamyka obwód, a następny go otwiera. Dzięki temu można robić różne rzeczy, takie jak liczenie impulsów czy przełączanie. Fajnie, że są normy IEC 60947, które mówią o bezpieczeństwie i niezawodności tych przekaźników, bo to sprawia, że są naprawdę ważnym elementem w nowoczesnych systemach sterowania.

Pytanie 22

Który schemat montażowy łącznika odpowiada symbolowi graficznemu przedstawionemu na rysunku?

Ilustracja do pytania
A. B.
B. A.
C. D.
D. C.
Wybrana odpowiedź jest poprawna, ponieważ symbol graficzny przedstawiony na rysunku rzeczywiście odnosi się do łącznika jednobiegunowego, znanego również jako przełącznik jednobiegunowy. Tego rodzaju łączniki są powszechnie używane w instalacjach elektrycznych do sterowania oświetleniem w pojedynczych obwodach. Schemat oznaczony literą "A" dokładnie ilustruje sposób podłączenia takiego łącznika, w którym jeden przewód zasilający jest połączony z jednym przewodem wyjściowym do źródła światła. W praktyce, przy instalacji należy zwrócić uwagę na odpowiednie oznaczenia i zgodność z normami, takimi jak PN-IEC 60446, które określają zasady oznaczania przewodów i urządzeń elektrycznych. Właściwe zrozumienie symboli graficznych jest kluczowe przy projektowaniu oraz realizacji bezpiecznych i funkcjonalnych instalacji elektrycznych.

Pytanie 23

Jakie narzędzia, poza przymiaru kreskowego i młotka, należy wybrać do instalacji sztywnych rur elektroinstalacyjnych z PVC?

A. Cęgi do izolacji, obcinaczki, wkrętarka, płaskoszczypce
B. Cęgi do izolacji, pion, piła do cięcia, obcinaczki
C. Wiertarka, piła do cięcia, poziomica, wkrętarka
D. Wiertarka, płaskoszczypce, pion, poziomica
Wybór zestawu zawierającego wiertarkę, piłę do cięcia, poziomicę i wkrętarkę jest kluczowy dla prawidłowego montażu elektroinstalacyjnych rur sztywnych z PVC. Wiertarka jest niezbędna do wykonywania otworów w różnorodnych materiałach, co jest istotne podczas tworzenia połączeń i montażu w uchwytach. Piła do cięcia zapewnia dokładne i równe cięcia rur, co jest kluczowe dla szczelności i estetyki instalacji. Poziomica pozwala na precyzyjne ustawienie rur w osi poziomej, co jest podstawą dla uniknięcia problemów z odpływem i estetyką instalacji. Wkrętarka, z kolei, jest używana do mocowania różnych elementów, takich jak uchwyty i złącza, co pozwala na stabilne i bezpieczne wykonanie całej instalacji. Te narzędzia są zgodne z najlepszymi praktykami branżowymi, które podkreślają znaczenie precyzji i jakości wykonania w instalacjach elektrycznych.

Pytanie 24

Na podstawie przedstawionego schematu, przy odłączonych łącznikach, można wykonać pomiar

Ilustracja do pytania
A. stanu izolacji przewodów.
B. skuteczności samoczynnego wyłączenia napięcia.
C. stanu izolacji uzwojeń silnika.
D. asymetrii napięcia zasilającego.
Wybranie złej odpowiedzi, jak pomiar stanu izolacji uzwojeń silnika czy skuteczności samoczynnego wyłączenia napięcia, może wynikać z nieporozumień w temacie instalacji elektrycznych. Tak naprawdę, nie da się zmierzyć izolacji uzwojeń silnika, gdy łączniki są odłączone, bo silnik jest wtedy martwy, więc wyniki takich pomiarów nie miałyby sensu. Poza tym, żeby ocenić, jak działa samoczynne wyłączanie, trzeba mieć podłączone zasilanie, bo wtedy można to wszystko sprawdzić. Jeżeli chodzi o asymetrię napięcia, to też potrzebujemy, żeby system działał, a przy odłączonych łącznikach to nie jest możliwe. Te błędy często wynikają z braku zrozumienia podstawowych zasad elektryki. Ważne, żeby odróżniać różne pomiary i stosować odpowiednie metody, bo to jest kluczowe, nie tylko do robienia dobrych testów, ale też dla bezpieczeństwa i konserwacji instalacji elektrycznych.

Pytanie 25

W jakiej jednostce miary określa się moment obrotowy, który należy zastosować przy dokręcaniu śrub w urządzeniach elektrycznych?

A. Pa
B. kgˑm2
C. Nˑm
D. kg
Moment siły, znany również jako moment obrotowy, jest miarą siły, która powoduje obrót ciała wokół osi. Jednostką momentu siły w międzynarodowym układzie jednostek SI jest niutonometr (N·m). W kontekście dokręcania zacisków śrubowych aparatów elektrycznych, używanie odpowiedniego momentu siły jest kluczowe, aby zapewnić prawidłowe i bezpieczne połączenie elektryczne. Zbyt mały moment może prowadzić do luzów, co z kolei może skutkować przerwaniem kontaktu elektrycznego, a zbyt duży moment może spowodować uszkodzenie śrub lub elementów, które są łączone. W praktyce, producenci sprzętu często podają zalecany moment dokręcania w instrukcjach obsługi, co może być wzorem do naśladowania w codziennym użytkowaniu. Stosowanie momentu siły w N·m jest również zgodne z normami branżowymi, co podkreśla jego znaczenie w zapewnieniu bezpieczeństwa i niezawodności w instalacjach elektrycznych.

Pytanie 26

Jakiego typu miernik należy zastosować do pomiaru rezystancji uziemienia systemu odgromowego?

A. Mostka rezystancyjnego
B. Multimetru
C. Miernika rezystancji izolacji
D. Miernika rezystancji uziemienia
Miernik rezystancji uziemienia to naprawdę przydatne narzędzie, które wykorzystywane jest do pomiaru rezystancji punktu uziemienia. To bardzo ważne w przypadku systemów odgromowych, bo dobra rezystancja to bezpieczeństwo. W odróżnieniu od multimetru, który może robić dużo różnych rzeczy, miernik rezystancji uziemienia jest stworzony specjalnie do tych pomiarów, szczególnie w trudnych warunkach, gdzie różne rzeczy, jak na przykład wilgoć, mogą wpłynąć na wyniki. Przykładowo, używa się go, żeby sprawdzić, czy system odgromowy działa jak należy, zanim zacznie działać albo po jakichś zmianach. Ważne, żeby rezystancja była na poziomie mniejszym niż 10 omów, zgodnie z normami takimi jak PN-EN 62305. To pokazuje, jak istotne są regularne przeglądy, żeby zajechać ryzyko porażenia prądem i lepiej chronić się przed wyładowaniami atmosferycznymi.

Pytanie 27

Która z poniższych czynności nie jest częścią badań wyłączników różnicowoprądowych w układzie trójfazowym?

A. Weryfikacja poprawności podłączenia do sieci
B. Pomiar czasu oraz prądu różnicowego, przy którym wyłącznik zadziała
C. Weryfikacja działania przycisku testowego
D. Sprawdzenie kolejności faz sieci zasilającej
Wybór odpowiedzi "Sprawdzenie kolejności faz sieci zasilającej" jest prawidłowy, ponieważ ta czynność nie jest częścią badań trójfazowych wyłączników różnicowoprądowych. Trójfazowe wyłączniki różnicowoprądowe są urządzeniami zabezpieczającymi, które mają na celu ochronę ludzi przed porażeniem prądem elektrycznym oraz zapobieganie pożarom spowodowanym zwarciami. W ramach standardowych badań tych wyłączników koncentrujemy się na ich działaniu w odpowiedzi na upływności prądów do ziemi oraz testowaniu ich funkcji detekcji. Przykładowo, badania obejmują sprawdzenie zadziałania przycisku testującego, co pozwala zweryfikować, czy wyłącznik działa poprawnie w warunkach awaryjnych. Ponadto, pomiar czasu i różnicowego prądu zadziałania wyłącznika jest kluczowy dla oceny jego efektywności. Zgodnie z normą PN-EN 61008-1, zachowanie wyłączników różnicowoprądowych w odpowiedzi na różne poziomy prądów upływowych jest istotne w kontekście ich działania, dlatego czynności te są niezbędne w procesie testowym. Kolejność faz w sieci zasilającej nie wpływa na działanie wyłącznika różnicowoprądowego, dlatego nie jest brana pod uwagę w tych badaniach.

Pytanie 28

W przypadku instalacji elektrycznej o parametrach U0 = 230 V i Ia= 100 A, Zs = 3,1 Ω (ZsIa < U0), działającej w systemie TN-C, dodatkowa ochrona przed porażeniem prądem elektrycznym nie jest efektywna, ponieważ

A. rezystancja uziemienia jest zbyt niska
B. impedancja pętli zwarcia jest zbyt wysoka
C. impedancja sieci zasilającej jest zbyt niska
D. rezystancja izolacji miejsca pracy jest zbyt duża
Impedancja pętli zwarcia jest kluczowym parametrem w systemach elektrycznych, szczególnie w układach TN-C. W przypadku, gdy impedancja pętli zwarcia jest zbyt duża, może to prowadzić do niewystarczającego prądu zwarciowego, co z kolei wpływa na czas zadziałania zabezpieczeń. W układach TN-C przy wartościach U<sub>0</sub> = 230 V oraz I<sub>a</sub> = 100 A, impedancja pętli zwarcia powinna być na tyle niska, aby zapewnić skuteczne wyłączenie w przypadku zwarcia. W praktyce, jeśli impedancja pętli zwarcia przekracza określone wartości, na przykład zgodnie z normą PN-EN 60364, czas reakcji wyłączników automatycznych może być zbyt długi, co stwarza potencjalne zagrożenie dla bezpieczeństwa użytkowników. Dlatego właściwe pomiary impedancji pętli zwarcia są niezbędne w każdym projekcie instalacji elektrycznej, aby upewnić się, że system będzie dostatecznie chronił przed porażeniem prądem elektrycznym. W przypadku wykrycia zbyt dużej impedancji, zaleca się poprawę uziemienia oraz optymalizację konfiguracji instalacji, aby zwiększyć skuteczność zabezpieczeń.

Pytanie 29

Który z wymienionych parametrów elementów instalacji elektrycznej można zmierzyć przyrządem, którego fragment pokazano na rysunku?

Ilustracja do pytania
A. Impedancję pętli zwarcia.
B. Czas wyłączenia wyłącznika nadprądowego.
C. Rezystancję izolacji.
D. Rezystancję uziemienia.
Wybór innych opcji, takich jak rezystancja izolacji czy rezystancja uziemienia, to nie jest dobry wybór. Te pomiary wymagają całkiem innych metod i sprzętu. Rezystancja izolacji to zdolność materiałów do opierania się przepływowi prądu, co jest bardzo ważne dla bezpieczeństwa. Mierniki do tego typu pomiarów działają na wyższych napięciach, więc to nie ma nic wspólnego z pomiarami impedancji pętli zwarcia. Rezystancja uziemienia z kolei odnosi się do skuteczności połączeń uziemiających, a to też wymaga innego sprzętu i techniki pomiarowej. Czas wyłączenia wyłącznika nadprądowego to inny temat, który można ocenić w kontekście zabezpieczeń, ale nie mierzysz go tym miernikiem z rysunku. Ta odpowiedź pokazuje typowy błąd w myśleniu, gdzie różne pomiary są mylone, co prowadzi do złych wniosków. Zrozumienie tych różnic jest kluczowe, żeby dobrze zarządzać bezpieczeństwem instalacji elektrycznych i robić poprawne pomiary według norm.

Pytanie 30

Ile maksymalnie gniazd wtyczkowych można zainstalować w jednym obwodzie w systemach odbiorczych?

A. 10 szt.
B. 6 szt.
C. 2 szt.
D. 12 szt.
Podając liczby inne niż 10, można napotkać kilka nieporozumień dotyczących zasad projektowania obwodów w instalacjach elektrycznych. Odpowiedzi, które sugerują mniejszą liczbę gniazd, takie jak 2 czy 6, mogą wynikać z mylnego przekonania, że mniejsze obciążenie jest zawsze bezpieczniejsze. W rzeczywistości, zbyt mała liczba gniazd może prowadzić do nieefektywnego wykorzystania energii oraz konieczności korzystania z rozgałęźników, co wprowadza dodatkowe ryzyko. Z kolei odpowiedź wskazująca na 12 gniazd przekracza ustalone normy, co zagraża bezpieczeństwu instalacji. Przekroczenie odpowiedniej liczby gniazd w kontekście obciążenia obwodu może prowadzić do gwałtownego wzrostu temperatury przewodów, co stanowi poważne zagrożenie pożarowe. Zasady ustalania liczby gniazd bazują na analizie przewidywanego obciążenia oraz zabezpieczeń instalacyjnych. Warto również zwrócić uwagę na różnice pomiędzy różnymi rodzajami instalacji, takimi jak instalacje domowe, przemysłowe czy biurowe, które mogą mieć różne wymogi. Kluczowe jest zawsze dostosowanie liczby gniazd do rzeczywistych potrzeb oraz zapewnienie odpowiednich zabezpieczeń, co minimalizuje ryzyko awarii oraz poprawia komfort użytkowania.

Pytanie 31

Które z przedstawionych parametrów dotyczą wyłącznika silnikowego?

  • Napięcie zasilania 230 V AC
  • Styk separowany 2P
  • Zakres nastawy czasu 0,1 s ÷ 576 h
  • Rodzaje funkcji A, B, C, D
  • Ilość modułów 1
  • Stopień ochrony IP 20
  • Napięcie znamionowe łączeniowe 230/400 V AC
  • Prąd znamionowy 25 A
  • Prąd znamionowy różnicowy 100 mA
  • Stopień ochrony IP 40
  • Max. moc silnika 1,5 kW
  • Zakres nastawy wyzwalacza przeciążeniowego It = 2,5 ÷ 4 A
  • Zakres nastawy wyzwalacza zwarciowego Im = 56 A
  • Prąd znamionowy 20 A
  • Napięcie znamionowe 24 V AC
  • Konfiguracja zestyków 1 NO + 1 NC
  • Ilość modułów 1
  • Znamionowa moc przy napięciu 230 V: 4 kW
A.B.C.D.
A. D.
B. A.
C. B.
D. C.
Wybór odpowiedzi, która nie odnosi się do parametrów wyłącznika silnikowego, wskazuje na nieporozumienie dotyczące funkcji i zastosowania tego urządzenia w systemach elektrycznych. Wyłączniki silnikowe mają na celu ochronę silników przed przeciążeniem oraz zwarciem, a ich kluczowymi parametrami są maksymalna moc, prąd znamionowy oraz czas reakcji. Niezrozumienie tych podstawowych zasad może prowadzić do poważnych konsekwencji w kontekście bezpieczeństwa i efektywności instalacji elektrycznych. Nieopatrzne wybieranie wyłącznika bez znajomości jego maksymalnych parametrów może skutkować uszkodzeniem silnika, co wiąże się z kosztownymi naprawami oraz przestojami w pracy. Ponadto, brak wiedzy na temat standardów, takich jak IEC 60947-4-1, może prowadzić do zastosowania niewłaściwych rozwiązań, które nie spełniają wymogów bezpieczeństwa. Zrozumienie koncepcji dotyczących wyłączników silnikowych i ich specyfikacji jest kluczowe dla inżynierów oraz techników zajmujących się projektowaniem i utrzymywaniem infrastruktury elektrycznej. Dlatego ważne jest, aby zwracać uwagę na szczegółowe parametry techniczne przy doborze wyłącznika, aby uniknąć typowych błędów, które mogą wyniknąć z niedostatecznej wiedzy lub ignorancji branżowych standardów.

Pytanie 32

Przed włożeniem uzwojenia do żłobków silnika indukcyjnego należy

A. pokryć je lakierem elektroizolacyjnym
B. pokryć je olejem elektroizolacyjnym
C. wyłożyć je izolacją żłobkową
D. wstawić w nie kliny ochronne
Wyłożenie uzwojenia w żłobkach silnika indukcyjnego izolacją żłobkową jest kluczowym krokiem w zapewnieniu prawidłowej funkcjonalności oraz bezpieczeństwa urządzenia. Izolacja żłobkowa chroni uzwojenie przed wilgocią, zanieczyszczeniami oraz mechanicznymi uszkodzeniami, co ma szczególne znaczenie w przypadku silników pracujących w trudnych warunkach. Dobrze dobrana izolacja skutecznie zapobiega także przebiciom elektrycznym, co może prowadzić do awarii lub uszkodzenia elementów silnika. W praktyce, zastosowanie izolacji żłobkowej zgodnie z normami, takimi jak IEC 60034, zapewnia długotrwałą i niezawodną pracę silnika. Dodatkowo, dobór odpowiednich materiałów izolacyjnych, takich jak żywice epoksydowe czy włókna szklane, wpływa na parametry termiczne i elektryczne silnika, co przyczynia się do optymalizacji jego wydajności oraz efektywności energetycznej.

Pytanie 33

Jakie optymalne odległości X, Y i Z należy zachować, trasując przebieg przewodów instalacji podtynkowej, przedstawionej na rysunku?

Ilustracja do pytania
A. D.
B. C.
C. B.
D. A.
Odpowiedź C (30 cm, 15 cm, 30 cm) jest prawidłowa, ponieważ odpowiada ogólnym normom i przepisom dotyczącym instalacji elektrycznych podtynkowych, które są kluczowe dla zapewnienia bezpieczeństwa oraz funkcjonalności. Zachowanie takich odległości od krawędzi ścian i otworów drzwiowych minimalizuje ryzyko uszkodzenia przewodów podczas dalszych prac budowlanych, takich jak wiercenie lub montaż elementów wykończeniowych. W praktyce, odpowiednia separacja przewodów od konstrukcji budynku pozwala na uniknięcie przegrzewania się instalacji, co z kolei redukuje ryzyko pożaru. Zgodnie z normą PN-IEC 60364, minimalne odległości są ustalone na podstawie analizy potencjalnych zagrożeń, co czyni je standardem w branży. Dodatkowo, zachowanie tych odległości ułatwia ewentualną konserwację oraz naprawy, co jest istotne w dłuższej perspektywie użytkowania budynku. Przykładem zastosowania tej wiedzy jest planowanie rozkładu gniazdek elektrycznych w nowoczesnych wnętrzach, gdzie estetyka i funkcjonalność muszą iść w parze z bezpieczeństwem. W związku z tym, odpowiedź C jest nie tylko zgodna z przepisami, ale także praktyczna w codziennym użytkowaniu instalacji elektrycznych.

Pytanie 34

Jaką z wymienionych czynności kontrolnych należy przeprowadzić po zainstalowaniu trójfazowego silnika elektrycznego?

A. Mierzenie temperatury stojana
B. Mierzenie prędkości obrotowej
C. Sprawdzenie kierunku obrotów wału silnika
D. Weryfikacja symetrii napięcia zasilającego
Pomiar temperatury stojana, pomiar prędkości obrotowej oraz sprawdzenie symetrii napięcia zasilającego to ważne czynności, jednakże nie są one krytycznymi krokami po montażu silnika elektrycznego. Pomiar temperatury stojana może być istotny w kontekście monitorowania stanu silnika w trakcie jego pracy, ale nie ma bezpośredniego związku z poprawnym montażem i pierwszym uruchomieniem silnika. W przypadku nowo zamontowanego silnika, kluczową kwestie stanowi kierunek obrotów, który powinien być zweryfikowany przed przejściem do dalszych testów eksploatacyjnych. Niezrozumienie tej hierarchii czynności może prowadzić do błędnych działań, takich jak uruchomienie silnika w niewłaściwym kierunku. Z kolei pomiar prędkości obrotowej, choć również istotny, jest bardziej związany z wydajnością silnika w kontekście jego pracy, a nie z weryfikacją samego montażu. Sprawdzenie symetrii napięcia zasilającego, choć może być ważne w kontekście zapewnienia równomiernej pracy silnika, również nie powinno być priorytetem w pierwszej kolejności po montażu. Zrozumienie, które czynności są kluczowe w danych etapach instalacji i uruchamiania silnika, jest niezbędne dla uniknięcia późniejszych problemów oraz zapewnienia bezpieczeństwa w procesie eksploatacji.

Pytanie 35

W układzie zasilania jakiej lampy oświetleniowej wykorzystuje się tyrystorowy system zapłonowy?

A. Halogenowej
B. Żarowej
C. Sodowej
D. Rtęciowej
Tyrystorowy układ zapłonowy znajduje zastosowanie głównie w obwodach zasilania lamp sodowych, ze względu na ich specyfikę działania oraz wymagania dotyczące zapłonu. Lampy sodowe, znane z wysokiej efektywności świetlnej oraz długu czasu życia, potrzebują odpowiedniego układu, który umożliwia ich szybkie i stabilne zapłonienie. Tyrystory, jako elementy półprzewodnikowe, pozwalają na kontrolowanie dużych prądów oraz napięć, co jest niezbędne w przypadku lamp sodowych, które charakteryzują się dużymi wartościami prądów startowych. Dodatkowo, tyrystory umożliwiają oszczędność energii poprzez precyzyjne zarządzanie cyklem pracy lampy, co jest zgodne z najlepszymi praktykami w projektowaniu systemów oświetleniowych, które dążą do minimalizacji strat energii oraz wydłużenia żywotności źródeł światła. Warto również zauważyć, że tyrystory, jako elementy zabezpieczające i sterujące, są często wykorzystywane w różnych zastosowaniach przemysłowych, co podkreśla ich wszechstronność i znaczenie w nowoczesnych systemach oświetleniowych.

Pytanie 36

Jaką metodę należy zastosować do bezpośredniego pomiaru rezystancji przewodów?

A. watomierz oraz amperomierz
B. amperomierz oraz woltomierz
C. analogowy omomierz
D. cyfrowy watomierz
Omomierz analogowy jest specjalistycznym narzędziem pomiarowym, które pozwala na dokładne mierzenie rezystancji przewodów. Jego działanie opiera się na zastosowaniu prądu stałego, który przepływa przez przewód, a następnie mierzy spadek napięcia. W oparciu o te dane oblicza się wartość rezystancji zgodnie z prawem Ohma, które mówi, że R = U/I, gdzie R to rezystancja, U to napięcie, a I to natężenie prądu. W praktyce omomierze są często wykorzystywane do lokalizacji i diagnozy usterek w instalacjach elektrycznych, oceny stanu przewodów w urządzeniach oraz podczas wykonywania przeglądów technicznych. Stosowanie omomierza analogowego ma swoje zalety, takie jak prostota obsługi oraz bezpośrednie odczyty na skali, co może być korzystne w przypadku szybkich pomiarów. Dobrym przykładem zastosowania omomierza jest kontrola przewodów uziemiających, gdzie niska rezystancja jest kluczowa dla bezpieczeństwa systemów elektrycznych, co jest zgodne z normami PN-EN 62305 dotyczącymi ochrony odgromowej i uziemień.

Pytanie 37

Aby ocenić efektywność ochrony przez automatyczne odcięcie zasilania w systemie TN instalacji elektrycznej, konieczne jest

A. określenie czasu oraz prądu zadziałania wyłącznika RCD
B. wykonanie pomiaru rezystancji uziemienia
C. przeprowadzenie pomiarów impedancji pętli zwarcia
D. zweryfikowanie ciągłości połączeń w instalacji
Pomiar impedancji pętli zwarcia jest kluczowym działaniem w ocenie skuteczności ochrony przed porażeniem elektrycznym w systemie TN. Zgodnie z normą PN-EN 61230, impedancja pętli zwarcia wpływa na czas zadziałania zabezpieczeń, co jest istotne dla bezpieczeństwa instalacji. W przypadku zwarcia, niższa impedancja oznacza, że prąd zwarciowy będzie wyższy, co z kolei przyspiesza działanie wyłączników automatycznych. Praktycznie, przeprowadzając pomiar, możemy określić, czy wartości impedancji mieszczą się w dopuszczalnych normach, co pozwala na weryfikację, czy zabezpieczenia zadziałają w wystarczająco krótkim czasie, aby zminimalizować ryzyko porażenia użytkowników. Takie pomiary są również wymagane podczas odbiorów instalacji elektrycznych, aby zapewnić zgodność z normami oraz bezpieczeństwo użytkowników.

Pytanie 38

Oprawy oświetleniowe opatrzone symbolem przedstawionym na ilustracji

Ilustracja do pytania
A. mają wzmocnioną izolację.
B. wymagają uziemienia obudowy.
C. muszą być zasilane wyłącznie przez transformator separacyjny.
D. muszą być zasilane wyłącznie z sieci PELV.
Wybór odpowiedzi wskazujących na konieczność zasilania opraw oświetleniowych wyłącznie przez transformator separacyjny lub z sieci PELV oraz wymaganie uziemienia obudowy wynika z niewłaściwego zrozumienia zasad klasyfikacji urządzeń elektrycznych. Oprawy z symbolem podwójnej izolacji nie wymagają separacji zasilania, ponieważ ich konstrukcja zapewnia wystarczający poziom ochrony przed porażeniem prądem. Transformator separacyjny jest stosowany w urządzeniach, które nie mają podwójnej izolacji i wymagają dodatkowego zabezpieczenia, co oznacza, że jego zastosowanie w przypadku opraw z wzmocnioną izolacją jest zbędne. Ponadto, zasada dotycząca uziemienia nie ma zastosowania w przypadku urządzeń klasy II, ponieważ ich konstrukcja nie przewiduje tego typu zabezpieczeń. Zamiana zasilania na system PELV, który bazuje na niskich napięciach, również jest nieadekwatna, ponieważ oprawy z podwójną izolacją są projektowane do pracy w standardowych warunkach zasilania. Takie nieporozumienia mogą prowadzić do niebezpiecznych praktyk montażowych oraz użytkowania, w których bezpieczeństwo użytkowników może być zagrożone. Kluczowe jest zrozumienie, że podwójna izolacja sama w sobie stanowi wystarczający poziom ochrony, eliminując potrzebę stosowania dodatkowych zabezpieczeń, które są dedykowane innym klasom ochronności.

Pytanie 39

Na którym schemacie przedstawiono prawidłowy sposób połączenia rozdzielnicy mieszkaniowej z wewnętrzną linią zasilającą?

Ilustracja do pytania
A. A.
B. C.
C. D.
D. B.
Wybór złych schematów do połączenia z wewnętrzną linią zasilającą to poważna sprawa, bo może prowadzić do niebezpieczeństwa i problemów z działaniem całej instalacji. Często można zobaczyć błędy w podłączeniu przewodów neutralnych i ochronnych, co stwarza ryzyko porażenia prądem oraz może sprawić, że zabezpieczenia będą działać nieprawidłowo. Na przykład, jeśli licznik energii elektrycznej jest umieszczony po zabezpieczeniu nadmiarowoprądowym, to nie tylko pomiar będzie utrudniony, ale i cała instalacja może być na ryzyko uszkodzenia w przypadku zwarcia. Wiele osób nie zwraca na to uwagi, myśląc, że kolejność podłączenia nie ma znaczenia, a to błąd. Normy, jak PN-IEC 60364, jasno mówią, że przewody muszą być odpowiednio podłączone i rozmieszczone. Błędy w tym zakresie mogą prowadzić do awarii i zagrożenia dla zdrowia użytkowników, więc lepiej zwracać uwagę na detale.

Pytanie 40

Na którym rysunku przedstawiono schemat połączeń umożliwiający pomiar energii elektrycznej pobranej przez użytkownika?

Ilustracja do pytania
A. D.
B. A.
C. C.
D. B.
Błędne odpowiedzi mogą być wynikiem nieporozumień co do tego, jak działają liczniki energii i ich podłączenie w obwodach elektrycznych. Schematy A, B i D mogą mieć błędy w połączeniu przewodów fazowych i neutralnych, co prowadzi do złego pomiaru energii. Często myli się, że licznik może być podłączony równolegle do obciążenia, a to wcale nie działa, bo licznik wtedy nie zmierzy przepływu prądu. Właściwy pomiar wymaga szeregowego połączenia, żeby licznik był w torze prądowym. Dodatkowo, jeśli źle rozumie się rolę przewodów, można mieć problem z ich zidentyfikowaniem, co może być niebezpieczne. Warto zwrócić uwagę na normy i przepisy dotyczące instalacji elektrycznych, bo pokazują, jak ważne jest bezpieczeństwo i poprawność podłączeń. Zrozumienie zasad działania systemów pomiarowych oraz ich prawidłowego podłączenia jest kluczowe, żeby zapewnić bezpieczeństwo i efektywność energetyczną w codziennym użytkowaniu energii.